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Abstract
Current research in Human Immunodeficiency Virus (HIV) focuses on eradicating
virus reservoirs that prevent or dampen the effectiveness of antiretroviral treatment
(ART). One such reservoir, the brain, reduces treatment efficacy via the blood-brain
barrier (BBB), causing an obstacle to drug penetration into the brain. In this study,
we develop a mathematical model to examine the impact of the BBB on ART effec-
tiveness for mitigating brain HIV. A thorough analysis of the model allowed us to
fully characterize the global threshold dynamics with the viral clearance and persis-
tence in the brain for the basic reproduction number less than unity and greater than
unity, respectively. Our model showed that the BBB has a significant role in inhibiting
the effect of ART within the brain despite the effective viral load suppression in the
plasma. The level of impact, however, depends on factors such as the CNS Penetra-
tion Effectiveness (CPE) score, the slope of the drug dose-response curves, the ART
initiation timing, and the number of drugs in the ART protocol. These results suggest
that reducing the plasma viral load to undetectable levels due to some drug regimen
may not necessarily indicate undetectable levels of HIV in the brain. Thus, the effect
of the BBB on viral suppression in the brain must be considered for developing proper
treatment protocols against HIV infection.
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1 Introduction

Human Immunodeficiency Virus (HIV) represents one of the most serious global
health issues, with approximately 36.7 million people currently living with HIV, a
number that grows by roughly 1.5 million per year (United Nations Programme 2019).
Despite impressive strides in antiretroviral therapy (ART), there is no known cure for
HIV. Several obstacles are yet to be overcome in this ongoing search for an HIV
cure. For instance, the establishment of physiological virus reservoirs, such as the
brain, gut, liver, and reproductive organs (Abreu et al. 2019; Fois and Brew 2015;
Gray et al. 2014; Hellmuth et al. 2015; Nath 2015), and infected cells not immediately
proliferating free virions,whether they are long-lived or latently infected, all contribute
significant hurdles to a cure for HIV.

The brain, in particular, may act as the viral reservoir, and viral replication within
it may contribute to viral rebound within the plasma (Ash et al. 2021; Bates and
Watts 1988; Beguelin et al. 2016; Kincer et al. 2023; Osborne et al. 2020) upon
cessation of treatment. In addition, HIV establishment in the brain has been shown to
lead to HIV-associated neurocognitive disorders (HAND), such as dementia and early-
onset encephalitis (Pauza 1988). Thus, while each reservoir type deserves considerable
attention, there is an urgency to develop ART protocols to mitigate HIV in the brain.

HIV can enter the brain by crossing the Blood-Brain Barrier (BBB) via infected
macrophages, even during early infection (Clements et al. 2022; Fois and Brew 2015;
Koppensteiner et al. 2012; Pauza 1988; Strazielle et al. 2016). Notably, theBBB affects
the permeability of drugs into the brain, as measured by Letendre (2011) in terms of a
CNSPenetrationEffectiveness (CPE) score.We note that the other viral reservoirsmay
also express suboptimal drug penetration (Kepler and Perelson 1998). However, there
is a lack of a numerical penetration measure, and we did not consider other reservoirs
in this study. The smaller proportion of drugs in the brain may allow ongoing viral
replication despite undetectable viral loads in the plasma. Moreover, the efficacy of an
ART drug depends on its pharmacodynamics, and some drugs have an efficacy as low
as 68% (Louie et al. 2003). Furthermore, these pharmacodynamics play a significant
role in the evolution of HIV (Rosenbloom 2012). Therefore, the CPE score, as well
as the efficacy of HIV drugs, must be taken into account to develop proper treatment
protocols for HIV control in the brain.

Mathematical models have offered insights into the viral dynamics in the brain
(Huang et al. 2017; Roda et al. 2017) and the latent reservoirs (Callaway and Perelson
2002; Stafford et al. 2000; Vaidya et al. 2010; Vaidya and Rong 2017). However,
limited research exists on the effect of ART on mitigating HIV in the brain and the
role of BBB on treatment effectiveness. In this study, we develop a mathematical
model to analyze the role of BBB on the overall treatment effectiveness for HIV in the
brain.We consider various potential ARTs by altering key drug parameters, such as the
CPE score, the slope of the dose-response curve, and the treatment initiation time. We
also thoroughly analyze the model to establish the local and global properties of the
HIV infection dynamics in the brain. Our study identifies thresholds for the stability of
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infection dynamics and highlights the critical role of the BBB on the optimal outcome
of the treatment protocols.

2 Model

2.1 Model Development

In ourmodel, we consider sixmutually exclusive cell compartments: uninfected CD4+
T cells in the plasma (T ), uninfected macrophages in the plasma (M), uninfected
macrophages in the brain (MB), often called microglia, infected CD4+ T cells in the
plasma (T ∗), infected macrophages in the plasma (M∗), and infected macrophages in
the brain (M∗

B). In addition, we consider two viral compartments, V and VB , repre-
senting the concentration of free virions in the plasma and the brain, respectively. We
describe the viral dynamics using the following differential equations, and a schematic
diagram of the model is presented in Fig. 1.

dT

dt
= λ −

n∏

i=1

(1 − εi )βV T − dT ,

dT ∗
dt

=
n∏

i=1

(1 − εi )βVT − δT ∗,

dM

dt
= λM −

n∏

i=1

(1 − εi )βMVM − ϕM + ψMB − dMM,

dM∗
dt

=
n∏

i=1

(1 − εi )βMVM + ψM∗
B − ϕM∗ − δMM∗,

dMB

dt
= ϕM − ψMB −

n∏

i=1

(1 − επ i )βMVBMB − dMMB ,

dM∗
B

dt
=

n∏

i=1

(1 − επ i )βMVBMB − ψM∗
B + ϕM∗ − δMM∗

B ,

dV

dt
=

∏

i=1

(1 − εP I i ) pT
∗ +

∏

i=1

(1 − εP I i ) pMM∗ − cV ,

dVB
dt

=
∏

i=1

(1 − επ P I i ) pMM∗
B − cVB .

