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A B S T R A C T

The newly emerging pandemic disease often poses unexpected troubles and hazards to the global health system, particularly in low and middle-income countries
like Nepal. In this study, we developed mathematical models to estimate the risk of infection and the risk of hospitalization during a pandemic which are critical
for allocating resources and planning health policies. We used our models in Nepal’s unique data set to explore national and provincial-level risks of infection and
risk of hospitalization during the Delta and Omicron surges. Furthermore, we used our model to identify the effectiveness of non-pharmaceutical interventions
(NPIs) to mitigate COVID-19 in various groups of people in Nepal. Our analysis shows no significant difference in reproduction numbers in provinces between
the Delta and Omicron surge periods, but noticeable inter-provincial disparities in the risk of infection (for example, during Delta (Omicron) surges, the risk of
infection of Bagmati province is: ∼ 98.94 (89.62); Madhesh province: ∼ 12.16 (5.1); Karnali province ∼31.16 (3) per hundred thousands). Our estimates show
a significantly low level of hospitalization risk during the Omicron surge compared to the Delta surge (hospitalization risk is: ∼ 10% in Delta and ∼ 2.5% in
Omicron). We also found significant inter-provincial disparities in the hospitalization rate (for example, ∼ 6% in Madhesh province and ∼ 21% in Sudur Paschim)
during the Delta surge. Moreover, our results show that closing only schools, colleges, and workplaces reduces the risk of infection by one-third, while a complete
lockdown reduces the infections by two-thirds. Our study provides a framework for the computation of the risk of infection and the risk of hospitalization and
offers helpful information for controlling the pandemic.
1. Introduction

The COVID-19 pandemic has expanded globally in multiple waves,
resulting in considerable clinical expenses due to the emergence of
new Corona Virus strains. Despite the global control efforts and the
development of vaccines, the disease has triggered a catastrophic im-
pact with more than 692.58 million cases and more than 6.90 million
deaths as of 3 August 2023 (Worldometer, 2023). Notably, during the
pandemic, a lack of knowledge about the risk of circulating new strains,
which may be more contagious and capable of evading the immune
response of previously infected or vaccinated individuals, may lead
to unusually high cases (Islam et al., 2022). Due to the uncertainty
and variability in disease severity across different strains, there are
often insufficient resources and preparedness, resulting in overwhelmed
hospitalizations and shortages of medical staff, equipment, and beds.
Consequently, individuals may postpone seeking medical attention and
neglect preventive measures, which can ultimately increase the risk
of death, as witnessed in Nepal and India during the Delta variant
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outbreak (Adhikari et al., 2022; Malik, 2022). The uncertainty on
the risk of infection and hospitalization may have a greater impact,
especially on developing countries like Nepal, because of the resource
limitations. Thus, estimating the real-time risk of infection and hospi-
talization is crucial for assessing disease transmission and managing
medical resources to minimize the burden of pandemics.

Nepal, one of the least developed countries in the world, has been
severely impacted by the COVID-19 pandemic (Adhikari et al., 2022;
Ben, 2021; Bhandari and Hannah Peterse, 2021). Specifically, the sec-
ond and third waves with the respective Delta and Omicron variants
swept across the country from the beginning of April 2021, resulting in
one million cases and 12,019 deaths (MoHP, 2022) until 1 December
2022. During the peak of the second wave of COVID-19 (end of May
2021), Nepal experienced a terrifying shortage of hospital beds, ICU
beds, ventilators, and oxygen cylinders, which resulted in a loss of
potentially preventable lives (Ben, 2021; Bhandari and Hannah Peterse,
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2021). The first case of Omicron in Nepal was detected on 6 December
2021 (Poudel, 2021). On 23 January 2022, the Omicron variant con-
stituted 88% of the new cases (Poudel, 2022) and then quickly swept
across the country but with significantly less severe cases than the Delta
wave (Worldometer, 2023; MoHP, 2022).

The seven provinces of Nepal have various contact patterns of
population because of the diverse geographical areas, distinct lifestyles,
cultural practices, economic circumstances, and levels of urbanization
in these areas (Pantha et al., 2021), which also pose challenges in
testing and reporting COVID-19 cases. As a result, each of Nepal’s seven
provinces had specific vulnerabilities during Delta and Omicron surges.
These distinctive features highlight the importance of context-specific
distinct Nepalese data set with a multi-phasic trend of disease dynamics
to perform an in-depth analysis of the risk of infection and hospitaliza-
tion in the context of the geographic and demographic heterogeneity
among the provinces of Nepal.

The effective reproduction number is widely used to assess the speed
of an epidemic; if it is greater than one, the disease is rising (van den
Driessche and Watmough, 2002). However, due to the differences in the
size of the susceptible population, the number of infected individuals,
and the population’s contact pattern, two localities with the same ef-
fective reproduction number may be vulnerable in different magnitudes
(different magnitudes of incidence) during the pandemic. In such situ-
ations, estimating the risk of infection and hospitalization is essential,
which can better describe epidemic status and healthcare capabilities.
Limited clinical case studies (Dorabawila et al., 2022; Berumen et al.,
2020; Lehnig et al., 2021; Tang et al., 2020; Rajiv and Jeffrey, 2020;
Xiang et al., 2022) and a handful of mathematical models (Bhatia
and Klausner, 2020; Wan et al., 2020; Mizumoto and Chowell, 2020;
Meehan et al., 2020) estimate the risk of infection and hospitalization.
However, none of these studies have combined mathematical models
with real-time incidence data, active hospitalization, and population
contact patterns, constituting the essential factors associated with dis-
ease transmission and controls. Such data-driven mathematical models
can accurately estimate and quantify the real-time risk of infection
and hospitalization during the pandemic (Adhikari et al., 2022; Pantha
et al., 2021; Nabi, 2020).

