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Abstract

Collaborative perception enablesmultiple connected and autonomous
vehicles (CAVs) to collectively perform perception tasks through
the efficient exchange of data. It also introduces critical security
vulnerabilities due to the potential manipulation of shared data by
malicious entities. Existing research demonstrates attacks whereby
an adversary could fabricate fake objects or erase real objects from
a targeted CAV’s perception. Yet, the practicality of such attacks as
a realistic threat remains inadequately addressed. Firstly, current
attacks have not been refined to circumvent established anomaly
detection frameworks. Secondly, the demonstration of attack ef-
fectiveness predominantly relies on manually defined scenarios,
raising questions about the feasibility of such attacks in dynamic,
real-world situations. To address these shortcomings, our research
revisits data fabrication in collaborative perception and introduces
a novel attack methodology that is realistic, stealthy, and scenario-
aware. This approach aims to minimize required data perturbations
and exploits error propagation within the autonomous driving soft-
ware pipeline to trigger critical safety hazards. Our proposed attack
encompasses a comprehensive end-to-end workflow, determining
attack strategies based on dynamic environmental conditions at
runtime. Through high-fidelity simulations, we demonstrate the
efficacy of our proposed attack, underscoring its potential to signif-
icantly undermine existing defense mechanisms.
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· Security and privacy→ Systems security; · Computer sys-

tems organization→ Embedded and cyber-physical systems.
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1 Introduction

One fundamental limitation of the perception systems of connected
and autonomous vehicles (CAVs) is that the onboard sensors have
limited sensing capabilities, especially when the target is occluded,
far away, or affected by adverse weather [5, 6, 16, 30, 44, 46]. To
address the limitation, collaborative perception is proposed, where
CAVs share sensing data (e.g., raw sensor data or processed data)
and then process perception tasks on fused data, resulting in im-
proved perception accuracy and spatial coverage. The technology
has attracted extensive academic research [18, 49, 52, 58] and has
been adopted by CAV industry players [1ś3, 7, 9, 10, 53]. As CAVs
with collaborative perception will leverage external data from un-
trusted parties to assist their local perception, there is the security
concern that a malicious party may act like a participant in collab-
oration but falsify the messages to share in order to compromise
the quality of perception on the target CAV. Assuming the exis-
tence of at least one malicious CAV, recent studies proposed attacks
based on adversarial machine learning (AML) resulting in incor-
rect perception results such as spoofed ghost objects and ignored
real objects [48, 56]. Defense methods are also proposed [32, 56],
basically leveraging the inconsistencies of perception results on
different benign vehicles.

However, we argue that the real-world threat of data fabrication
in collaborative perception is not adequately evaluated. The reason
is twofold. Firstly, such attacks are possible to be enhanced to by-
pass existing defense methods. Existing defense approaches heavily
rely on manually tuned heuristics and thresholds thus they suffer
from false positives and false negatives. For instance, CAD [56] com-
pares fused perception results against raw sensor data from local
trusted sensors, which may occasionally fail because of real-world
noise, inaccuracies of data processing, and certain hard scenarios
(e.g., none of the benign CAVs can observe the region affected by
the attack). Secondly, existing attacks do not involve an end-to-end
solution. For instance, Tu et. al. [47] proposed an untargeted attack
injecting perception errors at random spatial locations, and the
attack from Zhang et. al. [56] can spoof or remove objects at a
specified target location. Neither of the attacks involves deciding
when and where to launch the attack in order to construct a com-
plete attack scenario to trigger safety hazards, which is especially
challenging in real-world dynamic traffic. The attack would be a
concrete threat only if the end-to-end exploitation is reproducible.