(1)

Basic Viral Dynamics in the brain and in the plasma. Uninfected T cells die at
a constant rate d and are generated at a rate λ. Uninfected T cells (T ) are infected
(T ∗) by free virions, V , within the circulation at a rate β. The infected cells then die
at a rate δ. Infected cells produce viruses and release them into circulation at a rate
p per infected cell per day (Vaidya et al. 2016). Similarly, HIV-1 infects uninfected
macrophages (M) (Clements et al. 2022; Koppensteiner et al. 2012) at a rate βM .
The infected macrophages (M∗) produce free virions at a rate pM per infected cell
per day and die at a rate of δM . Uninfected macrophages die at a rate of dM and are
generated at a rate λM . In order for a virion to enter the cerebrospinal fluid (CSF)
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Fig. 1 Schematics of the model for HIV dynamics in the brain under antiretroviral treatment

in the brain, it must pass through the BBB. It is not fully understood what factors
modulate the transit of HIV-1 RNA through the BBB into the CNS (Hellmuth et al.
2015); however, research suggests that the virus permeates the integrity of the BBB
via an infected macrophage (Koppensteiner et al. 2012). We represent the per capita
rate of macrophage transit through the BBB by ϕ. Macrophages are not known to
generate independently within the brain (Prinz and Priller 2014). The uninfected brain
macrophages are infected (Bednar et al. 2015; Nath 2015; Prinz and Priller 2014;
Schnell et al. 2011) at the constant rate βM , and infected macrophages produce free
virions within the brain at the constant rate pM . The free virions V and VB die at
the per capita clearance rate c. Macrophages exit the brain through the BBB into the
bloodstream at a constant rate ψ . All the basic parameter values are given in Table 1.

Antiretroviral treatment. Currently, there are five classes of available ART drugs:
Fusion Inhibitors (FIs), Nucleoside reverse transcriptase inhibitors (NRTIs), Non-
nucleoside reverse transcriptase inhibitors (NNRTIs), Integrase inhibitors (IIs), and
Protease inhibitors (PIs) (CDC 2019). The efficacy of each drug, ε, can be calculated
by the formula (Vaidya and Rong 2017):

ε = 1 −
⎛

⎜⎝
1

1 +
(

D
ED50

)m

⎞

⎟⎠ ,
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where m is Hill’s coefficient, D is the amount of drug concentration present, and
ED50 represents the concentration of drugs required to obtain 50% of the maximal
effect. Note that Hill’s coefficient provides the slope of the dose-response curve of a
given drug. The PIs reduce the viral production rates p and pM to (1 − εP I i )p and
(1− εP I i )pM , respectively, and drugs from other classes reduce the infection rates β

and βM to (1− εi )β and (1− εi )βM , respectively. Note that integrase inhibitors (IIs)
prevent viral-bearing cells from becoming productively infected due to inhibiting viral
DNA integration into host DNA. This process has been modeled using a parameter
governing integration by vonKleist et al. (2010). Since we have not included a detailed
integration process with pre and post proviral integration, we did not require such a
separate parameter in our model.

When multiple drugs are used in treatment, we assume no drug-drug interactions, a
so-called ‘bliss independence’ approach, and the residual infection or production can
bemodeled by the product of residuals of drugs in combination protocol. Therefore, for

FIs, IIs, andRTIs, the infection rates are reduced to
n∏

i=1
(1−εi )β and

n∏
i=1

(1−εi )βM , and

for PIs the viral production rates are reduced to
n∏

i=1
(1− εP I i )p and

n∏
i=1

(1− εP I i )pM ,

where n represents the number of drugs used in the treatment protocol.

Role of blood brain barrier. The BBB reduces the effectiveness of ART drugs by
limiting the amount of concentration in the CSF. A study by Letendre (2011) exam-
ined the viral loads in the CSF in the presence of ART drugs and developed a standard
measure (CNS penetration effectiveness score, or CPE-score) for the effectiveness of
an ART drug in entering the brain. This study utilizes several techniques to gain a qual-
itative measurement. We note that there are some drug-binding proteins in the blood
plasma limiting the total drug effect (Boffito 2003), which are not present in the CSF.
Letendre et al. have not included this potential effect (Letendre 2011). However, the
study by Letendre (2011) offers a comparative measure of several drugs’ effectiveness
within the CSF, which we take as a proxy.

Based on the CPE score provided by Letendre (2011), we construct the parameter
π to represent the reduced fraction of drugs that enter the brain as follows.

π = CPE Score

5
,

where the CPE score (or CNS penetration effectiveness score) ranges from one to
four. In the study by Letendre (2011), drugs with a CPE score of one represent min-
imal CNS penetration, and a CPE score of four represents maximal CNS penetration.
However, the perfect penetration is less likely due to the nature of BBB, so we take 5
to scale perfect penetration for the computation purpose. Specifically, for drugs cross-
ing the BBB, we have the following efficacy of the drugs against HIV in the brains:
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επ = 1 −
⎛

⎜⎝
1

1 +
(

πD
ED50

)m

⎞

⎟⎠ .

Here a lower CPE score implies a lower concentration of the ART drug in the
CSF. For our purposes, we consider a score of five to mean that a drug maintains
equal effectiveness in the brain as it does in the plasma. Similarly, a mini-
mum score of zero implies that the drug cannot penetrate through the BBB at
all.

3 Model Analysis

For ease of notation we now define the following variables:

	b =
n∏

i=1

(1 − εi ) , 	p =
n∏

i=1

(1 − εP I i ), and

	πb =
n∏

i=1

(1 − επ i ), 	π p =
n∏

i=1

(1 − επ P I i ).

3.1 Model Feasibility

In view of (Smith 1996, Theorem 5.2.1), it follows that for any

(T0, T
∗
0 , M0, M

∗
0 , MB0, M

∗
B0, V0, VB0) ∈ R

8+,

system (1) has a unique local nonnegative solution

(T (t), T ∗(t), M(t), M∗(t), MB(t), M∗
B(t), V (t), VB(t)) ∈ R

8+

through the initial value:

(T (0), T ∗(0), M(0), M∗(0), MB(0), M∗
B(0), V (0), VB(0))

= (T0, T
∗
0 , M0, M

∗
0 , MB0, M

∗
B0, V0, VB0).

Substituting

N (t) = T (t) + T ∗(t) + M(t) + M∗(t) + MB(t) + M∗
B(t) (2)

into system (1) leads to the following inequality

dN

dt
= λ − (dT + δT ∗) + λM − dM (M + MB) − δM (M∗ + M∗

B)
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≤ λ + λM − dmin(T + T ∗ + M + M∗ + MB + M∗
B)

= λ + λM − dminN ,

where dmin := min{d, δ, dM , δM }, and hence,

lim sup
t→∞

N (t) ≤ λ + λM

dmin
. (3)

This implies that N (t) is ultimately bounded. Then from (2), T (t), T ∗(t),M(t),M∗(t),
MB(t) and M∗

B(t) are ultimately bounded due to the positivity of solutions. Then there
exist t0 > 0 and 
 > 0 such that

	p pT
∗(t) + 	p pMM∗(t) ≤ 
 and 	π p pMM∗

B(t) ≤ 
, ∀ t ≥ t0.