In this study, we developed data-driven models to estimate the real-
time risk of infection and hospitalization. Then we implemented our
models on the data of COVID-19 in Nepal to estimate the province-
wise time-dependent reproduction numbers, the risk of disease, and the
risk of hospitalization. Using our models, we compared the Delta and
Omicron waves and their impacts on the province-level community and
healthcare systems. Furthermore, we used our model to evaluate the
effects of intervention policies on the risk of infections.

2. Methods

2.1. Data

The countrywide and province-wise data were obtained from var-
ious available sources, including the official websites of the Ministry
of Health and Population Nepal (MoHP, 2022) and the Central Bureau
of Statistics (Central Bureau of Statistics (CBS), 2022). We considered
the data containing the daily new COVID-19 cases and the active
hospitalization cases in seven provinces of Nepal from 1 April 2021
to 31 March 2022, covering both Delta and Omicron waves. Based on
the information about the circulating viral strains, we assumed that the
Delta surge occurred between 1 April and 30 December 2021 and that
the Omicron surge occurred from 1 January to 31 March 2022.

The contact rate, which depends upon the mobility of the popula-
tion, plays a vital role in disease transmission. Since the population is a
heterogeneous mixture of different age groups with different mobility
and contact patterns, we utilized a previous study’s age-specific contact
rates for Nepal (Prem et al., 2017). Here, a contact is defined as either
skin-to-skin contact, such as a kiss or handshake (a physical contact),
2

Table 1
Total population of Nepal and its provinces. The third column contains the populations
used in our study.

Regions Total population Population for the study
(0.9255 × Total population)

Nepal 29,136,808 26,966,116
Province 1 4,972,021 4,601,605
Madhesh province 6,126,288 5,669,880
Bagmati province 6,084,082 5,630,818
Gandaki province 2,479,745 2,295,004
Lumbini province 5,124,225 4,742,470
Karnali province 1,694,889 1,568,620
Sudur Paschim province 2,711,270 2,509,280

or a two-way conversation with three or more words in the physical
presence of another person but no skin-to-skin contact (a nonphysical
contact) (Prem et al., 2017). Based on the previous studies (Prem
et al., 2017; Mossong et al., 2008), we estimated an average of 19.31
contacts per person daily. The contact matrix, including population
mixing patterns and distribution of contacts by age groups, is presented
in Fig. 1. We calculated the group-wise contact rate using the weighted
arithmetic mean of contact rates of different age groups. Details of the
study design and data collection procedure of contact rate are provided
in the previous study (Prem et al., 2017).

We took the total population of Nepal and its seven provinces
from the recently published results of the population census of Nepal
(2021) (Central Bureau of Statistics (CBS), 2022). Since about 7.45%
of Nepalese are in foreign countries (Central Bureau of Statistics (CBS),
2022), we only took 92.55% of the total population for our study.
The total population and population used in our study are given in
Table 1. We assumed the infectious period of the Delta variant to
be 10 days (Herrero, 2021) and that of the Omicron variant to be
7 days (Ontario Agency for Health Protection and Promotion (Public
Health Ontario), 2021; Walensky, 2021).

2.2. Estimation of the effective reproduction number (𝑅𝑡)

The effective reproduction number, 𝑅𝑡, is the real-time estimation
f the reproduction number that represents the average number of
econdary infections from an infected individual in his/her infectious
eriod at time 𝑡 (Thompson et al., 2019). Here, we used the Maximum
ikelihood Method (MLM) described in the previous studies (Cori et al.,
013; Thompson et al., 2019) to estimate the effective reproduction
umber. We require two data sets to estimate 𝑅𝑡 using MLM: the
umber of new cases (incidence of cases) over time and the generation
ime (time duration between the primary and secondary infection). The
eneration time is usually not observable but can be approximated with
he serial interval (Kuk and Ma, 2005), which is defined as the time
etween the onset of symptoms of primary cases and that of secondary
ases (Wallinga and Teunis, 2004). Many studies (Zhang et al., 2020;
almoudi et al., 2020; Challen et al., 2020; Rai et al., 2021) have
eported that the serial interval follows a Gamma distribution with
ertain means and standard deviations.

Assuming that the secondary cases at time 𝑡 generated by the cases
nfected at time 𝑠 (𝑠 = 1, 2,… , 𝑡) follow the Poisson distribution with
ean 𝑅𝑡𝜓𝑡 = 𝑅𝑡

∑𝑡
𝑠=1 𝐼𝑡−𝑠𝑤𝑠, where 𝜓𝑡 =

∑𝑡
𝑠=1 𝐼𝑡−𝑠𝑤𝑠 and 𝑤𝑠 is a

Gamma distribution of serial interval describing the infectiousness at
time 𝑠 after infection, the likelihood function of secondary cases is

𝐿(𝑅𝑡) =
(𝑅𝑡𝜓𝑡)𝐼𝑡 𝑒−𝑅𝑡𝜓𝑡

𝐼𝑡!
.

