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Abstract— GPS spoofing attacks pose great challenges to
connected vehicle (CVs) safety applications and localization of
autonomous vehicles (AVs). In this paper, we propose to utilize
transportation and vehicle engineering domain knowledge to
detect GPS spoofing attacks towards CVs and AVs. A novel
detection method using learning from demonstration is devel-
oped, which can be implemented in both vehicles and at the
transportation infrastructure. A computational-efficient driving
model, which can be learned from historical trajectories of the
vehicles, is constructed to predict normal driving behaviors. Then
a statistical method is developed to measure the dissimilarities
between the observed trajectory and the predicted normal tra-
jectory for anomaly detection. We validate the proposed method
using two threat models (i.e., attacks targeting the multi-sensor
fusion system of AVs and attacks targeting the intersection
movement assist application of CVs) on two real-world datasets
(i.e., KAIST and Michigan roundabout dataset). Results show
that the proposed model is able to detect almost all of the attacks
in time with low false positive and false negative rates.

Index Terms— Anomaly detection, GPS spoofing attack, local-
ization, intersection movement assist, connected and autonomous
vehicles, learning from demonstration.

I. INTRODUCTION

CONNECTED vehicles (CVs) and autonomous vehicles
(AVs) benefit the transportation system from multiple

aspects including reducing crashes, improving mobility and
sustainability. In both types of vehicles, the localization
module, from which the vehicle knows its global and local
positions in the driving environment, plays a critical role in
information sharing and vehicle navigation. For example, the
Basic Safety Messages (BSMs) broadcast by CVs contain
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vehicle location and motion data for a wide range of applica-
tions [1], [2], [3], and AVs utilize the localization results for
trajectory planning [4]. Among all sensors that participate in
localization, the GPS receiver is the most important one that
obtains global positions. Commercial-level GPS receivers can
achieve an accuracy of 1 meter, and with dual-frequency GPS
units, survey-grade GPS has an accuracy of a few centimeters
[5]. Besides GPS, LiDAR locators and Inertial Measurement
Units (IMU) are also implemented and tested on AVs [6],
[7], [8] for localization purposes. It is critical to ensure
that the localization module is accurate, reliable, and highly
secure since inaccurate localization results will significantly
jeopardize AV trajectory planning and CV safety applications
and may cause catastrophic consequences such as crashes.

Unfortunately, existing studies show that vehicle localiza-
tion module is vulnerable to various types of cyberattacks.
Spoofing attack is an emerging issue in modern GPS appli-
cations. The GPS spoofing attack generates fabricated GPS
signals and interferes with the GPS receivers, which can
degrade the performance of the localization system. The fake
GPS signal usually has a higher strength to mislead the GPS
receiver [9]. The practicality of the GPS spoofing attack
has been proved in both research [10], [11] and real-world
applications [12], [13]. In addition to the GPS spoofing
attack, attacks targeting other sensors can also impact vehicle
localization. For example, Petit et al. attacked the LiDAR by
injecting false reflected light, and the LiDAR falsely detected
a fake wall [14]. Although such LiDAR sensor attacks do not
directly target the localization module, misinterpretation of the
surrounding environment will also degrade the performance
of the LiDAR locator, which is an important input source to
the localization module. Usually, Multi-Sensor Fusion (MSF)
algorithms are considered as one defense method against
sensor attacks since it is highly unlikely that all sensors are
compromised at the same time. However, a recent study from
Shen et al. managed to construct an MSF attack method, which
misleads the sensor fusion algorithms by only spoofing the
GPS channel [11].

In general, anomaly detection is applied to defend against
GPS spoofing attacks, which can be divided into two cate-
gories, node centric detection and data centric detection [15].
In the node centric detection, it examines the patterns in the
behavior of specific nodes at the protocol level, which usually
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does not consider data semantics. Signatures are adopted
to identify if the sender of the messages is malicious. The
node centric detection can be further classified as behavioral
or trust-based. The behavioral mechanism checks the packet
header and metamessage information to detect the anomaly.
Common behavioral mechanisms include watchdog [16] and
flooding detection [17]. Trust-based mechanisms aggregate
the trust of a node and distribute the trust among nodes to
filter the malicious nodes. Trust-based mechanisms are usually
vulnerable to Sybil attacks.

Different from node centric mechanisms, data centric
detection mainly focus on data semantics, which can
also be categorized into two groups, consistency-based and
plausibility-based [15]. The consistency-based method exam-
ines the relations between packets to identify the anomaly
of the newly received data. A cooperative approach can be
adopted to analyze the information from multiple agents to
identify conflicting messages [18], [19].

Plausibility-based methods filter out the packets according
to the numerical plausibility value contained by the data
received, which can be utilized to detect attacks with Sybil
nodes. A majority of the plausibility-based detection focus
on signal-based method [20], [21], [22]. The main shortage
of signal-based methods is generalizability. For example, the
method proposed for the anomaly detection of a GPS-only
localization system may not be suitable for an MSF local-
ization system. Another plausibility-based detection method
is prediction-based. The prediction-based methods focus on
predicting the behavior of vehicles and comparing the predic-
tion with the observations. Kalman filter based approach is
the most common method in this direction [23], [24], [25],
in which the future trajectory of the vehicle is predicted with
a Kalman filter. Other than only predicting the positions of
vehicles, vehicle dynamics can be also integrated into the
prediction-based mechanisms. For example, in [26], vehicle
dynamics are considered to predict the bounding boxes of
vehicles. The prediction-based methods can be viewed as
driving model-based methods that make predictions of the
vehicles to detect the anomaly. Such driving model-based
methods may not be generalized to different driving scenarios
(e.g. highway / urban).

Recent studies applied learning-based approaches to detect
GPS spoofing attacks. Dasgupta et al. [27] implemented an
LSTM neural network to predict AV’s travel distance between
two consecutive timestamps. Spoofing attack detection was
implemented based on the difference between the perceived
location shift and predicted location shift. Jiang et al. [28]
applied deep neural networks to estimate vehicle speed and
direction sequence and infer vehicle positions. A dynamic
Time Wrapping algorithm was applied to measure the sim-
ilarity between the reported and predicted trajectories. Note
that both methods need thousands of vehicle trajectories in the
training process, which may take a very long time to collect.

In this paper, a new prediction based method is proposed,
which combines model-driven and data-driven approaches for
GPS spoofing attack detection, and is proved to have better
generalizability in the experiments. The central hypothesis is

Fig. 1. Concept of abnormal trajectory detection.

that if the data in the GPS signal is compromised, the resultant
information sharing from CVs or trajectory planning from AVs
will be impacted, which generates abnormal driving behaviors
(i.e., abnormal vehicle trajectories). Following this direction,
transportation and vehicle domain knowledge is applied with
the learning from demonstration framework. This method can
be deployed in both vehicles and transportation infrastructure.

Figure 1 illustrates the concept of the proposed anomaly
detection method. For the AV deployment, illustrated by the
yellow block, the anomaly detection module is located before
the trajectory planning module. Three types of information are
used as the input to the detection module. First, information of
the AV’s principle other vehicles (POVs) captured by onboard
sensors. The POVs are defined as nearby vehicles that may
influence the behaviors of the AV (e.g., a leading vehicle in
the same lane). Second, a digital map that contains roadway
geometry information. Third, the localization results provided
by the localization module. In the anomaly detection module,
the normal driving behavior of the AV is represented by a
computational-efficient driving model, which can be learned
from the historical trajectories of the AV. The normal driving
behavior is then compared with the trajectories from the
localization module to detect the anomaly.

