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Abstract: Current additive manufacturing (AM) techniques and methods, such as liquid-crystal
display (LCD) vat photopolymerization, offer a wide variety of surface-sensing solutions, but cus-
tomizable internal sensing is both scarce in presence and narrow in scope. In this work, a fabrication
process for novel customizable embedded ceramic temperature sensors is investigated. The fabri-
cation techniques and materials are evaluated, followed by extensive characterization via spectral
analysis and thermomechanical testing. The findings indicate that LCD-manufactured ceramic sen-
sors exhibit promising sensing properties, including strong linear thermal sensitivity of 0.23% per ◦C,
with an R2 of at least 0.97, and mechanical strength, with a hardness of 570 HV, making them suitable
for adverse environmental conditions. This research not only advances the field of AM for sensor
development but also highlights the potential of LCD technology in rapidly producing reliable and
efficient ceramic temperature sensors.
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1. Introduction

The design and development of embedded sensing solutions for the structural health
monitoring (SHM) of ceramic structures remains challenging due to the spatial and tech-
nical requirements for embedded sensors. While ceramic materials are ideal for several
high-temperature SHM applications, traditional manufacturing techniques are often unable
to effectively produce ceramic substrates conducive to embedded sensing. Specifically, cre-
ating and filling complex internal structures into completed and fully solidified structures
is often highly ineffective and difficult, if not entirely impossible, for certain substrates with
a traditional approach, including ceramics. Additive manufacturing (AM), however, pro-
vides a promising solution to the challenges of embedded sensing. Several AM processes,
including vat photopolymerization processes, allow the fabrication of complex internal
geometries in a desired substrate [1–4]. This process also enables the fabrication of ceramic
materials with these complex internal geometries into a solid body, with minimal additional
post-processing, enabling the development of embedded ceramic sensors. This work details
the development of both surface and fully AM-embedded temperature sensors via vat
photopolymerization. It characterizes the materials and processes used and demonstrates
effective embedded sensing properties in the final structure by leveraging several advances
in AM techniques and materials.

Existing high-temperature sensor solutions have shown that without relying on ce-
ramic shielding or another novel concept, such as aerogel, the maximum survivable tem-
perature for an operational chemical electrode sensor is around 400 ◦C [5,6]. In contrast, the
theoretical upper-temperature limit of metal electrodes and probes is around 800 ◦C [7,8].
Using a traditional sensor setup without using ceramic shielding or a novel electrode or
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substrate material past this temperature becomes increasingly non-viable. Novel sensing
components, such as the use of fiber optic cable, have been proven successful with stable
response and good sensitivity [9]. Current commercial high-temperature solutions utilize a
metal sensor probe that is shielded using materials such as high-purity alumina or silicon
carbide as protection [10]. Therefore, it is logical to investigate solutions that use ceramics
as a substrate to measure in these extreme environments.

Existing studies show a keen interest in ceramic sensors as an avenue for measuring
phenomena in extremely high-temperature environments. One study used yttria–zirconia
ceramic as the casing material for an oxygen sensor and found that the sensor remained
operable for temperatures up to 700 ◦C. This study was also able to shield the seal of the
internal reference chamber throughout the thermal cycling tests without a significant drop
in performance [11]. The use of silicon boron carbonitride (SiBCN) was tested for use
as a high-temperature sensing component and was embedded into steel for mechanical
strength. This research group found that it could accurately measure temperatures from
room temperature to 980 ◦C [12]. Other studies have utilized alternative materials and
found comparable results, such as using silicon aluminum carbonitride (SiAlCN), and
found unique properties such as negative temperature coefficient resistance (NTCR) [13].
NTCR is a common property observed in multiple polymer-derived ceramics and has been
observed in multiple studies [14]. However, traditional manufacturing of ceramics can be
challenging. Since ceramics are difficult to machine with normal manufacturing processes,
AM techniques have been used to address these challenges.

Ceramic parts have been manufactured using multiple AM techniques, including vat
photopolymerization, material extrusion, and powder bed fusion [15–17]. Studies using vat
photopolymerization are of particular interest due to its extremely high precision, which
increases the reliability and repeatability in fabrication. In contrast, powder bed fusion
requires the melting of a polymer binding agent to generate the green body, leaving a
rougher surface finish [18,19]. Material extrusion methods have relatively low accuracy and
precision and also tend to produce a poor surface finish [20]. The fabrication of both hard
and flexible ceramic sensors has been accomplished using vat photopolymerization [21].
In addition, custom ceramic resin mixtures have been intensely studied in recent years in
order to customize the final properties for various use cases [22–24].

