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Endemic (small-ranged) species are distributed non-randomly across the
globe. Regions of high topography and stable climates have higher ende-
mism than flat, climatically unstable regions. However, it is unclear how
these environmental conditions interact with and filter mammalian traits.
Here, we characterize the functional traits of highly endemic mammalian
assemblages in multiple ways, testing the hypothesis that these assemblages
are trait-filtered (less functionally diverse) and dominated by species with
traits associated with small range sizes. Compiling trait data for more than
5000 mammal species, we calculated assemblage means and multi-
dimensional functional metrics to evaluate the distribution of traits across
each assemblage. We then related these metrics to the endemism of global
World Wildlife Fund ecoregions using linear models and phylogenetic
fourth-corner regression. Highly endemic mammalian assemblages had
small average body masses, low fecundity, short lifespans and specialized
habitats. These traits relate to the stable climate and rough topography of
endemism hotspots and to mammals’ ability to expand their ranges,
suggesting that the environmental conditions of endemism hotspots allowed
their survival. Furthermore, species living in endemism hotspots clustered
near the edges of their communities’ functional spaces, indicating that abio-
tic trait filtering and biotic interactions act in tandem to shape these
communities.
1. Introduction
As extinctions continue to mount in the Anthropocene, understanding the
ecological patterns that govern how vulnerable communities assemble and
are distributed is vital for the continued preservation of life on Earth [1,2].
Endemic species, or species with small range sizes, are one such vulnerable
group. Because of their limited distributions, they are disproportionately
affected by anthropogenic effects like habitat fragmentation and climate
change [3–5]. The small natural ranges characteristic of endemic species typi-
cally represent either remnants of evolutionarily ancient species that were
more widespread in the past (e.g. Ginkgo biloba [6], or late-stage taxon
cycles [7]) or evolutionarily young species that have recently diverged (e.g.
the island fox Urocyon littoralis [8]) and/or have never proliferated broadly
[9,10]. Although patterns of endemism are correlated with richness, endemism
hotspots (areas of high endemism) are environmentally distinct from those of
high species richness [11,12]. In particular, endemism hotspots have rougher
topography and more stable climates over time than expected given the
number of species in the hotspot [13].

The abiotic, environmental pattern of vertebrate endemism on continental
scales is well studied [13–17]. However, the biological mechanisms underlying
the global pattern of endemism is still unclear, and little consensus has been
reached on how the biotic, functional traits of vertebrate species within ende-
mism hotspots might covary with this pattern [15,18,19]. Functional traits are
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Table 1. Table describing all traits considered in this analysis, along with their hypothesized relationships to endemism. These hypotheses were developed from
prior literature evaluating trait–range size relationships in individual vertebrate species.

trait calculation hypothesis citation

mass body mass of adult individual smaller [24,26,31,34]

body length total length from tip of nose to anus smaller [26]

longevity maximum age at death shorter [32]

female maturity amount of time needed for a female to reach sexual maturity older [35]

gestation length length of time of fetal growth longer [34–36]

litter size number of offspring born per litter smaller [24,32,34,36]

litters per year number of litters per female per year lower [34]

weaning age age at which independent foraging begins older [35]

dispersal rate distance travelled from place of birth to place of reproduction lower [24,33,37]

hibernation does the species go through hibernation or torpor? more common [38]

fossoriality does the species live below ground? more common [29]

diet breadth number of dietary categories consumed debated [19,25,27] (but see [24])

trophic level herbivore, omnivore, carnivore debated [29] (but see [35])

habitat breadth number of suitable level 1 IUCN habitats occupied debated [19,24,39] (but see [40,41])

functional richness convex hull surrounding trait space higher [18]

functional dispersion mean distance to centre of trait space debated [18] (but see [42])

functional evenness minimum spanning tree in trait space between species understudied

functional divergence mean distance of each species to edge of trait space understudied

functional redundancy average number of species sharing similar traits higher [18]
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characteristics of an individual or a species that affect its life history and its role within an ecosystem [20]. These traits (e.g. diet,
body size and locomotion) can describe a species’s life history and behaviour, making explicit the ecological processes that may
govern where a species lives [21]. Furthermore, how varied or clustered functional traits are within an assemblage can indicate the
strength of species interactions and the degree of trait-filtering and niche partitioning across the assemblage [20,22,23]. Examining
the community structure of endemism hotspots and the relationships between functional traits and endemism can therefore
provide fundamental insights into the evolutionary, ecological and environmental mechanisms governing vertebrate range sizes
and extinction risk.