For infrastructure deployment, a CV environment is
assumed. In figure 1, the traffic scenario below the yellow
block illustrates the anomaly detection concept at the infras-
tructure side. CVs broadcast their localization results in the
form of BSMs. The infrastructure is equipped with Roadside
Unit (RSU) to collect BSMs from the CVs and learns normal
driving behaviors. When a CV is under a GPS spoofing
attack, it broadcasts BSMs with falsified data elements such
as location and speed. The infrastructure compares the learned
normal driving behavior and the received CV trajectory to
detect the anomaly and send warnings to the victim CV and
nearby vehicles. Notice that in this case, we assume that the
infrastructure does not have other sensors (e.g., cameras) to
cross validate the integrity of the communication messages.

The most important component in the proposed anomaly
detection framework is learning normal driving behaviors.
Toward this end, we apply the learning from demonstration
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framework, in which an agent can learn expert behaviors
with demonstrations (i.e., examples). The demonstrations are
state-action pairs collected from a teacher when he/she per-
forms certain tasks. In this work, learning from demonstration
is implemented to learn a computational-efficient CV/AV
driving model in different driving scenarios. After collecting
a sufficient number of historical trajectories as the demon-
strations, maximum entropy inverse reinforcement learning
is adopted to derive the optimal driving policy (i.e., reward
function). The learned driving policy is used to generate a
predicted optimal trajectory, which is then compared with the
observed trajectory to identify whether the observed trajectory
is under attack or not. A statistical method is developed to
measure the dissimilarities between the observed trajectory
and the predicted optimal trajectory. With appropriate features
that capture such dissimilarities, a decision-tree classifier is
adopted to differentiate normal trajectories and trajectories
under attack.

The proposed detection method is evaluated with two
threat models. The first threat model aims at attacking the
Multi-Sensor Fusion (MSF) based localization model of an
AV. The goal of the attack is to generate lateral deviations to
the original trajectory to make the subject AV hit the road curb
or drive in the wrong direction. The second threat model aims
at attacking the intersection movement assist (IMA) applica-
tion on CVs. Experiments are conducted on two real-world
datasets, KAIST [29] and Michigan roundabout datasets [30].
Experiment results show that the proposed model has a good
performance in both offline detection and online detection with
low false positive and false negative rates. Further adaptive
attack study confirms the robustness of the model in detecting
more stealthy attacks with reduced magnitude.

Contributions of this work are three-fold:
1. We propose an innovative detection framework to

detect anomalies in the localization module of CV/AV
using learning from demonstration. The proposed detection
framework directly examines the outputs of the localization
module, regardless of the mechanism of the localization mod-
ule and different attack types. Moreover, the learning from
demonstration framework requires much fewer data in the
training process but still achieves very high accuracy.

2. The proposed method integrates domain knowl-
edge in detecting cyberattacks. The methodology leverages
transportation and vehicle domain knowledge to learn the
driving policy through real-world demonstrations. Compared
with other learning based approaches, our proposed frame-
work requires much fewer data in the training stage. To our
knowledge, this is the first paper that utilizes learning from
demonstration with domain specific knowledge for abnormal
trajectory detection.

3. The proposed detection method has low requirements
for implementation. For AV deployment, the anomaly detec-
tion requires onboard sensors and digital map information.
Such onboard sensors and digital map information are standard
for all the AV configurations [9], [31]. For infrastructure side
deployment, no other infrastructure sensors are needed. The
required connected vehicle environment has been implemented
and tested extensively in the past few years [32], [33].

Fig. 2. Threat model on the AV MSF System.

The rest of the paper is organized as follows: we first present
the threat models (Section II). In section III, the methodology
of the anomaly detection model is introduced. In section IV
and V, the proposed model is validated on the AV threat
model and CV threat model, respectively. Section VI extends
the experiments on the AV threat model to adaptive attacks.
Section VII concludes the paper and lays out future research
directions.

II. THREAT MODEL

A. Autonomous Vehicle Threat Model
A real-world Multi-Sensor Fusion (MSF) attack conducted

on the Baidu Apollo system is applied as the threat model for
the AV anomaly detection [11]. In this study, a GPS spoofing
attack towards the MSF-based localization system of AVs is
designed, shown in Figure 2. At the top, the original MSF
algorithm takes the input from GPS, IMU, and LiDAR to
generate localization results. In the attack scenario, the GPS
channel is spoofed by the FusionRipper algorithm proposed
in [11], which can successfully mislead the MSF localization
algorithm. The practicality of the GPS spoofing attack is also
justified with existing literature in [11].

The FusionRipper algorithm consists of two phases: vul-
nerability profiling and aggressive spoofing. In the vulner-
ability profiling phase, the attacker performs a constant
GPS spoofing attack and observes the localization results
from the MSF system to profile when the vulnerable peri-
ods appear (i.e., lateral deviation ≥ 0.295 m on urban
roads). After the vulnerable period is identified, the aggres-
sive spoofing phase starts in which the attacker performs
exponentially aggressive spoofing to quickly induce large
lateral deviations. Two attack goals that cause safety hazards
are considered, off-road (i.e., hitting road curbs) attack and
wrong-way (i.e., driving to the opposite direction of the
road) attack, and both attack goals are achieved by large
lateral deviations. The off-road attack requires less lateral
deviation (0.895m for urban roads) in the localization results
to succeed than the wrong-way attack (1.945m for urban
roads).
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Note that camera-based lane detection [34] is used as the
main technology for lane keep in modern cars today. However,
such a technology is used only for low-level driving assistance
(e.g., Level-2) for local localization (i.e., positioning within
the current lane boundaries), so its existence is orthogonal to
our AV threat model that is targeted at high-level autonomous
driving system (i.e., Level 3 or higher) that requires global
localization (i.e., positioning on a city map). Such high-level
autonomous driving systems typically use multi-sensor fusion-
based global localization (e.g., combining GPS, LiDAR and
IMU), but this does not affect the validity of our attack threat
model at all since the attack vector we employ is exactly
designed to target (and has shown to be effective against)
the latest fusion-based localization in high-level autonomous
driving using GPS spoofing alone [11].

B. Connected Vehicle Threat Model

In the CV environment, we choose a threat model towards
the IMA system, which is an important CV safety appli-
cation [35], [36]. The IMA application intends to warn the
driver of the CV when it is unsafe to enter an unsignalized
intersection in case of high collision probability with other
vehicles. The application uses data (i.e., BSMs) received
from other vehicles to determine if it is unsafe to enter the
intersection. In this work, it is assumed that the IMA system
only relies on the received CV messages (BSM) to trigger the
warning [36]. In our study, we use a roundabout scenario to
demonstrate the threat model.

The goal of the attack is to generate falsified BSMs through
GPS spoofing to trigger the IMA warning of a CV. Figure 3
illustrates the concept of the attack. It is assumed that BSMs
have lane level accuracy, which has been validated in previous
studies [37]. In the figure, the blue rectangles denote the
normal CV trajectory (i.e., true locations), which is located
at the inner lane of the roundabout. The red rectangles rep-
resent the BSM trajectory under attack which changes lanes
from the inner lane to the outer lane. The yellow rectangles
denote the trajectory of the victim CV, located at the entry of
the roundabout. A conflict point is defined as the intersection
along the trajectories of the victim vehicle and the CV under
attack. Given that lane changing behavior is not allowed in the
roundabout, if the blue CV is not under attack, its trajectory
should not conflict with the victim CV. The IMA warning
should not be triggered at the victim CV. When the blue CV is
under attack (becomes the red CV), the falsified lane change
trajectory will trigger the IMA warning. The values within
the rectangles denote timestamps, where at time t0, the attack
starts. At time t2, the falsified BSM trajectory triggers the IMA
warning of the victim (yellow) CV.

