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Abstract
Time scales theory has been in use since the 1980s with many applications. Only very
recently, it has been used to describewithin-host and between-hosts dynamics of infec-
tious diseases. In this study, we present explicit and implicit discrete epidemic models
motivated by the time scales modeling approach. We use these models to formulate
the basic reproduction number, which determines whether an outbreak occurs or the
disease dies out. We discuss the stability of the disease-free and endemic equilibrium
points using the linearization method and Lyapunov function. Furthermore, we apply
our models to swine flu outbreak data to demonstrate that the discrete models can
accurately describe the epidemic dynamics. Our comparison analysis shows that the
implicit discrete model can best describe the data regardless of the data frequency. In
addition, we perform the sensitivity analysis on the key parameters of the models to
study how these parameters impact the basic reproduction number.
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1 Introduction

Mathematical models in the form of differential equations have a long history of
providing important contributions to the study of infectious diseases. One of the most
frequently used model classes is based on SIR (susceptible-infected-recovered) type
formulation, which describes the transmission dynamics of diseases. In the basic SIR
model, the population is divided into three compartments as the susceptible, S, the
infected, I , and the removed/recovered, R. A basic continuous SIR (C-SIR) model
with susceptible recruitment and natural death rate similar to the one introduced by
Kermack and McKendrick (1927) is:

C-SIR Model:

⎧
⎪⎨

⎪⎩

S
′ = −βSI − γ S + α,

I
′ = βSI − (γ + λ)I ,

R
′ = λI − γ R.

(1)

In this model, the susceptible individuals are infected upon successful contact with
infected individuals at the transmission rateβ per individual per unit time. The infected
individuals are recovered from the disease at the per capita recovery rate λ per unit
time. The parameters α and γ represent the recruitment rate of susceptible individuals
per unit time and the per capita death rate of the population per unit time, respectively.
Many variants of the incidence rate βSI have been considered, including a nonlinear
form βSI

1+α I as in Capasso and Serio (1978) and the form βS(t)I (t−τ)
1+α I (t−τ)

as in Cooke

(1979); McCluskey (2010a); McCluskey (2010b). Here, τ indicates the time delay
required by the infected individuals from the time they contract pathogens to the
time they become infectious. The global stability analysis of these models have been
extensively studied, including the one by McCluskey (2010b), who considered the
system with βS(t)I (t−τ)

1+α I (t−τ)
incidence rate and established the global stability analysis of

the equilibrium by constructing Lyapunov functions.
The continuous SIRmodels are often validated using the data-fitting process, which

provides reasonable estimates to the model parameters. However, the data are discrete
in general, quite often collected with varying time intervals. In this regard, the discrete
models may be suitable to recover parameters from the discrete data sets. While some
other continuous and discrete SIRmodels have been investigated (Allen 1994; Jang and
Elaydi 2003; Saito 2016; Kermack and McKendrick 1927; Enatsu et al. 2010, 2012),
including some for the transmission dynamics of H1N1 (Kim et al. 2017, 2020; Lee
et al. 2021; Tan et al. 2012; Vaidya et al. 2015), the application and analysis of time-
scale based discrete models in the context of infectious diseases are not well-advanced
yet.

In Akın and Yeni (2020), the unification of continuous and discrete models of SIS
(susceptible-infected-susceptible) is formulated on an arbitrary closed subset of real
numbers, so-called a time scale. The discrete SIS model in Akın and Yeni (2020) is
given as a system of two nonlinear dynamic equations, and the exact solution is derived
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by the approach of the Bernoulli equation on time scales (Akın-Bohner and Bohner
2003). Motivated by Akın and Yeni (2020), we consider two variants of the discrete
SIRmodel, onewith the explicit formulation and anotherwith the implicit formulation.
In the explicit formulation, we assume that the incidence rates are calculated based
on the population interaction in the previous time. The explicit discrete SIR (ED-SIR)
model we introduce takes the following form:

ED-SIR Model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�Sn = −β(1 − γ )

1 + β In
Sn In − γ Sn + α,

�In = β(1 − γ )

1 + β In
Sn In − (γ + λ)In,

�Rn = λIn − γ Rn,

(2)

with initial conditions S0 > 0, I0 > 0 and R0 ≥ 0. The numbers of susceptible,
infected, and recovered individuals for n ≥ 0 are denoted by Sn , In , and Rn , respec-
tively. We assume that all parameters are positive and γ < 1.