Because endemic species often maintain unique ecological roles within an ecosystem, endemism hotspots are hypothesized to
possess unique functional characteristics [18]. Research on individual species range sizes demonstrated links with environmental
niche breadth (the variety of environments a species can tolerate [19,24–26]), trophic level and specialization [25,27], body size
[28–30], metabolic rate [31], life-history traits including fecundity and longevity [24,32], and dispersal ability [24,33] (table 1).
Many of these functional traits relate to an organism’s ability to expand its range. For example, species that are more fecund
with broader niches are often able to maintain larger populations and to rebound after disturbances, allowing them to disperse
across landscapes more effectively [32,36,43].

The abiotic features characteristic of endemism hotspots (stable climates and rough topography) may additionally act as filters
for certain functional traits. Regions with stable climates (for example, tropical areas) are associated with small body sizes and
specialized niches [39,44,45]. Along with filtering individual traits, the climate stability inherent to endemism hotspots may
also influence the overall spread and clustering of functional traits within an assemblage (table 1). For example, Safi et al. [46]
observed that strong selection gradients in high latitudes and previously glaciated regions lead to rapid trait evolution and greater
variance in functional traits than expected given the number of species. By contrast, mammal species living in stable climates
(through time and across seasons) and tropical regions are often ‘packed’ into trait space, with strong environmental filtering,
niche partitioning and slow trait evolution [37,46]. Climate stability and species richness are integral drivers of mammalian ende-
mism [13,15]. Therefore, endemism hotspots may likewise have strong environmental filtering, leading to assemblages that are
functionally clustered in trait space when compared to areas of lower endemism.

The observed relationship between climate stability and clustering in trait space suggests that the evolutionary distinctiveness of
endemism hotspots may not always manifest itself in particularly diverse ecological or functional communities [47]. However, ende-
mism hotspots are also found in areas of rough topography. In contrast to regions of high stability, areas of complex topography
often have stronger selection gradients because of the increasing isolation andnovel environments observed along elevational gradients
[17,48]. These mountainous regions may therefore lead to higher variation in species traits across an assemblage, as species evolve to
colonize new niches created during tectonic uplift [37,49]. Because these areas in general have increased endemism, wemight therefore
predict greater variance in functional characteristics and higher functional divergence in areas of high endemism [18] (table 1).
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It is clear that the same ecological and biogeographic processes can interact at different scales and magnitudes to generate
different functional patterns across landscapes. In addition, the relationships between traits of a single species often interact in
complex ways, so how the unique environmental and biotic attributes of endemic communities combine to shape community-
level functional traits is yet unknown. Because many of these hypothesized relationships are unclear or are currently being
debated, it is unknown whether endemism hotspots are dominated by species less able to expand their ranges, by species with
the trait-based potential to be more widespread, or by a diversity of functional trait strategies. If biotic interactions and topography
influence highly endemic communities more strongly than the environmental stability and high species richness of endemism hot-
spots, we would expect greater functional dispersion and less functional redundancy in highly endemic assemblages. By contrast,
the high species richness and stable environments of endemism hotspots may lead to distinct traitendemism relationships, lower
dispersion and higher redundancy. Evaluating the distribution of mammalian functional traits within endemism hotspots allows
us to determine which of these mechanisms governs trait evolution in small-ranged species.

In this study, we systematically assess the functional characteristics (i.e. the identity and distribution of functional traits within
an assemblage) of terrestrial mammalian assemblages across the Earth. We related both the average trait values and metrics
describing the distribution and spread of functional traits within each assemblage (hereafter, ‘multidimensional functional
metrics’) to its endemism. Additionally, we use multiple methods to test whether the trait–range size relationships observed
in individual species (table 1) apply to entire assemblages and how the unique conditions of endemism hotspots affect these
relationships. If endemism hotspots are dominated by species with traits disadvantageous for expanding their ranges, we hypoth-
esize smaller average body size, lower fecundity, shorter lifespans and smaller niche breadths in highly endemic ecoregion
assemblages than in assemblages without many endemic species (table 1). Finally, we test the hypotheses posed by Keppel
et al. [18] that species living in endemism hotspots will exhibit high diversity and clustering in trait space, as stable climates,
rough topography and richness-driven niche partitioning allow small-ranged species to tightly pack the available functional
niche space. As a result, we expected that endemic mammals will not fill functionally unique parts of their assemblages’ trait
spaces, but that highly endemic assemblages as a whole will still show distinct functional characteristics.
2. Methods
(a) Study extent and spatial units
To evaluate how functional traits vary with terrestrial mammalian endemism on an assemblage level across the globe, we first down-
loaded expert range maps describing the current distributions of 5695 terrestrial mammal species from the International Union for
Conservation of Nature (IUCN) [50]. Next, we divided the world into discrete spatial units, using the IUCN range maps to determine
which species were found in which assemblages. Following the recommendations of prior literature [12,51] to use biologically relevant
spatial units for evaluating endemism, we used World Wildlife Fund (WWF) ecoregions [52] as the units of analysis. These ecoregions
partition the terrestrial biosphere into greater than 800 regions of similar predominant vegetation and habitat. Using WWF ecoregions
for this study allowed us to divide the global community of mammals into assemblages of species that are likely to interact with each
other and be influenced by similar ecological and physiographic processes, in contrast to other, arbitrary study units [12,51,52]. Ecoregions
vary widely in size, but ecoregion area has little effect on mammalian endemism patterns not already explained by species richness
patterns [13].