Current gaps in research include that most of the ceramic sensors are focused on using
polymer-derived ceramic substrates for sensing. Additively manufactured ceramic sensors
have been investigated very scarcely, with successful sensors being limited to sapphire fiber
optic crystal [25]. Methods such as selective laser sintering (SLS) have been investigated
with limited success in embedding sensors. However, due to SLS’s inherent limitations,
the scope of these studies is highly focused on particular materials, and the surface quality
and precision of the final part are much higher than can be produced using other AM
methods [26,27]. Other methods have also seen limited success, such as direct ink writing
(DIW); however, this success is tempered by the sensor only reading accurately in low
temperatures [28]. This paper aims to address these gaps by demonstrating that a sensor
can be embedded in a vat photopolymerization-manufactured ceramic outer substrate.

2. Materials and Methods
2.1. Materials and Design

The ceramic material used for the sensor substrate is Vitrolite®, described by the
manufacturer as a glass–ceramic UV-curable resin developed by Tethon 3D (Omaha, NE,
USA). It is designed for ease of printing in a large portion of commercial 3D vat photopoly-
merization printers, including desktop printers. Specifically, it requires very low firing
temperatures to achieve full densification in the sintering process, reducing the complexity
of the equipment necessary to post-process it. The sensor is designed to detect variations in
temperature in the sensing layer via resistance change. As the temperature increases, the
resistance of a conductive material also varies linearly, which can then be correlated to the
temperature change. Silver offers a good temperature coefficient of resistance (α), with pure
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silver possessing a coefficient of 0.0038 ◦C−1 at 20 ◦C. Thus, the electrode material used
was chosen to be Micromax PE 873, a highly stretchable silver conductive paste developed
by DuPont™ (Wilmington, DE, USA). It exhibits excellent conductivity and is easy to work
into small sensing channels.

To effectively detect the change in resistance with the change in temperature, a simple
electrode patch was designed. Two variants of the sensor electrodes were fabricated, one
with surface-embedded electrodes, with the top surface exposed, and one with completely
embedded electrodes, with all surfaces encased inside of the ceramic. The channels (a
rounded rectangle with 1.5 mm width × 2 mm height) were then filled with the sensing
electrode material and wired after curing, as shown in Figure 1.
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Figure 1. Overall ceramic sensor-fabrication process. The ceramic parts are fabricated utilizing a
vat photopolymerization-process. These ceramic substrates are designed and fabricated with either
surface-embedded or fully embedded channels. The ceramic parts are then removed from the print
base, fully cleaned and post-processed, and sintered. After sintering, the substrates are then filled
with silver electrodes and wired to complete the sensor.

2.2. Ceramic Sensor-Manufacturing Process

The main fabrication technique used in the development of the embedded ceramic sensors
was the liquid-crystal display (LCD) process. The LCD process is a vat-photopolymerization
technique that utilizes a UV light screen to cure individual layers of photosensitive resin
material onto a build plate. The build plate then rises as the next layer is cured until
an entire model is printed. The LCD process, along with other vat-photopolymerization
techniques, enables easy manufacturing of embedded structures.

To fabricate the designed ceramic sensor substrates, a Phrozen Mini 8k LCD printer
(Phrozen Technology, Hsinzhu City, Taiwan) was utilized. The Phrozen Mini was chosen
due to the very high resolution (22 µm pixel spot size) and relatively large printing volume.
Additionally, the Phrozen LCD printer was fitted with an air vat heater, which heated
the ceramic resin. This decreased the adhesive force of the material on the nFEP film and
reduced the amount of printing failures. The designed ceramic sensors were sliced with
Phrozen’s proprietary slicing software, Phrozen 3D (version 1092). The printing parameters
used for fabrication are listed in Table 1.

Table 1. LCD printer settings.