From the seventh and eighth equations of (1), we see that

dV

dt
≤ 
 − cV , ∀ t ≥ t0,

and

dVB

dt
≤ 
 − cVB , ∀ t ≥ t0.

Thus,

lim sup
t→∞

V (t) ≤ 


c
, and lim sup

t→∞
VB(t) ≤ 


c
, (4)

showing that V (t) and VB(t) are ultimately bounded.
From the above discussion andTheorem3.4.8 inHale (1990), we have the following

result:

Theorem 1 R
8+ is positively invariant for system (1)and system (1)admits a uniqueand

bounded solution with the initial value in R8+. Further, system (1) admits a connected
global attractor on R

8+, which attracts all positive orbits in R8+.

3.2 Basic Reproduction Number

We first determine the infection-free equilibrium, E0, of system (1). To this end, we
substitute T ∗ = M∗ = M∗

B = 0 into system (1), and we have V = VB = 0.
Furthermore, we arrive at the following systems:

dT

dt
= λ − dT , (5)
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and

{
dM
dt = λM − (ϕ + dM )M + ψMB,
dMB
dt = ϕM − (ψ + dM )MB .

(6)

It is easy to see that system (5) admits a unique positive equilibrium T̂ := λ
d , which

is globally attractive in R+. We also see that

(M̂, M̂B) =
(

λMa

dM
,
λM (1 − a)

dM

)
(7)

is the unique positive equilibrium of system (6), where a = ψ+dM
ϕ+ψ+dM

. Since system
(6) is cooperative (see, e.g., Smith (1996)) and it admits a unique positive equilibrium
(M̂, M̂B), we can show the global stability of (M̂, M̂B) (see, e.g., Ji-Fa (1994)). The
following results are concerned with the dynamics of systems (5) and (6).

Lemma 2 The following statements are valid.

(i) System (5) admits a unique positive equilibrium T̂ := λ
d , which is globally attrac-

tive in R+;
(ii) System (6) admits a unique positive equilibrium (M̂, M̂B), which is globally attrac-

tive in R2+, i.e., for any (M(0), MB(0)) ∈ R
2+, we have

lim
t→∞(M(t), MB(t)) = (M̂, M̂B).

From the above discussions, the infection-free equilibrium of system (1) takes the
form

E0 = (T , T ∗, M, M∗, MB, M∗
B , V , VB) = (T̂ , 0, M̂, 0, M̂B , 0, 0, 0).

The equations for the infected cells and free virions in the plasma and the brain of the
linearized system at the infection-free equilibrium, E0, take the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dT ∗
dt = 	bβ T̂ V − δT ∗,
dM∗
dt = 	bβM M̂V + ψM∗

B − (ϕ + δM )M∗,
dM∗

B
dt = 	πbβM M̂BVB + ϕM∗ − (ψ + δM )M∗

B,
dV
dt = 	p pT ∗ + 	p pMM∗ − cV ,
dVB
dt = 	π p pMM∗

B − cVB .

(8)

The spectral bound or the stability modulus of an n × n matrixM, denoted by s(M),
is defined by

s(M) := max{Re(λ) : λ is an eigenvalue of M}.
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Motivated by (8), we define the following matrix:

J =

⎛

⎜⎜⎜⎜⎝

−δ 0 0 	bβ T̂ 0
0 −(ϕ + δM ) ψ 	bβM M̂ 0
0 ϕ −(ψ + δM ) 0 	πbβM M̂B

	p p 	p pM 0 −c 0
0 0 	π p pM 0 −c

⎞

⎟⎟⎟⎟⎠
. (9)

Clearly, J has non-negative off-diagonal elements, and J is irreducible (see a simple
test on page 256 of Smith and Waltman (1995)). Then s(J ) is a simple eigenvalue of
J with a positive eigenvector (see, e.g., (Smith and Waltman 1995, Theorem A.5)).

We now use the next generation matrix method (Van den Driessche andWatmough
2002) to compute the basic reproduction number, R0. We introduce the following
matrices:

F =

⎛

⎜⎜⎜⎜⎝

0 0 0 	bβ T̂ 0
0 0 0 	bβM M̂ 0
0 0 0 0 	πbβM M̂B

	p p 	p pM 0 0 0
0 0 	π p pM 0 0

⎞

⎟⎟⎟⎟⎠
, (10)

and

V =

⎛

⎜⎜⎜⎜⎝

δ 0 0 0 0
0 ϕ + δM −ψ 0 0
0 −ϕ ψ + δM 0 0
0 0 0 c 0
0 0 0 0 c

⎞

⎟⎟⎟⎟⎠
. (11)

Note that J = F − V . The basic reproduction number corresponds to the spectral
radius of FV−1,

R0 = ρ(FV−1).

The following is a general result showing that the local stability of the disease-free
equilibrium, E0, is determined by R0 (see, e.g. (Van den Driessche and Watmough
2002, Theorem 2)):

Lemma 3 The following statements hold.

(i) R0 = 1 if and only if s(J ) = 0;
(ii) R0 > 1 if and only if s(J ) > 0;
(iii) R0 < 1 if and only if s(J ) < 0.

Thus, the disease-free equilibrium E0 is locally asymptotically stable if R0 < 1, and
unstable if R0 > 1.
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3.3 Threshold Dynamics

This subsection is devoted to studying the threshold dynamics of the system (1).
Specifically, we will show that the basic reproduction number, R0, is a threshold
determining infection-free (R0 < 1) and infection-persistent (R0 > 1) dynamics.
Let

X0 = {(T0, T ∗
0 , M0, M

∗
0 , MB0, M

∗
B0, V0, VB0) ∈ R

8+ : T ∗
0 > 0, M∗

0 > 0, M∗
B0 > 0,

V0 > 0, VB0 > 0},

and

∂X0 := R
8+\X0 = {(T0, T ∗

0 , M0, M
∗
0 , MB0, M

∗
B0, V0, VB0) ∈ R

8+ :
T ∗
0 = 0 or M∗

0 = 0 or M∗
B0 = 0 or V0 = 0 or VB0 = 0}.

We first prove the following lemma.

Lemma 4 Assume that

(T (t), T ∗(t), M(t), M∗(t), MB(t), M∗
B(t), V (t), VB(t))

is a solution of the system (1) with initial value

(T (0), T ∗(0), M(0), M∗(0), MB(0), M∗
B(0), V (0), VB(0)) ∈ R

8+.