(b) Data collection
Following methods described in [13] and electronic supplementary material, appendix S1, we calculated weighted endemism as the sum
of the inverse range sizes of all species resident to each ecoregion. To account for the evident influence of species richness on the evolution
of traits in vertebrates [30,37,53–56], and disentangle the effects of species richness from those of endemism [12,13], we characterized the
endemism of an assemblage using the residuals of the linear relationship between weighted endemism and species richness (henceforth,
‘richness-corrected endemism’). Assemblages with greater richness-corrected endemism have more endemism than expected given the
number of species within the assemblage. As observed by [13] and shown in figure 1, these assemblages are primarily in areas of high
topography that are climatically stable (e.g. coastal mountain ranges) and on islands. We conducted all of our analysis using richness-cor-
rected endemism instead of true weighted endemism; however, the results using weighted endemism itself are found in electronic
supplementary material, appendix S5.

The functional traits of each species were collected from the COMBINE dataset [57]. We selected 14 traits relating to each organism’s
body size, life-history strategies, fecundity and diet (table 1). These traits were selected for their hypothesized relevance for range
size or endemism, their usefulness in differentiating among species groups and characterising functional spectra [58], and their complete-
ness within the un-imputed COMBINE dataset (electronic supplementary material, appendix S2). In addition to these traits, we calculated
the annual fecundity of each species by multiplying the average litter size by the average number of litters per year [34]. All continuous
traits were transformed for normality (body mass, dispersal rate, longevity, gestation length, weaning age and fecundity were log-trans-
formed and body length was Box–Cox transformed) and scaled to unit variance.

(c) Trait–endemism relationships
After collecting individual species traits, we assessed the relationships between these traits and the endemism of each ecoregion. We used
two separate frameworks to examine these relationships: a community-level framework (assemblage means) and a combined analysis
that incorporates community composition and individual species traits (fourth-corner regression). These two methods have different
ecological interpretations and hypotheses. The fourth-corner analysis assesses how species traits influence their preferences along a
gradient, whereas the assemblage means discern which traits are more abundant in given environments, regardless of species preference
or adaptive potential [59].



richness-corrected endemism higher
endemism

higher
species richness

body mass habitat breadth

longevity

larger

more fecund

smaller

broader

longer-lived

narrower

shorter-livedless fecund

fecundity

Figure 1. Global maps showing spatial patterns of richness-corrected endemism (top) and the assemblage means of four functional traits (bottom). For endemism,
red colours indicate high values (more endemism than expected given the number of species), whereas blue colours indicate low values (less endemism than
expected). The four traits were chosen based on their significant relationships to richness-corrected endemism (figure 4). The colour scales of the trait maps
are reversed for easier comparisons to richness-corrected endemism.
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For the community-level analysis, we first averaged the trait values described in table 1 of every mammal species resident to that
ecoregion (henceforth, assemblage means) and calculated the standard deviations. As a measure of trait variation within each assemblage,
these standard deviations provide information on the diversity of each trait within the ecoregion assemblages. Next, we developed a gen-
eralized linear model (GLM) relating the assemblage means and standard deviations of the trait values to the endemism of the ecoregion.
To reduce collinearity, we only used assemblage means and standard deviations that were not highly correlated to any other variable
(Spearman’s ρ < 0.7; electronic supplementary material, appendix S2). Of the assemblage means examined, seven had low enough corre-
lations to use: body mass, maximum longevity, fecundity, hibernation, diet breadth (number of dietary classes consumed; table 1), trophic
level and habitat breadth (number of IUCN level 1 habitats occupied; table 1). Because trophic level is categorical (with uninformative
mean values), we substituted the percentage of carnivore species within the assemblage for trophic level in our GLM analyses.
We also used the standard deviations of fecundity and diet breadth in the model. Overall, 5297 terrestrial mammal species had a full
complement of these seven traits and a defined range size. We limited our analysis to ecoregions with more than seven species to
reduce the effect of outlier species and to calculate accurate standard deviations (electronic supplementary material, appendix S3), leaving
730 ecoregions. To avoid undue influence of any one assemblage on the model parameters and to provide accurate confidence intervals,
we subsampled the data to 500 out of the 730 ecoregions, bootstrapping the GLM 1000 times to evaluate the effect size of the assemblage
means on the endemism of each ecoregion.