Parameter Base Layer Normal Layer

Exposure Time (s) 80 24
Off Time (s) 10 3
Z Lift (mm) 7 9

Z Lift Speed (mm/min) 25 25
Z Retract Speed (mm/min) 2 10

After printing, the ceramic substrates were rinsed in alternating baths of 99.9% Iso-
propyl alcohol (IPA) and deionized (DI) water (Duda Diesel, Decatur, AL, USA). The
substrates were sonicated while rinsed, and after each rinsing step, compressed air was
applied to any internal channels to clear trapped fully liquid or partially cured ceramic resin.
After rinsing, the ceramic substrates were dried and cured with a 400 nm 10 W ultraviolet
(UV) lamp for 120 s on each side. Finally, any additional printing support material was
removed from the substrates, and the parts were sanded at the support connection points
to remove sharp protrusions that might affect the sintering of the green body.
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2.3. Ceramic Sensor Post-Processing Procedure

Sintering is a critical process in the fabrication of green body ceramics, transforming a
compacted powder into a dense, solid material. During sintering, the green body, which is
an unsintered ceramic formed by pressing fine powders into a desired shape, is subjected
to high temperatures just below its melting point. This heat treatment facilitates atomic
diffusion, causing the particles to fuse together, which reduces the size and number of pores.
This process enhances the mechanical properties and structural integrity of the ceramic,
resulting in a significantly stronger, denser ceramic part. The efficiency and success of
sintering are influenced by factors such as temperature, time, and the nature of the ceramic
material. Additionally, the LCD process introduces anisotropy into the ceramic green body,
which further impacts the efficacy and outcome of the sintering process.

The green body ceramic requires a slow sintering process, which reduces the cracking
and warping of the green body as it solidifies. An improved sintering schedule for the LCD
printer ceramic green bodies was developed and is shown in Figure 2.
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Figure 2. Sintering firing schedule. The sintering process is extended over a long timeframe at a slow
heating rate (~0.066 ◦C per min) in order to reduce cracking and warping. The ceramics are allowed
to densify for 10 min at 1060 ◦C and then are cooled at a rate of 2.5 ◦C per min.

After the sintering process was completed and the ceramic substrates were allowed to
cool, the channels were injected with the PE 873 silver electrode. The part was once again
heated to dry the electrode material and then wired to complete the sensor development.

2.4. Raman Spectroscopy

Raman spectroscopy is a useful technique for determining the composition and concen-
tration of crystalline materials, especially in inorganic and nonmetallic structures, including
ceramics. When a monochromatic photon source, like a laser, excites a crystalline material,
a small amount of inelastically scattered photons causes a shift in energy, which occurs due
to a change in vibrational modes of the molecules.

To identify the composition of the green body and sintered ceramic parts, a WiTec
Raman probe (Concord, MA, USA) was utilized with a 532 nm excitation wavelength.
High-resolution Raman scans utilized an 1800 g/mm grating, a 100× Zeiss (Oberkochen,
Baden-Württemberg, Germany) objective, and a 20 mW laser power, while wide-range
scans utilized a 600 g/mm grating, a 10× Zeiss objective, and a 10 mW laser power. Regions
of interest were identified via microscope and scanned with the peak oscilloscope tool to
identify regions of high peak clarity. When possible, 20 accumulations of 1 s exposure were
collected and averaged to produce clean Raman peaks without noise.

2.5. Profilometry and X-Ray Imaging

A Keyence VHX-7000 (Itasca, IL, USA) was used to capture high-resolution microscopy
images and profilometry data of the green body and sintered ceramic substrates. When
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possible, optical enhancements were performed to increase the clarity of the features present
in the images. The profilometry scans were taken in a representative 0.5 mm × 0.5 mm
square area of the sample identified with microscopy at the maximum resolution.

X-ray micro-computed tomography (micro-CT) SKYSCAN 1275 (Billerica, MA, USA)
is a non-destructive imaging technique extensively utilized in a wide variety of scientific
fields to examine the internal structure and properties of various structures with high
precision. This method employs X-rays to generate detailed cross-sectional images of a
specimen, which are subsequently reconstructed into a comprehensive three-dimensional
model. In the context of ceramics, micro-CT is particularly valuable for investigating the
presence of defects such as cracks, voids, and inclusions. X-ray microtomography scans
were taken to examine the completed sensors for any major defects or damage, especially
internal defects that were hard to see.