To generate feasible attack trajectories, the attack model is
formulated as an optimization problem similar as in [38] and
[39]. The objective function contains two parts: 1) trigger the
IMA warning of the victim CV; and 2) generate a smooth tra-
jectory that is close to the real driving behavior. To achieve the
first goal, the arrival time of the victim vehicle to the conflict
point needs to be predicted. It is assumed that victim vehicle
follows a constant speed to reach the conflict point. Based

Fig. 3. Threat model on intersection movement assist system.

on the predicted arrival time, the first part of the objective
function generates a lane change trajectory to reach the conflict
point close to the arrival time of the victim CV to trigger
the IMA warning. The second part of the objective function
contains driving features such as minimizing acceleration and
minimizing heading change rate.

The attack starts when the estimated arrival time to the
conflict point between the vehicle under attack and the victim
vehicle is less than 4s. The planning horizon for the attack
trajectory is the same as the estimated arrival time for the
victim vehicle to reach the conflict point. A rolling horizon
scheme is applied, where the prediction is repeated every
0.4 seconds to minimize the prediction error. The attack
trajectory is generated for the whole planning horizon, but
only the first 0.4s will be executed. Assuming that the vehicle
keeps a constant speed to reach the conflict point, Equation 1
denotes that the attack succeeds when the post encroachment
time (PET) to the conflict point between the victim vehicle and
the attack trajectory is less than Tg . Datk denotes the distance
to the conflict point. vatk denotes the attack vehicle speed and
Tg denotes the critical PET that triggers the IMA warning.
In this work, Tg = 2s, which is consistent with existing studies
ref [36].

Datk/vatk ≤ Tg (1)

III. DEFENSE METHODOLOGY

This section presents the anomaly detection method to
identify the AV/CV attacks introduced in the previous section.
There are two major challenges. Challenge 1: real-time
detection. The operation of AV/CV is highly safety-critical.
Therefore, it is vital to detect abnormal or hazardous driving
behaviors in time. However, some GPS spoofing attacks can
be stealthy (e.g., the first phase of the AV threat model in
Section II-A) while some can achieve the attack goal in a
few seconds (e.g., the CV threat model in Section II-B),
which all pose great challenges in the detection model design.
Challenge 2: validity on different threat models. Different
threat models may cause different abnormal driving behaviors.
It would be more meaningful if the anomaly detection method
is effective under different types of attacks.
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Fig. 4. Anomaly detection framework.

A. Defense Framework

Figure 4 illustrates the anomaly detection framework con-
sisting of two steps. On the left side (i.e., offline learning),
learning from demonstration is adopted to learn the driving
model via maximum entropy inverse reinforcement learning,
using historical trajectories. Besides, a decision tree is trained
with both historical trajectories and known attack trajectories
by three features (objective ratio, normality score, and tra-
jectory displacement). The trained models are applied in the
online detection step as shown on the right side of the figure.
When observing a trajectory from the localization module
or from the CV, its initial state and environment state are
utilized in the learned driving model to generate a predicted
optimal trajectory, which is then compared with the observed
trajectory in terms of the three features. The results are fed into
the trained decision tree classifier, which will finally decide
whether the vehicle is under attack or not.

B. Learning From Demonstration

A general trajectory generation problem can be formulated
as an optimization problem, shown in Equation 2. The objec-
tive of the optimization problem is the utility function of the
driving behavior, in which θ is the weight vector associated
with different driving utilities. s is the decision variable of the
optimization problem, which denotes the trajectory, a vector
of trajectory points si . Each trajectory point si at time step
i can be represented by (xi ,yi ,vi ,ai ,ψi ), in which xi and
yi is the longitudinal and lateral coordinate, respectively,
and ψi is the heading angle of the vehicle, between the
longitudinal axis of the vehicle and the longitudinal direction
of the road. vi denotes the speed of the vehicle, and ai
denotes the acceleration. u represents the initial condition and
environment states, which serve as the input parameters for
the optimization problem. The initial condition includes the
initial position (x0,y0), initial speed v0, initial acceleration a0,
and initial heading angle ψ0. The environment states include

the longitudinal coordinate and the lateral coordinate of the
leading vehicle. f (s,u) is a mapping function that maps the
trajectory to a feature vector, which can be different under
different maneuvers. The details of the features and vehicle
dynamic constraints are introduced next.

min
s

θT f (s,u)

s.t. vehicle dynamic constraints (2)

1) Vehicle Dynamic Constraints: The vehicle dynamic con-
straints represent the kinematics of vehicle motion, shown in
Equations 3,4,5,6, where τ is the step size. Equation 3 reflects
the relationship between the longitudinal coordinate change
and the heading angle, and similarly, Equation 4 reflects the
relationship between the lateral coordinate change and the
heading angle. Equation 5 shows the relationship between
the heading angle rate ψ and the heading angle. Equation 6
shows the vehicle dynamics between the velocity and the
acceleration.

x(i + 1) = x(i)+ v(i)cos(ψ(i)+ ψr (i))τ (3)
y(i + 1) = y(i)+ v(i)sin(ψ(i)+ ψr (i))τ (4)

ψ̇(i) =
(ψ(i + 1)− ψ(i))

τ
(5)

a(i) =
v(i + 1)− v(i)

τ
(6)

2) Feature Vector: The feature vector represents a desired
driving policy, which is a linear combination of multiple
driving features. In our proposed model, nine features are
designed to describe the driving policy including both longi-
tudinal and lateral behaviors. The following provides detailed
descriptions of the features, where N represents the total
number of data points in a trajectory. In the AV experiment,
(1) - (7) are selected as features, and in the CV experiment,
(1)(2)(5)(6)(8)(9) are selected as features. The criteria for
feature selection come from the differences in the driving
scenarios. For example, feature 9 is selected for the CV
experiment because we consider a roundabout scenario.

(1) Speed limit: f1 =
1
N

∑
i (vi − v

lim)
2. This feature

measures the difference between the speed at each time step vi
and the speed limit vlim , which models the driving incentive
of approaching the desired speed (i.e., speed limit).

(2) Acceleration: f2 =
1
N

∑
i a2

i . It is the summation of the
square of the acceleration at each time step, which represents
the smoothness of driving behaviors.

(3) Car following: f3 =
1
N

∑
i

1
min (di ,di /vi )2

. di is the

distance to the leading vehicle at time step i. min(di ,
di
vi
)

chooses the smaller value between the distance and time
headway. When the vehicle moves in free flow, the time
headway makes an impact. When the vehicle is about to stop,
the distance to the leading vehicle makes an impact. This
feature models the car-following behavior of the vehicles.

(4) Lateral acceleration: f5 =
1
N (ai sin (ψi ))

2. It is the
summation of the square of the lateral acceleration at each
time step, which measures the smoothness of lateral driving
behaviors.

(5) Heading angle: f5 =
1
N

∑
i ψ

2
i (1 − I lanechange). ψi is

the heading angle at time step i. I lanechange is the indicator
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of lane change, which is 1 if the heading angle between the
longitudinal axis of the vehicle and the longitudinal direction
of the road is larger than a threshold.

(6) Heading rate: f6 =
1
N

∑
i (ψ̇i )

2. ψi is the heading angle
change rate at time step i.

(7) Heading rate: f7 =
1

N−1
∑

i (ψ̇i+1 − ψ̇i )
2. This feature

measures the change rate of the heading angle rate. Features
5-7 represent the smoothness of the heading angle to measure
the smoothness of lateral driving behaviors of the vehicle.

(8) Interaction: f8 =
1
N

∑
i

1
(xi−xother

i )2+(yi−yother
i )2

. This

feature measures the interaction between two vehicles in
Euclidean distance. Here, (xother

i , yother
i ) denotes the position

of the other interactive vehicle w.r.t. the ego vehicle at time
step i .

(9) Curvature: f9 =
1
N

∑
i (

√
(xi − xc

i )
2 + (yi − yc

i )
2−ri )

2.
When the vehicle is turning, this feature captures the curvature
following behavior. (xc, yc) is the center of the turning circle,
and r denotes the turning radius.