Mammalian communities on islands have exceptionally high levels of endemism compared to continental communities [60] (figure 1).
In addition, insular communities are often phylogenetically and functionally distinct from mainland communities, with greater clustering
of functional traits [61], adaptation towards intermediate body sizes (Foster’s rule [62]) and slow life histories [63]. Functional character-
istics of island assemblages may therefore be driven by different processes and demonstrate different patterns than mainland assemblages.
To examine the trait–endemism relationship found on islands, we conducted a separate bootstrapped GLM that excluded the 592
ecoregions located entirely on continents, comparing it to the GLM conducted on the total set of ecoregions.

When relating assemblage means to the environmental characteristics of certain communities, Type I (false positive) errors become
more likely because of spatial auto-correlation and shared species between communities [64,65] (but see [59]). Therefore, we augmented
the results of the GLM by applying fourth-corner regression [66]. Whereas the GLMs (as community-level analyses) explore the overall
trend in species traits across the endemism gradient, fourth-corner regression specifically examines how the occupancy of a species at
a set of sites influences the relationship between endemism and a trait [59,67]. This technique outperforms assemblage mean regressions
in statistical power and sampling accuracy [65] but unlike GLMs does not take into account the variance of the traits at each site or the trait
composition of the overall community [59]. Using the same seven traits as in the GLMs, we conducted 1000 replicates of the fourth-corner
regression and adjusted the p-values via the Benjamini and Yekutieli adjustment [68].

The fourth-corner analysis allowed us to examine the direct influences the environmental characteristics of endemism hotspots have on
species traits. Adding environmental predictors alongside endemism to the fourth-corner regression can disentangle the specific effects of
each predictor on the trait–endemism relationship. Therefore, we included two environmental variables in the fourth-corner regression:
the change in temperature since the Last Glacial Maximum (21 000 years ago) and the standard deviation of elevations within the ecor-
egion [13] (electronic supplementary material, appendix S1). We chose these variables because they are known to strongly correlate with
endemism patterns, even compared to other measures of climate stability and topography [13]. By comparing the results of these
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environmental predictors to those of the richness-corrected endemism, we can determine which characteristics of endemism hotspots
affect which mammalian traits.

Species traits are often phylogenetically conserved, with related species exhibiting similar traits. These traits may serve to limit species
ranges, so range size may display a phylogenetic signal [69,70, but see 71,72]. In the fourth-corner regression, which is suited for questions
on traits as adaptive forces [59], we adjusted for phylogenetic autocorrelation using Moran’s spectral randomization [73]. We used a com-
plete mammalian phylogeny provided by the Phylacine dataset [74]; of the 5297 mammal species used in the GLMs, 5058 were able to be
used for the phylogenetic correction. To examine how the phylogenetically imputed records in the COMBINE dataset affected our results,
we repeated the fourth-corner regression using only species with reported traits (n = 670; electronic supplementary material, appendix S4).
For the assemblage means, we did not account for phylogeny. Analyses of community-weighted means are better for testing how species
traits vary along a gradient of endemism, irrespective of the adaptive potential of these traits [59]. In addition, correcting for phylogeny
while examining shallow-time trait filtering in endemism hotspots may unintentionally remove the very effect we are studying.

Finally, this research links species traits to the current global distribution of mammalian endemism. However, throughout the
Holocene humans have significantly altered mammal range sizes by shaping terrestrial habitats [75], reorganizing the composition of ver-
tebrate communities [76], and extirpating species. Currently, both large and small mammal species and those with low reproductive
output have elevated extinction risks, although these relationships vary geographically [3,5,77,78]. Furthermore, habitat conversion has
pushed large mammals into the margins of their ecological niche [79]. To account for anthropogenic changes in species ranges, we recal-
culated weighted endemism using a dataset of ‘present natural’ species ranges from Phylacine [74] and compared it to the weighted
endemism derived from the IUCN ranges. We found strong correspondence between endemism calculated from the current
IUCN ranges and from the ‘present-natural’ ranges provided from Phylacine (Spearman’s ρ = 0.877; electronic supplementary material,
appendix S6). Therefore, we used only the current species range data provided by the IUCN for all subsequent analyses.