In the implicit formulation, the incidence rate is computed according to the popula-
tion interaction at the present time. This assumption allows us to develop the following
implicit discrete SIR (ID-SIR) model:

ID-SIR Model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�Sn = − β(1 − γ )

1 + β In+1
Sn+1 In+1 − γ Sn+1 + α,

�In = β(1 − γ )

1 + β In+1
Sn+1 In+1 − (γ + λ)In+1,

�Rn = λIn+1 − γ Rn+1.

(3)

We begin by introducing the preliminary results for the system of difference equa-
tions and discrete stability analysis and refer readers to two books introducing the
theory of time scales by Bohner and Peterson (2001, 2003). In Sect. 3, we derive
disease-free equilibrium (DFE) and endemic equilibrium (EE) points and compute
basic reproduction number (R0 ) for the ED-SIR model (2). We note that ED-SIR
model (2) and ID-SIR model (3) have the same equilibrium points and the same R0
formulation. In Sects. 4 and 5, we discuss the necessary conditions for their local and
global stability analysis for the ED-SIR model (2) and ID-SIR model (3). In addition,
we consider the swine flu (H1N1 influenza) data in a rural university campus and
study how these discrete models (2) and (3) are different from continuous model (1) to
describe this data set (see Sect. 6). In the last section, we conclude our results, discuss
the importance of the theory of time scales, and share some open problems.
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2 Preliminaries

In this paper, we discuss the stability analysis of ED-SIR and ID-SIR models, (2) and
(3), respectively. Therefore, we first present some necessary definitions and results
related to stability theory from the books written by Elaydi (2005) and Kelley and
Peterson (2001).

The following system of m linear equations:

x1(n + 1) = a11x1(n) + a12x2(n) + · · · + a1mxm(n)

x2(n + 1) = a21x1(n) + a22x2(n) + · · · + a2mxm(n)
...

...
...

...

xm(n + 1) = am1x1(n) + am2x2(n) + · · · + ammxm(n)

may be written in the vector form

x(n + 1) = Ax(n), (4)

where x(n) = (x1(n), x2(n), · · · , xm(n))T ∈ R
m , and A = (ai j ) is an m × m real

nonsingular matrix. System (4) is considered autonomous or time-invariant, since the
values of A are all constants. The spectral radius of A is defined as

r(A) = max {|ξ | : ξ is an eigenvalue of A} .

We consider the vector difference equation

x(n + 1) = f (x(n)), (5)

with x(n0) = x0, where x(n) ∈ R
k , f : Rk → R

k is continuous. A point x∗ in R
k

is called an equilibrium point of (4) if f (x∗) = x∗ for all n ≥ n0 and is classified as
follows:

Definition 1 ((Elaydi 2005), Definition 4.2) The equilibrium point x∗ of (5) is said to
be:

(i) Stable if given ε > 0 and n0 ≥ 0, there exists δ = δ(ε, n0) such that
||x0 − x∗|| < δ implies ||x(n, n0, x0) − x∗|| < ε for all n ≥ n0.

(ii) Attracting if there exists someconstantμ = μ(n0) such that ||x(n, n0, x0) − x∗||
< μ implies lim

n→∞ x(n, n0, x0) = x∗.
(iii) Asymptotically stable if it is stable and attracting.
(iv) Globally asymptotically stable if μ = ∞ in parts (ii) and (iii).

The next theorem summarizes the main stability results for the linear autonomous
system (4).

Theorem 1 ((Elaydi 2005), Theorem 4.13) The following statements hold:

(i) The zero solution of (4) is stable if and only if r(A) ≤ 1 and the eigenvalues of
unit modulus are semisimple, i.e., if the corresponding Jordan block is diagonal.
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(ii) The zero solution of (4) is asymptotically stable if and only if r(A) < 1.

