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Abstract

Collaborative Vehicular Perception (CVP) enables connected and
autonomous vehicles (CAVs) to cooperatively extend their views
through wirelessly sharing their sensor data. Existing CVP systems
employ either a vehicle-to-vehicle (V2V) or vehicle-to-infrastructure
(V2I) view exchange paradigm. In this paper, we advocate a hybrid
CVP design: our developed system, Harbor, employs V2I as its fun-
damental underlying framework, and opportunistically employs
V2V to boost the performance. In Harbor, vehicles (helpers) may
serve as relays to assist other vehicles (helpees) in reaching an edge
node, which performs sensor data merging to produce the extended
view. We judiciously partition the workload between the edge and
vehicles, develop a robust helper-helpee assignment model, and
solve it efficiently at runtime. We conduct both real-world tests
and large-scale emulation experiments using two prevailing CAV
applications: drivable space detection and object detection. Our real-
world evaluation conducted at one of the world’s first purpose-built
autonomous driving testbeds demonstrates that Harbor outper-
forms state-of-the-art V2V- or V2I-only CVP schemes by up to 36%
in detection accuracy, resulting in significantly fewer collisions
under dangerous driving scenarios.

CCS Concepts

· Networks→ Network protocol design; Cyber-physical net-
works; · Applied computing→ Transportation.

Keywords

Cooperative Vehicular Sensing, Vehicular Networks, Autonomous
Cars, LiDAR

∗Now at Google.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SenSys ’24, November 4ś7, 2024, Hangzhou, China

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0697-4/24/11
https://doi.org/10.1145/3666025.3699328

ACM Reference Format:

Ruiyang Zhu, Xiao Zhu, Anlan Zhang, Xumiao Zhang, Jiachen Sun, Feng

Qian, Hang Qiu, Z. Morley Mao, and Myungjin Lee. 2024. Boosting Col-

laborative Vehicular Perception on the Edge with Vehicle-to-Vehicle Com-

munication. In ACM Conference on Embedded Networked Sensor Systems

(SenSys ’24), November 4ś7, 2024, Hangzhou, China. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3666025.3699328

1 Introduction

Connected and autonomous vehicles (CAVs) use various on-board
3D sensors such as LiDAR [19] and stereo cameras [22] to perceive
the environment [6, 7]. However, a single vehicle’s sensing range
is limited, and its view can be obstructed by obstacles [33, 40, 56].
To overcome these limitations, Collaborative Vehicular Perception
(CVP) [63, 64, 87, 88] enables multiple vehicles to cooperatively
extend their views through wirelessly sharing their sensor data, as
powered by the increasingly mature onboard wireless infrastruc-
ture [1, 3, 4]. CVP can boost a wide range of autonomous driving
and Advanced Driving Assistance Systems (ADAS) such as drivable
space detection [39, 62] and object detection [50, 68, 83].

Early works of CVP only involve two vehicles sharing their
views, relying on a simple vehicle-to-vehicle (V2V) view exchange
paradigm [32, 63]. As researchers realize the importance of larger-
scale view sharing, they incorporate edge nodes into CVP systems,
which combine all the views uploaded by participating vehicles
and distribute the processed results back to the vehicles [56, 67, 88].
This centralized vehicle-to-infrastructure (V2I) paradigm is more
scalable from the computation perspective: a powerful cloud server
can efficiently merge multiple vehicles’ views in real-time. The chal-
lenges, however, stem from the unreliable wireless communication.
Take the most promising cellular access for V2I as an example, from
the most recent FCC cellular coverage report [13] and National
Highway Traffic Safety Administration’s (NHTSA) fatality analy-
sis reports [8], the average coverage of major U.S. carriers ranges
from 38.5% to 71.6% (rural and urban combined). Another recent
study [52] suggests that ł5-barž 5G connectivity is statistically more
unreliable than weaker signal strength in densely populated urban
areas. Our measurement in a major U.S. city also confirms that
onboard cellular (uplink) connectivity is highly heterogeneous. Ve-
hicles may experience very poor performance during urban driving
(e.g., 8 to 20 seconds of low uplink bandwidth less than 1 Mbps,
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Figure 1: An example of cellular uplink heterogeneity, where

the uplink bandwidth of two carries is recorded simultane-

ously at the same place while in urban driving.

see Figure 1). Such heterogeneity and unreliability are inherent

due to vehicles’ mobility, which incurs frequent handovers [41],
fluctuating channel quality, and continual interference.

In this paper, we advocate a hybrid design by leveraging the syn-
ergy between V2I and V2V. We instantiate the design into Harbor,
a full-fledged CVP framework. Harbor adopts V2I as its fundamen-
tal underlying framework, and opportunistically employs V2V to
boost the performance. As shown in Figure 2, when some vehicles
(called helpees) have poor V2I connectivity, other vehicles (called
helpers) can relay their sensor data to the edge. The edge will then
merge the views and send processed results (e.g., detected vehicles)
back to the vehicles. Participation in Harbor can be incentivized
through enhanced safety and CAV features, conceptually similar
to the recent commercially deployed peer-to-peer CDN (PCDN)1

infrastructure [79]. Nevertheless, realizing this seemingly straight-
forward idea involves making several non-trivial design decisions,
as elaborated next.

Partitioning the Workload between the Edge and Vehicles.

There exist many V2X works that bridge V2V and V2I links [59,
71, 74, 76]. Harbor fundamentally differs from these approaches by
not only focusing on improving network connectivity but also ad-
dressing both computation (point cloud merging and detection) and
communication. For communication, as described before, helpers
relay traffic for helpees. For computation, we may also let some
helpers merge point clouds for helpees. This design, however, sig-
nificantly increases the system complexity and enlarges the attack
surface (in contrast, a helpeeśhelperśedge communication path can
be end-to-end encrypted). Therefore, in Harbor, only the edge is
responsible for merging vehicles’ views. A vehicle can only perform
local merging: merge its own view with the results returned by the
edge without further distributing the merged view to downstream.
The vehicle-side merge can occur when the vehicle’s uploaded
view misses the edge-side merging deadline (to be detailed soon).
This design simplifies Harbor by reducing the solution space and
avoiding reconciling the helpeeśhelper paths of computation and
communication.

Efficient Helper-helpee Assignment. Even with simplified
computation flows, making helper-helpee assignments needs to
consider three types of dynamics: V2V network connectivity, V2I
network connectivity, and vehicle mobility. We formulate helper-
helpee assignment as an optimization problem taking into account

1Internet users contribute their under-utilized edge devices as łminiž CDN nodes,
which work in conjunction with traditional centralized CDN nodes.

ISP A

ISP C
ISP B

ISP A

V2V link ISP C
Mode 
switch

Pure V2I Mode V2V+V2I Mode
Figure 2: An example of jointly using V2V and V2I to bridge

a disconnected/poor-performing car (red).

the above dynamics. In our model, a vehicle only sends its light-
weight state (location, V2I bandwidth measurements, etc.) to the
edge, either directly or via some helper.2 A challenge here is how
to measure the V2V bandwidth. A naïve approach to sending ac-
tive probes is not scalable due to its quadratic complexity. Instead,
Harbor introduces a novel approach that uses robust analytical mod-
els of V2V distance and wireless interference to implicitly approxi-
mate the V2V bandwidth, without actually probing it. This leads to
an ultra-lightweight control plane. While it is difficult to precisely
solve the above formulation at runtime, we develop a polynomial-
time approximation algorithm based on efficient weighted bipartite
matching. This enables Harbor to frequently update helper-helpee
pairs under dynamic, complex traffic scenarios.

Optimizations to Further Improve Harbor’s Performance.

We introduce two system-level mechanisms to boost Harbor’s per-
formance. On the edge side, the edge server enforces a deadline to
determine when to start the data merging and perception tasks. It
ensures timely delivery of perception results to the vehicles. On the
vehicle side, the same wireless V2V medium is used to carry both
the point cloud (uplink) and returned perception results (downlink).
Vehicles properly prioritize between the two types of traffic at the
MAC layer to tackle their unbalanced network resource usage.

Scalable and Lightweight Design. Harbor is designed to be
both lightweight and scalable. This is achieved through leveraging
V2V to assist V2I in an opportunistic manner. By utilizing spare
V2I resources from vehicles through V2V, Harbor provides lower
end-to-end latency compared to using V2I alone. Additionally, the
lightweight control plane design and polynomial-time approxima-
tion optimization for helper-helpee assignment, ensures that the
system canmake real-time decisions with low computation overhead.
These design choices make Harbor well-suited for complex traffic
scenarios with dynamic network conditions.