(d) Functional metrics
We also examined the spread and clustering of functional traits within each ecoregion assemblage and its relationship to endemism using
metrics that characterize the distances between species in multidimensional trait space (figures 2 and 3a). Multidimensional functional metrics
were calculated for each ecoregion (figure 3a): functional richness (area of the convex hull surrounding all resident species [80]), functional even-
ness (branch regularity of the minimum spanning tree between each resident species [80]), functional dispersion (mean distance from each
individual species to the centroid of the trait space [82]) and functional divergence (distance of each species to the centre of gravity of the
convex hull polygon [80]). Functional richness and dispersionmeasure the overall variety of functional traits foundwithin an assemblage, indi-
cating the diversity of species’ life-history strategies [54,82] (figure 3a). In general, a community with high functional richness and dispersion
may be better protected against invasions and better able to withstand environmental fluctuations [83]. By contrast, functional evenness and
divergence measure the spread and clustering of traits across functional space irrespective of the overall diversity of functional traits
[82] (figure 3a,b). They can describe the degree of niche partitioning and competition within an assemblage [83], although the relationship
between competition and trait clustering is often counterintuitive [23]. Finally, we calculated functional redundancy (sensu [84]), binning
the functional trait values and calculating the average number of species that share unique bin combinations (figure 3a). Functional
redundancymeasures the numberof species that share similar functional traits and therefore the amount of niche partitioningwithin the assem-
blage. Because it is directly related to species richness, comparing functional redundancy to the other metrics isolates the influence of species
richness [84].

To calculate these multi-dimensional functional metrics for each ecoregion assemblage, we computed a Cailliez-corrected Gower
dissimilarity matrix, which allows for the inclusion of discrete and continuous trait data, and then conducted a PCoA to generate the
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functional space (figure 2). Because the Gower dissimilarity matrix can be applied to highly correlated and non-continuous data, we used
all traits described in table 1 except dispersal rate (which had many fewer records than the other traits; electronic supplementary material,
appendix S2), substituting annual fecundity for litter size and number of litters per year. We used the ‘FD’ package in R [85] to calculate all
functional metrics except redundancy, which we calculated following [84]. We then constructed GLMs between the functional metrics of
each ecoregion assemblage and its richness-corrected endemism. Although functional richness and functional dispersion are moderately
correlated (r = 0.573), all metrics used describe independent characteristics of assemblages [54,80,82], and the variance inflation factors for
the predictors were all lower than 2.5. All analyses were conducted in R (v. 4.1.2, R Core Team, 2021) using various packages (electronic
supplementary material, appendix S1).
3. Results
(a) Trait–endemism relationships
GLMs linking richness-corrected endemism and assemblage trait means indicated several consistent trends (figures 1 and 4a). Overall,
annual fecundity (β = –0.309, 95% CI: −0.502, −0.102), species longevity (β =−0.242, 95% CI: −0.358, −0.128), average habitat breadth



(a)

0.6 all assemblages

effect size
–0.15 –0.10 –0.05 0.05 0.10 0.15

climate
stability

topography

*
*

*
*

*
*

*

* *

*
*
*

*
*

*
*

*
** *

*
**

endemism

no phylo correction
phylo correction

0

islands
ef

fe
ct

 si
ze

0.4

0.2

0

–0.2

–0.4

–0.6

mass

max
 lo

ng
ev

ity

fec
un

dit
y

SD fe
cu

nd
ity

% hi
be

rna
tio

n

die
t b

rea
dth

SD di
et 

bre
ad

th

% ca
rni

vo
re

ha
bit

at 
bre

ad
th

mass

max
 lo

ng
ev

ity

fec
un

dit
y

hib
ern

ati
on

die
t b

rea
dth

tro
ph

ic 
lev

el

ha
bit

at 
bre

ad
th

(b)

Figure 4. (a) Effect sizes of the linear models relating assemblage trait means to richness-corrected endemism across global (black points and lines) and island
ecoregions (grey points and lines). The mean and 95% confidence intervals for the bootstrapped model coefficients are shown. Points above and below the dashed
line indicate positive and negative relationships between the traits and endemism, respectively. Insignificant effects cross 0. (b) Results of the fourth-corner
regression between the species traits, the richness-corrected endemism, and environmental variables. The shading of each cell represents the effect-size coefficient;
dark blue indicates negative relationships and dark red indicates positive relationships. Asterisks denote statistically significant relationships when phylogeny is (two
asterisks) or is not (one asterisk) accounted for.
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(β =−0.281, 95%CI:−0.462,−0.110) and bodymass (β =−0.142, 95%CI:−0.240,−0.043) decreasedwith increasing endemism;whereas
the percentage of hibernating species increased (β = 0.268, 95% CI: 0.127, 0.406). Therefore, mammalian assemblages in endemism
hotspots were on average smaller, shorter-lived, less fecund,more likely to hibernate andmore specialized in their habitats than species
living in areas of lowendemism.However, the percentage of carnivoreswithin the assemblage did not varywith endemism (β =−0.109,
95% CI: −0.284, 0.052), nor did the average diet breadth of the assemblage (β =−0.165, 95% CI: −0.371, 0.036).