3) Maximum Entropy Inverse Reinforcement Learning:
Before solving the optimization problem, the weight vector
θ needs to be determined, which balances the driving features
in the feature vector. It is usually difficult to specify proper
weights, which represent the desired driving policy. In this
study, we apply maximum entropy inverse reinforcement
learning to determine the weight vector θ . Considering the
vehicle trajectory planning as a Markov Decision Process
(MDP) with a discounted cost as Equation 7, in which γ is the
discounted factor and r is a reward function. If the discounted
factor is taken as 1, then the total return is θT f (s, u), for each
trajectory s. The goal of inverse reinforcement learning is to
find the weight vector θ that maximizes the log-likelihood
function L(θ), shown in Equation 8. D is the demonstra-
tion trajectory dataset collected, including m trajectories.
P(s j |θ, u j ) is the probability of trajectory s j given parameter
θ and the initial condition as well as the environment state
of trajectory s j (i.e., u j ), so when maximizing L(θ), the
likelihood of using weight θ to generate all trajectories in
the dataset is maximized. When the policy of the MDP is
the maximum entropy policy [40], P(s j |θ, u j ) can be written
as Equation 9.

discountedcost =
N−1∑
i=0

γ ir(si ) ≈ θT f (s, u) (7)

L(θ) =
1
m

∑
s j∈D

ln P(s j |θ, u j ) (8)

p(s j |θ, u j ) =
e−θ

T f (s j ,u j )∑
sk∈C j

e−θT f (sk ,u j )
(9)

In this way, the gradient of L(θ) can be calculated as
Equation 10, in which f̃ =

1
m

∑
s j∈D f (s j , u j )denotes the

empirical feature vector. Thus, the gradient of L(θ) is the
difference between the expected feature vector with respect to
weight θ and the empirical feature vector calculated from the
dataset (i.e., observations). Furthermore, the expected feature
vector can be approximated by the feature vector of the most

Algorithm 1 Maximum Entropy Inverse Reinforcement
Learning

1: Compute the empirical feature vector over all demonstra-
tions f̃0 =

1
m

∑
s j∈D f (s j , u j ) . Normalize the feature

vector. The normalized feature vector is denoted as f̃
2: Initialize every entry of the weight vector θ .
3: while 1

m
∑

j=1 f (sθj , u j )− f̃ > threshold do
4: for For each demonstrated trajectory in the dataset do
5: Fix the initial condition and the environment states

and optimize the trajectory using equation 2. The opti-
mized trajectories are denoted as sθ1 , . . . , sθm .

6: end for
7: The gradient can be calculated as ▽θ L(θ) =

1
m

∑
j=1 f (s j , u j )− f̃ .

8: Update the parameter vector: θ(k + 1) = θ(k)+ γ ▽θ

L(θ), in which γ is the learning rate.
9: end while

likely trajectory.

▽θ L(θ) =
1
m

∑
s j∈D

E p(s j |θ,u j )[ f (s j , u j )] − f̃

≈
1
m

∑
s j∈D

f (argmins j θ
T f (s j , u j ))− f̃ (10)

With the gradient of the log-likelihood function, the
pseudo-code of the maximum entropy inverse reinforcement
learning algorithm can be summarized in Algorithm 1, given
a set of demonstration trajectories D = s1, . . . , sm .

C. Anomaly Classifier

To differentiate normal trajectories from abnormal ones, the
difference between the observed trajectory and the predicted
optimal trajectory should be measured quantitatively by some
statistics. In this work, three statistical features are adopted.
The first statistical feature is the maximum value of the
objective ratio O Rt of all the trajectory points until time step
t , calculated by Equation 11. O Rt represents the ratio between
the summation of the objective value of the observed trajectory
(i.e.,

∑t
τ=1 observed objectiveτ ) and the summation of the

objective value of the predicted optimal trajectory via the
learned model (i.e.,

∑t
τ=1 optimal objectiveτ ) at time step

t . It measures how different the observed trajectory is from
the optimal trajectory.

O R = max
1...t

O Rt =

∑t
τ=1 observed objectiveτ∑t
τ=1 optimal objectiveτ

(11)

The second statistical feature adopted is the max value of
the normality score N St of all the observed trajectory points
until time step t , calculated by Equation 12. N St measures
the variation of the objective value of the observed trajectory.
objectivet denotes the objective value of the observed trajec-
tory at time step t . objective mean1...t is the mean objective
value of all the observed time steps until t , objective std1...t is
the standard deviation of the objective value of all the observed
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Fig. 5. A sample trajectory in KAIST dataset.

time steps until t .

N S = max
1...t

N St =
objectivet − objective mean1...t

objective std1...t
(12)

The last statistical feature is the maximum value of the
average displacement error E Dt with the prediction horizon
of T between the observed trajectory and optimized trajec-
tory at time step t , calculated by Equation 13. The average
displacement error at time step t (i.e. E Dt ) can be calcu-
lated by measuring the average point-wise Euclidean distance
between the observed trajectory (xobs, yobs) and the predicted
trajectory (x pred , y pred) within the prediction horizon T . This
feature captures the difference between the observation and the
optimization results in terms of the Euclidean distance in the
2-D space.

E D = max
1...t

E Dt

=
1
T

t+T∑
i=t

√
(xobs

i − x pred
i )2 + (yobs

i − y pred
i )2 (13)

With three statistical features defined as the input, a decision
tree classifier is applied to differentiate the abnormal trajecto-
ries from normal trajectories. More information of the decision
tree classifier can be found in [41].

IV. DETECTION MODEL EVALUATION ON
AV THREAT MODEL

The AV threat model (i.e., FusionRipper [11]) is imple-
mented on the KAIST Complex Urban dataset [29], which
is an AV driving dataset in both urban and highway driving
scenarios based on the Apollo system. Figure 5 illustrates
a sample trajectory (in red) that consists of both urban and
highway driving scenarios in the KAIST dataset. The dataset
provides raw data from Lidar, stereo camera, GPS, and IMU.
The FusionRipper algorithm takes them as the input and
applies the MSF module in Apollo to obtain the compromised
localization results. Specifically, lateral deviations are added
to the original trajectory data. In this study, the deviated
trajectory generated by FusionRipper is considered as the
trajectory under attack. Meanwhile, we extract the original AV
trajectories in the data as ground truth.

Fig. 6. Vehicle detection and distance measurement result.

A. Data Processing

Before applying the proposed detection method, the original
KAIST trajectory data set needs to be processed to calcu-
late two additional data elements (road orientation and car-
following distance) that are needed for the proposed learning
from demonstration model. The heading angle of the trajectory
is the relative angle between the longitudinal axis of the
vehicle and the longitudinal direction of the road, but the
road orientation is not included in the raw data. To calculate
the relative heading angle, vehicle trajectories are allocated
to the closest road segment on the OpenStreetMap [42], and
then the road orientation is extracted from the waypoints of
the OpenStreetMap. In the feature vector, the distance to the
leading vehicle is also required to calculate the car-following
distance, which is extracted from the raw images from the
forward-facing stereo cameras installed on the vehicle, using
the YOLO (You only look once) algorithm [43]. The disparity
of the detected vehicle between the left and right stereo
camera is obtained from the images to calculate the distance
to the leading vehicle using triangulation. Interpolation is
applied when the front vehicle is missing. Figure 6 presents
an example of the detected leading vehicle denoted by the
yellow rectangle, and distance measurement in meters denoted
by the red number. With the road orientation and distance to
the leading vehicle processed, all the features in the learning
from demonstration model can be calculated.