We integrate the above components into Harbor, a distributed
CVP framework that can support a wide range of CAV applications.
We comprehensively evaluate its performance through real-world
driving tests and emulations over real cellular networks, using two
predominant CAV applications: drivable space detection [62] and
object detection [50]. We highlight the key results as follows.
• Through emulations on various traffic densities, Harbor reduces
end-to-end drivable space detection and object detection latency by
18% to 57% compared to using only V2V or V2I, without sacrificing
the detection accuracy.
•We deploy Harbor and conduct driving tests at a real-world CAV
testbed, Mcity [25]. The results reveal abundant opportunities of
leveraging V2V in practice: Harbor improves the object detection

2The state information (control plane) is much lighter than the point cloud data (data
plane). We thus assume the former can be delivered to the edge (otherwise the vehicle
will fall back to offline mode).
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3 blind spots 2 blind spots eliminated

Single vehicle sensor data Merged view from two vehicles

Figure 3: An example showing the benefits of CVPbymerging

a nearby vehicle’s data (green) to ego vehicle (blue).

and drivable space detection accuracy by 12% on average (up to
36%) compared to pure V2V- or V2I-based CVP.
•We conduct a larger emulation experiment consisting of 20 to 100
vehicles and demonstrate that Harbor outperforms the V2V- or V2I-
only baselines by an average of 43% and 14% in detection latency and
accuracy under fast-changing traffic topology, showcasing superior
scalability and performance.

Despite the encouraging results above, Harbor does bear several
limitations (ğ7). We thus do not claim any łoptimalityž of our so-
lution (which is also difficult to define given the highly dynamic,
multi-objective, and multi-stakeholder nature of CVP). Instead, we
explore the design space of fusing V2V into the V2I-based CVP de-
sign. Through real-world deployment, we demonstrate thatHarbor,
a first-of-its-kind hybrid CVP architecture, is practical, beneficial,
and scalable. This research does not raise any ethical issues.

2 Background and Motivation

Autonomous vehicles rely on various on-board 3D vision sensors to
understand the physical world consisting of road segments, pedes-
trians, other vehicles, and more, to make driving decisions. For
example, LiDAR [19] is a major on-board vision sensor, which fires
laser lights at different angles and measures how long it takes for
the lights to return to the sensor after reflection from objects. Based
on this, LiDAR calculates the distance of these objects and produces
3D point clouds to represent the surrounding environment. Differ-
ent software modules will further process the collected point cloud
data and make appropriate driving decisions.

Collaborative Vehicular Perception. As mentioned in ğ1, col-
laborative vehicular perception (CVP) has the potential to benefit
autonomous driving by extending its view by merging sensing
information from different vehicles. Figure 3 shows an example
that visualizes point cloud data generated from the state-of-the-art
autonomous driving simulator, CARLA [11]. The blue points rep-
resent a single vehicle’s data while the green ones represent data
from a nearby vehicle. As illustrated, merging the two point clouds
eliminates two of the three blind spots.

Sharing raw sensor data vs. sharing processed data. Existing
CVP schemes can be grouped into three main categories based on
the stage of data sharing: (1) Raw-data sharing schemes [49, 64, 87,
88] share the original raw sensor data; (2) Feature-level sharing
schemes [31, 35, 78, 81, 84] send intermediate features of percep-
tion; (3) Object-level sharing schemes [54, 67, 69] directly share
lightweight perception results such as object bounding boxes. In
this work, we buildHarbor based on sharing raw sensor data (point
clouds) instead of detection results or processed features for two
reasons. First, sharing raw data preserves the high level of detail

provided by sensors. Based on the state-of-the-art work [53, 77] in
computer vision, raw sensor data sharing achieves higher percep-
tion accuracy compared to sharing detection results or intermediate
features. Various efforts [64, 87, 88] have made raw data sharing
more scalable and practical. Second, sharing raw data is more ver-
satile. Vehicles that receive processed features are constrained to
use the same format and application for detection. In contrast, raw
sensor data can be used by a wide range of CAV applications for
multiple purposes. Although Harbor currently focuses on point-
cloud-level collaboration, the same design principles can be applied
to merge intermediate features or detection results (ğ6).

Limitations of V2V. It has been shown that V2V-based CVP
is not scalable [88]. This is because in a V2V-based CVP, vehicles
exchange sensor data streams for sharing [63]; depending on the
design, either all vehicles receive all the point cloud data from
other vehicles and perform collaborative perception, or only one
of the vehicles receives data, performs perception, and dissemi-
nates the perception results. In either way, a V2V system would
require a shared wireless network with sufficient capacity estab-
lished by vehicles. Traditional WiFi standards (802.11 ac/n) fall
short in supporting highly variable wireless channels under high
mobility [64]. While WiFi standards like 802.11ad/ay offer Gbps
bandwidth [70], they suffer from small coverage and poor mobility
performance. Long-distance wireless communication technologies
such as DSRC/802.11p [47] can achieve only ∼6 Mbps, inadequate
for accommodating a large number of vehicles.

Limitations of V2I. V2I-based CVP leverages a powerful edge
server for view merging and perception. Vehicles upload their
sensor data to the server without direct communications among
them [88]. This allows for more network and compute resources
to support large-scale CVP. However, V2I communications are not
always reliable: even the most ubiquitous cellular networks still
have coverage issues [13]. Based on the LTE coverage map from
FCC [13] and the National Highway Traffic Safety Administration’s
Fatality Analysis Reporting System [8], the LTE coverage on the
roads of 5 U.S. states with the largest number of traffic fatalities
in 2021 is only 68.5%, 71.6%, and 38.5%, for AT&T, Verizon, and
T-Mobile, respectively. Our driving tests in a major U.S. city also
confirm that onboard cellular connectivity is fluctuating and highly
heterogeneous, as described in ğ1 (Figure 1).

Joint Use of V2V and V2I. The limitations of existing V2V-
only [32, 49, 63] or V2I-only [55, 56, 88] CVP architecture motivate
us to explore a joint use of both. Harbor differs from existing work
in innovating the network communication paradigm: it adopts a
hybrid approach that combines the V2V and V2I communication
for CVP application. In Harbor, V2V communication is used to
bridge vehicles with poor V2I connectivity to participant in collabo-
ration, thereby enhancing CVP performance and robustness across
different network conditions.

3 Harbor Design

The observations in ğ2 motivate a hybrid CVP architecture that
leverages the synergy between V2I and V2V. In this work, we aim to
explore the benefits of leveraging V2V communication to enhance
the performance of V2I-centric CVP systems. Our primary research
question focuses on how the integration of V2V and V2I together
can improve CVP tasks, particularly in terms of perception accuracy,
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and data plane run in parallel and do not block each other.

detection latency, and system scalability. The resulting hybrid CVP
system, Harbor, adopts V2I as its basic underlying framework, and
opportunistically employs V2V to boost the performance. It enables
multiple vehicles to leverage their V2V and/or V2I network access
to share 3D sensor data. Harbor aims to reduce CVP latency and
improve accuracy by combining V2V and V2I communications in
an efficient and scalable manner, especially under dynamic wireless
network and mobility conditions.

3.1 Hybrid System Architecture

Figure 4 shows the system architecture of Harbor. At any specific
time, vehicles fall into two disjoint sets: a helper set and a helpee
set. Vehicles in the helper set have good V2I connectivity, whereas
vehicles in the helpee set do not. Helpers and helpees establish a
V2V network so that helpees can leverage V2V to send their point
clouds to the server through the V2I links of helpers, who also
upload their own point clouds.

Assumptions made by Harbor. There are three assumptions
for the designed system Harbor: (1) Collaborative vehicular per-
ception is initiated only for vehicles that are in close proximity,
therefore vehicles are connected to the same edge server during the
collaboration period; (2) Vehicles exchange control plane messages
periodically to the edge server for making helper-helpee assign-

ment decisions; (3) The V2V network is used only for relaying data
back/forth from the edge server to helpee vehicles. These assump-
tions are typically common and practical in collaborative vehicular
perception systems [63, 64, 88] and other vehicular systems [59, 74].

Data Plane Operations.As shown in Figure 4, before uploading
each point cloud frame, cropping and adaptive encoding [88] are
performed to reduce the data size for transmission. On receiving a
round of point clouds from different vehicles3, the server merges
these frames based on their locations (described shortly) and per-
forms perception tasks such as drivable space detection [39, 62] and
object detection [50, 68, 83] to generate detection results. Finally,

3Like existing work [64, 88], we assume point cloud capture on different vehicles are
synchronized. In reality, point cloud data generation time across vehicles can have
slight misalignment, which can be solved by [42, 87].

the detection result is sent back to the vehicles. Note that in paral-
lel to the above procedure, vehicles still run local detection. This
allows a vehicle to fall back to using the local detection if remote
results are not available.