Mammalian assemblages on island ecoregions displayed similar patterns to the global trends (figure 4a), with negative
relationships between richness-corrected endemism and body mass (β =−0.239, 95% CI: −0.366, −0.121), longevity (β =−0.329,
95% CI: −0.426, −0.226), fecundity (β =−0.417, 95% CI: −0.593, −0.245) and habitat breadth (β =−0.261, 95% CI: −0.128,
−0.407). The magnitude of the effect sizes for mass, longevity and fecundity was greater for island ecoregions than for global ecor-
egions. Unlike the global patterns, however, variance in fecundity increased with higher island endemism (β = 0.210, 95% CI: 0.115,
0.301) and likelihood of hibernation did not vary with endemism (β =−0.079, 95% CI: −0.197, 0.040).

The fourth-corner regression, which examined the relationships between individual species traits, community composition and
the environmental characteristics of endemism hotspots, corroborated the results of the GLMs while simultaneously disentangling
the effects of environmental characteristics and phylogenetic relatedness. Without phylogenetic correction, body mass, longevity,
fecundity and habitat breadth were all negatively associated with richness-corrected endemism, similar to the assemblage mean
GLMs (figure 4b). However, the percentage of hibernating species was not significantly associated with endemism. In addition,
diet breadth, which was insignificant in the GLM, displayed a significant negative association with richness-corrected endemism
when phylogeny was not accounted for (figure 4b). When the phylogenetic relationships between the species were accounted for,
body mass, longevity and habitat breadth retained their significance, but diet breadth and fecundity did not (figure 4b).

Including environmental characteristics in the fourth-corner analysis allowed us to identify which aspects of the functional trait
patterns are governed by which abiotic characteristics. Topography and climate stability were significantly associated with mam-
malian functional traits in different ways (figure 4b). Many of these patterns echoed the trait–endemism relationships. Areas of
rough topography were negatively associated with longevity and trophic level, and fecundity was strongly negatively associated
with climate stability and habitat breadth (figure 4b). When phylogeny was not accounted for, climate stability was also negatively
related to diet breadth and hibernation. However, body mass was related to neither climate stability nor topography, and fecundity
was positively associated with areas of rough topography.
(b) Multi-dimensional functional metrics
As with the individual trait means from the ecoregion communities, we found a clear signal between the multi-dimensional func-
tional metrics and richness-corrected endemism of the ecoregion assemblages (figure 3c). Functional dispersion was negatively
related to richness-corrected endemism (β =−0.340, 95% CI: −0.476, −0.204) and functional redundancy was positively related
(albeit barely; β = 0.125, 95% CI: 0.003, 0.244). These patterns indicate that mammals living in high-endemism assemblages do
not have particularly diverse combinations of functional traits, taking up less functional space than expected by chance. However,
functional divergence significantly increased with higher endemism (β = 0.300, 95% CI: 0.199, 0.407). This positive relationship
between functional divergence and endemism suggests that the species within the assemblage tend to cluster near the edges
of that assemblage’s available functional space (figure 3b). Surprisingly, and in contrast to the hypothesis of [18], the functional
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richness of each assemblage was unrelated to its weighted endemism once species richness was accounted for (β =−0.005, 95% CI:
−0.141, 0.120), although we observed a strong relationship when species richness was not corrected for (electronic supplementary
material, appendix S5).

When limiting the analysis to island ecoregions, a similar pattern was observed, with lower functional dispersion (β =−0.714,
95% CI: −0.846, −0.574) and higher functional divergence (β = 0.343, 95% CI: 0.247, 0.444) and redundancy (β = 0.166, 95% CI:
0.082, 0.243) in highly endemic island assemblages, again indicating that species traits on highly endemic islands are not particu-
larly diverse, clustering near the edges of the assemblage’s functional space. However, unlike global assemblages, functional
richness increased with increasing endemism on islands, even when species richness was accounted for (β = 0.227, 95% CI:
0.110, 0.348).
/journal/rspb
Proc.R.Soc.B

291:20232773
4. Discussion
Highly endemic mammalian assemblages have unique functional characteristics, both on the individual species level and as an
entire assemblage. The global pattern of mammalian endemism and the environmental conditions of endemism hotspots relate
to several mammalian functional traits (figures 1 and 4). On average, mammalian assemblages within regions of high endemism
exhibit shorter lifespans, lower fecundity, smaller body sizes and narrower habitat breadths than assemblages without high ende-
mism. The abiotic characteristics of endemism hotspots combine to influence these trait patterns, with areas of rough topography
leading to shorter-lived species, and climatically stable regions leading to less fecund and more specialized species (figure 4b). In
combination, these traits limit the ability of mammalian species to disperse and expand their ranges geographically, with smaller
and less fecund species having slower dispersal rates [86,87]. Endemism hotspots therefore seem to be dominated by poor-
dispersing mammal species, implying that these species were less likely to have been widespread in the past. In addition,
mammalian communities in endemism hotspots are less dispersed across the total functional space of all mammals and more
divergent, clustering away from the centre of the functional space (figure 3c). These patterns suggest that trait filtering (leading
to lower functional dispersion) and competition (leading to higher divergence) may combine to structure endemism hotspots.

