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Abstract—The extensive application of Artificial Intelligence
and Machine Learning is notable in additive manufacturing
realms such as manufacturing supervision and error identific-
ation. Nonetheless, the escalating employment of AI in vital
processes during production necessitates its decision-making
and prediction abilities to display interpretability. Consequently,
the need for explainable Artificial Intelligence (xAI) in such
manufacturing procedures becomes paramount.

In this paper, we develop an explainable AI framework for
antenna sensor modeling during additive manufacturing. An
explainable machine learning method is used in this framework
for modeling based on the frequency response data from the
antenna sensor. In this approach, the explainable dimension
reduction method can interpret the chosen components using
projection matrix. The decision tree regressor exhibits proficiency
in efficiently handling small datasets and retaining commendable
explainability.

Experiments demonstrate that the S-parameter prediction
generated by our method are more accurate and reliable. This
method can be generalized to a new dataset.

Our work could provide a useful tool for antenna sensor mod-
eling and signal processing fields during additive manufacturing.

Keywords: Additive manufacturing; Explainable AI; Ma-

chine Learning

I. INTRODUCTION

Machine learning (ML) holds significant potential to re-
volutionize the world of smart manufacturing. It can learn
patterns within immense data reserves to perform intricate
predictions on multiple flexible parameters [[1]. Through the
employment of ML, manufacturers can optimize complex
processes, enhance product quality, minimize costs, predict
malfunctions, and facilitate autonomous decision-making [2].
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However, despite the prodigious capabilities of ML, full de-
ployment in recommender systems, fault detection, quality
control, predictive maintenance, etc., in the era of Industry
4.0 remains a significantly comprehensive and arduous goal
131 [4].

The intersection of ML and additive manufacturing (AM),
also known as 3D printing, is a burgeoning field of research
that promises to revolutionize the manufacturing industry. The
application of ML techniques in additive manufacturing pro-
cesses is increasingly becoming a focal point for researchers
and industry professionals. This integration is pivotal in en-
hancing predictive modeling, real-time monitoring, and quality
control within the AM processes [5]. Recent advancements in
ML algorithms have shown significant potential in improving
the precision, efficiency, and adaptability of additive manu-
facturing systems, particularly in complex tasks like antenna
sensor modeling, as highlighted in the development of an
explainable Al framework for antenna sensor modeling [6].
This framework not only ensures accurate predictions in the
manufacturing process but also emphasizes the importance of
interpretability in Al-driven decisions. The current research
landscape is exploring these dual aspects — the enhancement
of manufacturing capabilities through ML and the critical need
for explainability in Al applications in AM.

However, as this technological convergence deepens, several
critical issues have emerged, as documented in a growing body
of literature. One of the primary challenges is the integration of
ML algorithms with the complex and often unique processes
inherent to AM, which requires not only sophisticated compu-
tational strategies but also a deep understanding of the physical
principles of manufacturing [7]]. Another significant issue is



data management and processing; the vast amounts of data
generated during AM processes necessitate robust and efficient
ML algorithms capable of real-time analysis and decision-
making [8]]. This is further complicated by the need for preci-
sion and reliability in AM, where even minor inaccuracies can
lead to significant defects, particularly in critical applications
like aerospace [9] and medical device manufacturing [10].
Additionally, there is the challenge of ensuring that the ML
models used are interpretable and transparent, as the ’black
box’ nature of many ML algorithms can lead to trust and
validation issues, especially in industries where certification
and standard compliance are mandatory [[11]].

This paper seeks to delve into these emerging trends,
examining how machine learning innovations are shaping the
future of additive manufacturing, and addressing the chal-
lenges and opportunities that lie ahead. The contributions of
our work are as follows.

« Development of a novel cylindrical resonator-based an-
tenna sensor design specifically tailored for additive man-
ufacturing applications.

« Proposition and implementation of an explainable Al
method to visualize PCA dimension reduction, effectively
elucidating component interactions in a low-dimensional
space.

« Training of a decision tree regression model on a sim-
ulation dataset for the resonator antenna, achieving a
substantial reduction in computation time and complexity
compared to traditional simulation software.

The remainder of this paper is organized as follows: A
literature review of related work is presented in Section II.
We present the methodology in Section III. The evaluation is
presented in Section IV. The conclusion and discussion are in
Section V.