Control Plane Message Exchanges. Harbor needs to strate-
gically assign helpers to helpees (ğ3.2). A naïve way is to let each
helpee find a helper in a distributed manner. However, distributed
pairing lacks a holistic view of the network topology and V2I/V2V
resources in the system. Harbor opts for a centralized method,
where the server collects vehicle state information and makes as-
signment decisions accordingly. Dashed lines in Figure 4 show the
control plane message exchanges in Harbor. Helpers periodically
send their states to the server, including locations, V2I bandwidth
measurements, and V2V network routing tables. Similarly, helpees
broadcast their state information periodically using the V2V net-
work and rely on helpers to forward it to the server. Such state
information is lightweight in nature and can be delivered to the
edge server efficiently, as validated in ğ5.5 and other existing CVP
systems [63, 88]. The server then computes the best assignment
(ğ3.2) and informs the concerned helpers. Upon receiving the notifi-
cations, each helper establishes a V2V connection with the assigned
helpee for point cloud forwarding. Due to vehicles’ mobility,Harbor
needs to update helper assignments dynamically. Harbor server
periodically computes the best assignment every 𝑇𝑝 and updates
the assignment to vehicles in the system.

Mobility/Handover Management. Inline with previous V2I-
based CVP [88], we envision that each edge node serves a pre-
defined geographic area (similar to the service area of a cellular
base station). Optionally, an edge’s service area can be divided into
subareas. For example, for an edge node deployed at a major in-
tersection, each subarea may correspond to one of the four road
segments. Subareas can be overlapped. Vehicles’ collaboration and
edge-side merging are confined within a subarea. This helps reduce
the search space of helper assignments and the edge’s merging
overhead. When a vehicle (either a helper or helpee) moves across
the subarea boundary, its potential helper or helpee(s) will be im-
mediately switched to those in the new subarea. The fast switch is
owning to the stateless nature of helper assignment ś assignment
history is not considered when making assignment decisions. This
makes Harbor adaptive to the volatile traffic dynamics. Our large-
scale evaluation with up to 100 emulated vehicles (ğ5.4) performs
such a subarea partition based on the road_id information of the
map. A handover procedure similar to the above intra-edge han-
dover can be applied to inter-edge handovers. We leave the detailed
inter-edge handover design as our future work.

3.2 Modeling Helper Assignment

Efficient assignment of helpers to helpees is a crucial challenge
in Harbor due to the dynamics of V2V and V2I links as well as
the interplay among helpers and helpees. Our goal is to find an
assignment that pairs helpees to helpers to maximize the overall
system performance, specifically by minimizing all vehicles’ point
cloud upload time to deliver the sensor data to the edge server.
Also, assisting helpees should bring minimal impact on helpers’
own sensor data upload. As our goal is to pair helpees (V2V sources)
with helpers (V2V destinations), our design is orthogonal to and
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compatible with the underlying routing scheme (e.g., [30, 34]) used
in the V2V network.

Harbor performs helper assignment in two steps. First, it de-
termines the set of helpers and helpees; second, it finds for each
helpee its helper (if available). While ideally the two steps could be
combined in a holistic optimization framework, we separate them
to reduce the overall complexity of assignment search, which needs
to be performed at a high frequency (every 𝑇𝑝 = 100 ms in our
implementation) to tackle the volatile traffic dynamics. In the first
step, Harbor applies a simple heuristic: regard vehicles whose V2I
uplink bandwidth is lower than (at least) a threshold as helpees
(helpers). The threshold, which is empirically set to 1 Mbps [13],
ensures that a helper has minimal bandwidth to upload its own
sensor data before helping others.

Next, given the selected helpers and helpees, we consider how
to search for the assignments. A prerequisite here is the V2V band-
width. As mentioned in ğ1, actively probing every V2V link is
not scalable. We thus introduce a novel approach that uses robust
analytical models of V2V distance and wireless interference to im-
plicitly approximate the V2V bandwidth, without actually probing
it. This leads to a lightweight optimization model (elaborated next).
To begin with, we identify three key factors that impact the per-
formance of an end-to-end (E2E) path (which consists of V2I and
possibly V2V links).
• Physical distance. In a V2V wireless network, the physical
distance between a helpee and a helper can affect the throughput
of the helpee-to-helper path [85].
• V2V network interference. Scenarios like multi-hoping be-
tween helper and helpee and multiple helpees transmitting data to
the same helper may incur interferences [45, 61] and thus hurt the
performance of a helpee-helper connection.
•V2I network bandwidth. The V2I bandwidth of a helpee’s helper
can also impact the sensor data upload time, especially when the
helper-to-server path becomes the bottleneck of the E2E path. Note
the V2I bandwidth of a helper is shared by itself and potentially
one or more helpees.

It is important to note that the goal of our analytical model is not
to precisely estimate V2V bandwidth for each helper-helpee vehicle
pair, but to select a helper vehicle that has potentially better V2V
performance compared to other helper vehicles. To achieve this,
we leverage V2V distance and interference as two primary factors,
both of which have been shown to strongly correlate with wireless
network bandwidth [61, 85]. Additionally, given that the effective
range of CVP systems is generally smaller (around 200m×100m [82])
compared to large-area mesh networks [27], the use of distance and
interference as bandwidth estimators is both practical and effective,
as validated in our experiments (ğ5.5).

Assuming the total number of helpees is𝑚 = |𝐸 |, an assignment
𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑚} contains one or multiple assignment pairs from
helpee 𝑒𝑖 to its helper 𝑟 𝑗 (Table 1). For an assignment pair 𝑎𝑘 , its
score is defined as Equation 1a. The distance and interference scores
quantify how good the assignment pair is. To obtain scores of𝐴, we
sum each pair’s distance and interference score and then aggregate
them using an aggregation function 𝑓 (Equation 1b). While different
aggregation functions can be applied, Harbor uses the harmonic
mean to aggregate scores of different assignment pairs. The use
of the harmonic mean helps filter out assignments with low-score

Table 1: Notations for helper assignment algorithm.

Symbol Meaning

𝐸 = {𝑒1, ..., 𝑒 |𝐸 | } Helpee vehicle set: helpee 1 to helpee |𝐸 |
𝑅 = {𝑟1, ..., 𝑟 |𝑅 | } Helper vehicle set: helper 1 to helper |𝑅 |
𝑎𝑘 = (𝑒𝑖 , 𝑟 𝑗 ) A (helpee, helper) assignment pair

𝑁 (𝑟 𝑗 ) Helping capacity of helper 𝑗
𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑚 } An assignment is a set of assignment pairs (𝑚 ≤ |𝐸 | )

𝑆𝑑𝑖𝑠𝑡 (𝐴) Distance score of assignment𝐴
𝑆𝑖𝑛𝑡 𝑓 (𝐴) V2V interference score of assignment𝐴

𝐷 (𝑒𝑖 , 𝑟 𝑗 ) Physical distance between helpee i and helper j

𝑃 (𝑎𝑘 ) = 𝑒𝑖 → ...→ 𝑟 𝑗 The network path for 𝑎𝑘 (helpee 𝑖 to helper 𝑗 )

𝐼𝐶 (𝑣𝑖 , 𝑋 )
Interference count produced by
vertices in graph 𝑋 to vertex 𝑣𝑖

𝐼𝐶 (𝑃 (𝑎𝑘 ), 𝑋 )
The sum of interference counts
for all vertices in path 𝑃 (𝑎𝑘 )

G(𝐴)
Graph produced by active transmitting
and receiving nodes in assignment𝐴

pairs to prevent the entire collaboration system from being slowed
down by a single łslowž vehicle, as it is very sensitive to small-value
outliers.

𝑆𝑐𝑜𝑟𝑒 (𝑎𝑘 ) = 𝑆𝑑𝑖𝑠𝑡 (𝑎𝑘 ) + 𝑆𝑖𝑛𝑡 𝑓 (𝑎𝑘 ) (1a)

𝑆𝑐𝑜𝑟𝑒 (𝐴) = 𝑓 (𝑆𝑐𝑜𝑟𝑒 (𝑎1), ..., 𝑆𝑐𝑜𝑟𝑒 (𝑎𝑚)) (1b)

maximize 𝑆𝑐𝑜𝑟𝑒 (𝐴) s.t. 𝐶𝑏𝑤 (𝑎) ≥ 0, ∀ 𝑎 ∈ 𝐴 (1c)

The objective of finding the best assignment 𝐴 is defined as
Equation 1c, and the assignment is subject to the bandwidth con-
straint𝐶𝑏𝑤 . The intuition behind the constraint is that Harbor tries
to leverage the spare V2I bandwidth from helpers to help helpees
upload sensor data without hurting helpers’ own performance. In
cases where helpers are not capable of helping all helpees, i.e.,
the constraint of the above optimization cannot be satisfied (e.g.,
the helpers’ V2I bandwidth is limited for helping all the helpees),
Harbor schedules the assignment so that as many possible helpees
are helped as possible. As Harbor updates assignments frequently
(ğ3.1), unassigned helpees may be assigned later when there are
more helpers or helpers have better V2I bandwidth.