For two dimensional systems, if

|trA| < 1 + detA < 2 (6)

holds, then the zero solution of (4) is asymptotically stable, see Elaydi (2005).
Let x∗ be an equilibrium point of f in (4). A real-valued continuous function V on

some ball B about x∗ is called a "Lyapunov function" for f at x∗ provided V (x∗) = 0,
V (x) > 0 for x 	= x∗ in B, and

�nV (x) ≡ V ( f (x)) − V (x) ≤ 0 (7)

for all x in B. If the inequality (7) is strict for x 	= x∗, then V is a "strict Lyapunov
function". We have the following theorem, which plays an important role in showing
the global stability of an equilibriumof the systemof autonomous difference equations.

Theorem 2 (Lyapunov Stability Theorem) Let x∗ be a equilibrium point of f , and
assume f is continuous on some ball about x∗. If there is a Lyapunov function for
f at x∗, then x∗ is stable. If there is a strict Lyapunov function for f at x∗, then x∗
is asymptotically stable. Moreover, if V (x) → ∞ as ||x || → ∞, then x∗ is globally
asymptotically stable.

3 Equilibrium points and the basic reproduction number

In this section, we derive equilibrium points and R0 of ED-SIR and ID-SIR models
(2) and (3), respectively. The first two equations of ED-SIR epidemic model (2) can
be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

Sn+1 = −β(1 − γ )

1 + β In
Sn In + (1 − γ )Sn + α

In+1 = β(1 − γ )

1 + β In
Sn In + (1 − γ − λ)In .

(8)

It is clear that the equilibrium solution of (2) has

S∗ = α + αβ I ∗

γ + β I ∗ . (9)

From the second equation of (2), one can get β(1−γ )S∗ I ∗+(1−γ −λ)I ∗(1+β I ∗) =
(1 + β I ∗)I ∗. Simplification yields I ∗ (β I ∗(γ + λ) + γ + λ − βS∗ + βγ S∗) = 0.
Therefore,

I ∗ = 0 or β I ∗(γ + λ) + γ + λ − βS∗ + βγ S∗ = 0. (10)
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Now we want to solve (9) and (10). If I ∗ = 0, then S∗ = α
γ
. If β I ∗(γ + λ)+ γ + λ−

βS∗ + βγ S∗ = 0, then

I ∗2 +
(

γ + 1

β
+ α(γ − 1)

γ + λ

)

I ∗ +
(

γ

β2 + α(γ − 1)

β(γ + λ)

)

= 0. (11)

Solving the algebraic equation (11) gives

I ∗
1,2 =

−
(

γ+1
β

+ α(γ−1)
γ+λ

)
±

√
(

γ+1
β

+ α(γ−1)
γ+λ

)2 − 4
(

γ

β2 + α(γ−1)
β(γ+λ)

)

2
.

To find I ∗
1 and I ∗

2 values, the expression in the square root needs to be simplified as
follows

(
γ + 1

β
+ α(γ − 1)

γ + λ

)2

− 4

(
γ

β2 + α(γ − 1)

β(γ + λ)

)

= (γ − 1)2
[
1

β2 + 2α

β(γ + λ)
+ α2

(γ + λ)2

]

= (γ − 1)2
[
1

β
+ α

γ + λ

]2

.

Using the fact that γ < 1, we get

I ∗
1,2 =

−
(

γ+1
β

+ α(γ−1)
γ+λ

)
± (1 − γ )

[
1
β

+ α
γ+λ

]

2
.

Hence,

I ∗
1 = −γ

β
+ (1 − γ )

α

γ + λ
and I ∗

2 = − 1

β
.