We assumed that the reproduction rate 𝑅𝑡 remains constant over the
small time period [𝑡 − 𝜏, 𝑡] and is denoted as 𝑅𝑡,𝜏 . The likelihood of
the secondary cases over the time period [𝑡− 𝜏, 𝑡] with given previous
incidences 𝐼0, 𝐼1,… , 𝐼𝑡−𝜏−1 is

𝐿(𝑅𝑡,𝜏 ) =
𝑡

∏ (𝑅𝑠,𝜏𝜓𝑠,𝜏 )𝐼𝑠 𝑒−𝑅𝑠,𝜏𝜓𝑠,𝜏 . (1)

𝑠=𝑡−𝜏 𝐼𝑠!
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Fig. 1. (a) Age-specific contact matrix for Nepal (Prem et al., 2017). The two axes that start at the top left of the matrix represent the age groups that make up the population.
(b) The average number of contacts per individual per day of different age groups in Nepal. The age groups are split into the following categories: preschool, school, 10+2 and
college, working, and old age.
Using a Bayesian framework with a Gamma distributed prior with
parameters (𝑎, 𝑏), the posterior joint distribution of 𝑅𝑡,𝜏 is given by a
Gamma distribution with the parameters
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For our base-case computations, we used the serial interval with the
Gamma distribution with a mean of 4.7 days and a standard deviation
of 2.9 days for the Delta variant (Musa et al., 2020), and a mean of
3.5 days and standard deviation of 2.4 days for the Omicron vari-
ant (Backer et al., 2022). For the computation of reproduction numbers,
we used the ‘EpiEstim’ package of R-software (R 4.2.1) (Cori et al.,
2013; Thompson et al., 2019).

2.3. Estimation of risk of infection

We assumed that 𝐶𝑡 represents the instantaneous contacts of an
individual at time 𝑡 and 𝐶 is the average (expected) number of daily
contacts. We assumed the contact (𝐶𝑡) follows a Poisson distribution
with mean 𝐶, i.e., 𝐶𝑡 ∼ Pois(𝐶). We further assumed that 𝑁 is the
total population, which we assumed to be constant during the short
period of a single surge, and 𝐼𝑡 and 𝐼𝐴𝑡 are the number of new infections
and active infections at time 𝑡, respectively. Taking 𝜁 as the average
infectious period (in days), 𝐼𝐴𝑡 =

∑𝑡
𝑠=𝑡−𝜁 𝐼𝑠. Thus, the average contacts

of an individual with the infectious people at time 𝑡 is 𝐶 𝐼𝐴∕𝑁 .
3

𝑡 𝑡
We now assume 𝑃𝑡 to be the probability that a single contact with
infectious people leads to successful infection and 𝑆𝑡 to be the number
of susceptible individuals at time 𝑡. Then the number of new infections

at time 𝑡 is 𝐶𝑡
𝐼𝐴𝑡
𝑁
𝑃𝑡𝑆𝑡. Also, since the effective reproduction number

is 𝑅𝑡, the number of new infections generated by a single infectious
individual at time 𝑡 is 𝑅𝑡∕𝜁 . On average, the total new cases generated
by all infectious people 𝐼𝐴𝑡 at time 𝑡 is 𝑅𝑡𝐼𝐴𝑡 ∕𝜁 . Thus we have

𝐶𝑡
𝐼𝐴𝑡
𝑁
𝑃𝑡𝑆𝑡 = 𝑅𝑡𝐼

𝐴
𝑡 ∕𝜁

⟹ 𝑃𝑡 = 𝑅𝑡𝑁∕(𝜁𝐶𝑡𝑆𝑡),

which gives the probability of infection at a single contact with an
infectious person. Then, (1−𝑃𝑡) represents the probability that a single
contact with infectious people does not result in a successful infection.
There are 𝐶𝑡𝐼𝐴𝑡 ∕𝑁 contacts of an individual with infectious people at
time 𝑡. Then, the probability that non of these contacts with infectious
people results in a successful infection is (1 − 𝑃𝑡)

𝐶𝑡𝐼𝐴𝑡 ∕𝑁 . Thus, the
probability of infections (i.e., the risk of infection at time 𝑡) is

1 − (1 − 𝑃𝑡)
𝐶𝑡𝐼𝐴𝑡 ∕𝑁 .

The computations of the risk of infection were carried out in MATLAB
2021a (The MathWorks, Inc.).

2.4. Estimation of risk of hospitalization

We considered time-to-hospitalization a random variable because it
is randomly influenced by various factors, such as the severity of illness,
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access to healthcare, demographic factors, the geographic variation that
are subject to variation and uncertainty. These factors can differ both
across individuals and geographic regions, resulting in heterogeneity
in the distribution of time-to-hospitalization. We assume 𝑔ℎ to be the
probability distribution of the time-to-hospitalization after becoming
infected at time ℎ and 𝑡 to be the risk of hospitalization at time

of an infection. Therefore, the number of new hospitalized cases at
ime 𝑡 is 𝑡

∑𝑡
ℎ=1 𝐼𝑡−ℎ𝑔ℎ = 𝑡𝜆𝑡, where 𝜆𝑡 =

∑𝑡
ℎ=1 𝐼𝑡−ℎ𝑔ℎ. Denoting 𝜈 as

the average duration of the stay at the hospital, the number of active
hospitalized cases at time 𝑡 is

𝑡
∑

𝑗=𝑡−𝜈+1
𝑗𝜆𝑗 .

We assumed that the active hospitalization cases follow the Poisson
process. Then the likelihood of active hospitalized cases 𝐻𝑡 with given
hospitalization rate 𝑡, incidences 𝐼0, 𝐼1, 𝐼2,… , 𝐼𝑡, and distribution 𝑔ℎ
is:

𝑃 (𝐻𝑡|𝐼0, 𝐼1, 𝐼2,… , 𝐼𝑡, 𝑔ℎ,𝑡) =

( 𝑡
∑

𝑗=𝑡−𝜈+1
𝑗𝜆𝑗

)𝐻𝑡

𝑒
−

𝑡
∑

𝑗=𝑡−𝜈+1
𝑗𝜆𝑗

𝐻𝑡!
.