Then the following statements hold:

(i) There exists a positive constant ζ0 such that

lim inf
t→∞ T (t) ≥ ζ0, lim inf

t→∞ M(t) ≥ ζ0, lim inf
t→∞ MB(t) ≥ ζ0;

(ii) If (T (0), T ∗(0), M(0), M∗(0), MB(0), M∗
B(0), V (0), VB(0)) ∈ X0, then

T (t), T ∗(t), M(t), M∗(t), MB(t), M∗
B(t), V (t), VB(t)) 	 0, ∀ t > 0.

Proof

Part (i): In view of equation (4) or of Theorem 1 we see that there exists a t̃0 > 0 and
a ξ > 0 such that V (t) ≤ ξ and VB(t) ≤ ξ , ∀t ≥ t̃0. Then it follows from
the first, third, and fifth equations in system (1) that

dT

dt
≥ λ − [	bβξ + d]T , ∀t ≥ t̃0,

and
{dM

dt ≥ λM − [	bβMξ + ϕ + dM ]M + ψMB, ∀t ≥ t̃0,
dMB
dt ≥ ϕM − [ψ + 	πbβMξ + dM ]MB, ∀t ≥ t̃0.
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By the comparison principle, and similar arguments to those in Lemma 2,
we see that

lim inf
t→∞ T (t) ≥ λ

	bβξ + d
and lim inf

t→∞ (M(t), MB(t)) ≥ (M, MB),

where (M, MB) is the unique root of the following algebraic equation:

{
λM − [	bβMξ + ϕ + dM ]M + ψMB = 0,

ϕM − [ψ + 	πbβMξ + dM ]MB = 0.

Thus, taking ζ0 = min
{

λ
	bβξ+d , M, MB

}
, Part (i) is proved.

Part (ii): In view of the first equation of system (1), it follows that

T (t) = e− ∫ t
0 b1(s1)ds1

[∫ t

0
λe

∫ s2
0 b1(s1)ds1ds2 + T (0)

]
,

where

b1(t) := d + 	bβV (t).

Thus, T (t) > 0 ∀ t > 0. From the third equation of system (1), it follows
that

M(t) = e− ∫ t
0 b2(s1)ds1

[∫ t

0
e
∫ s2
0 b2(s1)ds1a2(s2)ds2 + M(0)

]
,

where

a2(t) := λM + ψMB(t) ≥ λM ,

and

b2(t) := 	bβMV (t) + ϕ + dM .

Thus, M(t) > 0 ∀ t > 0. From the fifth equation of system (1), it follows
that

MB(t) = e− ∫ t
0 b3(s1)ds1

[∫ t

0
e
∫ s2
0 b3(s1)ds1a3(s2)ds2 + MB(0)

]
,

where

a3(t) := ϕM(t) > 0,
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and

b3(t) := ψ + 	πbβMVB(t) + dM ≥ ψ + dM .

Thus, MB(t) > 0 ∀ t > 0. Next, we regard Theorem 4.1.1 of Smith (1996)
as a generalized version to nonautonomous systems, and the irreducibility of
the cooperative matrix

⎛

⎜⎜⎜⎜⎝

−δ 0 0 	bβT (t) 0
0 −(ϕ + δM ) ψ 	bβMM(t) 0
0 ϕ −(ψ + δM ) 0 	πbβMMB(t)

	p p 	p pM 0 −c 0
0 0 	π p pM 0 −c

⎞

⎟⎟⎟⎟⎠
(12)

implies that

(T ∗(t), M∗(t), M∗
B(t), V (t), VB(t)) 	 0, ∀ t > 0.

This completes the proof. 
�

We now establish the following theorem for the global threshold dynamics.

Theorem 5 The following statements hold.

(i) IfR0 < 1, then the infection-free equilibrium E0 is globally attractive inR8+ for
(1);

(ii) If R0 > 1, then system (1) is uniformly persistent with respect to (X0, ∂X0) in
the sense that there is a positive constant ζ > 0 such that every solution

(T (t), T ∗(t), M(t), M∗(t), MB(t), M∗
B(t), V (t), VB(t))

of (1) with

(T (0), T ∗(0), M(0), M∗(0), MB(0), M∗
B(0), V (0), VB(0)) ∈ X0

satisfies

lim inf
t→∞ u(t) ≥ ζ, for each u = T , T ∗, M, M∗, MB, M∗

B, V , VB . (13)

Furthermore, system (1) admits at least one (componentwise) positive equilib-
rium.

Proof Part (i). Assume thatR0 < 1. It then follows from Lemma 3 (iii) that s(J ) < 0.
Thus, there exists a sufficiently small positive number ρ0 such that s(Jρ0) < 0 (see,
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e.g., (Kato 2013, Section II.5.8)), where

Jρ0 =

⎛

⎜⎜⎜⎜⎝

−δ 0 0 	bβ(T̂ + ρ0) 0
0 −(ϕ + δM ) ψ 	bβM (M̂ + ρ0) 0
0 ϕ −(ψ + δM ) 0 	πbβM (M̂B + ρ0)

	p p 	p pM 0 −c 0
0 0 	π p pM 0 −c

⎞

⎟⎟⎟⎟⎠

has non-negative off-diagonal elements, and Jρ0 is irreducible. From the first, third,
and fifth equations of system (1), together with positivity of solutions, it follows that

dT

dt
≤ λ − dT , (14)

and
{

dM
dt ≤ λM − (ϕ + dM )M + ψMB,
dMB
dt ≤ ϕM − (ψ + dM )MB .

(15)

By the comparison principle and Lemma 2, we get

lim sup
t→∞

T (t) ≤ T̂ , lim sup
t→∞

(M(t), MB(t)) ≤ (M̂, M̂B).

It follows that there is a t1 > 0 such that

T (t) ≤ T̂ + ρ0, M(t) ≤ M̂ + ρ0, MB(t) ≤ M̂B + ρ0, ∀ t ≥ t1. (16)

In view of (16) and system (1), we see that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dT ∗
dt ≤ 	bβ(T̂ + ρ0)V − δT ∗, ∀ t ≥ t1,
dM∗
dt ≤ 	bβM (M̂ + ρ0)V + ψM∗

B − (ϕ + δM )M∗, ∀ t ≥ t1,
dM∗

B
dt ≤ 	πbβM (M̂B + ρ0)VB + ϕM∗ − (ψ + δM )M∗

B, ∀ t ≥ t1,
dV
dt = 	p pT ∗ + 	p pMM∗ − cV , ∀ t ≥ t1,
dVB
dt = 	π p pMM∗

B − cVB, ∀ t ≥ t1.