We next describe how to calculate scores and constraints for
each individual factor. Since distance and interference have differ-
ent units and scales, we design each score function (𝑆𝑑𝑖𝑠𝑡 , 𝑆𝑖𝑛𝑡 𝑓 ) to
map the corresponding factor to a value within the range of [0, 1]
to avoid a single factor dominating the entire score. Table 1 summa-
rizes notations used to calculate different scores of an assignment.
• Distance Score. Intuitively, the wireless throughput is better
when two nodes physically reside closer to each other. Therefore,
the assignment should prefer a helper closer to a helpee. The dis-
tance score for a pair 𝑎𝑘 = (𝑒𝑖 , 𝑟 𝑗 ) is quantified by comparing the
physical distance between 𝑒𝑖 and 𝑟 𝑗 with the longest possible dis-
tance between 𝑒𝑖 and any other helper in the system. Formally,
for an assignment pair 𝑎𝑘 = (𝑒𝑖 , 𝑟 𝑗 ), its distance score is defined as

𝑆𝑑𝑖𝑠𝑡 (𝑎𝑘 ) = 1−
𝐷 (𝑒𝑖 ,𝑟 𝑗 )

𝑚𝑎𝑥 {𝐷 (𝑒𝑖 ,𝑟𝑘 ) }
|𝑅 |

𝑘=1

. This equation shows that a smaller

physical distance between 𝑒𝑖 and 𝑟 𝑗 leads to a higher score, indi-
cating a nearby node is preferred for better V2V bandwidth. Also,
the score value lies between 0 and 1, as desired. With 𝑆𝑑𝑖𝑠𝑡 (𝑎𝑘 ) for
all 𝑎𝑘 in 𝐴, the distance score for the assignment can be calculated
using the aggregation function, as described in Equation 1b.
• Interference Score. The interference score is designed so that
a higher score is generated when the assignment creates less in-
terference. To fulfill this, we propose a graph-based method to
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Figure 5: An example of graph-based interference score cal-

culation (no link between 𝑒2 and 𝑟1 due to coverage).

quantify the level of interference by leveraging an observation:
interference will occur between active senders and from senders
to receivers when they are in each other’s coverage range [45]. In
Harbor, an active sender is a node that transmits bulk sensor data
to another node through V2V, i.e., helpees that send data to their
helpers. For instance, in Figure 5, 𝑒2, 𝑒1 are active senders while
𝑟1, 𝑟2 are receivers and use V2I to send received sensor data to the
server.

To quantify the interference, we define Interference Count,
𝐼𝐶 . At a high level, 𝐼𝐶 (𝑣𝑖 , 𝑋 ) measures the number of interfering
nodes (i.e., in-coverage active senders) from the network topology
𝑋 to a node vertex 𝑣𝑖 , and 𝐼𝐶 (𝑎𝑘 , 𝑋 ) measures the interference
produced by 𝑋 to a pair 𝑎𝑘 . To calculate 𝐼𝐶 for 𝑎𝑘 , we sum up
the interference count for all nodes in the network path 𝑃 (𝑎𝑘 )

of pair 𝑎𝑘 , i.e., 𝐼𝐶 (𝑎𝑘 , 𝑋 ) = Σ𝑣𝑖 ∈𝑃 (𝑎𝑘 ) 𝐼𝐶 (𝑣𝑖 , 𝑋 ). The entire graph
can be constructed from control messages received by the server,
which include the routing tables on vehicles (ğ3.1). The interfer-
ence score function maps the interference count for 𝑎𝑘 to a value
between 0 and 1. The formula to calculate the interference score
for 𝑎𝑘 is 𝑆𝑖𝑛𝑡 𝑓 (𝑎𝑘 ) = 1 −

𝐼𝐶 (𝑎𝑘 ,G(𝐴) )−𝐼𝐶 (𝑎𝑘 ,G({𝑎𝑘 }) )
𝐼𝐶 (𝑎𝑘 ,𝐺0 )−𝐼𝐶 (𝑎𝑘 ,G({𝑎𝑘 }) )

. 𝐺0 repre-

sents the graph formed by assuming all nodes are actively gen-
erating/receiving network traffic. 𝐼𝐶 (𝑎𝑘 ,G({𝑎𝑘 })) calculates the
interference caused only by the nodes in the network path of
𝑎𝑘 . Similarly, 𝐼𝐶 (𝑎𝑘 ,G(𝐴)) is the interference caused by the ac-
tual assignment 𝐴 and 𝐼𝐶 (𝑎𝑘 ,𝐺0) is the maximum possible inter-
ference for the pair 𝑎𝑘 . Take Figure 5 as an example, there are
two connections in the assignment 𝐴 = {𝑎1, 𝑎2}, where 𝑎1 =

(𝑒1, 𝑟1) and 𝑎2 = (𝑒2, 𝑟2). Their network paths are 𝑝1 = 𝑃 (𝑎1) =

𝑒1 → 𝑟1 and 𝑝2 = 𝑃 (𝑎2) = 𝑒2 → 𝑟2. To determine 𝐼𝐶 (𝑎2,G(𝐴)),
we sum up the interference sources for all nodes in the network
path 𝑝2, i.e., 𝐼𝐶 (𝑎2,G(𝐴)) = Σ𝑣𝑖 ∈𝑝2 𝐼𝐶 (𝑣𝑖 ,G(𝐴)) = 𝐼𝐶 (𝑒2,G(𝐴)) +

𝐼𝐶 (𝑟2,G(𝐴)) = |{𝑒1}| + |{𝑒1, 𝑒2}| = 1 + 2 = 3. Note 𝑟1 is not
counted when calculating 𝐼𝐶 (𝑟2, 𝐴) because 𝑟1 uses V2I for send-
ing sensor data to the server and does not generate bulk sensor
data transmission in the V2V network. Similarly, we can calculate
𝐼𝐶 (𝑎2,G({𝑎2})) = 1 and 𝐼𝐶 (𝑎2,𝐺0) = 6. Finally we have the inter-
ference score 𝑆𝑖𝑛𝑡 𝑓 (𝑎2) = 1 − 3−1

6−1 = 0.6. Similarly, 𝐼𝐶 (𝑎1, 𝐴) can
be calculated and the interference score 𝑆𝑖𝑛𝑡 𝑓 (𝐴) can be obtained.
With both assignment pairs’ scores calculated, the score for 𝐴 can
be obtained from Equation 1b.
• Bandwidth Constraint. A higher V2I bandwidth is more desired
as it can potentially reduce the data upload time. In Equation 1c, a
V2I bandwidth constraint 𝐶𝑏𝑤 is reinforced for each assignment
pair. The bandwidth constraint ensures the number of helpees a
helper helps does not exceed its "capability". To quantify this, we
calculate the V2I helping capacity of each helper 𝑁 (𝑟 𝑗 ) based on
the average bandwidth required for transmitting the encoded point

clouds. The capacity is calculated as 𝑁 (𝑟 𝑗 ) = ⌊
𝐵𝑊 (𝑟 𝑗 )−𝐵𝑊𝑟𝑒𝑞

𝐵𝑊𝑟𝑒𝑞
⌋.

𝑁 (𝑟 𝑗 ) quantifies how many helpees the helper 𝑟 𝑗 can help. We
set 𝐵𝑊𝑟𝑒𝑞 = 4.8 Mbps based on the bandwidth requirement for
transmitting point cloud at 10 fps after encoding with high resolu-
tion [12, 88]. Then we can derive the equation for all the assignment
pair 𝑎: 𝐶𝑏𝑤 (𝑎) = 𝑁 (𝑟𝑎) −

∑𝑚
𝑘=1
(𝜋2 (𝑎𝑘 ) = 𝑟𝑎) ≥ 0, where 𝑟𝑎 is the

helper in 𝑎 and 𝜋2 (𝑎𝑘 ) selects the helper (second element) in the
ordered assignment pair 𝑎𝑘 .

3.3 Efficient Helper Assignment Algorithm

Intuitively, the assignment with the highest score can be obtained
from a brute-force search. However, thismethod is not quite scalable
as the number of possible assignments grows exponentially as |𝐸 |

(the number of helpees) increases, with a complexity of 𝑂 ( |𝑅 | |𝐸 | ).
In order to handle real-time dynamics for more vehicles, we propose
an efficient optimization to solve the best matching in polynomial
time.