Using a Bayesian framework with a Gamma distributed prior with
parameters (𝜃, 𝜙) for 𝑡, i.e., 𝑡 ∼ Gamma(𝜃, 𝜙), the posterior joint
distribution of 𝑡 is

𝑃 (𝑡|𝐼0, 𝐼1, 𝐼2,… , 𝐼𝑡,𝐻𝑡, 𝑔ℎ)

∝ 𝑃 (𝐻𝑡|𝐼0, 𝐼1, 𝐼2,… , 𝐼𝑡, 𝑔ℎ,𝑡) 𝑃 (𝑡)

=

( 𝑡
∑

𝑗=𝑡−𝜈+1
𝑗𝜆𝑗

)𝐻𝑡

𝑒
−

𝑡
∑

𝑗=𝑡−𝜈+1
𝑗𝜆𝑗

𝐻𝑡!
.

𝜃−1𝑒
−

𝜙

𝛤 (𝜃)𝜙𝜃
.

Since the stay in hospital is shorter than the surge period, we assumed
that 𝑡 is constant for the time period 𝑡 − 𝜈 to 𝑡. Then we obtained

𝑃 (𝑡|𝐼0, 𝐼1, 𝐼2,… , 𝐼𝑡−𝜈 ,𝐻𝑡, 𝑔ℎ)

∝

𝐻𝑡
𝑡

( 𝑡
∑

𝑗=𝑡−𝜈+1
𝜆𝑗

)𝐻𝑡

𝑒
−𝑡

𝑡
∑

𝑗=𝑡−𝜈+1
𝜆𝑗

𝐻𝑡!
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𝑡 𝑒

−
𝑡
𝜙

𝛤 (𝜃)𝜙𝜃

∝

⎛

⎜

⎜

⎜

⎜

⎝

𝐻𝑡+𝜃−1
𝑡 𝑒

−𝑡

( 𝑡
∑

𝑗=𝑡−𝜈+1
𝜆𝑗 + 1∕𝜙
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)𝐻𝑡

𝐻𝑡!
.

Note that we used the Gamma distributed prior conjugate to the Poisson
likelihood. From the expression above, the posterior distribution of
𝑡, given the new cases and active hospitalized cases, conditional on
the post-infection hospitalization timing distribution 𝑔ℎ, is a Gamma
distribution with parameters

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜃 +𝐻𝑡,
1

1
𝜙 +

𝑡
∑

𝑗=𝑡−𝜈+1
𝜆𝑗

⎞

⎟

⎟

⎟

⎟

⎟
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.

We obtained a sample of a certain size (𝑚) drawn from this posterior
distribution of 𝑡 given new cases and active hospitalized data from
which the posterior mean and 95% Credible Interval (CrI) of 𝑡 were
omputed. Since the exact time of infection is not observable and
eople only admit to the hospital if they feel some complications,
he time between the infection and hospitalization cannot be precisely
4

easured. For our simulation, we considered a gamma-distributed
duration between infection and hospital admission, with a mean of 3
days and a standard deviation of 2 days.

The computations of the risk of hospitalization were carried out in
MATLAB 2021a (The MathWorks, Inc.).

2.5. Impact of non-pharmaceutical interventions (NPIs)

To model different levels of control interventions, we applied cor-
responding percentage reductions in average contact rates, e.g., a 70%
control intervention would result in a 70% reduction in contact rates.
As the Nepal Government implemented a significant level of lockdown
during the Delta wave, we considered the 70% control intervention as
the base case. During the Omicron wave, only primary and secondary
schools were closed for a short period (from 11 January to 29 January
2022) (Kathmandu Post, 2022), which we did not expect to have a
significant impact, so we assumed a 0% control intervention for the
Omicron wave.

In our modeling, the overall impact of NPIs was represented by the
reduction of contact rate, which we considered to be 0%, 40%, and
70% for simulations with different levels of control interventions. For
the impact of NPIs in age groups (schools, colleges, and working), we
reduced the contact rate of the respective age group by 70% while
keeping the contact rates of other groups unchanged and calculated the
corresponding average contact rates. With these assumptions and based
on the previous study (Prem et al., 2017), we estimated the contact
rates of 13.79 for the closure of schools and colleges, 14.65 for the
closure of working places, and 5.79 for the lockdown.

3. Results

3.1. Reproduction number

As menionted earlier, the reproduction number indicates the trend
of disease spread throughout the population (Dharmaratne et al., 2020).
Specifically, if it is more than 1, the disease spread has an increasing
trend, and if it is less than 1, the spread has a decreasing trend (van
den Driessche and Watmough, 2002).

In Fig. 2 (left column), we present our estimates of the effective
reproduction number in Nepal and its provinces from 21 April to
31 December 2021 (the Delta wave). The reproduction number was
higher than the threshold value one at the beginning of April 2021.
Except for Gandaki province, the reproduction number in Nepal and
all of its provinces exceeded two and peaked in the middle of April
2021 (Nepal: 2.20, 95% CrI [2.166, 2.23], Province 1: 2.18, 95%
CrI [2.04, 2.32], Madhesh: 2.61, 95% CrI [2.12, 3.14], Bagmati: 2.28,
95% CrI [2.23, 2.33], Gandaki: 1.84, 95% CrI [1.79, 1.89], Lumbini:
2.29, 95% CrI [2.28, 2.30], Karnali: 2.44, 95% CrI [1.68, 3.32], and
Sudur Paschim: 2.63, 95% CrI [2.38, 2.89]). These early 𝑅𝑡 values
indicate that at the beginning of the Delta wave, the infections were
rapidly spreading across the country in a short period of time. The
reproduction rate in Nepal and its provinces began to fall below the
threshold value one after the middle of May 2021 (Nepal: May 17;
Province 1, Bagmati, and Gandaki: May 16; Madhesh: May 25; Lumbini:
May 14; Karnali: May 24; Sudur Paschim: May 14 2021). Madhesh, Kar-
nali, and Sudur Paschim provinces, where fewer cases were reported,
showed greater fluctuations in the temporal pattern of the effective
reproduction number.