2.6. EDX Spectroscopy

Energy-dispersive X-ray spectroscopy (EDX) is an analytical technique used for the
elemental analysis or chemical characterization of a sample. Upon excitation with high-
energy X-rays or electrons, the sample emits characteristic X-rays unique to the elements
present. These emitted X-rays are subsequently detected and analyzed to ascertain the
elemental composition and relative abundance of elements within the sample. The EDX
analysis was integrated with scanning electron microscopy (SEM), facilitating precise
localization and surface mapping of elemental distributions. High-resolution images of the
substrates before and after sintering were captured with a FEI Quanta 650 SEM (Waltham,
MA, USA) with a power of 12.5 kV. Additionally, a Bruker XFlash (Billerica, MA, USA) was
used to obtain the elemental composition of the materials at the captured areas of interest.

2.7. Electrode Sheet Resistivity

The four-point resistivity-measurement technique is a method employed to determine
the electrical resistivity of materials, particularly thin conductive materials. Four equally
spaced probes are brought into contact with the center of the surface of a tested material.
A known current of 113.5 mA is then introduced through the outer two probes, while the
voltage drop is measured across the inner two probes. This approach effectively eliminates
contact resistance, which can compromise the accuracy of common two-point resistivity
measurements. When correcting for film thickness and size, the data obtained from the
four-probe method yield a reliable measure of the material’s resistivity and, by extension,
conductivity.

The Micromax PE 873 conductive electrode was measured to determine its conductivity
and resistivity. PE 873 was placed to a PET film, and a film applicator formed a 50 µm film
sheet. This sheet was cut into 50 mm × 50 mm squares, which were tested with an Ossila
Four-Point probe (Sheffield, UK) to measure their sheet resistivity.

2.8. Resistance Measurements

After the sensors were fabricated, the resistance values were measured at various
temperatures. For the surface temperature sensor (as shown in Figure 1), the ceramic
substrate was placed onto a JOANLAB HSC-17T hotplate. The ceramic substrate was
allowed to heat up to various temperatures at equilibrium for 30 min, after which a
resistance measurement was taken. The temperature of the sensor was measured with a
handheld IR thermometer. This thermometer is only effective at determining the surface
temperature and does not work well with the internal sensors. To rectify this, the fully
embedded sensors were placed into an Accutemp-09 vacuum furnace and were heated to
various temperatures. The sensors were allowed to rest at these temperatures for 30 min to
ensure even heating throughout the sample at the time of measurement. The sensors were
then measured with a Hioki IM3570 LCR meter (Nagano, Japan) to determine the resistance.
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2.9.HardnessTestfing
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After sintering, the two primary constituent materials, aluminum oxide and silicon
oxide, were visible in the spectra. As seen in Figure 3, the specific materials are easily
identifiable as α-alumina and α-quartz [31–33]. Additionally, the background carbon and
other material noise was not present in the sintered scans, indicating that the majority of
these materials have burned off. The Raman scans also showed a uniform dispersion of the
ceramic materials, even over very tightly controlled regions (~500 µm)

The Raman measurements were able to show the constituent materials of the ceramic
resin both green and sintered, correctly identify the phases and distributions of the material
with great accuracy and resolution, and spatially track these materials with respect to the
embedded sensor inside.

3.2. Surface and Internal Morphological Analysis

The surface profile of the green ceramic body was measured to be relatively smooth,
with a low average roughness value (Sa) across the scanned area. The height variations
within the 0.5 mm × 0.5 mm square were minimal, confirming the uniformity of the surface.
The profile plot, shown in Figure S1, showed a consistent, near-flat line with only minor
deviations, which corresponds with the smoothness observed in the microscopy images, as
seen in Figure 4.
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50 μm

(a) 

50 μm

(b) 

Figure 4. SEM imaging of the (a) green body and (b) sintered ceramics. The polymer surrounding the
ceramic frit is clearly visible in the green body, which then is burned off during sintering, creating a
rougher surface.

For the sintered ceramic substrates, the profilometry data indicated a significantly
higher surface roughness, as shown in Table 2. The average roughness (Sa) was notably
increased, reflecting the more pronounced surface irregularities seen in the microscopy im-
ages. The profile plot, as seen in Figure S1, exhibited sharp peaks and valleys corresponding
to the visual evidence of a rougher surface texture post-sintering.