(17)

Consider the following auxiliary system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dT ∗
dt = 	bβ(T̂ + ρ0)V − δT ∗, ∀ t ≥ t1,
dM∗
dt = 	bβM (M̂ + ρ0)V + ψM∗

B − (ϕ + δM )M∗, ∀ t ≥ t1,
dM∗

B
dt = 	πbβM (M̂B + ρ0)VB + ϕM∗ − (ψ + δM )M∗

B, ∀ t ≥ t1,
dV
dt = 	p pT ∗ + 	p pMM∗ − cV , ∀ t ≥ t1,
dVB
dt = 	π p pMM∗

B − cVB, ∀ t ≥ t1.
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(18)

Since Jρ0 has non-negative off-diagonal elements and Jρ0 is irreducible, it follows that
s(Jρ0) is simple and associates a strongly positive eigenvector ṽ ∈ R

5 (see, e.g., (Smith
and Waltman 1995,Theorem A.5)). For any solution (T (t), T ∗(t), M(t), M∗(t),
MB(t), M∗

B(t), V (t), VB(t)) of (1) with nonnegative initial value

(T (0), T ∗(0), M(0), M∗(0), MB(0), M∗
B(0), V (0), VB(0)),

there is a sufficiently large b > 0 such that

(T ∗(t1), M∗(t1), M∗
B(t1), V (t1), VB(t1)) ≤ bṽ

holds. It is easy to see that U (t) := bes(J
0
ρ0

)(t−t1)ṽ is a solution of (18) with U (t1) :=
bṽ. By the comparison principle (Smith and Waltman 1995, Theorem B.1), it follows
that

(T ∗(t), M∗(t), M∗
B(t), V (t), VB(t)) ≤ bes(Jρ0 )(t−t1)ṽ, ∀ t ≥ t1.

Since s(Jρ0) < 0, it follows that

lim
t→∞(T ∗(t), M∗(t), M∗

B(t), V (t), VB(t)) = (0, 0, 0, 0, 0).

It then follows that the equations for T (t) and (M(t), MB(t)) in (1) are asymptotic
to (5) and (6), respectively. By the theory for asymptotically autonomous semiflows
(see, e.g., (Thieme 1992, Corollary4.3)) and Lemma 2, it follows that

lim
t→∞ T (t) = T̂ , lim

t→∞(M(t), MB(t)) = (M̂, M̂B).

Part (i) is proved.
Part (ii). Assume that R0 > 1. It then follows from Lemma 3 (ii) that s(J ) > 0.

Suppose �(t)P is the solution maps generated by system (1) with initial value P . By
Theorem 1, we see that system {�(t)}t≥0 admits a global attractor in R

8+. Now we
prove that {�(t)}t≥0 is uniformly persistent with respect to (X0, ∂X0). By Lemma 4, it
follows that both R8+ and X0 are positively invariant. Clearly, ∂X0 is relatively closed
in R8+.

Let M∂ := {P ∈ ∂X0 : �(t)P ∈ ∂X0, ∀ t ≥ 0} and ω(P) be the omega limit set
of the orbit O+(P) := {�(t)P : t ≥ 0}. We next prove the following claims.

Claim 1: ω(P) = {E0}, ∀ P ∈ M∂ .
Since P ∈ M∂ , we have �(t)P ∈ M∂ , ∀ t ≥ 0. Next, we show that

(T ∗(t), M∗(t), M∗
B(t), V (t), VB(t)) = (0, 0, 0, 0, 0), ∀ t > 0. (19)

Assume that (19) is not true. Then there exists τ0 > 0 such that

(T ∗(τ0), M∗(τ0), M∗
B(τ0), V (τ0), VB(τ0)) �= (0, 0, 0, 0, 0).
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Then the irreducibility of the cooperative matrix (12) implies that

(T ∗(t), M∗(t), M∗
B(t), V (t), VB(t)) 	 0, ∀ t > τ0,

which contradicts the fact that �(t)P ∈ M∂ , ∀ t ≥ 0, and hence, (19) is true. By
(19), it follows that the equations for T (t) and (M(t), MB(t)) in (1) satisfies (5) and
(6), respectively. By Lemma 2, it follows that

lim
t→∞ T (t) = T̂ , lim

t→∞(M(t), MB(t)) = (M̂, M̂B).

Claim 1 is proved.
Since s(J ) > 0, there exists a sufficiently small positive number σ0 such that

s(Jσ0) > 0 (see, e.g.,(Kato 2013, Section II.5.8)), where

Jσ0 =

⎛

⎜⎜⎜⎜⎝

−δ 0 0 	bβ(T̂ − σ0) 0
0 −(ϕ + δM ) ψ 	bβM (M̂ − σ0) 0
0 ϕ −(ψ + δM ) 0 	πbβM (M̂B − σ0)

	p p 	p pM 0 −c 0
0 0 	π p pM 0 −c

⎞

⎟⎟⎟⎟⎠

has non-negative off-diagonal elements and Jσ0 is irreducible.
Claim 2: E0 is a uniform weak repeller for �(t) in the sense that

lim sup
t→∞

‖�(t)P − E0‖ ≥ σ0, ∀ P ∈ X0.

Suppose, by contradiction, there exists P0 ∈ X0 such that

lim sup
t→∞

‖�(t)P0 − E0‖ < σ0.

Thus, there exists t2 > 0 such that

T (t) ≥ T̂ − σ0, M(t) ≥ M̂ − σ0, MB(t) ≥ M̂B − σ0, ∀ t ≥ t2. (20)

In view of (20) and system (1), we see that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dT ∗
dt ≥ 	bβ(T̂ − σ0)V − δT ∗, ∀ t ≥ t2,
dM∗
dt ≥ 	bβM (M̂ − σ0)V + ψM∗

B − (ϕ + δM )M∗, ∀ t ≥ t2,
dM∗

B
dt ≥ 	πbβM (M̂B − σ0)VB + ϕM∗ − (ψ + δM )M∗

B, ∀ t ≥ t2,
dV
dt = 	p pT ∗ + 	p pMM∗ − cV , ∀ t ≥ t2,
dVB
dt = 	π p pMM∗

B − cVB , ∀ t ≥ t2.

(21)

123



Modeling Antiretrovial Treatment to... Page 17 of 29 105

Consider the following auxiliary system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dT ∗
dt = 	bβ(T̂ − σ0)V − δT ∗, ∀ t ≥ t2,
dM∗
dt = 	bβM (M̂ − σ0)V + ψM∗

B − (ϕ + δM )M∗, ∀ t ≥ t2,
dM∗

B
dt = 	πbβM (M̂B − σ0)VB + ϕM∗ − (ψ + δM )M∗

B, ∀ t ≥ t2,
dV
dt = 	p pT ∗ + 	p pMM∗ − cV , ∀ t ≥ t2,
dVB
dt = 	π p pMM∗

B − cVB, ∀ t ≥ t2.

