ﬂ Sensors

Article

Polymer Nanocomposite Sensors with Improved Piezoelectric
Properties through Additive Manufacturing

Rishikesh Srinivasaraghavan Govindarajan 1@, Zefu Ren 10, Isabel Melendez 2, Sandra K. S. Boetcher 20,
Foram Madiyar >* and Daewon Kim 1-*

check for
updates

Citation: Srinivasaraghavan
Govindarajan, R.; Ren, Z.; Melendez,
L; Boetcher, S.K.S.; Madiyar, F; Kim,
D. Polymer Nanocomposite Sensors
with Improved Piezoelectric
Properties through Additive
Manufacturing. Sensors 2024, 24, 2694.
https:/ /doi.org/10.3390/524092694

Academic Editor: Iren E. Kuznetsova

Received: 28 March 2024
Revised: 19 April 2024
Accepted: 22 April 2024
Published: 24 April 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Aerospace Engineering, Embry-Riddle Aeronautical University,

Daytona Beach, FL 32114, USA; srinivrl@my.erau.edu (R.S.G.); renz@my.erau.edu (Z.R.)

Department of Mechanical Engineering, Embry-Riddle Aeronautical University,

Daytona Beach, FL 32114, USA; melendei@my.erau.edu (I.M.); sandra.boetcher@erau.edu (S.K.S.B.)

3 Department of Physical Science, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
*  Correspondence: madiyarf@erau.edu (FM.); kimd3c@erau.edu (D.K.)

Abstract: Additive manufacturing (AM) technology has recently seen increased utilization due to
its versatility in using functional materials, offering a new pathway for next-generation conformal
electronics in the smart sensor field. However, the limited availability of polymer-based ultraviolet
(UV)-curable materials with enhanced piezoelectric properties necessitates the development of a
tailorable process suitable for 3D printing. This paper investigates the structural, thermal, rheological,
mechanical, and piezoelectric properties of a newly developed sensor resin material. The polymer
resin is based on polyvinylidene fluoride (PVDF) as a matrix, mixed with constituents enabling UV
curability, and boron nitride nanotubes (BNNTs) are added to form a nanocomposite resin. The results
demonstrate the successful micro-scale printability of the developed polymer and nanocomposite
resins using a liquid crystal display (LCD)-based 3D printer. Additionally, incorporating BNNTs into
the polymer matrix enhanced the piezoelectric properties, with an increase in the voltage response by
up to 50.13%. This work provides new insights for the development of 3D printable flexible sensor
devices and energy harvesting systems.

Keywords: additive manufacturing; piezoelectric; polymer; nanocomposite; BNNTs

1. Introduction

The rapid evolution of microelectronics technology has catalyzed significant break-
throughs in various scientific fields, particularly in the realm of smart sensor technology.
These advancements offer unprecedented versatility, paving the way for the development
of next-generation conformal electronics across diverse applications. Traditional micro-
scale electronic fabrication techniques, such as imprint lithography, micromachining, and
photolithography, have primarily relied on two-dimensional (2D) rigid substrates [1-4].
However, these methods face inherent limitations in achieving non-planar structures for
complex curvilinear architectures. Recent advances in materials, manufacturing techniques,
and microelectromechanical (MEMS) designs have made a substantial contribution to
the emergence of several smart devices based on piezoelectric materials for society [5-7].
Piezoelectric materials, a family of organic or inorganic materials, are renowned for their
ability to convert mechanical stress into electrical charge (direct effect) or vice versa (inverse
effect), thus playing a pivotal role in a wide range of multidisciplinary areas, including the
aerospace and bio-medical fields [8,9], to detect and sense physical phenomena such as
mechanical strains and pressure [10-13].

Traditionally, ceramics like lead zirconate titanate (PZT), barium titanate (BaTiO3), and
calcium copper titanate (CCTO) have been preferred due to their exceptional piezoelectric
characteristics [14-16]. Conversely, their rigidity, brittleness, toxicity, and high density limit
their application in conformal electronics. To circumvent these challenges, researchers have
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developed polymer-based composites, capitalizing on polymers’ unique properties, such as
mechanical flexibility, lightweightness, and ease of processing. Particularly, polyvinylidene
fluoride (PVDEF), a fluoropolymer, with its distinct polymorphism («, 8, v, and J phases),
has emerged as a leading candidate owing to its high dielectric constant compared to other
polymers, increased flexibility, and long-term stability under high electric fields [17,18]. The
performance of PVDE-based sensors is enhanced by incorporating micro and nano piezo-
electric fillers into the polymer matrix, which synergize the flexibility and high piezoelectric
property, thereby unlocking new functionalities tailored to envisioned applications [19].
Traditional processes, such as compression molding, spin coating, and solvent casting, have
been employed for manufacturing piezocomposite materials [11,20,21]. However, these
traditional methods are time-consuming, limit design flexibility, and are mostly suitable
for large-scale structures with complex fabrication processes, underscoring the need for
alternative approaches.