The first incidence of Omicron in Nepal was detected on 6 December
2021 (Poudel, 2021). After the first week of January 2022, cases surged
and spread rapidly. On January 23 2022, 80% of new cases were
Omicron (Poudel, 2022). So, we estimate the effective reproduction
number from 1 January to 31 April 2022 to characterize the period
of the Omicron surge (Fig. 2, right column). The reproduction number
in Nepal and all provinces were at the threshold level (𝑅𝑡 = 1) in
December 2021 during the Delta wave (Fig. 2, left column). After that,
it rose quickly, peaking around the middle of January (Nepal: 2.17,
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Fig. 2. The time-dependent effective reproduction number of COVID-19 in Nepal and its seven provinces during the Delta (Left column) and Omicron (Right column) waves. The
gray-shaded region is the 95% credible interval for 𝑅𝑡. The horizontal red dashed line indicates the threshold value 𝑅𝑡 = 1. The left column is the effective reproduction number
during the Delta wave, and the right column is for the Omicron wave.
95% CrI [2.14, 2.21]; Province 1: 2.26, 95% CrI [2.15, 2.38]; Madhesh:
2.38, 95% CrI [2.21, 2.56]; Bagmati: 2.16, 95% CrI [2.13, 2.19];
Gandaki: 2.24, 95% CrI [2.130, 2.34]; Lumbini: 2.43, 95% CrI [2.27,
2.60]; Karnali: 2.52, 95% CrI [2.12, 2.96]; and Sudur Paschim: 2.85,
95% CrI [2.47, 3.25]), before rapidly dropping below the threshold
value of one from the last week of January 2022 for the rest of the
year. We observed that the reproduction number remained greater than
one for about a month (1st to last week of January 2022) during the
Omicron surge. In certain provinces (Madhesh, Lumbini, Karnali, and
Sudur Paschim), we noticed a wider range of credible intervals for the
estimated 𝑅𝑡 at the end of April 2022. This increased variability may
be due to the fact that there were fewer reported new cases, with more
fluctuations. The results shown in Fig. 2 reveal that the reproduction
numbers related to the Omicron and Delta variants are not considerably
different even though quite different COVID-19 cases were reported in
Nepal and all its provinces.

3.2. Risk of infection

The timely estimation of the risk of infection is essential to track
the dynamics of the diseases and valuable to determine the need for
amplification or the relaxation of public health control measures. We
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used our model to compare the risk of infection of COVID-19 during
Delta and Omicron surges in Nepal and its provinces. The estimated
maximum risk of infection of Delta surge in Nepal and its provinces is
shown in Table 2. The temporal pattern of the risk of infection during
the Delta and Omicron surges is shown in Fig. 3.

The risk of infection during the Delta wave increased sharply from
mid-April 2021 and peaked in the second week of May 2021 in Nepal
(Fig. 3, left column). The Bagmati province, which contains Nepal’s
most densely populated capital city, had the peak risk for infection
two weeks sooner than the other provinces (first week of May 2021).
Our estimates showed that Bagmati province was the highest risk
zone (98.94, 95% CrI [32.99, 181.31] per hundred thousand), while
Madhesh province remained the lowest risk zone (12.16, 95% CrI [4.05,
22.29] per hundred thousand) (Table 2). Interestingly, despite being
the most densely populated province (600 people/km2) (Central Bureau
of Statistics (CBS), 2022) and having a larger 𝑅𝑡 value, the Madhesh
province had a lower risk of infection compared to other regions.

We also estimated the risk of COVID-19 infection during the Omi-
cron wave (1 January to 31 March 2022). The temporal pattern of the
risk of infection during the Omicron surge is shown in Fig. 3 (right
column), and the estimated risk is shown in Table 2. Starting from a
minimal risk at the beginning of January 2022, the risk of infection
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Fig. 3. Risk of infection (per thousand hundred) due to Delta and Omicron variants of Nepal and its seven provinces. The first column is the risk of infection during the Delta
wave, and the second column is the risk of infection during the Omicron wave. The scaling on the 𝑦-axis differs depending on the province and wave.
Table 2
The maximum risk of infection and time of highest risk of COVID-19 during Delta and
Omicron variant of Nepal and its seven provinces.

Risk of infection of Delta variant

Regions Risk of infection 95% CrI Time of highest risk
(per 100 000)

Nepal 42.19 [14.06, 77.33] 11 May, 2021
Province 1 27.49 [9.16, 50.40] 23 May, 2021
Madhesh 12.16 [4.05, 22.29] 19 May, 2021
Bagmati 98.94 [32.99, 181.31] 7 May, 2021
Gandaki 44.53 [14.84, 81.62] 26 May, 2021
Lumbini 42.89 [14.30, 78.63] 8 May, 2021
Karnali 31.16 [10.39, 57.13] 14 May, 2021
Sudur Paschim 33.26 [11.08, 60.97] 17 May, 2021

Risk of infection of Omicron variant

Nepal 30.42 [17.61 46.43] 30 Jan, 2022
Province 1 16.30 [9.87, 24.03] 31 Jan, 2022
Madhesh 5.01 [2.63, 7.65] 1 Feb, 2022
Bagmati 89.62 [56.61, 132.05] 30 Jan, 2022
Gandaki 21.35 [13.48, 31.47] 1 Feb, 2022
Lumbini 8.46 [4.90, 12.47] 31 Jan, 2022
Karnali 3.00 [1.74, 4.43] 31 Jan, 2022
Sudur Paschim 8.03 [4.64, 11.83] 27 Jan, 2022

reached the highest level among provinces in a short period of time (3
weeks) around the fourth week of January 2022. During this time, we
observed a considerable disparity in maximum risk of infection across
Nepal and its provinces, ranging from 3.00, 95% CrI [1.74, 4.43] per
hundred thousand in Karnali to 89.62, 95% CrI [56.61, 132.05] per
hundred thousand in Bagmati. Furthermore, during the Delta surge,
6

Madhesh province had a low (5.01, 95% CrI[2.63, 7.65] per hundred
thousand) risk of infection at the peak time of the Omicron surge.
The higher uncertainty, i.e., a larger width of credible intervals, for
estimates may attribute to the fluctuation of the data set of new cases.
The fluctuation of daily new cases may be due to the poor recording of
daily testing and detected positive cases.