If I ∗ = I ∗
1 , then substituting I ∗ into (9) gives S∗ = α+αβ I ∗

γ+β I ∗ = γ+λ
β

+ α immediately.
Therefore, ED-SIR model (2) with initial conditions has a disease free equilibrium
E0 = (S∗

0 , I
∗
0 , R∗

0), where

S∗
0 = α

γ
, I ∗

0 = 0, and R∗
0 = 0 (12)

and a positive endemic equilibrium E+ = (S∗, I ∗, R∗), where

S∗ = γ + λ

β
+ α, I ∗ = −γ

β
+ (1 − γ )

α

γ + λ
,

R∗ = λ

γ

(

−γ

β
+ (1 − γ )

α

γ + λ

)

. (13)
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Note that DFE and EE points of ID-SIR model (3) are equivalent to DFE and EE
points of ED-SIR model (2) and are given as in (12) and (13), respectively. Now
we define the threshold index, called the basic reproduction number, which helps
us establish the stability of discrete models. For our models, we define the basic
reproduction number as

R0 = (1 − γ )αβ

γ
+ 1 − (γ + λ). (14)

Note that I ∗ = γ
β(γ+λ)

(R0 − 1) and R∗ = λ
β(γ+λ)

(R0 − 1). Therefore, the endemic
equilibrium exists if and only ifR0 > 1.We note that for our time-scale-based discrete
model formulation, the basic reproduction number, R0, may differ from the general
basic reproduction number defined in an epidemiological context and/or continuous
model. The basic reproduction number derived here should be interpreted as a critical
threshold for stability.

We now analyze the stability of the equilibria of ED-SIR model (2) and ID-SIR
model (3) in the next sections based on the basic reproduction number (14).

4 Local stability of equilibrium points of ED-SIRmodel (2)

In this section, we show that if R0 < 1, then all solutions of ED-SIR model (2)
approach DFE as in (12). For the proof, it is sufficient to consider system (8).

Theorem 3 If R0 < 1, then the disease free equilibrium E0 of ED-SIR model (2) is
locally asymptotically stable, and if R0 > 1, then E0 is unstable.

Proof The Jacobian matrix for the variables of system (8) is

J (S, I ) =
⎡

⎢
⎣

1−γ
1+β I

β(γ−1)S
(1+β I )2

β(1−γ )I
1+β I

β(1−γ )S
(1+β I )2

+ 1 − γ − λ

⎤

⎥
⎦ . (15)

For the disease free equilibrium (S∗
0 , 0) of system (8), the Jacobian matrix is given by

J (S∗
0 , 0) =

⎡

⎢
⎣

1 − γ
(γ−1)αβ

γ

0 (1−γ )αβ
γ

+ 1 − γ − λ

⎤

⎥
⎦

whose eigenvalues are

ξ1 = 1 − γ and ξ2 = (1 − γ )αβ

γ
+ 1 − γ − λ. (16)

It follows that if R0 < 1, then |ξ1| < 1 and |ξ2| < 1. Therefore, (S∗
0 , 0) is locally

asymptotically stable. IfR0 > 1, then |ξ2| > 1 and thus (S∗
0 , 0) is unstable. Now one
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can consider ED-SIR model (2), where Rn+1 = λIn + (1 − γ )Rn . In this case, the
Jacobian matrix for E0 is given by

J (E0 = (S∗
0 , 0, 0)) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 − γ
(γ−1)αβ

γ
0

0 (1−γ )αβ
γ

+ 1 − γ − λ 0

0 λ 1 − γ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

whose eigenvalues are ξ1, ξ2 given as in (16), and ξ3 = 1 − γ . Since γ < 1, we have
|ξ3| < 1. Therefore, ifR0 < 1, then E0 is locally asymptotically stable, and unstable
ifR0 > 1 by Theorem 1. Hence, the proof is completed. ��

Following similar steps as in Theorem 3, one can also show that if R0 > 1, then
all solutions of ED-SIR model (2) approach E+ = (S∗, I ∗, R∗) as in (13). Note that
one can get the DFE, i.e., S∗

0 = α
γ
, I ∗

0 = 0, and R∗
0 = 0 ifR0 = 1.

Theorem 4 If R0 > 1, then the endemic equilibrium point E+ of ED-SIR model (2)
is locally asymptotically stable.