In contrast, additive manufacturing (AM) technology presents a promising solu-
tion with its layer-by-layer stacking approach, enabling the creation of intricate three-
dimensional (3D) structures with unparalleled ease and efficiency. This capability holds
immense potential for the fabrication of multifunctional materials with complex geome-
tries, thereby revolutionizing sensor, energy harvester, and actuator devices [22-24]. Al-
though attempts have been made to 3D print PVDF-based sensing devices using micro-
dispensing [25,26] and fused deposition techniques [27,28], challenges persist in printing
complex out-of-plane patterns, producing uniform filaments and manufacturing an array
of sensor materials in a time-efficient manner. Among different AM techniques, ultraviolet
(UV)-based 3D printing overcomes the aforementioned fabrication challenges. Stereolithog-
raphy (SLA), a well-known UV-based 3D printing technique, can produce high-quality,
macro-sized 3D structures. Yet, this method uses a laser beam that possesses a low printing
rate and is not suitable for rapid production [29]. In this study, a liquid crystal display
(LCD)-based printing method is employed as this is economical and can print an entire
layer at once with effective resolution. Despite advancements in printing technology, to the
author’s knowledge, the availability of resin material amenable to UV-based 3D printing
processes remains a pressing challenge, highlighting the need for developing an optimized
material exhibiting flexibility and piezoelectric properties.

On the other hand, the selection of piezocomposite materials plays a vital role in mate-
rial synthesis in terms of compatibility, lightweightness, and piezoelectric properties. Boron
nitride nanotubes (BNNTs), a promising nanofiller, are known for their high thermal and
chemical stability, mechanical strength, and good biocompatibility. This nanofiller offers
the potential to significantly enhance the piezoelectric properties of polymer composites,
making them ideal for highly sensitive force-sensing applications [30-32]. Although BNNTs’
piezoelectric nature has been explored through analytical and simulation studies [33-35],
experimental research on incorporating BNNTs into polymer composites, especially for 3D
printing smart sensors, remains in the nascent stage.

Addressing the imperative requirements, this paper presents a comprehensive investi-
gation into the structural, thermal, rheological, mechanical, and piezoelectric properties
of a newly developed sensor resin material based on PVDE. Additionally, the effect of
incorporating BNNTs as a nanofiller is examined, focusing on enhancing the nanocompos-
ite’s piezoelectric sensor response. Leveraging an LCD-based 3D printer, this study also
investigates the micro-scale printability of the developed sensor material.

2. Materials and Methods
2.1. Sample Preparation

The process of developing a polymer resin involves blending the base polymer with
additives that enable UV curability, suitable for the selected 3D printing process. The
primary component of the developed resin was PVDE, a base polymer (Sigma Aldrich,
St. Louis, MO, USA) with an average particle size of 3-10 um, molecular weight (Mw) of
~534,000 g/mol, and density of 1.74 g/mL. Additionally, a hexamethylene glycol diacry-
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Table 2. Printing parameters for polymer and nanocomposite resins using an LCD printer.

Print Parameter Value

Layer height, mm 0.05
Bottom layer count 6
Bottom exposure time, s 55
Normal exposure time, s 30
Lift distance, mm 6
Lift speed, mm/min 60

Retract speed, mm/min 150

2.3. Phase Characterization Methods

Fourier transform infrared spectroscopy (FTIR) transmission spectra of the polymer
with added nanofiller were recorded within a wavenumber range of 650-3500 cm ! using
an Agilent Cary 630 spectrometer (Santa Clara, CA, USA) with 64 scans per spectrum.
X-ray diffraction (XRD) spectra were obtained within a 26 range from 10° to 50° using a
Panalytical X'Pert Pro diffractometer (Malvern, Worcestershire, UK) with a Cu radiation
source operating at 45 kV and 40 mA, with an irradiated length of 5 mm.