We found a considerable difference in the patterns of risk of infec-
tion between the two waves of COVID-19 in Nepal. The risk of infection
during the Delta wave was abruptly increased, and with a complete
lockdown, it took about one month to decline, but in the Omicron wave,
it climbed and fell quickly without lockdown. Furthermore, during the
Delta surge, the maximum risk of infection was slightly higher than
the Omicron surge in Nepal (38.69%) and Bagmati province (10%) but
significantly higher in Gandaki (108.57%), Lumbini (407%), Karnali
(938.66%), and Sudur Paschim (314%) than that of the Omicron surge.
The Bagmati province was the most vulnerable to both Delta and
Omicron surges, while the rest of the provinces were more vulnerable
to the Delta surge than the Omicron surge.

3.3. Risk of hospitalization

We calculated the risk of hospitalization using our model to the
available data on active hospitalizations with COVID-19 in Nepal and
its provinces. The results shown in Fig. 4 (left column) illustrate the
risk that COVID-19 patients are admitted to hospitals in Nepal and its
provinces during the Delta surge (1 May to 31 December 2021).

In Nepal, the risk of hospitalization of the Delta variant remains
at 10% on average (min 7%, max 20%), and Province 1 shows a risk
of hospitalization of 11% (min 6%, max 22%). Madhesh province had
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Fig. 4. Risk of hospitalization during Delta and Omicron wave in Nepal and its provinces. The left column is the risk of hospitalization during the Delta wave, and the right
column is the risk of hospitalization during the Omicron wave. The scaling on the 𝑦-axis differs depending on the province and the wave.
the lowest risk of hospitalization at 6% (min 5%, max 14%). Although
many actual hospitalization cases are in the Bagmati province, the
risk of hospitalization is 11% (min 10%, max 15%), similar to other
regions. Besides the Madhesh province, Gandaki province also has a
lower risk of hospitalization of 9.5% (min 5%, max 18%). The risk of
hospitalization in both Lumbini and Karnali provinces is high [Lumbini:
19% (min 7%, max 38%); Karnali: 14% (min 3%, max 42%)]. In
Sudur Paschim, the risk of hospitalization was initially high (68%) but
later on around 21% (min 6%, max 43%). The initial higher risk of
hospitalization in Sudur Paschim could be due to the high volume of
returnees migrant workers from India.

The Omicron surge had substantially lower hospitalization rates
than the Delta surge. The results in Fig. 4 (right column) show that the
risk of hospitalization was 2.5% during the peak time of the Omicron
wave in Nepal. At the end of March 2022, the hospitalization rate was
again raised in Nepal as well as in Bagmati province. Sudur Paschim
province had an extremely high risk of hospitalization during the mid
of January, which could be due to the inclusion of the institutional
isolation of returnee migrant workers in the data. Our estimates show
that compared to the Delta wave (Fig. 4, left column), the hospital-
ization risk in Nepal and its provinces is significantly lower during
the Omicron wave (Fig. 4, right column), falling to even less than 1%
in some provinces (Nepal: 1.8%, 95% CrI [1.7%, 1.9%], Province 1:
1.2%, 95% CrI [1%, 1.5%], Madhesh: 0.38%, 95% CrI [0.17%, 0.7%],
Bagmati: 2%, 95% CrI [1.9%, 2.1%], Gandaki: 1.3%, 95% CrI [0.97%,
1.75%], Lumbini: 1.3%, 95% CrI [0.29% 4.29%], Karnali: 0.6%, 95%
CrI [0.022%, 3.18%], Sudur Paschim: 2.9%, 95% CrI [0.92%, 7.15%]).
At the end of March 2022, the risk of hospitalization increased in Nepal
and Bagmati province.
7

3.4. Impact of Non Pharmaceutical Interventions (NPIs) on reducing the
risk of COVID-19 infection

NPIs are known to play an important role in the mitigation of
COVID-19. In general, restricting of mobility through NPIs, such as
lockdown, reduces the contact rate, thereby reducing the risk of in-
fection. Here, we used our model to quantify the impact of NPIs
implemented by the Government of Nepal on reducing the risk of
COVID-19. In Fig. 5, we present the maximum risk of infection during
the Delta wave with different control levels. In Bagmati province
(the province with the highest risk), the maximum risk would have
increased by 216.32% if the lockdown was not implemented during
the Delta surge. Similarly, Madhesh province (a province with the
lowest risk) would have increased by 216.61% if the lockdown was not
implemented.

The results in Fig. 6 show the trend of risk of infection during the
Delta wave under different control levels. Our model estimates that
if the lockdown had not been implemented during the Delta surge in
Nepal, there would have been three times more new infections (Fig. 6).
We also observed a similar impact of control strategies on the trend of
risk of infection during the Omicron wave as in the Delta wave. For
example, the risk of infection is reduced by about two-thirds due to the
reduction of contact rate by 70% (Nepal: 30.42, 95% CrI [17.61, 46.43]
to 9.6, 95% CrI [1.60, 17.61], Province 1: 16.30, 95% CrI [9.87, 24.03]
to 5.15, 95% CrI [1.71, 9.44] per hundred thousand).