Proof AssumeR0 > 1. In the proof ofTheorem3, the Jacobianmatrix for the variables
of system (8) is computed as in (15). Hence, for the endemic equilibrium (S∗, I ∗), the
Jacobian matrix is

J (S∗, I ∗) =
⎡

⎢
⎣

1−γ
1+β I ∗

β(γ−1)S∗
(1+β I ∗)2

β(1−γ )I ∗
1+β I ∗

β(1−γ )S∗
(1+β I ∗)2 + 1 − γ − λ

⎤

⎥
⎦

=
⎡

⎢
⎣

γ+λ
γ+λ+αβ

− (γ+λ)2

(1−γ )(γ+λ+αβ)

−γ + αβ
γ+λ+αβ

(γ+λ)2

(1−γ )(γ+λ+αβ)
+ 1 − γ − λ

⎤

⎥
⎦ .

To show that (S∗, I ∗) is locally asymptotically stable, condition (6) needs to be held
for J (S∗, I ∗), i.e.,

∣
∣trJ (S∗, I ∗)

∣
∣ < 1 + detJ (S∗, I ∗) < 2. (17)

First, note that

detJ (S∗, I ∗) = (γ + λ)2

(1 − γ )(γ + λ + αβ)

(
γ + λ

γ + λ + αβ
+ αβ

γ + λ + αβ
− γ

)

+ γ + λ

γ + λ + αβ
(1 − γ − λ)

= (γ + λ)2

γ + λ + αβ
+ γ + λ

γ + λ + αβ
(1 − γ − λ)
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= γ + λ

γ + λ + αβ
. (18)

The assumption R0 > 1 implies that

γ + λ

(1 − γ )(γ + λ + αβ)
− 1 < 0. (19)

Therefore,

∣
∣trJ (S∗, I ∗)

∣
∣ =

∣
∣
∣
∣

γ + λ

γ + λ + αβ
+ (γ + λ)2

(1 − γ )(γ + λ + αβ)
+ 1 − (γ + λ)

∣
∣
∣
∣

= 1 + γ + λ

γ + λ + αβ
+ (γ + λ)

(
γ + λ

(1 − γ )(γ + λ + αβ)
− 1

)

< 1 + detJ (S∗, I ∗) (20)

by (18) and (19). Furthermore,

1 + detJ (S∗, I ∗) = 1 + γ + λ

γ + λ + αβ
= 1 + 1

1 + αβ
γ+λ

< 2. (21)

Hence, (17) holds from (20) and (21). For system (2), the characteristic equation is

det(J (E+ = (S∗, I ∗, R∗)) − r I3×3)

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

γ+λ
γ+λ+αβ

− (γ+λ)2

(1−γ )(γ+λ+αβ)
0

−γ + αβ
γ+λ+αβ

(γ+λ)2

(1−γ )(γ+λ+αβ)
+ 1 − γ − λ 0

0 −λ 1 − γ − r

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= det(J ((S∗, I ∗)) − r I2×2) × (1 − γ − r) = 0,

where Ii×i is the i × i unit matrix for i = 2, 3. We already have the conditions to
be held for r1 and r2 of det(J ((S∗, I ∗)) − r I2×2). Since r3 = 1 − γ follows from
the characteristic equation, we finally get |r1| < 1, |r2| < 1, and |r3| < 1 by (17).
Following from Theorem 1, the endemic equilibrium E+ is locally asymptotically
stable ifR0 > 1. ��

5 Global stability of the endemic equilibrium for ID-SIRmodel (3)

In this section, we show the global stability of the endemic equilibrium E+ of ID-SIR
model (3) by using a suitable Lyapunov function.
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Theorem 5 If R0 > 1, then the endemic equilibrium E+ of ID-SIR model (3) is
globally asymptotically stable.

Proof Let f (x) = x
1+βx and g(x) = x − 1 − ln x , x > 0. It is clear that g has

minimum at x = 1 such that g(1) = 0 and g(x) ≥ 0 for x > 0. We define the
following Lyapunov function

Vn = V (Sn, In, Rn) = 1

β(1 − γ ) f (I ∗
0 )

VSn + I ∗

β(1 − γ )S∗ f (I ∗)
VIn , (22)

where

VSn = g

(
Sn
S∗

)

, VIn = g

(
In
I ∗

)

. (23)

Now we calculate �VSn and �VIn in order to show �Vn < 0.