(22)

Since Jσ0 is irreducible and has non-negative off-diagonal elements, it follows that
s(Jσ0) is simple and associates a strongly positive eigenvector ũ ∈ R

5(see, e.g., (Smith
and Waltman 1995, Theorem A.5)). By Lemma 4, it follows that

(T ∗(t2), M∗(t2), M∗
B(t2), V (t2), VB(t2)) 	 0.

Thus, there is a positive number ς > 0 such that

(T ∗(t2), M∗(t2), M∗
B(t2), V (t2), VB(t2)) ≥ ς ũ

holds. It is easy to see thatW (t) := ςes(Jσ0 )(t−t2)ũ is a solution of (22) withW (t2) :=
ς ũ. By the comparison principle (Smith and Waltman 1995, Theorem B.1), it follows
that

(T ∗(t), M∗(t), M∗
B(t), V (t), VB(t)) ≥ ςes(Jσ0 )(t−t2)ũ, ∀ t ≥ t2.

Since s(Jσ0) > 0, it follows that

lim
t→∞ T ∗(t) = lim

t→∞ M∗(t) = lim
t→∞ M∗

B(t) = lim
t→∞ V (t) = lim

t→∞ VB(t) = ∞.

This contradiction proves the claim 2.
From the above claims, it follows that any forward orbit of �(t) in M∂ converges

to E0 which is isolated in R8+ and Ws(E0) ∩ X0 = ∅, where Ws(E0) is the stable set
of E0 (see Smith and Zhao (2001)). It is obvious that there is no cycle in M∂ from
E0 to E0. By (Thieme 1993, Theorem4.6) (see also (Zhao et al. 2003, Theorem 1.3.1)
and (Hirsch et al. 2001, Theorem 4.3 and Remark 4.3)), we conclude that system (1)
is uniformly persistent with respect to (X0, ∂X0) in the sense that there is a positive
constant ζ1 > 0 such that

lim inf
t→∞ u(t) ≥ ζ1, ∀u = T ∗, M∗, M∗

B, V , VB .

From Lemma 4 (i), we let ζ := min{ζ0, ζ1} > 0. Then it is easy to see that (13) holds.
By (Zhao 1995, Theorem 2.4) (see also (Zhao et al. 2003, Theorem1.3.7)), system

(1) has at least one equilibrium

(Ť , Ť ∗, M̌, M̌∗, M̌B, M̌∗
B, V̌ , V̌B) ∈ X0,
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Fig. 2 (Left) The reproduction numberR0 depending on the effectiveness of PIs (x-axis) and RTIs (y-axis).
The horizontal plane represents when R0 = 1. (Right) The region in εi εP I i − space for R0 < 1 and
R0 > 1

and hence, Ť ∗ > 0, M̌∗ > 0, M̌∗
B > 0, V̌ > 0, and V̌B > 0. Furthermore, we see that

Ť = λ

	bβ V̌ + d
,

and (M̌, M̌B) satisfies

{
λM − 	bβM V̌ M − ϕM + ψMB − dMM = 0,

ϕM − ψMB − 	πbβM V̌BMB − dMMB = 0,
(23)

From (23), it is not hard to see that M̌ > 0 and M̌B > 0. Thus,

(Ť , Ť ∗, M̌, M̌∗, M̌B, M̌∗
B, V̌ , V̌B)

is a (componentwise) positive equilibrium of system (1). This completes the proof of
Part (ii). 
�
Theorem 5 indicates that the basic reproduction number, R0, is a critical threshold,
which allows us to determine whether the infection is avoided (R0 < 1) or persists
(R0 > 1) in the brain. As the threshold,R0, is the function of control parameters, such
as pre-exposure prophylaxis, the established threshold condition allows us to identify
the strength of such treatment required to avoid the infection. In Fig. 2, we present
how the value of R0 changes based on the drug efficacies εi and εP I i . Moreover, we
also identified the region in εiεP I i -space, in which R0 < 1, asserting the infection
control threshold.

4 Numerical Simulations

In this section, we present the numerical simulations of the plasma viral load (PVL)
and the brain viral load (BVL) under different treatment protocols. Consistent with the
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Fig. 3 The average time the viral loads in the plasma (blue) and the brain (green) become undetectable
depending on the mean CPE score of the ART regimen with either a single RTI (left) or PI (right) (Color
figure online)

analytical result established in Theorem 5, we observed that our numerical simulations
of viral loads dynamics converge to the infection-free steady state or infected steady
state depending upon the choice of drug efficacies from the white (R0 < 1) or blue
(R0 > 1) regions, respectively, shown in Fig. 2 (right). Since there is no known
cure for HIV rather than viral elimination, an undetectable viral load is a marked
success for current treatment protocols. Therefore, we take the time for the viral load
to be undetectable as the index for the treatment evaluation. For all simulations, we
consider a detectable viral load to be 50 copies of viral RNA per mL of blood plasma,
the standard lower limit to measure HIV according to current assays (aidsinfo 2018).

We consider how the different protocols affect the time the viral loads take to reach
undetectable levels. We first examine whether the CPE score alters the treatment time
for the viral load to become undetectable in the plasma and the brain. Next, we explore
how the slope of the dose-response curve affects the time for viral undetectability.
Then, we analyze the effect of the number of drugs in a given ART regimen. Finally,
we examine if the treatment initiation time affects the average time for the PVL and
BVL to fall below the detectable level.

4.1 Effect of the CPE Score

To better understand the effect of the CPE score on the overall treatment of HIV, we
considered its effect on the time that the PVL and the BVL reduce to undetectable
levels in the presence of constant drug levels. In Fig. 3, we show the average time the
viral loads in the brain and the plasma become undetectable depending on the CPE
score of an ART regimen with a single drug. Treatment was initiated after a steady
state viral load was achieved (∼250 dpi), and we considered a single RTI (Fig. 3, left)
and a single PI (Fig. 3, right).

We observe that the CPE score has a negligible effect on the plasma viral load, as the
average number of days for the PVL to become undetectable remains constant despite
the CPE score or the drug type (RTI or PI). However, even with one drug present, we
observe that the CPE score affects the number of days to viral undetectability for a PI
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Fig. 4 Average days to viral undetectability in the PVL (left column) and BVL (right column) depending
on the CPE scores for two PIs (top row), two RTIs (bottom row) and a combination of one RTI and one PI
(middle row). We used different color scales for different figures as appropriate for visibility purposes

differently than it does for an RTI. In particular, as the CPE score increases for a PI,
the number of days for the BVL to reach undetectable levels decreases (∼ 10 days
vs. ∼ 3 days). There is no observed effect of the CPE score and the BVL if an ART
protocol includes only a single RTI. Hence, the BBB affects single-drug protocols
with PIs more than RTIs.