(a) Trait–endemism relationships
Small body sizes, narrow habitat breadths, low fecundity and a relatively short lifespans characterize mammalian endemism
hotspots (table 1, figures 3 and 4). These traits all relate to the ability of species to rebound and expand their ranges after
disturbances. Previous studies have linked body size to range size, indicating that small species are generally more affected by
local and landscape-level changes in habitat than are large species [77] and, all else being equal, exhibit poorer dispersal out
of climate refugia or into less hospitable environments [32,44]. For example, areas of high endemism in the Neotropics (e.g.
Mesoamerica) have had particularly stable climates [88] and harbour mammals with small body masses (figure 1). On islands,
the negative relationship between body mass and endemism was particularly strong (figure 4a), supporting this hypothesis;
however, more research is necessary to fully explore if an advantage like this exists.

In addition to small body size, the disproportionately narrow habitat breadths of the species in highly endemic assemblages
further limit the potential for these taxa to expand into areas with different resources (figure 4a). Species with wider habitat tol-
erances can colonize new areas more effectively than can habitat specialists, and they may therefore have been able to expand their
distributions more quickly into previously unfavourable habitats [43]. By contrast, habitat specialists may be restricted to localized
areas of high environmental stability (figure 4b). Researchers have observed similar links between specialization and range size
across taxa [19,24,25]. However, the observed habitat specialization of species in a population may change over time, mirroring
changes in population density [40], interspecific interactions [56] and anthropogenic land conversion [89]. It is therefore still
unclear whether endemic species have narrow habitat niches because of the stability of endemism hotspots or simply because
they have small ranges. We found mixed results linking dietary specialization and endemism (electronic supplementary material,
appendix S7).

The ability of a species to expand its range through time is not only a function of its size and specialization, but also its ability
to reproduce. Low fecundity can result in low abundance [90], which is in turn often correlated with range size [43,91, but see 92].
By contrast, fecund species can rebound quicker and more efficiently after periods of low resource abundance than less fecund
species, and are therefore able to outcompete less-fecund species and disperse across landscapes more successfully [32,36]. The
combination of high resilience and competitive ability may lead to an overabundance of highly fecund species in areas with vari-
able or marginal intra-annual resource availability [93], where fewer endemic species are found (e.g. the Palaearctic realm;
figure 1). Supporting this previous research, we observed strong relationships between average fecundity, endemism and climate
stability, in island ecosystems and globally (figure 4).

Species that have fewer offspring per year are hypothesized to live longer, as a correlate to r/K selection theory [94]. Although
many mammals display a combination of r-selected and K-selected traits [34], in general K-selected traits are negatively related to
r-selected ones [95]. In our study, fecundity and longevity were negatively correlated for individual species (r =−0.729), demon-
strating markedly different spatial patterns across the globe (figure 1) and in response to environmental factors (figure 4b).
Surprisingly, however, the assemblage means of both longevity and fecundity substantially decrease with increasing endemism
(figure 4a). Species with different life-history strategies coexist within an assemblage, and therefore the average trait values of
the assemblage do not necessarily exhibit the same species-level tradeoffs [96]. Instead, the breakdown of the fecundity-longevity
tradeoff in areas of high endemism suggests that these areas are dominated by species that have either low fecundity or short long-
evity. The combination of stable climates and rough topography in endemism hotspots appears to drive this pattern; whereas areas
of particularly stable climate led to lower fecundity in mammals, areas of high topography led to shorter lifespans (figure 4b).
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Together these results support a hypothesis posed by Keppel et al. [18]: that the environmental conditions of endemism hotspots
may allow for species at a reproductive disadvantage to survive that may otherwise have gone extinct, and for mammals those are
small average body mass, habitat specialization and low reproductive output.

The strong correlation between the IUCN ranges (which approximate the current range of each species) and the ‘present
natural’ ranges (which estimate the range of each species without anthropogenic disturbances) indicates that our results
are robust to anthropogenic effects; however, additional research is necessary to fully illuminate how humans have affected the
functional characteristics of endemism hotspots. Given the non-random patterns of anthropogenic effects on species traits
[3,5,77], we might hypothesize stronger negative effects of fecundity and stronger positive effects of standard deviation in body
mass on endemism.