2.4. Thermal and Rheological Measurements

The melting and crystallization properties of the developed polymer and nanocompos-
ite materials were investigated based on differential scanning calorimeter (DSC) measure-
ments collected using a Mettler Toledo DSC 3 (Columbus, OH, USA). Samples weighing
between 30 mg and 40 mg were contained in 40 uL aluminum crucibles. The temperature
of the samples was gradually increased from 30 °C to 180 °C at a 10 °C/min heating rate.

The rheological measurements of the mixed resins with varying proportions of poly-
mer and with nanofillers were conducted utilizing a TA Instruments HR 20 hybrid rheome-
ter (New Castle, DE, USA). The testing framework comprised two 25 mm diameter parallel
plates and a 0.75 mm gap, with temperature control maintained by a Peltier plate setup.
Two types of measurements were performed: (1) viscosity over a varying shear rate from
157! to 100 s at 25 °C and (2) viscosity at a constant shear rate of 100 s~! fora60s
duration at 25 °C.

2.5. Nanoindentation

Mechanical characterization of 3D printed samples was conducted using a Bruker
Hysitron TI-980 nanoindenter (Billercia, MA, USA) equipped with a 10 mN low-load
transducer. To study the material’s reduced modulus and viscoelastic properties, single
indentations and micro-scale dynamic mechanical analysis were performed, respectively,
with an applied peak force of 5 mN and a 5 s dwell time at 100 Hz frequency.

2.6. Piezoelectric and Dielectric Property Measurements

The piezoelectric strain coefficient (d33), which represents the induced polarization
per unit stress applied in the thickness direction, was measured using an APC YE2730A
piezometer (Mackeyville, PA, USA) with a 250 mN applied force. The dielectric constant
was determined through parallel plate capacitor measurements of 3D printed samples
sandwiched between aluminum plates. Capacitance values were obtained with a high-
precision Hioki IM 3570 impedance analyzer (Dallas, TX, USA) across a frequency range
of 100 Hz to 1 MHz. The dielectric constant (¢,) was calculated as ¢, = C-d/gy-A, where C
represents the measured capacitance at different frequencies, A denotes the area of the
aluminum electrode, d signifies the thickness of the individual 3D printed substrate, and
gp is the free space dielectric constant. Additionally, the piezoelectric voltage constant
(g33) was derived using the relation g33 = d33/¢r 9 based on the measured values. Finally,
the electrical output signal from the 3D printed device was captured using an Agilent
DSO-X-4024A digital oscilloscope (Keysight Technologies, Santa Rosa, CA, USA).
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the T exhibited a significant increase compared to the PVDF polymer. The presence of
BNNTs affected the AHwn by creating a nucleation site, thus providing an insufficient area
for crystal formation and alignment. Finally, it is essential to note that the thermogram
profiles were single-peaked, an indicative of a homogenous composite that melted uni-
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3.4. SENP A Je viscosities as the PVDF wt. % increased, measurements were recorded at
a shear rate of 100 s~! to simulate shear loading on geometries with small and complex
featRFeS RSB RRpIRYIRR debomiog &by nba debitiyes vt dhe LY poleme were
invipstigatechbyiseysimining 3P ponted stougiswestvdthiiatging B Chakententhi2het0 wt.
PVDF content exhibited a high polar phase, poor endurance was demonstrated, leading to
increased instances of building platform detachment and warping over time.
Introducing BNNT fillers into the polymer matrix resulted in a 49% increase in viscosity
compared to the polymer resin with 35 wt. % PVDE, as shown in Figure 5b. Nevertheless,
the resin with nanofillers exhibited lower viscosity than the resin with 40 wt. % PVDF and
remained within the printable range while enhancing overall piezoelectric performance, as
discussed in the following sections.

3.4. SEM Analysis

The surface morphology and homogeneity of additives with the PVDF polymer were
investigated by examining 3D printed structures with varying PVDF contents (2040 wt. %)
using a FEI Quanta 650 scanning electron microscope (SEM). SEM images were captured at
20 kV, as shown in Figure 6a—e, revealing the surface quality of the printed samples, with
an observed increase in polymer content mixed with other added constituents. Specifically,
a combination with 40 wt. % PVDF exhibited a reunion phenomenon (highlighted with
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3.5. Printability of Developed Polymer Resins