�VSn = g

(
Sn+1

S∗

)

− g

(
Sn
S∗

)

= Sn+1 − Sn
S∗ + ln

Sn
Sn+1

≤ (Sn+1 − Sn)

(
Sn+1 − S∗

S∗Sn+1

)

= −γ
(Sn+1 − S∗)2

S∗Sn+1
− β(1 − γ ) f (I ∗)

(
Sn+1 f (In+1)

S∗ f (I ∗)
− 1

) (

1 − S∗

Sn+1

)

,

(24)

where we use ln (1 − x) ≤ −x for x < 1 and replace α by β(1− γ )S∗ f (I ∗) + γ S∗.
Similarly,

�VIn = g

(
In+1

I ∗

)

− g

(
In
I ∗

)

= In+1 − In
I ∗ + ln

In
In+1

≤ (In+1 − In)

(
In+1 − I ∗

I ∗ In+1

)

= β(1 − γ )S∗ f (I ∗)
I ∗

(
Sn+1 f (In+1)

S∗ f (I ∗)
− In+1

I ∗

) (

1 − I ∗

In+1

)

, (25)

since (γ + λ)I ∗ = βS∗ f (I ∗). Therefore, from (24) and (25)

�Vn = Vn+1 − Vn

≤ −γ
(Sn+1 − S∗)2

β(1 − γ ) f (I ∗)S∗Sn+1
−

(
Sn+1 f (In+1)

S∗ f (I ∗)
− 1

) (

1 − S∗

Sn+1

)
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+
(
Sn+1 f (In+1)

S∗ f (I ∗)
− In+1

I ∗

)(

1 − I ∗

In+1

)

. (26)

For simplicity, let xn+1 = Sn+1

S∗ , yn+1 = In+1

I ∗ and F(yn+1) = f (In+1)

f (I ∗)
. Then, (26)

becomes

�Vn ≤ −γ
(Sn+1 − S∗)2

β(1 − γ ) f (I ∗)S∗Sn+1
+ F(yn+1) − xn+1

yn+1
F(yn+1) − 1

xn+1
− yn+1 + 2. (27)

Adding and subtracting ln
xn+1

yn+1
F(yn+1) in (27) yield

�Vn ≤ −γ
(Sn+1 − S∗)2

β(1 − γ ) f (I ∗)S∗Sn+1
− g

(
1

xn+1

)

− g

(
xn+1

yn+1
F(yn+1)

)

+F(yn+1) − yn+1 + ln yn+1 − ln F(yn+1). (28)

Let h(z) = F(z) − z + ln z − ln F(z), where z = yn+1. Then, h(1) = 0 and h′(z) =
(1 − z)

(
2β I ∗+(β I ∗)2z

(1+β I ∗z)2
)
. Hence, h′(z) > 0 if z < 1 and h′(z) < 0 if z > 1.

From the above discussion and the fact that g is nonnegative, if (Sn+1, In+1) =
(S∗, I ∗), then h = 0 and �Vn = 0. If (Sn+1, In+1) 	= (S∗, I ∗), then h < 0 and
hence�Vn < 0 for any n ≥ 0 from (28). Since V is a monotone decreasing sequence,
lim
n→∞ Vn ≥ 0 and lim

n→∞(Vn+1 − Vn) = 0. Therefore, (27) implies that

lim
n→∞ Sn+1 = S∗. (29)

By solving the first equation of system (3) for In+1 and using (29), we have

lim
n→∞ In+1 = lim

n→∞
α − (γ + 1)Sn+1 + Sn
β(2Sn+1 − Sn − α)

= α − γ S∗

β(S∗ − α)
= I ∗. (30)

From the third equation of system (3) and (30), lim
n→∞ Rn = R∗ can be shown similarly.