B. Experiment Setting

In total, 78 ground truth trajectories are obtained from the
KAIST dataset. The ground truth trajectories include both
in-lane driving and lane changing cases. We deliberately
include the lane changing cases in the training dataset because
the FusionRipper attack aims to create abnormal lateral devi-
ations of a trajectory to achieve the off-road or wrong-way
attack goal. It is critical to differentiate between a normal
lane changing process, which also includes lateral deviations,
and the lateral deviations caused by the attack. 51 ground
truth trajectories are adopted in IRL to learn the driving
model, which is significantly less than the trajectories used in
other learning-based detection methods [27], [28]. 88 attacked
trajectories from the FusionRipper attack and all ground truth
trajectories are utilized in the experiments for detection.

In the experiments, we mainly evaluate the proposed detec-
tion method against the off-road attack, which requires less
lateral deviation and thus is more difficult for the detection
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Fig. 7. Comparison between a ground truth trajectory and a predicted optimal
trajectory ((a): trajectory profile in 2-D space. (b): speed profile).

model. Two types of detection mechanisms, namely offline
detection and online detection, are designed and evaluated.
In the offline detection, the detection is performed after the
full trajectory of the vehicle is observed. In the online detec-
tion mode, the anomaly classifier checks the trajectory every
0.5 seconds until classified as abnormal or reaching the end of
the attack. The online detection mode is designed to detect the
abnormal trajectories in real-time as soon as possible, which
is critical to the safety performance of the AVs, but also more
challenging.

C. Experiment Results

Figure 7 illustrates the performance of the learning from
demonstration model, by comparing a ground truth trajectory
(i.e., green curve) with its corresponding predicted optimal
trajectory from the learned model (i.e., blue curve). Subfigure
(a) shows the position profile and subfigure (b) shows the
speed profile. The prediction horizon is 2 seconds, indicating
that the learned model takes an accurate position (i.e., the same
as the ground truth position profile) and the corresponding
speed as the input every 2 seconds. The generated trajectory
is very close to the ground truth trajectory. To quantitatively
measure the difference between the learned model and the
ground truth trajectory, the Average Displacement Error (ADE)
between the ground truth trajectory and the predicted optimal
trajectory is calculated as 0.76m. The calculation of the ADE is
based on the of E Dt in Equation 13. The ADE is less than 1m,
which indicates that the predicted optimal trajectory fits the
ground truth very well. Comparing with other learning-based
approaches such as LSTM [44], the ADE is lower.

Fig. 8. Objective value comparison of the attacked trajectory and the ground
truth trajectory ((a): objective value comparison of an attacked trajectory
(b): objective value comparison of a ground truth trajectory).

Based on the learned model, the value of the objective
function of both observed trajectories and predicted optimal
trajectories (by solving Equation 2) can be calculated by
evaluating θT f (s, u), in which θ is optimized by the maxi-
mal entropy inverse reinforcement learning model. Intuitively,
if the vehicle is not under attack, the value of the objective
function calculated from the observed trajectory should be
close to the value calculated from the predicted optimal trajec-
tory. If the vehicle is under attack, then the two values should
deviate from each other. Figure 8 illustrates a comparison of
the objective values of the attacked trajectory, ground truth
trajectory, and predicted optimal trajectory. The red curve
is the objective of the attacked trajectory, and the green
curve denotes the objective of the ground truth trajectory. The
blue curves in both subfigures denote the objective value of
the predicted optimal trajectory. In subfigure (a), when the
attack is about to succeed (i.e., time ≥ 14 s), the objective
value of the attacked trajectory deviates from the optimal
value significantly. By comparing subfigures (a) and (b), the
objective of the ground truth trajectory is much closer to
its corresponding optimal objective value than the attacked
trajectory.

Figure 9 shows the 3D (subfigure (a)) and 2D (subfigure (b))
scatter plots of the decision tree classification result. The
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Fig. 9. Scatter plot of the classification problem ((a): scatter plot with three
features. (b): scatter plot with two features).

red dots represent the attacked trajectories, and the black
dots represent the ground truth trajectories. In the 3D scatter
plot, three axes represent the three statistical features intro-
duced in section III-C, which are objective ratio, normality
score, and average displacement error. With three features,
the normal trajectories in the ground truth can be separated
from the attacked trajectories, as shown in the 3D scatter
plot. Subfigure (b) shows the distribution of trajectories if the
average displacement error feature is removed. The classifier
is difficult to differentiate since the normal trajectories and
the attacked trajectories are mixed together. The scatter plots
illustrate that the choice of these three statistical features is
appropriate.

Next, we show the results of the offline and online detection
respectively. In the offline detection, false positive (Type I
error) indicates that a ground truth trajectory is classified as
an attacked trajectory. On the contrary, false negative (Type II
error) means that an attacked trajectory is not identified
correctly. The false positive rate of offline detection is 8.7%
(2/23), and the false negative rate is 3.7% (1/27). Figure 10
illustrates a false positive case and a false negative case.
In subfigure (a) and (b), green curves represent the ground
truth trajectories in the dataset, and the blue curves denote the
optimized trajectories, respectively. Subfigure (a) shows the
false positive case in the 2-D space, in which the optimized
trajectory does not fit the ground truth very well, compared
to a true positive case in subfigure (b) where the optimized
trajectories almost overlap with the ground truth trajectory.
The reason for the unsatisfying fitting in the false positive
case is that the road orientation at this road segment calculated

Fig. 10. Misclassification examples of the KAIST experiments ((a): trajectory
profile of the FP case. (b): baseline trajectory profile for the FP case.
(c) heading rate profile of the FN case).

from the map data is not accurate. The KAIST dataset doesn’t
contain HD map information, we use the OpenStreetMap in
calculating the road orientation. Thus, the optimized trajectory
tries to follow the road direction within the prediction horizon
and deviates from the ground truth trajectory. Such an issue
may be resolved when the AV is equipped with a HD map,
which is a standard module. Subfigure (c) shows the heading
rate profile of the false negative case that an attacked trajectory
is misclassified. The red curve denotes the heading rate profile
of the attacked trajectory, and the blue curve denotes the
heading rate profile from a ground truth trajectory. The heading
rate is a key feature in the learned driving model, and in this
case, the heading rate of the attacked trajectory is similar to
the heading rate of the ground truth trajectory, which makes
the attacked trajectory difficult to be identified.
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Fig. 11. Heading rate profiles of the attacked trajectory and the ground truth
trajectory ((a): attacked trajectory. (b): ground truth trajectory).

Figure 11 further shows the heading rate profile comparison,
which reveals the reason why the attacked trajectories can be
differentiated from the ground truth trajectories. The red curve
denotes the heading rate profile of the attacked trajectory,
and the green curve denotes the heading rate profile of the
ground truth trajectory. The blue curves in both subfigures
denote the heading rate profiles of the corresponding predicted
optimal trajectories. Notice that the heading rate profiles of
the predicted optimal trajectories fluctuate every 2 seconds
since the prediction horizon is 2 seconds. In subfigure (a),
the heading rate profile of the attacked trajectory has larger
fluctuations compared to the predicted optimal trajectory. The
ground truth trajectory, on the contrary, has smaller values and
small fluctuations. Such differences are reflected in the objec-
tive function value, which is one feature in the classification
model.

In the online detection, the anomaly classifier checks the
trajectory every 0.5 seconds. The performance of the online
detection is shown in Table I. The false positive rate is 8.7%
(2/23), and the false negative rate is 3.7% (1/27), which is
the same as the offline detection results. For online detection,

TABLE I
PERFORMANCE OF ONLINE DETECTION

Fig. 12. Detection time in online anomaly detection for KAIST experiments.

it is important to identify the attacked trajectory as early as
possible, but at least before the attack succeeds. Therefore,
we further calculate the mean detection time to compare it with
the mean attack success time. The mean success time of the
off-road attack is 28.7 s, and the mean detection time is 12.7 s.
The time to attack success is defined as the time duration from
the success time of the detection to the success time of the
attack, which measures how early the attack can be detected
before attack success. In the online detection, the attacked
trajectories can be identified 16.0 s before the attack success
time on average.