3.5. Printability of D evelq#@ddé@@rgg,%@gg% demonstrated compatibility with UV-based AM techniques,
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0.68 um) and flexible compared to the polymer sample (Sa = 7.68 = 0.60 um) due to the
presence of BNNTSs. This inspection confirmed the compatibility of the developed resin
for UV-based 3D printing with better stacked layers, offering a scalable approach to man-

ufacturing nanocomposite sensors with high resolution and structural integrity.
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Based on the measured values, the modulus tended to increase with an increase in
polymer content, and at 40 wt. %, the modulus dropped due to the flexible and reunion
behavior of the polymer combination, as depicted in Figure 8a. A similar trend was noticed
with the addition of BNNTs to the polymer, as shown in Figure 8b. This phenomenon could
be ascribed to the selected UV curing process and loss of crystals, contrary to the increase in
modulus observed in casting processes involving temperature and stretching [45]. Despite
the low Young’s modulus with BNNT addition, the printed nanocomposite exhibited stur-
diness and compliance, suitable for conformal structures, as noted in Section 3.5 regarding
printability. Moreover, adding beyond 2 wt. % of BNNTs would result in agglomeration to
a certain extent and hinder the adhesion between nanofillers and additives, compromising
the structural integrity of the 3D printed sample [45,46].

3.7. Piezoelectric Property Enhancement with Added Nanofillers

Material property measurements, such as d33, €, and ¢33, play a pivotal role in assess-
ing the performance of piezoelectric sensors. The d33 value, indicative of the piezoelectric
charge coefficient within the crystal structure of both the polymer and the nanocomposite,
quantifies the charge generated per unit force applied in the thickness direction. Maximiz-
ing the piezoelectric response of PVDF polymer occurs when it exhibited a higher  phase,
facilitating the alignment of the polar group along the polymer chains. The incorporation
of BNNTs serve as a nucleation site for polymer crystallization, resulting in the generation
of coupled electric dipoles in response to deformation, promoting stress transfer efficiency
and enhancing polarization, thus strengthening the piezoelectric response.

The alignment of dipoles in the developed polymer and nanocomposite substrates,
crucial for activating piezoelectricity, was achieved through polarization. Utilizing corona
poling, a non-contact polarization technique involving the application of a high voltage of
8 kV for 30 min facilitated this alignment process. The measured d33; values with varying
PVDF contents in the developed resins post-polarization can be seen in Table 5. It was
evident that the property demonstrated an increase alongside the rise in crystalline content,
mirroring the trend observed in the polar phase discussed in Section 3.1.

Table 5. Measured piezoelectric strain coefficient for 3D printed resins with different PVDF contents
after polarization.

PVDF Sample, wt. % dz3, pC/N
20 3.40 £ 0.15
25 4.33 +0.19
30 5.67 + 0.36
35 7.34 +0.20
40 8.14 +£0.17

Analysis of the measured and calculated piezoelectric properties at 100 Hz, as pre-
sented in Table 6, revealed a maximum yield of 12.20 pC/N for d33 and 114.06 mVm/N for
833 upon filler addition to the base polymer. However, it is noteworthy that the achieved
d33 value was lower than the 16-20 pC/N typically reported in the literature [47,48]. The
difference can be attributed to the current composite containing only 35 wt. % polymer and
2 wt. % nanofiller, while the remaining additives lacked piezoelectric properties. This trade-
off between piezoelectric properties and printability enabled the fabrication of functional
sensors through UV-based 3D printing.

Table 6. Effect of adding fillers on piezoelectric properties, measured at 100 Hz.

Sample, wt. % ds3, pC/IN & 33, mVm/N

PVDEF 35 7.34 £0.20 8.47 £ 0.01 97.85 £0.11
PVDF 35/BNNTs 2 12.20 £ 0.83 12.08 + 0.02 114.06 + 0.43
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investigating the structural, thermal, rheological, mechanical, and piezoelectric characteris-
tics of novel sensor resin materials based on PVDF and a BNNT-coupled nanocomposite,
this research addresses a gap in the development of UV-based, 3D printable sensor devices.
Utilizing an LCD-based printer, the findings demonstrate not only the successful micro-
scale printability of the nanocomposite resin but also the enhancement of its piezoelectric
properties. The PVDF/BNNT nanocomposite yielded a maximum f fraction of 64.89%,
with 12.20 pC/N (d33), 114.06 mVm/N (g33), and 12.20 (¢;). Additionally, the observed
increase in piezoelectric voltage response by up to 50.13% highlights the efficacy of this
approach in advancing micro-scaled sensor technology. The findings outlined in this work
will provide valuable insights into the utilization of polymer-based resins in sensors and
energy harvester fields. Future work will be dedicated to investigating the ferroelectric and
thermal behavior at different temperatures, suitable for developing an array of embedded
piezoelectric sensors in harsh environments.
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