We next analyzed the effect of the CPE score under the ART regimen with two
drugs. We considered two PIs, two RTIs, or a combination of one PI and one RTI.
We present the simulated number of days to viral undetectability in the PVL (Fig. 4,
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left column) and BVL (Fig. 4, right column). Similar to the treatments with a single
drug, we observe no discernible effect of the CPE score on the PVL with two drugs.
However, we observe a strong effect of the CPE score on the days for which the BVL
becomes undetectable in the presence of two drugs. For ARTwith two PIs, we see that
as the CPE increases for either drug, the days to viral clearance decrease (∼ 9 days
vs. ∼ 1 day). Furthermore, if ART includes an RTI and a PI, we note that as the CPE
score increases for the PI, the time to undetectable BVL decreases; however, the CPE
score for the RTI shows a negligible effect on the time to the undetectability of BVL.
In fact, if treatment includes only two RTIs, we do not observe any noticeable effect
of the CPE score on time to viral undetectability. These results combined suggest that
PIs with higher CPE scores should be considered more than RTIs to control HIV in
the brain better.

4.2 Effect of the Slope of the dose-response Curve

We used our model (1) to explore the influence of the slope of the dose-response curve
on the time viral RNA becomes undetectable. We first considered treatment with one
drug. Based on experimental evidence (Shen 2008), we considered any drug whose
slope, m, is greater than 1.9 to be a PI, while a drug with m ≤ 1.9 is considered to be
an RTI (Table 2). We present the results on time to viral undetectability with a single
drug of a low CPE score (CPE= 1; Fig. 5, left) and a high CPE score (CPE= 4; Fig.
5, right) for the slope of the dose-response curve from 0 to 5. As mentioned before,
the treatment was initiated after a steady-state viral load was achieved in the brain and
the plasma (∼250 dpi).

We observe that if m ≤ 1.9 (RTI), then the PVL becomes undetectable after about
only 40 days, whereas if m > 1.9 (PI), then the PVL reaches the undetectable level
within a single day. The number of days the BVL takes to reach the undetectable
level also decreases as the slope of the dose-response curve increases; however, this
reduction is significantly less than that observed in the PVL (∼ 40 days less in PVL
compared to ∼ 6 days less in BVL). Interestingly, for low slopes that correspond to
an RTI, we note that the PVL becomes undetectable several weeks after the BVL
becomes undetectable and that this behavior switches for the slope corresponding to
a PI (Fig. 5). This switch occurs regardless of the drug’s CPE score, reinforcing the
previous section’s observation that RTIs are less effective for the PVL.

To examine the effect of the slope of the dose-response curve further, we considered
the ART regimen of two drugs, including both RTI and PI. We considered combina-
tions of RTIs and PIs of both high and low CPE scores and computed the time to
undetectability of PVL. Our simulations show that in all regimens considered, neither
the BVL nor the PVL has any noticeable difference in the time to undetectability,
suggesting that once multiple drugs are present in the ART regimen, the slope of the
dose-response curve has less effect on the time to viral undetectability (See Supple-
mental Information). For ART with two drugs, even if the slopes of the dose-response
curves are low, the average number of days to viral undetectability is much less than
the regimen with one drug (∼ 10 days in two drugs compared to ∼ 40 days in one
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Fig. 5 Simulated number of days for the viral load in the plasma (blue) and in the brain (green) to become
undetectable depending on the slope of the dose-response curve for ART regimen with a single drug of a
CPE score of one (left) and four (right). Here, a dose-response slope greater than 1.9 (represented by the
vertical line) corresponds to a PI, while a dose-response slope less than 1.9 corresponds to an RTI. The
vertical lines separate the type of drugs based on this slope value

Fig. 6 Box plots showing the time for the virus to become undetectable (in days) depending on the number
of drugs in an ART regimen. For each case, 15000 samples of drug were randomly generated by choosing
the drug-response slope between zero and five and the CPE score between zero and five

drug). In particular, we observe that if both an RTI and a PI are present in ART, the
BVL reaches undetected levels at least three days after the PVL becomes undetectable.

4.3 Effect of Multiple Drugs

In the previous section, our model predictions showed that more than one drug in
ART regimens led to less time for the virus to become undetectable. Here we sought
to examine whether this correlation remains the same for ART regimens with three
or more drugs. For our computations, we randomly selected the sample of 15000
combinations of drugs in each of 3-, 4-, and 5-drug regimens by choosing the uniformly
distributed drug-response slope between zero and five and the uniformly distributed
CPE score between zero and five. Drug types were categorized by the slope of the
dose-response curve selected as follows: RTI ifm ≤ 1.9 and PI ifm > 1.9. Again, the
drug concentration was assumed to be constant, and the treatment was initiated after
the viral load reached a steady-state (∼ 250 dpi).

In many cases (Fig. 6), we observed that ART regimens with multiple drugs reduce
the PVL to the undetectable level before the BVL. However, many outliers appeared
in our samples among the PVL, implying more uncertainty in PVL outcomes. This is
likely because we chose uniformly distributed random slopes between 0 and 5, which
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Fig. 7 The time (in days) for the viral load to become undetectable in the plasma (blue) and the brain (green)
depending on the treatment initiation time of one RTI (top row) and one PI (bottom row) with a low CPE
score (left column) and a high CPE score (right column)

increases the likelihood of selecting slopes corresponding to PIs (1.9 < m < 5) than
RTIs (0 < m ≤ 1.9).

Note that the number of drugs in a treatment regimen highly affects the time for the
BVL to become undetectable. Specifically, the median days for the BVL to become
undetectable decreases from∼ 7 days for three drugs to∼ 0.5 days for five drugs. We
also observed that viral suppression in the plasmamight not imply viral suppression in
the brain for drug regimens with a higher number of drugs. This result highlights the
role of the BBB, impacting the permeability of many drugs in regimens with multiple
drugs.

4.4 Effect of Treatment Initiation Time

In Fig. 7, we present the predicted time in days post-infection that the plasma and brain
viral load achieve undetectable levels depending on the treatment initiation time. We
performed computations using a single RTI or PI with a corresponding CPE score of
either one or four. The time of treatment initiation was varied between one day and
300 days post-infection (dpi).