We transform the helper-helpee matching problem in Harbor to
a weighted bipartite b-matching (WBbM) problem [28]. Consider the
helper set and helpee set as the two matching sets of the bipartite
graph, the weight of each potential edge between a helper-helpee
pair is determined by Equation 1a. The objective of Harbor’s as-
signment becomes finding the maximum score from all possible
matching. Different from the well-known weighted bipartite match-
ing (WBM) problem, where the solution yields a one-to-one matching,
the WBbM model allows a node to match with multiple nodes. This
fits with our system design, where one helper vehicle can helpmulti-
ple helpees. For WBbM, each node has a capacity𝐶 , which determines
the maximum number of nodes it can match to. InHarbor’s context,
the helping capacity 𝑁 (𝑟 𝑗 ) of helpers is determined by their V2I
bandwidth, as mentioned before. For solving the WBbM problem, it
can be reduced to a WBM problem by creating replications of nodes.
We adopt this method in Harbor’s algorithm optimization. Specifi-
cally, for each helper with 𝑁 (𝑟 𝑗 ) > 1, we create 𝑁 (𝑟 𝑗 ) copies of it
and connect it to all possible neighbor 𝑒𝑖 of the original node 𝑟 𝑗 with
the corresponding edge weight. We then solve the newly formed
graph using the existing Hungarian algorithm for WBM problems.
Since for any possible assignment, each 𝑟 𝑗 can help at most 𝑁 (𝑟 𝑗 )
helpees, we make sure that the V2I bandwidth constraint is satisfied
as each node after replication will end with ≤ 𝑁 (𝑟 𝑗 ) matchings.
We summarize the proposed matching algorithm in pseudo-code as
Algorithm 1. Given that the complexity of solving WBM is𝑂 ( |𝑅 |2 |𝐸 |),
it is straightforward to prove that the complexity of the algorithm

becomes 𝑂 ( |𝑅 |2 |𝐸 |2) compared to the 𝑂 ( |𝑅 | |𝐸 | ) exhaustive search.
We evaluate the effectiveness of the WBbM optimization in ğ5.5.

3.4 Timely Delivery of Detection Results

As vehicles need to digest the point cloud data in real-time, it is vital
to deliver the remote detection results back to each vehicle in time.
Outdated detection results may not be useful because the driving
environment can change drastically within seconds. To achieve
timely delivery of the detection results, Harbor harnesses both
application-level deadline awareness and MAC-layer prioritization.

3.4.1 Deadline Awareness. To cope with the fast-changing net-
work conditions, vehicles in Harbor perform point cloud encoding
adaptation. Harbor uses an existing bandwidth estimation tech-
nique [88] to perform upload bandwidth estimation, based onwhich
the encoding level is adjusted accordingly.
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Algorithm 1: Harbor’s Helper Assignment Algorithm.

Input: helpee set E = {𝑒1 , ..., 𝑒𝑖 }, helper set R = {𝑟1 , ..., 𝑟 𝑗 }.
Output: 𝐴 ś selected assignment to pair helpees with the helpers.
/* Define V2I bandwidth, helping capacity, score map, and

helper set after replication */

1 𝐵𝑊 ,𝑁, 𝑆,R′ ← HashMap,HashMap,HashMap,HashSet;

2 for 𝑟 𝑗 ∈ R do
3 𝐵𝑊𝑗 ← getV2IBW(𝑟 𝑗 ) ;

4 𝑁 𝑗 ← getHelpingCap(𝐵𝑊𝑗 ) ;

5 for 𝑘 ∈ {1, 2, . . . , 𝑁 𝑗 } do
/* Replicate a virtual node for compute matching */

6 R
′ .Insert(𝑟𝑘𝑗 ) ;

7 for 𝑒𝑖 ∈ E do
8 for 𝑟 𝑗 ∈ R

′ do
/* Compute score for each helper-helpee pair */

9 𝑆
𝑗
𝑖 ← ComputeDistScore(𝑒𝑖 , 𝑟 𝑗 ) + ComputeIntfScore(𝑒𝑖 , 𝑟 𝑗 ) ;

/* Calculate the maximized weighted b-matching results. */

10 𝐴 = Hungarian_WBM(𝐸, 𝑅, 𝑆 )

However, only applying encoding adaptation is inadequate. If
the server waits for frames from all vehicles (generated in the same
round) to arrive before performing computation, the E2E latency
would be inflated by stragglers whose frame uploading is too slow.
Based on our measurement, frame upload time can differ by over
0.75s across 6 vehicles due to the above reason. Harbor addresses
this latency heterogeneity by incorporating a deadline by which
frame merging and detection must start, even if not all frames from
the current round have been received.

Specifically, Harbor’s server determines this deadline in the fol-
lowing way. Each vehicle has a fixed E2E latency requirement 𝑇𝑒2𝑒
(ğ4) for each point cloud frame since the frame is captured from the
sensor. Recall from ğ3.1 that in the design of Harbor, vehicles still
run local detection in parallel and use the local detection if remote
results are not received after 𝑇𝑒2𝑒 . Following the timelines in Fig-
ure 6, the server can calculate the vehicle-side deadline 𝑡5 = 𝑡0+𝑇𝑒2𝑒 .
All the vehicle-side timestamps are embedded into control messages
sent to the server (ğ3.1). The server then estimates the downlink
one-way delay 𝑇𝑜𝑤𝑑 to get 𝑡4 = 𝑡5 −𝑇𝑜𝑤𝑑 . Finally, based on its de-
tection time 𝑇𝑟𝑒𝑚𝑜𝑡𝑒 , the server computes the deadline timestamp
𝑡3 = 𝑡4 − 𝑇𝑐𝑜𝑚𝑝 at which it must start merging all the received
sensor data and running detection. Since there are multiple vehicles
and their time parameters can differ, the server uses the earliest 𝑡3
as the estimated deadline. In Harbor, vehicles use NTP to synchro-
nize time within ten milliseconds [36], which is sufficient for our
application.

Local Merging. When a detection result arrives at a vehicle,
the vehicle will first check if the result arrives too late to be used ś
specifically, whether the result is delivered beyond 𝑇𝑒2𝑒 since the
upload of the sensor data. Any late-arrival result will be discarded.
The vehicle maintains a local deadline (different from the edge-side
deadline); when the local deadline is missed, the vehicle will fall
back to using its local detection result. Next, the vehicle will check
if the edge-returned result uses the view uploaded by the vehicle
itself. The result is accompanied by a small bitmap to indicate which
vehicles’ views are processed by the edge and henceforth used in the
result. If a vehicle’s corresponding bit is missing (due to missing the
edge-side merging deadline), the vehicle will perform local merging

by merging its local detection with the edge-returned result. The
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merging is local in that the merged view is only used locally, and
the vehicle (as a helper) will not further distribute it downstream;
instead, a helper always passes the original result from (and signed
by) the edge. This helps reduce the attack surface and prevent
the erroneous situation where a single vehicle’s detection failure
pollutes the edge’s merged view. If the edge’s view passes both
checks, it will be used by the vehicle.

3.4.2 MAC-layer Prioritization. Different from previouswork [88]
where only a cellular V2I downlink is used to transmit result mes-
sages, in a hybrid CVP involving both V2V and V2I links, sensor
data (uplink) and detection result (downlink) compete for transmis-
sion in opposite directions over the same V2V wireless medium.
Also, their bandwidth consumption is highly imbalanced, with the
uplink data dominating the bidirectional traffic. We find such im-
balance can significantly inflate the end-to-end detection: when
bidirectional traffic is present, overwhelmed by the uplink traf-
fic, the downlink traffic is allocated with little network resources
(Figure 7). This thus requires prioritizing the downlink traffic that
contains the detection results. We find that performing traffic prior-
itization at the application layer on a helper vehicle does not work.
This is because when the application layer of a helper (as a relay)
perceives the uplink traffic from the helpee (the origin), the traffic
has already saturated the wireless medium and thus starved the
downlink traffic.

To address the above challenge, we propose a MAC-layer mes-
sage prioritization design that prioritizes different message types
using priority queues. For queues with higher priorities, we ad-
just the MAC-layer parameters (ğ4) to enable a higher probability
of accessing the medium. This design allows the lightweight but
latency-sensitive detection result messages to be prioritized over
data-intensive sensor data transmission, achieving lower E2E la-
tency while maintaining the network throughput for sensor data
transmission. Note that the MAC-layer prioritization module re-
duces the downlink delay for delivering the detection results and
is orthogonal to the helper assignment algorithm which optimizes
the collaborative data uploading. We validate the effectiveness of
MAC-layer message prioritization in ğ5.5.