II. RELATED WORK

Current efforts aim at increasing the explainability of
machine learning methods used in additive manufacturing.
Accordingly, current research addresses approaches to apply
machine learning methods in resonator-based sensor modeling
[add reference], and to find defects in additive manufacturing
[L1]. Since this research is utilized and closely related to our
approach, we discuss these efforts in the following.

Resonator-based sensors used in additive manufacturing:
The field of AM has seen a substantial integration of advanced
sensor technologies, particularly resonator-based sensors, to
enhance precision, monitoring, and quality control in manufac-
turing processes. A notable contribution in this area is by [12],
who explored the use of microwave resonator sensors for real-
time monitoring of 3D printing processes, highlighting their
effectiveness in detecting material properties and structural
anomalies. Building on this, the work of Peng, Xing, et al
[13] demonstrated how resonator sensors could be adapted
for temperature monitoring in AM, providing critical insights
into thermal dynamics during printing. Furthermore, Fieber,
Lukas, et al [14] delved into the application of acoustic
resonator sensors in layer-wise monitoring, showcasing their

potential in detecting defects and layer thickness variations.
These resonator-based approaches represent a significant shift
towards more intelligent and adaptive AM processes.
Machine learning in resonator-based sensors: The incorpor-
ation of ML modeling with resonator-based sensors represents
a burgeoning research area, especially in fields requiring pre-
cise measurement and monitoring. A notable study by Kazemi
et al. [[15] demonstrated the use of ML algorithms to model
the frequency response of microwave resonators for material
property detection, achieving high accuracy in identifying
different materials based on their dielectric properties. Expand-
ing this approach, Rooney [16] employed neural networks to
interpret the data from acoustic resonator sensors, significantly
improving the detection and classification of mechanical de-
fects in manufacturing settings. Furthermore, the review [[17]]
on current technology of microwave, fiber optical, and other
resonator sensors using ML models showcased the ability to
detect changes in environmental conditions, highlighting the
potential for these sensors in monitoring applications.
Explainable Artificial Intelligence (xAl): The most cur-
rent research are focusing on visual explanation for deep
neural networks. Visual explanation methods such as Grad-
CAM [18]], NoiseCAM [19]], and Local Interpretable Model-
Agnostic Explanations (LIME) [20] provide visually under-
standing on the decision making of black-box models. Grad-
CAM and NoiseCAM can generate a heatmap with different
color in different area of the data. These colors can explain
the contribution of colored area of the data to the model de-
cision. Grad-CAM or NoiseCAM and other visual explanation
methods enables the identification of regions that positively or
negatively influence a particular prediction and quantifies the
extent of their impact on the decision-making process [21].

P,

Explainable Al

visualization

Projection
matrix

Training process

Software
Simulation
Dataset

Evaluation
(cross
validation)

Train
Decision Tree
Model

Train PCA

Testing process

Prediction
(Shape
Change)

Input
s-parameter
data

PCA Decision Tree
decomposer Regressor

Figure 1. Embedded passive mmWave resonator antenna modeling
analysis procedure

III. METHODOLOGY
A. Problem Definition

In order to correctly and efficiently use machine learning
algorithm to model the signal response by embedded passive
mmWave resonator sensor antenna for AM, it is crucial to
understand several key components involved in this process.



These include the design and simulation of the antenna sensor,
and the types of explainable AI algorithms best suited for
this application. To achieve this, we provide a design of
resonator antenna for in-plane embedding. Mean while, we
utilize explainable Al techniques to analyze the dimension
reduction and the regression prediction process of the trained
model. Figure [T] provides a concise overview of our method
for problem analysis.

B. Antenna Design and Simulation

The Cylindrical Resonator utilizes a high permittivity ma-
terial to attain resonance with high-quality factors at specified
frequencies. To achieve this, a resonator was constructed
using ceramic-loaded polyvinylidene fluoride (PVDF) with
a permittivity of Er=10. This PVDF cylinder was encased
within a metallic jacket to confine the resonance within the
cylinder and minimize energy loss rates [22]]. Essentially, this
structure operates as a circular cavity resonator, where the
PVDF material serves as the dielectric filling the cavity. The
dimensions of the cylinder can be estimated using the formula:
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Figure 2. Cylindrical Resonator Slot Antenna Sensor

The slot antenna is etched onto the flat surface of the Cyl-
indrical Resonator, specifically on the metallic layer without
affecting the dielectric. This slot antenna was tailored for op-
eration at 30GHz and finely tuned to align with the resonance
of the PVDF cylinder. Base on , the dimensions of the
slot antenna were determined as follows
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where L is the length for €, = 1.
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Fig [2] is the 3D model of the cylindrical resonator slot
antenna Sensor.