Table 2. Measured roughness of the printed green body and sintered parts.

Measurement Green Body Sintered

Sa (µm) 1.46 7.31
Sz (µm) 26.16 45.78
Sq (µm) 1.8 9.07

Ssk 0.03 0.07
Sku 3.53 2.53

Sp (µm) 14.5 22.06
Sv (µm) 11.66 20.72

There were no significant defects, such as delamination, large voids, or major cracks,
detected in the tomography scans, as shown in Figure 5. The interface between the embed-
ded sensing channel and the ceramic material appeared smooth and continuous, suggesting
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a successful embedding process. The internal structure of the embedded sensing electrode
itself was also clear, with no visible fractures or internal defects that could compromise
its functionality.
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Figure 5. X-Ray microtomography of (a) the fully embedded and (b) surface-embedded electrode
ceramic sensors. The microtomography shows good saturation of the electrode in the channels for
effective sensing.

3.3. EDX Analysis

Both the green and sintered ceramic solid parts were measured with EDX analysis to
determine the elemental concentration and distribution of the samples. Table 3 shows the
results of the EDX analysis showed the following distribution of elements in the sample,
which have been additionally compared as relative oxide distributions in Table 4.

Table 3. EDX comparison between green and sintered parts.

Element Green Norm. Mass (wt. %) Sintered Norm. Mass (wt. %)

Carbon 49.67 -
Oxygen 39.85 58.22
Silicon 8.12 31.81

Aluminum 2.17 8.21
Calcium 0.19 1.76

Table 4. EDX comparison between green and sintered relative oxide levels.

Element Green Norm. Oxide
Mass (wt. %)

Sintered Norm. Mass
(wt. %) Percent Difference

Silicon 77.48 76.14 1.75
Aluminum 20.71 19.65 5.23

Calcium 1.81 4.21 79.65

The results of the EDX confirmed the prior literature on the composition of the exam-
ined ceramic resin, as shown in Figure 6. Furthermore, the resin was free of contamination
and impurities.
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Ffigure6.EDXdataoffthe(a)greenbodyandthe(b)sfinteredceramficsubstrates.Thegreenbody

showsthecorrectdfistrfibutfionoffsfiflficaandaflumfinaoxfides,wfithaddfitfionaflcarbon-basedpoflymer,

whfiflethesfinteredbodyshowstheremovafloffthecarbon-basedeflements.Theeflementaflmappfingsoff

theEDXscansshowanevendfispersfionoffeflementsthroughoutthesampfles.

Addfitfionaflfly,theEDXconfirmedanevendfistrfibutfionofftheceramficfiflflers,wfithout

anyflargeaggflomeratfionsorsectfionsmfissfingthefiflflermaterfiafls.Ffinaflfly,theremovafloff

carbonfinthesfinteredceramficEDXconfirmedtheremovafloffthepoflymermaterfiafland

otheraddfitfivesdurfingthesfinterfingprocess,fleavfingonflythepureceramficpart.

3.4.HardnessandEflectrodeSheetResfistfivfityTestfing

AsshownfinTabfle5,thehardnessoffthesfinteredceramficpartwasreflatfiveflysofft,

comparedtootherceramfics,especfiaflflycomparedtothecomposfitfionaflfiflflermaterfiafls.The

reasonfforthfisfistwoffofld.Ffirst,wfithareducedsfinterfingtemperature,thedensfiffficatfionoffthe

ceramficfisflessened,andthehardnessofftheceramficsfissflfightflyflowerasaresuflt.Secondfly,the

AMprocessresufltedfinasfignfiffficantflydfifffferentresufltfingstructurethanatradfitfionaflflyffabrficated

ceramfic,whfichhasbeenprevfiousflyshowntoreducehardness[34,35].

Tabfle5.Hardnessandresfistfivfitymeasurementoffsfinteredceramfic.

Measurement Densfity(g/cm3) Hardness(HV) Resfistfivfity(Ω·m)

Mean 2.35 569.77 1.37×10−5

Std.Devfiatfion 0.0783 56.43 1.13×10−6

3.5.The3D-PrfintedCeramficTemperatureSensorVaflfidatfion

Theperfformanceoffboththesurffaceembeddedsensorandtheffuflflyembeddedsensor

fisshownfinFfigure7.