4 System Implementation

Server. The server performs helper assignment, sensor data merg-
ing, and downstream detection. Harbor’s drivable space detection
uses the RANSAC [38] algorithm to extract the road plane and mark
the points on the road plane as łdrivablež (other points are marked
as objects). Then it converts the road plane into an occupancy grid
of 1𝑚 × 1𝑚 and labels each grid as either łdrivablež, łoccupiedž or
łunknownž.Harbor’s object detection adopts PointPillars [50] as the
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backbone object detection neural network. We use the pre-trained
models provided by OpenCOOD [65] for detecting objects.
Vehicle. V2V control message exchanges are implemented over
UDP due to the broadcast requirement. V2V sensor data exchanges
and V2I communications are implemented over TCP. We use the
OLSR routing Protocol [34] in V2V network and Draco [12] to en-
code/decode point cloud data. We apply distance-based cropping:
each vehicle crops the point cloud data within a fixed threshold of
50 m. Applying more sophisticated data partition algorithms [88]
is easy. We implement the MAC-layer prioritization in Linux ker-
nel [14]. We create a higher priority queue for delivering detection
results in addition to the regularMAC-layer frame processing queue.
We adjust the contention window (𝐶𝑊𝑚𝑖𝑛 = 2) and arbitrated inter-
frame spacing (𝐴𝐼𝐹𝑆 = 1) to increase the probability of successfully
transmitting the detection result packets. We derive a 500 ms la-
tency threshold𝑇𝑒2𝑒 by considering several safety-critical scenarios
from previous work [63, 88]. This latency threshold is on par with
that defined in a previous V2I-based CVP (EMP [88]) plus the edge
inference and result delivery time not considered by EMP.

5 Evaluation

We evaluate Harbor and compare it with several state-of-the-art
solutions under realistic traffic scenarios and network conditions.
We quantify improvements in end-to-end latency and accuracy
using trace-driven emulations (ğ5.2).We show that CVP empowered
by Harbor can improve perception accuracy and driving safety in
real-world driving scenarios (ğ5.3). We demonstrate the system
scalability and robustness under large number of vehicles and fast-
changing topologies in ğ5.4. Lastly, we present a system overhead
study in ğ5.5.

5.1 Experimental Setup and Methodology

We consider the following evaluation metrics.
• Object detection accuracy: It quantifies the difference between
predicted object bounding boxes and the ground truth. We use
Average Precision (AP) [2] as the metric to evaluate object detection.
It is calculated with a threshold of Intersection over Union (IoU) [5]
to evaluate the accuracy of object detection. The AP metric counts
prediction bounding boxes with IoU higher than the threshold as
true positives. We set the IoU threshold as 0.5, a value commonly
used for evaluating point cloud object detection [50, 68, 82].
• Drivable space detection accuracy: It quantifies the difference
between the actual detection result and the ground truth. We com-
pare the predicted grid labels with ground-truth labels. Detection

accuracy is defined as 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

Total number of grids
. TP (True

Positives) is the number of grids whose prediction and ground-
truth are both drivable, while TN (True Negatives) is the number
of grids whose prediction and ground truth are both occupied or
unknown.
• Detection latency: It measures the time elapsed from when a
point cloud is captured on a vehicle to when the perception result
(e.g., drivable space detection and object detection) is ready to use
by downstream applications.

We compareHarborwith the following state-of-the-art solutions.
EMP [88]: a V2I-based cooperative perception system where each
vehicle uses V2I to upload LiDAR data and vehicles without V2I
connection cannot join the collaboration. AVR [63]: a system that

Table 2: Summary of experiment settings.

Experiments
# of
CAVs

Speed
(km/h)

V2I BW
(Mbps)

Traffic
Scenes

Point cloud
data type

Emulation 2 - 100 0 - 70.0 5.4 - 55.9

roundabout,
road segments,
intersections,
entrance ramp

CARLA

Testbed 3 0 - 32.3 3.3 - 35.7
crossroads,

T-intersections,
road segments

Real-world

uses V2V to send 3D point clouds (same data as Harbor) from
other vehicles to a randomly chosen leader vehicle for sharing.
CarSpeak [49]: a V2V systemwhere each vehicle broadcasts sensor
data to all other vehicles for perception. We also implemented its
loss-resilient compression technique. For all schemes, the vehicles
use detection results described in ğ3.4.1.

Trace-driven emulation.We conduct large-scale trace-driven
emulation using traffic and network traces. Our traffic traces con-
sist of vehicle trajectories and LiDAR point clouds collected from
the CARLA simulator [11] in various driving scenarios and traffic
topologies (Table 2). We create nodes in Mininet-WiFi [15] and re-
play the trajectories to emulate the V2V network. Our V2I network
traces are LTE and 5G uplink throughput traces collected from
real-world driving [58, 88]. The V2I traces are assigned to each
vehicle based on a uniform distribution. We use a Linux machine
with a 16-core CPU and 32GB memory to run Mininet-WiFi, which
creates various numbers of wireless nodes and a server node. Each
wireless node runs a Harbor vehicle instance and has two network
interfaces: an 802.11g WLAN for communication between vehicles
as it is widely used by previous work [66, 75], and an Ethernet
interface for connection with the server. We use Linux tc to replay
our network traces over the Ethernet interface to emulate the V2I
network. The avg (stddev) bandwidth of V2V links is measured to
be 12.35 (5.68 Mbps) under the emulated 802.11g setup. The point
cloud capture rate is set to 10 fps in emulations and real-world
experiments.

Real-world CAV testing. We also deploy 3 Lincoln MKZ vehi-
cles as CAVs on four realistic driving scenarios at an autonomous
driving testbed,Mcity [25]. Our testbed is a real-world mock city for
testing CAV applications, which consists of road segments, traffic
lights/signs, and testing vehicles. Each vehicle is equipped with
OxTS RT3000v3 GPS [9], Velodyne VLP-32C LiDAR [20], and Cohda
MK6C OBU [24] for V2V+V2I communication. The same machine
in emulation is used as the edge server. We also deploy several
other non-connected vehicles as targets for detection. We run ex-
periments on 4 different driving scenarios and run our evaluation
on a total of 1602 LiDAR frames.

Real-world vehicle driving test. To examine Harbor under
realistic V2V and V2I network conditions on a larger scale, we run
real-world field tests by driving 6 cars on the road. Each vehicle
is equipped with a laptop that runs a Harbor vehicle instance to
replay sensor data from CARLA. In this case, although vehicles
still use synthetic sensor data, they experience realistic V2V and
V2I network conditions as real-world driving. We use the same
server machine in emulation experiments to run the Harbor server
instance. For each laptop, we tether a smartphone to it. The smart-
phones have GPS and each runs an app [17] to fetch locations.
The cellular data plans used include AT&T [10], Verizon [21] and
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Figure 9: Emulation experiment results for E2E object detec-

tion performance of Harbor and baselines.

T-Mobile [18]. The laptops form an ad-hoc network using their
WiFi interfaces for V2V communications. While technologies like
DSRC [47] are designed for V2V communication, they often require
specialized hardware and programming interfaces. Therefore, we
choose to use ad hoc WiFi for V2V because of its compatibility with
existing Linux OS as previous work [49]. In real-world CAV tests
and vehicle driving tests, the bandwidth statistics (average/standard
deviation) of the V2I (V2V) networks are 19.98 ± 9.08 (10.41 ± 1.48)
Mbps based on our measurements.

5.2 Trace-driven Emulation Results

We first show the latency and accuracy performance of Harbor
by running emulation experiments on the CARLA dataset with 2
- 20 CAVs under various traffic densities and network conditions
(Table 2). We measure both the detection accuracy and latency
overhead for each scheme.

We vary the number of vehicles, mobility patterns, and V2I
network conditions, which create 100 different settings in total. We
further categorize these settings into 3 classes, based on average
V2I bandwidth, V2V distances and the duration of helpee vehicles:
(1) better V2I conditions, (2) similar V2I and V2V conditions, and
(3) better V2V conditions.

Figure 8 and Figure 9 show the End-to-end (E2E) performance
of Harbor and baseline schemes using drivable space detection and
object detection as the perception applications. In the aggregated
results, we show the mean latency on the x-axis and mean detection
accuracy on the y-axis. The error bar shows the standard deviation
of each scheme under various settings. As shown, Harbor dramati-
cally improves the detection latency. The mean latency is improved
by 39.3% (38.5%) and 36.7% (34.7%) compared to AVR and EMP on
drivable space detection (object detection), respectively. The im-
provements over CarSpeak are even higher: 57.1% (54.2%). Harbor
also improves the detection accuracy compared to the baselines.
Specifically, on average, it improves the accuracy by 3.5% (7.1%),
7.8% (7.6%), and 12.1% (11.6%), compared to AVR, EMP, and CarS-
peak on the two apps. The reasons for the benefits are two-fold.
First, Harbor tries to bridge more vehicles together despite their
V2I/V2V disconnections by jointly using their V2V and V2I links,

Table 3: Collaborative perception accuracy under different

collaboration schemes.

Traffic Scene
Object Detection Acc./Drivable Space Detection Acc.

Local-only EMP AVR Harbor

Testbed-Overall 42.67/40.77% 69.84/57.89% 69.90/52.53% 82.08/70.67%
- Right turn 28.91/33.28% 59.60/53.84% 42.66/49.59% 77.93/71.44%
- Left turn A 34.60/44.57% 81.16/59.79% 79.49/57.25% 83.55/63.87%
- Left turn B 35.94/44.48% 79.50/58.12% 61.53/55.86% 81.30/72.89%
- Lane merge 71.25/40.78% 72.52/59.81% 80.46/47.43% 87.57/74.51%
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Target 
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Data upload through 
helper CAV A

V2V Link V2I Link
Figure 10: Object detection results of various schemes at Mc-

ity. The scenario photo is shown in Figure 11.

leading to a more complete view. Second, Harbor reduces the E2E
latency of remote detection results delivery, making the results
more likely to be delivered in time and hence utilized. It is expected
that the latency improvements of the two apps are similar as the
only difference affecting the E2E latency between the two is the
computation time difference.