The simulation of the Cylindrical Resonator Slot Antenna
Sensor took place in Ansys HFSS to collect data for machine
learning. A frequency domain analysis was conducted using
a Radiation boundary setup and a Wideband horn antenna as
the probing antenna. The details of the simulation setup are
illustrated in Fig [3]

=

Figure 3. Simulation Setup in Ansys HFSS

C. Explainalbe PCA Dimension Reduction

Principal component analysis (PCA) [24] are widely applied
on variance domain. The dimension reduction ability of PCA
has been proofed and used across years [25]. We use PCA
to reduce the dimension of each sample from the dataset we
collected by simulation on sector [[II-B]

To reduce the dimension of the data, PCA finds low dimen-
sional approximations by projecting the data onto subspace.
The principal subspace in dimention k is compute as

sk = argmin E(min ||X - y|*) 3)

where u = E(X) and X = X — p. It has the covariance
matrix Cov(X) compute as

Cov(X) = E((X = p)(X = p)") )

Then we can obtain the eigenvalue Ay, A»,...,d4 and the
eigenvector [ey, €3, ..., 4] of the covariance matrix Cov(X).
The dimension reduced version of X is

k
Te(X)=p+ ) pe ®)

where 8 =< X — u,e >, e is eigenvectors of the covariance
matrix, and Y. Be is the projection matrix of X onto s;. When
we choose first m principal components, the percentage of
variance can be calculate as

m

>4

(6)

Var =
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Figure 4. S11 - Tension Compression

To explain the behavior of the PCA method on dimension
reduction and the meaning and representation of the chosen
first m principal components, we obtain the projection matrix
yk PBe from the matrix transforming, and visualize it in a RGB
image. The evaluation and visualization are shown on [[V-B]

D. Decision Tree Regression Modeling

The paper employs the Classification And Regression Tree
(CART) algorithm [26], a versatile decision tree method profi-
cient in both classification and regression tasks within machine
learning. CART serves as a predictive model elucidating the
prediction of the target variable’s value through the training
dataset. It operates as a decision tree, where each branch de-
notes a predictor variable and each node provides a prediction
for the final target variable. In this study, a regression trees
algorithm based on CART is utilized to predict the continuous
variables linked to the change in the cylindrical antenna.

CART algorithm uses Gini Impurity to split the dataset
into a decision tree. It does that by searching for the best
homogeneity for the sub nodes, with the help of the Gini index
criterion. The Gini Impurity can compute as follow

Gini(P) =1~ (p;)? (7)
i=1

where P = (py,..., p;) is the probability of an object going
to a particular node. Base on the formula of information gain,
we calculate the IG in our model as follow

GiniGainy (X;, D) = GiniBeforeSplit — GiniAfterSplit

m (D
= Gini(Py(D)) — Z %

J=

Gini(Py (ox;=v;(D)))

®)

where D donate as the dataset, and ox,=,; (D) is the subset
after splitting.

IV. EVALUATION

This section presents the simulation results of our cyl-
indrical resonator-based antenna sensor design. Further more,
it examines the regression model trained by collected dataset
from simulation of our cylindrical resonator-based antenna
sensor. The goal is to generate a fit regression model for this
antenna sensor. Moreover, we provide a visual explanation on
dimension reduction and decision making process.

A. Dataset from Simulation

We use Ansys to simulate our resonator-base antenna
design. Figure [J] illustrates significant E-field concentrations
on the cylinder’s surface at the slot, indicating a coupling
between the resonator and the slot antenna. As depicted in
Figure [6] the horn antenna detects a reflection from the
resonator slot antenna, and the corresponding S11 parameter
differs when the resonator is present compared to its absence.
The sensor’s embedding within a structure leads to changes
in its dimensions in response to the structure’s deformation,
owing to the sensor material’s elasticity. This deformation
effect is quantifiable by comparing the sensor’s reflected
parameters in its deformed state to the baseline case, allowing
the determination of the structure’s strain. Figure E| displays
the horn antenna’s reflections for varying sensor dimensions
that represent different tension-compression scenarios. Each
scenario yields a distinct S11 value, which can be analyzed by
a computer algorithm to deduce the corresponding dimensions
and, consequently, the stress-strain values.