Forbothsurfface-andffuflflyembeddedsensors,wfithfincreasfingtemperature,theresfis-

tancewasshowntofincreaseflfinearfly.Thesurfface-embeddedsensorshowedaconsfistent

sensfitfivfityoff0.24%per◦C,wfithaflfinearfincreaseuntfiflthemaxfimumtemperaturewas

achfieved,wfithanR2off0.99.Sfimfiflarfly,theffuflflyembeddedsensorshowedaconsfistent

sensfitfivfityoff0.22%per◦C,wfithanR2off0.98.Bothsensorsrespondedrapfidflytochangefin

temperature,wfithverystrongflfinearfitythroughoutthetemperaturefincrease.

Theembeddedsensor,despfitethechaflflengfingembedded-eflectrodedesfign,deflfivered

goodflfinearperfformanceunderthermaflfloadfing.Whencomparfingtheresufltsobtafinedffrom

theembeddedsensortothoseffromsurfface-embeddedsensors,nosfignfificantdfifffferences

wereobserved,findficatfingthattheembeddfingprocessdfidnotcompromfisesensoraccuracy

orreflfiabfiflfity.Addfitfionaflfly,thesensordemonstratedremarkabflestabfiflfityunderthermafl

condfitfions;consfistentreadfingswererecordedevenaffterthesensorunderwentmufltfipfle

cycflesoffheatfingandcooflfing,wfithonflymfinfimaflchangesnoted.
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Ffigure7.Theresufltsoffthesensorvaflfidatfionfforthe(a)surfface-embeddedsensorand(b)theffuflfly

embeddedsensor.Bothsensorsexhfibfitstrongflfinearresuflts,wfithagoodthermaflresfistanceresponse

cflosetothatoffsfiflver.

4.Concflusfions

Thfisworkdemonstratesaneffffectfivesetofftechnfiquesthatcanbeusedtodeveflop

andcharacterfitzeembeddedsensorsfinceramficsubstrates.Ffirst,thematerfiaflsusedfin

thedesfignanddeveflopmentoffthesensorswereanaflytzedandcharacterfitzed,toffuflfly

modeflthebasesensormaterfiafltoafidfineffffectfivesensordesfign.Second,bothsurfface-

andffuflflyembeddedceramficAMsensorsweredesfigned,ffabrficated,andrefined,utfiflfitzfing

vatphotopoflymerfitzatfion. Last,theeffficacyoffthetechnfiquewasdemonstratedwfith

effffectfivetemperaturesensfing,fincfludfingstrongflfinearsensfitfivfity.Thesuccessffuflfintegratfion

offsensorswfithfinceramficsubstratesusfingvat-photopoflymerfitzatfionprocessesmarksa

substantfiaflstepfforwardfinAMembeddedsensfingtechnoflogy.Futureworkwfiflflseekto

characterfitzemorecompflexsensfingmaterfiaflsandsubstratesfinordertoffurtherfimprove

sensorperfformance,especfiaflflyathfighertemperatures.Furthermore,addfitfionaflworkfisfin

progresstoaddressthewfirfingofftheembeddedsensors,seekfingtocreateffuflflywfirefless=sensfing

capabfiflfitfiestoffurtherfincreasetherangeandscopeoffembeddedsensors.Thesedeveflopments

wfiflflffurtherfincreasethedurabfiflfityandflfiffetfimeofftheembeddedsensors,wfithreducedstress

concentratfionsaroundthewfirfingchannefls. Contfinuedresearchfinembeddedsensorsfin

ceramficswfiflflflfikeflyfleadtomoreadvancesfinSHMfforceramficappflficatfions.

Suppflementary Materfiafls: Theffoflflowfingsupportfingfinfformatfioncanbedownfloadedat:

https://www.mdpfi.com/artficfle/10.3390/cryst14110936/s1,FfigureS1:Profiflometryoffthe(a)sfin-

teredceramficand(b)greenbodyceramfic.Thesfinteredceramficshowsamarkedfincreasefinsurfface

roughness,wfithsharperpeaksandvaflfleys,consfistentwfiththemficroscopyobservatfionsoffthe

ceramficpost-sfinterfing.
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