(b) Functional metrics
Although the patterns of individual traits revealed a reduced capacity for range expansion, they do not confer any information
about how functionally diverse the assemblages are. Instead, the multidimensional functional metrics must be used to describe
the spread and clustering of species’ traits within an assemblage. Keppel et al. [18] hypothesized that strengthened biotic inter-
actions and competitive exclusion would cause functional richness to increase with endemism. Although we found this
relationship using uncorrected endemism values (electronic supplementary material, appendix S5), it disappeared when species
richness was accounted for (figure 3c). Instead, the functional dispersion of each ecoregion assemblage (less sensitive to outliers
than functional richness; figure 3a) significantly decreased with richness-corrected endemism, and functional redundancy
increased. Therefore, mammal assemblages in highly endemic ecoregions make up smaller functional spaces and have less trait
variation than expected given the number of species living there, and the resident species are more ecologically similar to each
other than expected. One potential explanation for these findings is environmental trait filtering, in which abiotic factors limit vari-
ation in species traits. The selection pressures inherent to highly variable climates may be stronger drivers of variation in functional
traits than the reduced extinction rates found in stable climates [46,54]. However, more research into the relationship between
within-species trait variation and functional diversity in areas of high endemism [55] is needed to support this hypothesis.

Despite low functional dispersion suggesting that the abiotic conditions of endemic assemblages are environmentally filtering
mammalian traits, the high functional divergence in endemism hotspots indicates elevated rates of niche differentiation and com-
petition [23,83]. As a measure of where the most abundant trait combinations are within the assemblage’s trait space, functional
divergence is higher when more species have trait combinations that place them at the edges of the assemblage’s trait space.
Counterintuitively, a clustering signature in trait space often stems from elevated competition between species [23,97]. Although
the competitive exclusion principle states that species will differentiate to avoid competition, when there are more species than
available niches (as might be the case in highly endemic assemblages under environmental filtering), species tend to cluster
near adaptive optima [23]. This pattern is not driven by any single trait, as evidenced by the insignificant relationship between
the trait standard deviations and endemism (figure 4a). One potential reason for this clustering pattern may stem from the com-
bination of stable climates (leading to stronger biotic interactions and less trait variation [18]) and rough topography (leading to an
increase in selection pressure [17,48]) in endemism hotspots, but more research is necessary to fully parse the environmental
drivers of trait diversity in endemism hotspots.

The hypothesized combination of environmental filtering and strong biotic interactions in highly endemic mammalian assem-
blages gives them an unusual functional signature. Although species in endemism hotspots tend to cluster on the edges of
the individual assemblage’s trait space, these species may not exhibit extreme traits compared to the global trait space of mammals
(figures 2 and 3). Sobral et al. [98] demonstrated this pattern in island bird species, observing that extinctions did not change the
overall functional richness of the island, but that the trait combinations being lost were different than more recent introductions.
The difference between the presence of a species and its abundance may help account for these results: abundance-weighted func-
tional dispersion is higher in the tropics (the opposite trend of the dispersion applied here), suggesting that abundant species may
have unique functional traits along with their increased range sizes [43,99].

(c) Implications
Highly endemic mammalian assemblages demonstrate trait filtering related to the environmental stability and rough topography
of endemism hotspots. The traits corresponding to endemism hotspots are associated with reduced ability for a species to expand
its range after a disturbance, suggesting that the environmental conditions of the hotspots allowed such species to survive. The
influence of biotic filtering on these assemblages is weaker, with high functional redundancy and an inconsistent link between
diet breadth and endemism. However, the combination of abiotic and biotic factors influencing endemism across the globe led
to unique assemblage characteristics.

Because of the increasing anthropogenic effects on the environment, understanding how abiotic, biotic and anthropogenic
pressures combine to affect the organization of biological communities is crucial for conserving biodiversity. Endemic species pro-
vide a useful litmus test to evaluate these questions because their restricted range sizes make them particularly vulnerable to
human impacts [3,77], and protecting these species can efficiently conserve biodiversity on regional scales [12]. Some endemism
hotspots (especially in remote areas) are currently being prioritized for protection, but hotspots in the tropics may not be ade-
quately protected [100]. We found that the traits are associated with higher endemism are exactly those with the highest
current extinction risks. Furthermore, we found that endemism hotspots display an unusual combination of low functional dis-
persion but high functional divergence, suggesting that the loss of small-ranged, vulnerable species may not change the overall
functional diversity of mammals on Earth, but could decrease functional diversity within these hotspots. Finally, this research
has demonstrated that relationships between species traits and range size are evident not only for individual species, but also
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at the assemblage level. Conservation strategies that aim to preserve entire communities and landscapes may therefore be as
effective at preventing mammalian extinctions during the Anthropocene as those that focus on a single, threatened species.
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