5.3 Performance on Real-world Testbed

In our real-world CAV testbed Mcity, we create four traffic scenes
(Figure 11) that are challenging based on the NHTSA pre-crash
scenario typology [57]: (1) an unprotected right turn in a crossroad;
(2) an unprotected left turn in a crossroad (Left turn A); (3) an
unprotected left turn in a T-intersection (Left turn B); (4) a lane
merging from a parking space.

Under the four real-world driving scenarios, we first evaluate
the end-to-end system performance to demonstrate how Harbor

benefits CVP tasks after data sharing. Table 3 summarizes the per-
ception accuracy of both object and drivable space detection tasks
of different schemes. Overall, Harbor improves the object detection
(drivable space detection) accuracy by 2% - 18% (4 - 18%) compared
to EMP, 2% - 36% (6 - 27%) compared to AVR, and 16% - 49% (19 -
38%) compared to local-only. Specifically, Figure 10 depicts a spe-
cific scene to show how Harbor outperforms the baselines. In this
scenario, the target vehicle and other vehicles in the scene are con-
sistently detected by Harbor, while AVR does not detect the target
because limited V2V bandwidth of one CAV to the ego vehicle.
While EMP detects the target vehicle, it misses another vehicle in
the opposite lane because another CAV does not upload its data on
time to the edge server due to limited V2I bandwidth. The benefits
of Harbor in perception accuracy come from the fact that Harbor
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Table 4: Additional driving reaction time (compared to Local-

only) and outcome of different collaboration schemes.

Traffic Scene
Additional Reaction Time (s)/Driving Outcome

EMP AVR Harbor

Testbed-Overall + 0.76/1 crash + 0.58 /1 crash + 1.26/0 crash
- Right turn + 0.69/safe-pass + 0.41/crash + 1.60/safe-pass
- Left turn A + 1.05/safe-pass + 0.20/safe-pass + 1.23/safe-pass
- Left turn B + 0.73/crash + 1.13/safe-pass + 1.42/safe-pass
- Lane merge + 0.57/near-miss + 0.57/near-miss + 0.79/safe-pass

Notes: A near-miss occurs when the ego and target vehicle pass within 3 m of each other.

bridges vehicles with limited V2I performance by judiciously using
the spare V2I resources from other nearby CAVs, resulting in a
larger coverage of 3D data of the environment.

End-to-end driving outcome. To better understand the driv-
ing outcome of each scenario, we deploy the latest Baidu Apollo
Driving Software [23] to analyze the driving decision by applying
Harbor (Table 4). As depicted in Figure 11, EMP fails in 2 of the 4
challenging cases (1 collision and 1 near-collision). The target vehi-
cle is occluded hence undetected by the ego vehicle. Furthermore,
the pure V2I scheme also misses the detection from the server side
because other CAVs do not upload their sensor data in time due to
poor V2I conditions. In contrast, under all 4 scenarios, Harbor can
make prompt decisions, including reducing speed and stopping to
yield, to avoid the potential conflict of its planned driving trajec-
tory with the target occluded vehicle thanks to the collaboration
to detect the target vehicle earlier in the scene. We also perform
analysis on the additional reaction time (i.e., how much earlier the
ego vehicle detects the target) for the ego AV to make driving deci-
sions compared to local-only perception (Table 4). While existing
collaboration methods also increase the reaction time for the ego
by detecting the target earlier, Harbor results in an average of 0.5 -
0.7 seconds (65%) more reaction time compared to the baselines.

Field driving test with more vehicles. To showcase the real-
world impact of Harbor for more vehicles, Figure 12 plots the field
test results: Harbor outperforms EMP, AVR, and Carspeak by reduc-
ing 18.6%, 29.9% and 37.7% of detection latency and improving 8.0%,
5.78% and 11.0% on detection accuracy. As the number of vehicles
increased from 3 to 6, Harbor’s performance remains consistently
the best, showing better scalability. In real-world driving tests, we

have observed that the RTT between commercial cellular network
to a server is 97.4 ± 1.49ms, much longer than a real vehicle-to-edge
communication latency (about 20 ms [89]). Compared to emulation
experiments, Harbor’s improvements in latency are slightly lower
due to higher base V2I latency.

5.4 Scaling to Large-scale Deployment

We evaluate how Harbor scales to environments with a larger num-
ber of vehicles. Following the vehicle density and speed information
from 2 public vehicle trajectory datasets [16, 91], we place up to 100
vehicles in the CARLA simulator and use trace-driven emulation
to replay their trajectories and data for evaluation. Note that as the
total number of vehicles increases, both the number of helpers and
helpees increase.

Figure 13 shows how the performance of Harbor changes with
an increasing number of vehicles. Harbor outperforms EMP (AVR)
by 37.1% (51.3%) in average detection latency, and 11.3% (19.4%)
in detection accuracy, respectively. We observe that applying a
V2I-based scheme is indeed more scalable than a pure V2V scheme,
as shown before [88]. Harbor achieves better scalability than V2I
by using the V2V medium for helpees and applying bipartite op-
timization to adapt to network dynamics. Note that Harbor not
only improves the detection latency but also accuracy compared to
Harbor without bipartite optimization. This is because the bipar-
tite optimization enables faster computation of assignments and
henceforth reacts faster to network changes, resulting in more data
being delivered to the edge server and used for perception.

Robustness of Harbor under fast changing topologies. Next,
we analyze the robustness of Harbor under variable traffic topolo-
gies. To quantify the degree of topology change, we use a metric
calculated from vehicle trajectories: the average relative distance
variation. A higher variation of the relative distance indicates that
the relative position of ego-CAV varies more compared to others,
making the topology more fast-changing. The average relative dis-
tance variation is derived as follows. (1) For each CAV, we calculate
the standard deviation of its relative distance to all the other CAVs
over the entire trajectory every 𝑡 seconds (we set 𝑡 = 0.1). (2) We
then average the standard deviations from all CAVs by the number
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tion result delivery strategy.

of vehicles. We conduct this experiment using 50 emulated vehicles.
Figure 14 shows the performance of Harbor under various levels
of topology changes. Under slower changing traffic topologies (av-
erage relative distance variation <50m), Harbor outperforms AVR
(EMP) by 32.6% (61.2%) in latency and 10.7% (18.3%) in accuracy.
Even under the fastest-changing traffic conditions (average relative
distance variation >100m), Harbor’s improvements over AVR and
EMP only reduce slightly, despite the excessive mobility’s impact
on V2V network performance, thanks to Harbor’s robust helper
assignment algorithm.

5.5 System Overhead & Microbenchmarks

We study the overhead and benefits of design decisions made by
Harbor from three perspectives: (1) the control-plane and data plane
message overhead, which measures control/data message size, its
transmission latency and the corresponding bandwidth require-
ments; (2) the runtime performance of Harbor’s helper assignment
algorithm and its benefits to the E2E detection latency; (3) the la-
tency improvements made by timely delivery of detection results
strategy. For ease of presentation, we use drivable space detection
as the example application for the remaining part of the evaluation.

5.5.1 System Overhead Analysis. Control-plane and data-plane

message overhead. Table 5 compares the control plane and data
planemessage overhead betweenHarbor and other existing V2I/V2V-
only CVP solutions. Apart from the vehicle location data also used
in EMP and AVR, Harbor’s control message further includes V2I
bandwidth measurements and V2V routing tables. The additional
data size in the control plane is negligible (fewer than 50 bytes per
point cloud frame). Therefore,Harbor’s control-planemessage over-
head is similar to EMP and AVR, as mentioned in ğ3.1. Also, as the
last row in Table 5 suggests, helpee vehicles inHarbor have slightly
higher transmission latency for control messages. This is attributed
to its hybrid (V2I+V2V) network topology. For data messages, all
three schemes upload similar size of point cloud data (after encod-
ing), while Harbor’ transmission latency is significantly lower than
EMP and AVR because Harbor judiciously allows helpee vehicles
to use the spare V2I bandwidth from helpers. Vehicles with poor
V2I conditions perform poorly on EMP as they use V2I-only com-
munication. AVR suffers from higher data-plane latency than EMP
due to less scalable V2V-only communication, as shown in [88]. For
bandwidth requirements, Harbor requires the same level of uplink
bandwidth as V2I-based systems, while achieving better latency
and scalability.