We also estimated the risk of infection under the closure of school/
colleges and working places only during the Delta and Omicron waves
(Fig. 7). We observed that closing schools and colleges (i.e., restriction
of mobility of school/college age groups) and workplaces (i.e., restric-
tion of mobility of the adult groups of age 25–59) can reduce the
risk of infection by 26.30% while a complete lockdown reduces the
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Fig. 5. The maximum risk of infection under different control levels during the Delta wave in Nepal and its provinces.
Fig. 6. Effect of control measures on a reduction of risk of infection during the Delta wave. Here, for a baseline computation, we took the average contact rate of 5.65 contacts
per person per day during the Delta wave and assumed that lockdown reduces the contact rate by 70% (Coburn et al., 2009). To observe the impact of the lockdown, we used
our model to estimate the risk of infection for 70% (5.79 contacts per person per day), 40% (11.58 contacts per person per day), and 0% (19.31 contacts per person per day)
reduction of contact rate.
risk of infections by 68.42% (during the Delta, none: 133.54, 95%
CrI [77.33, 196.74], school/college closed: 98.42, 95% CrI [49.22
147.59], working place closed: 98.42, 95% CrI [56.25, 154.61], lock-
down: 42.17, 95% CrI [14.06, 77.33]; during the Omicron wave, none:
30.42, 95% CrI [17.61, 46.43], schools/colleges closed: 22.41, 95% CrI
[11.21, 33.62], working places closed: 22.42, 95% CrI [12.81, 36.82],
lockdown: 8.00, 95% CrI [1.60, 17.61] per hundred thousand).

4. Discussion

The timely assessment of the epidemic trend and its potential bur-
den is essential to minimize the epidemic disaster and manage the
healthcare facilities. In order to allocate resources and design health
policies during the early stages of a pandemic, it is necessary to esti-
mate the risk of infection and risk of hospitalization. Generally, the risk
of hospitalization remains the same throughout the transmission period
for the same kind of strain. However, the pattern of hospitalization may
vary depending on the geographic region, cultural background, level of
education, way of life, access to medical services, and population group
among which the disease is circulating (Jackson et al., 2021; Athavale
et al., 2021). Even when more infections result in more patients being
admitted to hospitals, the risk of hospitalization may not be constant
over time.

The effective reproduction number is widely used to track the
transmission rate during epidemics. However, due to variations in the
8

size of the susceptible population, the number of actively infected
individuals, and the population’s pattern of contact, two regions with
the same effective reproduction number may have different levels of
vulnerability (risk) throughout the pandemic. To track the trend of
an epidemic more precisely by including the most vital factors of
disease transmission, we developed data-driven mathematical models
which provide a timely estimation of the risk of infection and the
risk of hospitalization during a pandemic. Our mathematical model of
risk of infection considers the susceptible population, active infectious
population, and contact pattern of the people in addition to the ef-
fective reproduction number. Similarly, our hospitalization risk model
uniquely utilizes active hospitalized cases to describe the temporal
pattern of hospitalization trends. We implemented our models to the
unique data sets of new COVID-19 cases and hospitalized cases in Nepal
and its provinces. Furthermore, our models also allow us to determine
how the implemented control strategies could effectively control the
disease.

The seven provinces of Nepal have a range of population con-
tact patterns due to their diverse geographic locations, distinctive
lifestyles, cultural traditions, economic conditions, and level of urban-
ization (Pantha et al., 2021). The recorded COVID-19 cases also varied
throughout provinces (MoHP, 2022). Despite huge discrepancies among
provinces, the reproduction numbers of COVID-19 of the Delta and
Omicron waves across Nepal and its provinces are not considerably
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Fig. 7. Effect of closures of school colleges, working places, and lockdown on reducing
the risk of infection during the Delta and Omicron waves. The left column is for the
Delta wave, and the right column is for the Omicron wave. The first row represents the
impacts of the closure of schools and colleges, the second row represents the effects of
closing working places, and the third row represents the effects of lockdown.

different (Fig. 2), indicating that reproduction numbers alone may not
fully capture the disease trend. A noticeable difference in reproduction
number between the Delta and Omicron surges regarding the non-
pharmaceutical interventions is that the total lockdown was needed to
be implemented during the Delta wave, while during Omicron wave,
partial closure of schools and colleges were enough for the reproduction
number to fall below the threshold value one. In some provinces
(Madhesh, Lumbini, Karnali, and Sudur Paschim), we noticed a wider
range of credible intervals for the estimated 𝑅𝑡 at the end of March
2022. This increased variability may be due to the fact that there were
fewer reported new cases, with more fluctuations.

The risk of infection varies widely among provinces in both the
Delta and Omicron waves despite the similar reproduction number. The
ability of our model to capture the discrepancies among the provinces
highlights the risk of infection as a critical indicator of the disease
trend. Our results show a similar risk of infection in Nepal and in
Bagmati province during the Delta and Omicron surges. However, in
the case of other provinces, the risk of infection is less during the
Omicron surge than during the Delta surge. Less risk of the Omicron
is in contrast to what has been observed in other regions of the world,
where the Omicron wave had a higher risk of infection than the Delta
wave (Liu and Rocklöv, 2022; Du et al., 2022; Ito et al., 2022). Note
that 36% of Nepalese people were fully vaccinated, and 49% were
vaccinated with at least one dose by 4 January 2022 (Ritchie et al.,
2020). Because of the low severity of the Omicron variant (Bhatia and
Klausner, 2020; Wan et al., 2020), and the high coverage of vaccines,
there were presumably fewer reported cases during the Omicron surge,
which could be attributed to the low risk of infection as estimated by
our model. During the Delta wave, infection risk rapidly increased and
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declined slowly. In contrast, during the Omicron wave, it rose and fell
quickly, which may be due to the burnout of the susceptible population
during previous waves or vaccinations, resulting in a faster climb and
decline of cases compared to the Delta wave.