Hence, we obtain lim
n→∞(Sn, In, Rn) = (S∗, I ∗, R∗). Therefore, the endemic equilib-

rium E+ of ID-SIRmodel (3) is globally asymptotically stable by LaSalle Invariance
principle. ��

6 Application of models to Swine flu data

In this section, we apply our discrete models (2) and (3) to the epidemic spread of
the H1N1 influenza (swine flu) outbreak in a rural university town. It is well known
that H1N1 in humans is an airborne disease, so transmission from infected individ-
uals to susceptible individuals occurs via direct interaction between susceptible and
infected individuals. Therefore, our models is suitable to describe H1N1 transmission
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Data frequency: Daily
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Fig. 1 Fitting of C-SIR, ED-SIR, and ID-SIR models to Swine Flu Data from WSU (Vaidya et al. 2015)
for the data frequency of daily, every 2 days, every 3 days, and every 4 days. The fixed parameters are
S0 = 18223 and α = γ = 0 corresponding to the H1N1 outbreak situations in WSU (Vaidya et al. 2015).
Since most infection occurs early during the semester, we have considered only 40-day data to capture
critical transmission events. Also, the prevalence given in Vaidya et al. (2015) has been converted to the
actual number of infected individuals for more clarity

dynamics. We used the published epidemiological data (Vaidya et al. 2015) of H1N1
influenza cases among students of Washington State University (WSU). Note that
our models do not include the vaccination group because the vaccination data were
unavailable, and vaccination against seasonal flu may not be effective against H1N1
strains. Since in the rural university town of WSU, with students as the majority of the
population, birth-death is zero during a single semester of the data collection period,
we took α = γ = 0 to make it consistent with the data.

We fit all of C-SIR (1), ED-SIR (2), and ID-SIR (3) models to the data for 40 days
and compare the models using the Akaike information criterion (AIC) described by
the following formula (Akaike 1974; Burnham et al. 2011):
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Table 1 Model comparison based on AIC values

AIC Values

Data frequency C-SIR Model ED-SIR model ID-SIR model

Daily 381 390 341

Every 2 days 196 204 165

Every 3 days 136 145 109

Every 4 days 104 110 90

AIC = nd log

(
SSR

nd

)

+ 2nd(n p + 1)

nd − n p − 2
, (31)

where nd represents the number of data points, n p represents the number of param-
eter estimated, and SSR represents the sum of squared residuals given by SSR =∑

nd (Imodel − Idata)2. Here Imodel and Idata represent the infected populations pre-
dicted by the model and given by the data, respectively. The lower the AIC value, the
better the model to fit the data.

The data-fitting process indicates that each model can capture the epidemic trend
of the H1N1 Influenza outbreak (Fig. 1). However, the computed AIC values (Table
1) indicate that the ID-SIR model fits the data best, followed by the C-SIR model and
then by the ED-SIR model (AIC = 341, 381, 390 for ID-SIR, C-SIR, and ED-SIR
models, respectively). To represent the situations, in which the frequency of the data
is limited, we considered three data subsets by selecting the influenza cases every 2,
3, and 4 days from the original daily data set. For each data subset, we performed
model fitting and comparison. We found that the order {ID-SIR, C-SIR, ED-SIR} of
the goodness of the models remains the same for each data subset (Fig. 1, Table 1),
indicating that implicit discrete formulation (ID-SIR model (3)) may be the suitable
strategy to describe discrete epidemiological data best.

The best model, ID-SIR model (3), and the correspondingR0 formulation provide
the basic reproduction number of H1N1 outbreak in WSU to be 1.35. Note that in the
case of α = γ = 0 in WSU, α/γ (an indeterminate form) needs to be replaced by the
initial susceptible population, S0, (i.e., entire susceptibility, S0 ≈ S∗

0 , the disease-free
equilibrium) in the formulation of R0.

We also considered the wider parameter space of two important parameters, β

(transmission rate), and λ (recovery rate), and observed howR0 changes across these
parameter spaces (Fig. 2). We identified the combinations of β and λ corresponding
toR0 = 1 (line in Fig. 2), below whichR0 < 1 (DFE is stable, implying the outbreak
is avoided) and above whichR0 > 1 (DFE is unstable, and the outbreak occurs). The
decrease in β and increase in λ cause a decrease in R0, eventually bringing it below
unity. In practice, the decrease of β can be linked to the contact reducing preventions,
such aswearingmasks and self-protection through awareness, and the increase inλ can
be linked to the preventions such as detection and isolation of infected individuals. In
Fig. 2 (right), we present the bifurcation diagram showing the stability of equilibriums
(disease-free and endemic) usingR0 as bifurcation parameters.