Overhead ofHarbor’s assignment algorithm.We evaluate the
runtime performance of Harbor’s helper-helpee assignment algo-
rithm by comparing it with two baselines: (1) Random: randomly
assign helpers to helpees. (2) Exhaustive: perform brute-force

Table 5: Control-plane and data-plane message overhead for

each point cloud frame per vehicle(mean±std deviation).

Metrics AVR EMP
Harbor

(Helper/Helpee)

Control data (Bytes) 24 24 67±5.5 / 67±5.5
Transmission Latency (ms) 28.1±24.6 27.6±18.6 27.9±17.8 / 32.4±22.0
Bandwidth Req. (Mbps) <0.1 <0.1 <0.1 / <0.1

Sensor data (KB) 42.9±5.07 46.2±3.5 45.9±3.2 / 40.6±7.1
Transmission Latency (ms) 158.3±31.2 91.5±19.9 36.3±19.1 / 72.1±22.2
Bandwidth Req. (Mbps) 3.4±0.5 3.7±0.3 3.6±0.3 / 3.2±0.6

Notes: Bandwidth Req. - Bandwidth Requirement at 10 FPS.

search to find the optimal assignment based on Harbor’s formula-
tion. We consider two metrics: the assignment execution latency
(Figure 15) and the end-to-end detection latency (Figure 16). As
shown in Figure 15, the scheduling time of the exhaustive search
grows quickly as the number of vehicles increases ś taking more
than 10s to compute the assignment for 20 vehicles. On the other
hand, as shown in Figure 16, while the random scheme provides
decisions within 100ms (the LiDAR generation cycle), its end-to-
end detection latency is high, due to its selected suboptimal paths.
In contrast, Harbor with its built-in bipartite optimization can effi-
ciently perform helper assignment within 100ms (Figure 15). This,
together with the resulting judiciously determined paths, leads to
an average end-to-end detection latency of 175ms even for 100
vehicles, outperforming all the other baseline schemes (Figure 16).

5.5.2 Microbenchmarks. Strategic Helper Assignment.We ex-
amine the benefits of one of Harbor’s strategic helper assignment
through trace-driven emulation. To make a fair comparison, we
modify only the assignment scheduling logic in Harbor to have
five different baseline assignment schemes: (1) Random: randomly
assign helpers to helpees; (2) Min-distance: assign helpers by
minimizing the total distance between each helper-helpee pair;
(3) V2I-BW: assign helpers by selecting the helpers with higher
V2I bandwidths; (4) V2V-intf: assign helpers by maximizing the
interference score on the V2V network; (5) Offline-optimal: an
offline-generated solution by examining all possible assignments
at each scheduling interval with the best performance.

Figure 16 shows the benefits of Harbor’s strategic helper assign-

ment leveraging different information sources. The 90𝑡ℎ and 95𝑡ℎ

percentile latency have improved by 43.8% and 38.8% compared to
the baselines. As the baseline assignment algorithms often optimize
a single factor, they fail to perform well in all settings. By consider-
ing all different factors that affect V2I and V2V data transmission,
Harbor becomes more robust under various driving and network
conditions, thus greatly improving the tail latency. Furthermore,

Harbor achieves 90𝑡ℎ and 95𝑡ℎ percentile tail latency that is 91.8%
to 92.8% close to the offline-optimal scheme.
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Timely Detection Result Delivery.We compare Harbor’s fast
detection result strategy with three baseline strategies: (1) Base-
line:Harborwithout the entire fast detection result delivery design
(ğ3.4); (2) Prioritization, which adds the MAC layer prioritization
on top of the baseline; (3) Deadline-aware (DDL-aware), which in-
corporates server-side deadline-awareness in frame merging to the
baseline. Figure 17 shows the effectiveness of Harbor’s decisions in
fast detection result delivery. Both MAC-layer result message pri-
oritization and server-side deadline awareness reduce the average
detection latency by over 19.0%. Harbor achieves a higher latency
improvement of 38.3% by leveraging both techniques. Harbor also

improves 90𝑡ℎ percentile latency by 25.6% (42.6%), compared to
Prioritization (DDL-aware). While the MAC-layer result message
prioritization module necessitates modifications to the lower layers
of the operating system’s network stack, its demonstrated effective-
ness suggests that future integration with existing CAV hardware
platforms (e.g., NVIDIA DRIVE AGX [26]) could enable its practical
deployment in current autonomous vehicle systems. Such inte-
gration would allow this optimization to enhance real-world CVP
solutions by improving data transmission efficiency and reducing
latency in various situations.

6 Discussion and Related Work

Security and Privacy of Collaborative Perception Systems.

While beyond the scope of this work, security problems might arise
in collaborative vehicular perception systems. Malicious vehicles
can send fake/modified data to affect the collaborative detection
results [72]. Under the context of Harbor, both infrastructure and
vehicles can take actions to improve system security: 1) Edge server
can leverage public key infrastructures (PKI) [73] to issue certifi-
cates to authorized vehicles and revoke access whenever anomaly
behavior is detected. 2) On vehicles, Trusted Execution Environ-
ment (TEE) [43] can be deployed to help prevent data spoofing and
modification from attackers. At the application level, Harbor can
leverage existing multi-vehicle collaboration defense method [86]
to check sensor data consistency.
Hybrid V2V+V2I Vehicular Communications. [59] leverages
V2V network to speed up V2I file uploading to the roadside unit
for a single source vehicle. [74] proposes the V2X protocol for
optimizing network message propagation by allowing protocol
switching between V2V and V2I. Different from previous work in
this space, CVP imposes new challenges in that data uploading from
different vehicles needs to be jointly optimized, i.e., collaboration
of multiple data traffic, to reduce perception latency. Our system
Harbor focuses on assisting 3D CVP tasks by strategically utilizing
V2V and V2I network resources. The design of Harbor optimizes
the overall delay for all nodes participating in the collaboration and
jointly handles bandwidth-intensive uplink and latency-sensitive
downlink transmissions.
Cooperative Vehicular Perception. Various efforts have been
made on cooperative vehicular perception. Existing data sharing
systems either transfer sensor data or processed features between
vehicles [32, 49, 63, 64, 78] or directly send each vehicle’s data to
a server [48, 55, 88]. Our work advocates using both V2V and V2I
to better adapt to different network connectivity and bandwidth
conditions. We develop solutions for the dynamic establishment of
V2V and V2I channels, and algorithms that efficiently assign relay

vehicles considering the wireless network and physical properties.
As mentioned in ğ2, while we focus on CVP data-sharing at the
raw-data level, the underlying principle ofHarbor can be applied to
collaborative perception designs that share intermediate features.
We left the integration of intermediate feature-based sharing with
Harbor as future work.
Collaborative Mobile Systems. Harbor is partially inspired by
mobile systems involving network-interface-level or device-level
collaborations [29, 44, 46, 60, 90]. They focus on various applications
such as smartphone file download and video streaming. In contrast,
our work targets the CVP domain, and thus faces unique challenges
as described earlier (ğ1).
Peer-to-peer Wireless Multicast Systems. Collaborative vehicu-
lar perception tasks involve sharing data among multiple vehicles
or agents in a dynamic wireless network. While Harbor focuses on
combining V2V and V2I for better CVP performance, peer-to-peer
(P2P) multicast technologies can potentially further enhance the
efficiency of such data exchanges. Innovations in wireless multicast
protocols [37, 51, 80] demonstrate that multicast can improve band-
width utilization and reduce communication overhead in scenarios
with multiple participants. These technologies are particularly rele-
vant for CVP systems like Harbor, where multiple vehicles need to
access the same control data and perception results. Incorporating
peer-to-peer multicast strategies could further reduce the latency
of data dissemination, especially in environments with dense ve-
hicular traffic. Future extensions of Harbor could leverage these
technologies to optimize data sharing between helper and helpee
vehicles, further enhancing the system’s scalability and efficiency.

7 Limitations and Conclusion

Harbor bears several limitations. First, due to its opportunistic na-
ture, Harbor is best-effort, without any service quality guarantee
or bound. Second, our design and evaluation focus on a single
edge node’s service area (with multiple subareas supported though,
see ğ3.1). How to scale up Harbor to the city level requires further
research. Third, our current implementation only incorporates basic
security measures such as end-to-end encryption for point cloud
upload’s confidentiality and edge’s signature for edge-returned
results’ integrity. More efforts (e.g., multi-vehicle collaboration de-
fense [86]) are needed to defend various attacks in hybrid CVP.

Despite the above limitations, as a first-of-its-kind hybrid CVP
system, Harbor considerably outperforms existing V2V- and V2I-
only schemes, as backed up by extensive field tests and large-
scale emulation. We envision deep collaborations among CAVs,
edge/cloud, smart road infrastructure, and even unmanned aerial
vehicles (UAVs) to be a key enabler of next-generation transporta-
tion systems. Our work makes an important step towards this
ambitious goal.
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