Figure 12 further illustrates the detection time (i.e., blue
bars) in the online detection, compared to the duration of
attack phases one and two. The green bars denote the duration
of phase one (i.e., vulnerability profiling), and the red bars
denote the attack success time, which is the end of phase
two (i.e., aggressive spoofing). In general, except for the false
negative case 7109, the detection time of all other test cases
is not longer than the attack success time, which indicates
that the anomaly classifier can successfully detect the spoofing
attack before it achieves the attack goal. For most of the test
cases, the detection time is even less than the duration of the
vulnerability profiling phase, which leaves sufficient time for
applying further mitigation strategies.

V. DETECTION MODEL EVALUATION ON
CV THREAT MODEL

To validate the CV threat model, experiments are conducted
using a dataset collected from a two-lane roundabout in Ann
Arbor, Michigan [30]. Infrastructure sensors (i.e. cameras and
radars) are installed at the four corners of the roundabout,
to detect all vehicles approaching and entering the roundabout.
The trajectory dataset is collected at a 2.5 Hz frequency in a
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Fig. 13. Trajectory overview at the two-lane roundabout.

24/7 manner. Figure 13 illustrates the trajectory overview at
the two-lane roundabout

In this experiment, 841 ground truth trajectories from the
dataset are extracted. 809 attack trajectories are generated
with the attack model illustrated in Section II-B. Overall,
there are 1650 trajectories in the experiment. 182 ground truth
trajectories are utilized in learning the driving model with IRL,
which is still much fewer compared with other learning-based
detection algorithms [27], [28]. 70% of the trajectories in the
dataset are used as the training data, and the rest 30% are
used as the testing data. Compared to the threat model for AV,
the CV threat model is much more aggressive with a much
shorter attack duration, which greatly increases the difficulty
for both offline and online detection. Besides, the frequency
of the ground truth data is only 2.5 Hz, which also makes the
defense more challenging. Similar as in the AV case, in offline
detection, the detection is performed after the full trajectory of
the vehicle is observed. In online detection, after a sufficient
number of trajectory points are observed from a vehicle (e.g.,
5 data points), the online detection is conducted at every time
step.

In offline detection, the false positive rate is 0.004% (1 out
of 252), and the false negative rate is 2.0% (5 out of 243).
Overall, the anomaly detection model shows a very good
performance in offline detection. In online detection, the
anomaly classifier checks the trajectory every 0.4 seconds
until classified as abnormal or reaching the end of the attack.
Overall, the false positive rate is 0.008% (2 out of 252),
and the false negative rate is 0% (0 out of 243). Notice
that in the online detection, all the attack trajectories can be
identified by the proposed anomaly detector. Figure 14 shows
the relationship between the detection time (blue bar) and the
attack success time (orange bar) in the first 50 cases. All
the cases can be detected before the attack success time, and
the average detection time is 2.0 seconds after the attack starts.
The average attack success time is 2.8 seconds, and the average
time to attack success is 0.8 seconds. Thus, even with very
short attack duration, the proposed anomaly detection still
manages to identify the falsified trajectories before the attack
succeeds.

Fig. 14. Detection time in online anomaly detection for roundabout
experiments.

Fig. 15. Misclassification examples of the roundabout experiments (a FP
case).

Figure 15 shows a misclassification example of a false
positive (FP) case in the online detection. The purple tra-
jectory denotes the trajectory of the vehicle at the entrance
link. The orange trajectory denotes a ground truth trajectory
traversing the roundabout, and the black trajectory with crosses
denotes the predicted optimal trajectory w.r.t. the orange
trajectory. The x-axis and y-axis represent the local coordinate
system in meters. In 3.6 seconds, the ground truth trajectory
drives 12.7 m in total, and the average speed of the vehicle
in the roundabout is only 3.5 m/s. Such low speed is very
rare at this roundabout, which makes the proposed anomaly
detector consider it as an abnormal trajectory. In fact, identi-
fying this uncommon behavior in the ground truth trajectory
also enriches the usage of the proposed anomaly detection
framework. Other than detecting cyber attacks, this method
may also be utilized to identify abnormal driving behaviors.

VI. DETECTION ON ADAPTIVE ATTACK

To further evaluate the capability of the proposed anomaly
detection model, an adaptive attack scenario is designed and
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Fig. 16. Adaptive attack example on the KAIST dataset.

TABLE II
DETECTION PERFORMANCE ON THE ADAPTIVE ATTACK

implemented. In the AV threat model, the key idea is to add
lateral deviations to the original trajectory, which either causes
the subject AV hit the roadside, or leads to the emergency
behavior of the victim vehicle. To make the attack more
stealthy and difficult to be detected, the adaptive attack reduces
the magnitude of the lateral deviations added to the ground
truth trajectory, and we use the adaptive ratio to represent the
significance of the magnitude reduction, ranging from 0 to 1.
Figure 16 shows an example of the adaptive attack imple-
mented on the KAIST dataset. The green curve denotes the
ground truth trajectory that is not attacked (i.e., adaptive ratio =
0). The blue curve denotes the original attack trajectory that is
evaluated in section IV (i.e., adaptive ratio = 1). The orange
curve denotes the trajectory under adaptive attack, with the
adaptive ratio of 0.5. Notice that the lateral deviations of
the orange trajectory are half of the lateral deviations of the
original attack trajectory, w.r.t. the ground truth trajectory.
In this way, as the adaptive ratio decreases, the adaptive attack
trajectories become more and more similar to the ground truth
trajectory. The adaptive attack trajectories with a very small
adaptive ratio (e.g., 0.1) can be very close to the ground truth
trajectories, which are very difficult to identify.

The adaptive attack is implemented on the KAIST dataset
with the adaptive ratios of 0.8, 0.5, and 0.2. The experiment
setting is the same as in section IV, and the driving models
and the decision tree classifier are also the same. Table II
shows the anomaly detection performance on the adaptive
attack. When the adaptive ratio is 0.8, the performance of the
anomaly detection degrades a little, with a false negative rate
of 2/27. Nonetheless, the detection results are still satisfying,
and most of the attacked trajectories can be identified correctly.
When the adaptive ratio is 0.5, the performance of the anomaly
detection is the same as the performance with the adaptive
ratio of 0.8. When the adaptive ratio is 0.2, the false negative
rate become 10/27. However, in this case, the adaptive attack
trajectories are very close to the ground truth trajectories.
In the urban scenario, the success criterion of the off-road

attack is 0.895 m [11]. With the adaptive ratio of 0.2, the
final lateral deviation w.r.t. the ground truth trajectory is only
0.179 m. In such cases, the subject AV is still driving within
the original lane. Although the proposed model fails to detect
some attack trajectories, the consequence is not hazardous.

VII. DISCUSSION AND CONCLUSION

In this paper, an anomaly detection model using learning
from demonstration is proposed to detect GPS spoofing attacks
towards the localization system of the CV/AV. Maximum
entropy inverse reinforcement learning is applied to learn
the normal driving model. The learned driving model is
then utilized to generate optimal vehicle trajectories which
are compared with the observed vehicle trajectories using
a decision tree classifier to determine whether the observed
trajectories are under attack. The proposed detection method
is evaluated in two realistic GPS spoofing attacks on AV and
CV, respectively.

In both AV and CV experiments, the proposed anomaly
detection method can identify most of the abnormal trajec-
tories before the attacks succeed. Such experiment results
validate the generality of the proposed model. Notice that
although in this paper, the anomaly detection model is only
validated by GPS spoofing attack experiments, we do not
utilize any specific feature of GPS signals in the model.
In other words, the proposed model has the potential to detect
a variety of sensor attacks towards the localization system as
well. The reason is that the key concept of the proposed model
is to compare normal versus abnormal driving behaviors. Thus,
it is not sensitive to the input types or states of the localization
system. As long as the driving behaviors are affected by certain
cyber attacks, the proposed method can be applied to detect
anomaly.