We observed that the earliest initiated treatment (< 3 dpi) is more effective as it can
prevent infection from reaching detectable viral levels in the brain. The effectiveness
of early treatment revealed in our results is consistent with previous studies (Chun and
Engel 1998; Vaidya and Rong 2017). Furthermore, our simulations suggest that, in
general, the time for the PVL and BVL to reach undetectable levels varies significantly
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within the first 100 days post-infection. For instance, if treatment begins during the
second-week post-infection, the virus is detectable in both the plasma and the brain
for longer (15−20 dpi) than for any other treatment initiation time. If the treatment is
initiated between eight and ten weeks post-infection, the time to viral undetectability
(<5 dpi in the brain, ∼ 8 dpi in the plasma) is significantly less than other treatment
initiation times. Once the steady state is reached, the treatment initiation time does
not affect the time for the virus to fall below undetectable levels.

We also compared the outcome of PIs and RTIs for varying treatment initiation
times. We found that treatment with a PI is highly effective at reducing the PVL but
less effective at reducing the BVL. In contrast, treatment with an RTI reduces the BVL
consistently more efficiently than the PVL. In some cases with high CPE scores, the
treatment initiation time may result in the BVL becoming undetectable faster than the
PVL. However, in treatment with a low CPE score, we did not observe such a case in
which the BVL becomes undetectable before the PVL.

5 Discussion

Despite the success of ART in controlling HIV, a cure remains beyond the scope of
current treatment, mainly due to the formation of viral reservoirs, such as the brain.
In particular, the effect of the BBB, which blocks the drugs from entering the brain,
remains a challenge for developing proper treatment protocols. A comprehensive look
at the infection of HIV in the brain and the effect the BBB poses on ART has not been
explored in previous studies.

Themain objective of this studywas to develop amathematical model to investigate
the impact of BBB on treatment-mediated viral suppression in the brain. Our model
provides new insights that may help mitigate HIV from the brain. A critical finding
from the model simulations is that the CPE score plays a significant role in the viral
suppression in the brain for drugs with high slopes (m > 1.9), compared to drugs
with low slopes (m < 1.9). A more significant suppression with a high-slope drug
indicates that the protease inhibitors are more effective because, generally, ART drugs
with larger slopes (m > 1.89) tend to be protease inhibitors (aidsinfo 2018) (see
Table 2). As expected, our predictions suggest that changing the CPE score does not
affect the time for the PVL to become undetectable for either drug type; however, the
CPE score significantly impacts the time for the BVL to reach undetectable levels.
Particularly for PIs, a higher CPE score corresponds to a shorter time for the BVL to
become undetectable. For the drugs with low slopes, the CPE score has a negligible
impact on the time to viral undetectability in the brain. A similar phenomenon was
observedwhenwe consideredARTwith two drugs. PIs, which often have a higherCPE
score, generally manage to enter the brain with a higher percentage of drugs, resulting
in a lower time to the BVL undetectability. Our simulations are also supported by
the results of Letendre (2011), which illustrate the lower impact of the BBB on PI
treatments to control HIV in the brain.

We further considered the effect the BBB has on drug regimens with higher dose-
response curve slopes than those with lower slopes. In this case, we found that the PVL
reached undetectable levels in significantly less time (≈ 50 days vs. ≈ 1 day) if the
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slope of the dose-response curve of a drug is over 1.9, independent of the CPE score.
This drastic difference in reduction time for PIs was not observed in the case of BVL.
However, the BVL becomes undetectable roughly three weeks before the PVL for
ART with lower slopes, unlike the results from ART with higher slopes. Furthermore,
our simulations suggest that the BBB reduces the effect of ART on controlling HIV in
the brain, especially for drugs with higher slopes. Therefore, depending on the slope
of the dose-response curves, control of the PVL may not necessarily indicate control
of the BVL.

The time for the viral load to reach undetectable levels depends on the treatment
initiation time. While an early treatment may prevent the establishment of a viral
reservoir, as demonstrated in previous studies (Archin et al. 2012), our model sug-
gests that for the treatment initiated after three dpi, early ART may not always result
in a shorter time for viral undetectability. For example, the treatment initiated dur-
ing the second-week post-infection (10-14 dpi) may take longer for the viral load to
become undetectable than the treatment begun at 60 dpi (Fig. 7).We used our model to
formulate the basic reproduction number,R0, which we prove (Theorem 5) to provide
a threshold condition for the global stability of the infection-free equilibrium (R0 < 1)
or persistence of infection (R0 > 1) in the brain. Based on this formulation, we can
compute the combination of ART drugs that asserts R0 < 1 to avoid infection.

Weacknowledge several limitations of this study.Weare unable to present themodel
fitting to the realistic viral dynamics data because of its unavailability. However, we
would like to note that our model is based on experimental evidence on realistic HIV
dynamics. Without treatment, this model has been carefully developed based on solid
biological evidence and validated using experimental data from SIV/SHIV-infected
macaques in a previous study (Barker and Vaidya 2020). We only studied constant
treatment, often leading to viral eradication. In reality, maintaining a constant drug
concentration is less likely, and so far, no evidence of consistent viral eradication
has occurred. Time-varying drug concentration may be necessary, as done previously
(Duwal et al. 2019; Vaidya and Rong 2017), to model a more-likely scenario.

The study by Vaidya and Rong (2017) suggests that the pharmacodynamics of
each drug play a critical role in the control of infection. They also found that the basic
reproduction numbermaynot be themost reasonable indicator of infection persistence.
They suggested the infection invasion threshold incorporating time-dependent drug
concentration for more accurate criteria for infection control. We did not take into
account the drug resistance nor the potential for viral mutation, which could result in
viral rebound even amid treatment. A previous study (Strazielle et al. 2016) suggests
that astrocytes and T-cells may harbor viral RNA in the brain, neither of which was
considered in our model. Explaining drug concentration in the CSF entirely based on
CPE score may also have some limitations; experiments analyzing more detailed drug
concentrations may provide a better drug profile in the CSF. While these theoretical
results offer insight into potential ART treatment improvements, they must be tested
by in vitro and in vivo experiments before any recommendations can be offered in
practice.

A similarly structured model may be utilized for each viral reservoir, contributing
to viral rebound. This study did not include the presence of latently-infected cells
and reservoirs, which are known to contribute to viral rebound (Ho and Shan 2013)
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significantly. While our study provides a great insight into the brain virus contributing
to theHIV reservoir, more complexmodelswith all potential reservoirs in combination
can provide a complete picture of potential HIV eradication through early treatments.
However, such models need data with all the reservoirs collected simultaneously.

In summary, the model developed in this study underscores the role of BBB in the
altered effectiveness of ART on viral control in the brain. The BBB-impacted CPE
scores, the dose-response slope, the number of drugs in an ART regimen, and the
treatment initiation time are the essential factors that must be considered to design the
ideal treatment protocol for mitigating HIV in the brain. All these results combined
indicate that the choice of drugs in the treatment regimens is vital for successfully
controlling the virus in the brain.
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