B. Explaination on PCA method

Using the methods in Section [[V-B] we found that the
dimension of our collected dataset can be reduced from 501 to
3. The cumulative explained variance reach 95.20%. We also
obtained the projection matrix Sk Be to explain the component
after dimension reduction.
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Table 1. PCA Overview

Number of Com- Explained Variance | Cumulative

ponents

1 0.783899 0.783899

2 0.122060 0.905960

3 0.046120 0.952079
Mean Explained Variance: 0.317

According to Table [I, the first component can explain
78.38% of the variance of the dataset, the second and third
components explain 16.82% variance. Although the second
and third components only explain a small amount of variance,
it is important that they act as a support component to fully
explain the whole dataset. Based on this observation, we
consider that the first component will dominant the decision
making of the model on the dataset after dimension reduction.
This conjecture will be proofed by our experiment result on
Section [V=C|

The projection matrix »k Be is a 3 rows by 501 columns
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Figure 6. This figure need to re-generate, make lines bold and clear,
text font larger, legend clear. S11 - Horn Reflection Parameter

matrix. This matrix reflects the projection space of the PCA
transform, and it can be visualized to explain the focus fre-
quency bandwidth of each component, as shown in Figures [7]
The red line is O weight, the peak area on each component
indicates the focus frequency bandwidth in PCA transforming.
However, we do notice some unfocused bandwidths, which
indicates that those frequency bandwidths are unnecessary to
distinguish the variance on the dataset. For example, the 8.5
Ghz to 10.6 Ghz and 11.2 Ghz to 12.4 Ghz in the second
component projection vector, those bandwidth will be assigned
0 weight in PCA dimension reduction.

C. Performance of Decision Tree Regression Modeling

In our study, a decision tree regression model was trained
using a dataset subjected to PCA for dimensionality reduction.
The model’s performance was assessed through K-fold cross-
validation, specifically employing 10 folds, as indicated in
Table [[I} This approach yielded an average root mean squared
error of 0.055 for the model.
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Figure 7. Explainable Visualization of Projection Matrix Yk Be
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We have shown the quantitative comparison on different
methods in Table The RMSE result demonstrate that the
s-parameter generated by our method are more accurate. With
the explainable method, the result by our method are more
reliable.

Table II. Cross Validation Score

RMSE of |Sll ||
Fold1 | Fold2 | Fold 3 | Fold4 | Fold 5
0.0365 | 0.0635 | 0.052 0.027 0.052
Fold 6 | Fold7 | Fold 8 | Fold 9 | Fold 10
0.083 0.027 0.028 0.137 0.0477
Average RMSE: 0.05537

Table III. Performance Comparison

RMSE of |S|| ||
Method | MS-CoML [27]|(Best) MS-CoML(Avg.)
RMSE 0.0597 0.1019
Method GP Model [28] ANN (40 nodes) [28] |
RMSE 0.19 0.18
Method Ours
RMSE 0.05537

A detailed visualization of the trained decision tree model
is presented in Figure || demonstrating the model’s decision-
making process with reduced dimensionality to three principal
components. This visualization not only simplifies the under-
standing of the model’s functioning but also highlights the
significance of the components, with Component 1 emerging

as the most influential in decision-making. Components 2
and 3 play a supportive role in the model’s decisions. These
findings corroborate the earlier hypothesis discussed in Sec-
tion [[V-B| where Component 1 was identified as having the
highest explained variance, thus playing a dominant role in
the model’s decision-making process.

V. CONCLUSION AND FUTURE WORK

In this work, we provide a new design of cylindrical
resonator-base antenna sensor for additive manufacturing. The
functions of our antenna design have been proof by simula-
tion on Ansys. We proposed an explainable AI method on
visualizing the PCA dimension reduction, and this method
successfully explains the components in low dimension space.
We train a decision tree regression model on the simulation
dataset of the resonator antenna, which significantly reduces
the computation time and complex comparing to the simula-
tion software. Going forward, we aim to extend our antenna
design and machine learning model as an efficient tool for
additive manufacturing with more types of physical sensing
parameter.
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