One limitation of the proposed method is that it can be only
applied to detect known attacks, because the decision tree clas-
sifier requires attack trajectories as training data. To extend the
proposed method to be more generic for detecting unknown
attacks, we will explore one-class classification methods [45]
where only the ground truth trajectories are needed for training
a single classifier. Another limitation of this paper is that
it mainly focuses on the detection of GPS spoofing attacks
without proposing defense solutions. In future work, we will
investigate corresponding mitigation strategies. For example,
when a trajectory is identified as abnormal, its autonomous
driving functions can be temporarily suspended. In the online
detection, a warning can be sent to the trajectory planning
module of the AV to choose safe maneuvers (e.g., stop) or
directly ask the driver to take over. In a CV environment,
the certificate of the vehicle could be revoked so that the
messages sent from this particular CV will be discarded by
other vehicles.

ACKNOWLEDGMENT

The views presented in this paper are those of the authors
alone.

REFERENCES
[1] N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, “Connected

vehicles: Solutions and challenges,” IEEE Internet Things J., vol. 1,
no. 4, pp. 289–299, Aug. 2014.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Purdue University. Downloaded on May 16,2023 at 18:59:07 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: ANOMALY DETECTION AGAINST GPS SPOOFING ATTACKS 13

[2] D. G. Yang et al., “Intelligent and connected vehicles: Current status
and future perspectives,” Sci. China-Technol. Sci., vol. 61, no. 10,
pp. 1446–1471, Oct. 2018.

[3] Z. Yang, Y. Feng, X. Gong, D. Zhao, and J. Sun, “Eco-trajectory
planning with consideration of queue along congested corridor for hybrid
electric vehicles,” Transp. Res. Record, J. Transp. Res. Board, vol. 2673,
no. 9, pp. 277–286, Sep. 2019.

[4] T. G. R. Reid et al., “Localization requirements for autonomous vehi-
cles,” 2019, arXiv:1906.01061.

[5] S. Campbell et al., “Sensor technology in autonomous vehicles: A
review,” in Proc. 29th Irish Signals Syst. Conf. (ISSC), 2018, pp. 1–4.

[6] Y. Gao, S. Liu, M. Atia, and A. Noureldin, “INS/GPS/LiDAR integrated
navigation system for urban and indoor environments using hybrid
scan matching algorithm,” Sensors, vol. 15, no. 9, pp. 23286–23302,
Sep. 2015.

[7] A. Soloviev, “Tight coupling of GPS, laser scanner, and inertial mea-
surements for navigation in urban environments,” in Proc. IEEE/ION
Position, Location Navigat. Symp., Jun. 2008, pp. 511–525.

[8] J. Kelly and G. S. Sukhatme, “Visual-inertial sensor fusion: Localization,
mapping and sensor-to-sensor self-calibration,” Int. J. Robot. Res.,
vol. 30, no. 1, pp. 56–79, 2011.

[9] X. Sun, F. R. Yu, and P. Zhang, “A survey on cyber-security of connected
and autonomous vehicles (CAVs),” IEEE Trans. Intell. Transp. Syst.,
vol. 23, no. 7, pp. 6240–6259, Jul. 2021.

[10] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On
the requirements for successful GPS spoofing attacks,” in Proc. 18th
ACM Conf. Comput. Commun. Secur., Oct. 2011, pp. 75–86.

[11] J. Shen, J. Y. Won, Z. Chen, and Q. A. Chen, “Drift with devil: Security
of multi-sensor fusion based localization in high-level autonomous
driving under GPS spoofing,” in Proc. 29th USENIX Secur. Symp.
(USENIX Security), 2020, pp. 931–948.

[12] T. E. Humphreys et al., “Assessing the spoofing threat: Development of
a portable GPS civilian spoofer,” in Proc. 21st Int. Tech. Meeting Satell.
Division Inst. Navigat. (ION GNSS), 2008, pp. 2314–2325.

[13] Inside GNSS. Tesla Model S and Model 3 Prove Vulnerable to GPS
Spoofing Attacks, Research from Regulus Cyber Shows. Accessed:
Apr. 20, 2023. [Online]. Available: https://insidegnss.com/tesla-model-
s-and-model-3-prove-vulnerable-to-gps-spoofing-attacks-research-from-
regulus-cyber-shows/

[14] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on
automated vehicles sensors: Experiments on camera and LiDAR,” Black
Hat Eur., vol. 11, p. 995, Nov. 2015.

[15] R. W. van der Heijden, S. Dietzel, T. Leinmüller, and F. Kargl, “Survey
on misbehavior detection in cooperative intelligent transportation sys-
tems,” IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 779–811, 4th
Quart., 2018.

[16] J. Hortelano, J. C. Ruiz, and P. Manzoni, “Evaluating the usefulness of
watchdogs for intrusion detection in VANETs,” in Proc. IEEE Int. Conf.
Commun. Workshops, May 2010, pp. 1–5.

[17] A. Hamieh, J. Ben-Othman, and L. Mokdad, “Detection of radio
interference attacks in VANET,” in Proc. IEEE Global Telecommun.
Conf. (GLOBECOM), Nov. 2009, pp. 1–5.

[18] K. Zaidi, M. B. Milojevic, V. Rakocevic, A. Nallanathan, and M. Rajara-
jan, “Host-based intrusion detection for VANETs: A statistical approach
to rogue node detection,” IEEE Trans. Veh. Technol., vol. 65, no. 8,
pp. 6703–6714, Aug. 2016.

[19] J. Grover, M. S. Gaur, V. Laxmi, and N. K. Prajapati, “A Sybil attack
detection approach using neighboring vehicles in VANET,” in Proc. 4th
Int. Conf. Secur. Inf. Netw., 2011, pp. 151–158.

[20] A. Kalantari and E. G. Larsson, “Statistical test for GNSS spoofing
attack detection by using multiple receivers on a rigid body,” EURASIP
J. Adv. Signal Process., vol. 2020, no. 1, pp. 1–16, Dec. 2020.

[21] E. Schmidt, N. Gatsis, and D. Akopian, “A GPS spoofing detection and
classification correlator-based technique using the LASSO,” IEEE Trans.
Aerosp. Electron. Syst., vol. 56, no. 6, pp. 4224–4237, Dec. 2020.

[22] R. Matsumura, T. Sugawara, and K. Sakiyama, “A secure LiDAR with
AES-based side-channel fingerprinting,” in Proc. 6th Int. Symp. Comput.
Netw. Workshops (CANDARW), Nov. 2018, pp. 479–482.

[23] H. Stubing, A. Jaeger, C. Schmidt, and S. A. Huss, “Verifying mobility
data under privacy considerations in car-to-X communication,” in Proc.
17th ITS World Congr. ITS Jpn. ITS AmericaERTICO, 2010.

[24] H. Stübing, J. Firl, and S. A. Huss, “A two-stage verification process for
car-to-X mobility data based on path prediction and probabilistic maneu-
ver recognition,” in Proc. IEEE Veh. Netw. Conf. (VNC), Dec. 2011,
pp. 17–24.

[25] A. Jaeger, N. Bissmeyer, H. Stubing, and S. Huss, “A novel framework
for efficient mobility data verification in vehicular ad-hoc networks,” Int.
J. Intell. Transp. Syst. Res., vol. 10, pp. 11–21, Jan. 2012.

[26] C. Yavvari, Z. Duric, and D. Wijesekera, “Vehicular dynamics based
plausibility checking,” in Proc. IEEE 20th Int. Conf. Intell. Transp. Syst.
(ITSC), Oct. 2017, pp. 1–8.