123



6 Page 14 of 16 G. Yeni et al.

0 0.5 1 1.5 2
The Basic Reproduction Number

0

2

4

6

8

10

E
nd

em
ic

 In
fe

ct
ed

 E
qu

ili
br

iu
m

Bifurcation diagram

Fig. 2 [Left] The basic reproduction number,R0, corresponding to the best-fit ID-SIR model for different
values of β and λ. The line represents the combinations of β and λ corresponding to R0 = 1. Other
parameters used are S0 = 18223 and α = γ = 0 corresponding to the H1N1 outbreak situations in
WSU (Vaidya et al. 2015). [Right] Bifurcation diagram showing infected class at equilibriums with R0
as a bifurcation parameter. To observe endemic equilibrium, the parameters used are γ = 6.85 × 10−4

(corresponding to the average university period of 4 years) and α = γ S0 (assuming that the system was in
equilibrium before the outbreak)

7 Conclusion

In this paper, we propose two discrete epidemic models, ED-SIR (2) and ID-SIR (3),
and develop the basic reproduction number,R0, for the models in order to obtain the
stability of disease-free and endemic equilibria. We show the local stability of disease-
free and endemic equilibria of ED-SIR model (2) by the linearization method, yet the
global stability is left as an open problem. On the other hand, we successfully show
the global stability of the endemic equilibrium of ID-SIR model (3) by constructing a
suitable Lyapunov function, but the global stability of the disease free equilibrium is
still not known. We also apply our discrete models, namely ED-SIR (2) and ID-SIR
(3) together with continuous model C-SIR (1) to data from Swine Flu outbreak in a
university community, and find that ID-SIR model (3) can describe the outbreak best
among these models based on AIC value (31). We also compute the value of R0 for
the best model ID-SIR (3) and discuss the stability withR0 as a bifurcation parameter.
Note that our discrete models, ED-SIR (2) and ID-SIR (3), motivated from the time-
scale modeling approach developed by Akın and Yeni (2020) for infectious disease
models, have the same equilibria (12) and (13) and the basic reproduction number
(14), respectively.

Nowwe would like to mention our observations and the importance of studying the
theory of time scales. Note that the incidence rates of discrete models ED-SIR (2) and
ID-SIR (3) depend on the death rate γ and the transmission rate β while continuous
model C-SIR (1) has the incidence rate independent of γ . For the theory of time scales,
we define the forward jump operator σ , giving the next point in a time scale. In our
paper, our time scale only consists of integers Z for the discrete models and σ(n) =
n + 1, n ∈ Z. Note that the incidence rate of ID-SIR model (3) involves the forward

123



Time scale theory on stability of explicit... Page 15 of 16 6

jump operator but not the incidence rate of ED-SIR model (2). Therefore, taking σ

into account provides an opportunity for studying discrete analysis theory. Importantly,
the forward jump operator allows us to consider variants of a discrete model with the
required time scale, while the continuous models lack this advantage since σ(t) = t
for t ∈ R. In the theory of time scales, we can define the step-size function μ giving
the distance between two consecutive points in a time scale, i.e.,μ(t) = σ(t)− t . Note
thatμ = 0 allows us to recover the continuous models.We observe that AIC values for
each model are smaller for a larger data frequency, indicating that a choice of suitable
time-scale may be important for modeling. Therefore, it is worthwhile to consider
other variants of discrete models (Akın and Yeni 2020) with the step-size function
μ other than 1. For example, one can investigate the stability of equilibrium points
of explicit and implicit discrete models on hZ, h > 0 and estimate h to determine
the suitable time scale for the best model describing infectious diseases. Considering
models on hZ might result inR0 that depends on h.

In summary, we provide time-scale-based discrete models, which may describe the
epidemiological data better, presumably because of the discrete nature of the data. Our
results underscore the importance of time-scalemodeling for applications of infectious
disease models for their control and prevention.
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