A substantial strength of our models also lies in their ability to
describe the discrepancies among provinces in the pattern of the risk
of hospitalization. We observed these discrepancies throughout Nepal
and its provinces (for example, 6% in Madhesh province and 21% in
Sudur Paschim) during the Delta surge (Fig. 4). The disparities in the
risk of hospitalization reflect the unequal distribution of healthcare
facilities and the different living standards of the people in different
provinces (Cao et al., 2021; Saito et al., 2016). For example, Madhesh
province shares the border with Province 1, which has relatively better
and larger hospitals. Therefore, many people from Madhesh province
go to the hospitals of Province 1, causing a higher hospitalization rate
in Province 1 than in Madhesh province. Bagmati province contains
Kathmandu, the capital city, and other major cities such as Lalitpur,
Bhaktapur, Bharatpur, Hetauda, and Dhulikhel, comprising the ma-
jor hospitals of Nepal. Among the reported hospitalized cases ∼48%,
were in this province (MoHP, 2022), which may have included the
hospitalization of people from other provinces as well.

Despite the fewer number of new cases and hospitalized cases, the
rate of hospitalization in Karnali and Sudur Paschim was estimated
to be high. Madhesh province, on the other hand, has a low risk of
hospitalization and low reported new cases. Our model estimates a
four times higher risk of hospitalization during the Delta surge than
the Omicron surge in Nepal and most provinces (Fig. 4), consistent
with the higher hospitalization during the Delta surge found in other
studies (Bhatia and Klausner, 2020; Wan et al., 2020; Centre for Disease
Control and Prevention (CDC), 2022). The unusual risk of hospitaliza-
tion seen in the Sudur Paschim is likely due to the data set. For example,
on 1st January 2022, there were four new cases while seven persons
were in hospital. From 1st to 12th January 2022, only 330 new cases
were reported, but 395 active hospitalized cases were reported on 12th
January, indicating more than 100% risk of hospitalization, as revealed
in the model prediction. The higher active hospitalized cases of Sudur
Paschim, compared to the new cases, could be due to the inclusion of
the institutional isolation of returnee migrant workers in the data of
active hospitalized cases.

We also used our model to evaluate the effectiveness of control
strategies in suppressing infection rates. For the purpose of demonstra-
tion, we assumed different levels of control interventions (0%, 40%,
and 70% reduction in contact rates) and estimated the corresponding
risk of infection during the Delta surge (Figs. 5 & 6). Our results
indicate that the risk of infection of COVID-19 would have been three
times more if there were no lockdown (i.e., a lack of 70% reduction
in contact) during the Delta surge. We also found that school/college
closures have a greater impact on the reduction of risk of infection
(Fig. 7), supporting the Nepal government’s strategy of closing schools
and colleges first during the peak of the Omicron surge (Kathmandu
Post, 2022). Our model supports that the effectiveness of the control
strategy is linearly translated to the risk of infection (Fig. 5). Other
studies (Tian et al., 2020; Kraemer et al., 2020; Ferguson et al., 2020;
Adhikari et al., 2021) have also reported that travel restrictions and
non-pharmaceutical interventions have major impacts on the control
of COVID-19 surges.

We acknowledge some limitations of our study. Although the
population has a varied mixture pattern, we consider a homogeneous
mixture in our model for estimating the risk of hospitalization so that
every infected person has an equal probability of hospitalization. There
are some uncertainties in the data used to compute the risk of infec-
tion and hospitalization. Underestimation and temporal inaccuracy
(time lag between the time of infection/hospitalization and observation
(record)) of the data also are two major factors that reduce the quality
of the data we used. The better quality of data enhances the accuracy of

the results of this study. Our model also does not consider the temporal
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variation in under-reporting, which might otherwise be interpreted as
a variation in the risk of infection. Reported COVID-19 cases include
only those individuals who were tested and confirmed to be positive.

Several studies (Adhikari et al., 2021; Pullano et al., 2021; Adhikari
et al., 2022; Saito et al., 2021) have found asymptomatic or undiag-
nosed COVID-19-infected individuals who can significantly spread the
virus. The detection of COVID-19 cases in Nepal is low (Adhikari et al.,
2022), implying that the actual risk of infection might be quantitatively
different from our estimations. A Hidden Markov Model (HMM) could
be an extension of our model to account for the imperfect observation
process of undiagnosed cases. Hospital admission is nonspecific because
it does not necessarily specify the reason and might cover a wide range
of severity. Individuals infected with SARS-COV-2 may be hospitalized,
but not necessarily as a result of COVID-19. A study (Clark et al.,
2020) estimated that 17 billion (UI 10–24) individuals, or 22% (UI 15–
28) of the world’s population, have at least one underlying condition
that increases their chance of developing severe COVID-19 if they
become infected (range from 5% of those younger than 20 years to
> 66% of those who are 70 years or older). Also, a study (Bastola
et al., 2021) shows that among the COVID-19 patients hospitalized
in Sukraraj Tropical and Infectious Disease Hospital of Nepal from
January 2020 to January 2021, 64% had two or more comorbidities.
Identifying an accurate number of hospitalized cases due to COVID-19
is necessary to accurately estimate the risk of hospitalization. Due to
the unavailability of data regarding the number of new cases caused
by the Delta and Omicron variants in mixed disease dynamics, we did
not consider the mixed diseases model.

In summary, we developed data-driven mathematical models to
estimate the risk of infection and the risk of hospitalization during the
pandemic. As demonstrated by the applications of these models to a
unique data set of Nepal and its provinces, the risk of infection and
hospitalization can capture critical features of epidemic trends. Our
model can also be used in other places and for outbreaks of other
infectious diseases. Real-time quantification of the risk of infection
and hospitalization is essential to develop ideal policy guidelines and
appropriate control strategies for bringing society out of the devastating
pandemic.
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