[27] S. Dasgupta, M. Rahman, M. Islam, and M. Chowdhury, “A sen-
sor fusion-based GNSS spoofing attack detection framework for
autonomous vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 23, no.
12, pp. 23559–23572, Dec. 2022.

[28] P. Jiang, H. Wu, and C. Xin, “DeepPOSE: Detecting GPS spoofing
attack via deep recurrent neural network,” Digital Communications and
Networks, vol. 8, no. 5, pp. 791–803, 2021.

[29] J. Jeong, Y. Cho, Y.-S. Shin, H. Roh, and A. Kim, “Complex urban
dataset with multi-level sensors from highly diverse urban environ-
ments,” Int. J. Robot. Res., vol. 38, no. 6, pp. 642–657, May 2019.

[30] R. Zhang, Z. Zou, S. Shen, and H. X. Liu, “Design, implementation,
and evaluation of a roadside cooperative perception system,” in Proc.
101st Transp. Res. Board (TRB) Annu. Meeting, 2022, pp. 273–284.

[31] C. Badue et al., “Self-driving cars: A survey,” Exp. Syst. Appl., vol. 165,
Mar. 2021, Art. no. 113816.

[32] D. Bezzina and J. Sayer, “Safety pilot model deployment: Test conductor
team report,” Nat. Highway Traffic Safety Admin., Washington, DC,
USA, Tech. Rep. DOT HS 812 171, 2014.

[33] D. Gopalakrishna et al., “Connected vehicle pilot deployment pro-
gram phase 1, concept of operations (ConOps), ICF/WYDOT [phase
2 update],” U.S. Dept. Transp., Intell. Transp., Washington, DC, USA,
Tech. Rep. FHWA-JPO-16-287, 2020.

[34] A. B. Hillel, R. Lerner, D. Levi, and G. Raz, “Recent progress in
road and lane detection: A survey,” Mach. Vis. Appl., vol. 25, no. 3,
pp. 727–745, 2014.

[35] M. Maile, Q. Chen, G. Brown, and L. Delgrossi, “Intersection collision
avoidance: From driver alerts to vehicle control,” in Proc. IEEE 81st
Veh. Technol. Conf. (VTC Spring), May 2015, pp. 1–5.

[36] H.-S. Seo, D.-G. Noh, C.-J. Lee, and S.-S. Lee, “Design and imple-
mentation of intersection movement assistant applications using V2V
communications,” in Proc. 5th Int. Conf. Ubiquitous Future Netw.
(ICUFN), 2013, pp. 49–50.

[37] Y. Feng, “Intelligent traffic control in a connected vehicle environment,”
Ph.D. dissertation, Dept. Syst. Ind. Eng., Univ. Arizona, Tucson, AZ,
USA, 2015.

[38] S. E. Huang, Y. Feng, and H. X. Liu, “A data-driven method for falsified
vehicle trajectory identification by anomaly detection,” Transp. Res. C,
Emerg. Technol., vol. 128, Jul. 2021, Art. no. 103196.

[39] J. Ying and Y. Feng, “Full vehicle trajectory planning model for urban
traffic control based on imitation learning,” Transp. Res. Rec., J. Transp.
Res. Board, vol. 2676, no. 7, pp. 186–198, Jul. 2022.

[40] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in Proc. AAAI, Chicago, IL,
USA, 2008, pp. 1433–1438.

[41] D. Landgrebe, “A survey of decision tree classifier methodology,” IEEE
Trans. Syst., Man Cybern., vol. 21, no. 3, pp. 660–674, May 1991.

[42] M. Haklay and P. Weber, “OpenStreetMap: User-generated street maps,”
IEEE Pervasive Comput., vol. 7, no. 4, pp. 12–18, Oct. 2008.

[43] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
2018, arXiv:1804.02767.

[44] S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi,
“Sequence-to-sequence prediction of vehicle trajectory via lstm encoder–
decoder architecture,” in Proc. IEEE Intell. Vehicles Symp. (IV),
Jun. 2018, pp. 1672–1678.

[45] P. Perera, P. Oza, and V. M. Patel, “One-class classification: A survey,”
2021, arXiv:2101.03064.

Zhen Yang received the B.S. degree in automo-
tive engineering from Tsinghua University, China,
in 2017, and the M.S. degree in computer science
and engineering from the University of Michigan,
where he is currently pursuing the Ph.D. degree
with the Department of Civil and Environmental
Engineering. His research interests include the coop-
erative automation for the trajectory planning of
the autonomous vehicles, vehicle trajectory predic-
tion in complex urban scenarios, cyber security
of the autonomous vehicles, integrated control of
autonomous vehicle, and traffic signals.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Purdue University. Downloaded on May 16,2023 at 18:59:07 UTC from IEEE Xplore.  Restrictions apply. 



14 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Jun Ying received the master’s degree from the
Department of Civil Engineering, University of
Michigan, in 2020. She is currently pursuing the
Ph.D. degree with the Lyles School of Civil Engi-
neering, Purdue University. Her current research
interests include cooperative driving automation and
transportation system cybersecurity.

Junjie Shen received the B.E. degree from
Hangzhou Dianzi University and the M.S. degree
from North Carolina State University. He is currently
pursuing the Ph.D. degree with the Department of
Computer Science, University of California at Irvine.
His current research interests include autonomous
driving security with a focus on localization and
perception security.

Yiheng Feng received the B.S. and M.E. degrees
from the Department of Control Science and Engi-
neering, Zhejiang University, Hangzhou, China, in
2005 and 2007, respectively, and the Ph.D. degree in
systems and industrial engineering from The Univer-
sity of Arizona in 2015. He is currently an Assistant
Professor with the Lyles School of Civil Engineer-
ing, Purdue University. His research interests include
traffic signal systems control and security, and CAV
testing and evaluation.

Qi Alfred Chen (Member, IEEE) received the
Ph.D. degree from the University of Michigan in
2018. He is currently an Assistant Professor with
the Department of Computer Science, University of
California at Irvine. His research interests include
software and AI security, systems security, network
security, and security problems at the AI and soft-
ware stacks in autonomous CPS and the IoT systems,
such as autonomous driving and intelligent trans-
portation. He was a recipient of the NSF CAREER
Award and the ProQuest Distinguished Dissertation
Award at the University of Michigan.

Z. Morley Mao (Fellow, IEEE) received the B.S.,
M.S., and Ph.D. degrees from the University of
California at Berkeley, Berkeley, CA, USA. She is
currently a Professor with the Department of Electri-
cal Engineering and Computer Science, University
of Michigan, Ann Arbor, MI, USA. She was a
recipient of the NSF CAREER Award, the Sloan
Fellowship, and the IBM Faculty Partnership Award.
She has been named as the Morris Wellman Faculty
Development Professor.

Henry X. Liu (Member, IEEE) received the
bachelor’s degree in automotive engineering from
Tsinghua University, China, in 1993, and the Ph.D.
degree in civil and environment engineering from
the University of Wisconsin–Madison in 2000. He is
currently a Professor with the Department of Civil
and Environmental Engineering and the Director of
the Mcity, University of Michigan, Ann Arbor. He is
also a Research Professor with the University of
Michigan Transportation Research Institute and the
Director of the Center for Connected and Automated

Transportation (USDOT Region 5 University Transportation Center). His
research interests include interface of transportation engineering, automotive
engineering, artificial intelligence, traffic flow monitoring, modeling, control,
and testing and evaluation of connected and automated vehicles. From August
2017 to August 2019, he served as the DiDi Fellow and the Chief Scientist of
smart transportation with DiDi Global Inc., one of the leading mobility service
providers in the world. He is the Managing Editor of Journal of Intelligent
Transportation Systems.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Purdue University. Downloaded on May 16,2023 at 18:59:07 UTC from IEEE Xplore.  Restrictions apply. 