To bridge the gap, we build an end-to-end attack that is stealthy
and scenario-aware. To keep stealthy against existing anomaly de-
tection looking for inconsistencies, the attack tries to minimize
the perturbation on object locations so that the detectable incon-
sistency is almost indistinguishable from normal noises and also
below the threshold of anomaly detection. As the small perturba-
tion can hardly cause safety hazards directly, the attack leverages
the small perturbation to misguide the downstream data processing
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tasks. For instance, the inaccuracy of object detection could trigger
failures in object tracking and trajectory prediction. In this way, the
initial error eventually becomes a significant error that could trigger
improper driving decisions. Following the philosophy, we design
the following attack workflow. The attacker participates in the col-
laboration and uses its onboard sensors to sense the surrounding
environment. The attacker localizes the victim CAV to attack and
prepares an attack strategy, for instance, perturbing the location
of existing vehicles to fake lane-changing behaviors and trigger
unsafe hard brakes. The attacker then periodically launches percep-
tion attacks to realize the selected attack strategy and meanwhile
updates the strategy according to the dynamic traffic situations.

We evaluate the attack’s impact on the OPV2V multi-vehicle
perception dataset [52]. The attack significantly increases the error
in the downstream trajectory prediction module by 201%, leading
to incorrect behavioral estimations of other vehicles by the victim.
This results in hard braking in 26%-28% of test cases. Additionally,
our ablation study investigates the influence of autonomous driving
components (e.g., object detection, tracking, and prediction) on the
attack’s success rate. This analysis informs future efforts to mitigate
such vulnerabilities in collaborative perception systems.

Our contributions include:

• We design a new attack on collaborative perception models that
can accurately manipulate locations of detected objects.
• We design an end-to-end online attack against collaborative
perception, which arranges perception attacks in dynamic traffic
scenarios to trigger safety hazards on a victim vehicle.

2 Background and Related Work

2.1 Collaborative Perception

Collaborative perception has been proposed to enhance Connected
and Autonomous Vehicle (CAV) perception [11, 28, 30, 33, 44], facil-
itating the sharing of sensor data among infrastructure or vehicles.
Mainstream solutions predominantly utilize LiDAR sensors due to
the rich 3D geometry features provided by LiDAR images. Collabo-
rative perception can be classified into three major types. In early-
fusion sharing schemes [17, 19, 29, 39, 57, 58], CAVs exchange raw
sensor data in a universal format that can be easily concatenated,
though it comes at the cost of high data transmission bandwidth.
Intermediate-fusion schemes [18, 20, 49, 51, 54] involve transmit-
ting feature maps, which are intermediate products of perception
algorithms, offering a balance between network efficiency and per-
ception accuracy. In late-fusion schemes [35, 43, 45], lightweight
perception results such as bounding boxes are shared.

2.2 Attacks on CAV Perception

LiDAR perception systems in CAVs are susceptible to several types
of attacks. Physical attacks, such as GPS spoofing [34, 42], Li-
DAR spoofing [15, 24, 26, 34], and physically realizable adversarial
objects [47, 55, 59], target individual autonomous vehicles. Late-
fusion collaborative perception, which shares object locations [21ś
23, 41], can be compromised by attackers modifying these loca-
tions [13, 14, 27, 38]. Tu et al. [48] introduced the first attack spe-
cific to intermediate-fusion collaborative perception, an untargeted
adversarial attack that creates inaccurate detection bounding boxes
by perturbing feature maps. Zhang et al. [56] proposed an advanced

targeted attack for early-fusion and intermediate-fusion systems,
capable of spoofing or removing objects in specific locations, and
reproducible in real-time on-vehicle devices.

These existing attacks primarily focus on reducing the accuracy
of perception systems, without considering the implications for
safety in complex dynamic traffic scenarios. We address this gap
by proposing the first end-to-end scenario-aware attack workflow.

2.3 Defenses on CAV Perception

Various anomaly detection methods have been proposed to counter
sensor attacks [12, 25, 36, 37, 40, 46]. Specifically for LiDAR systems,
CARLO [46] detects abnormal point clouds that violate occlusion
features, and LIFE [36] detects temporal and sensor-fusion inconsis-
tencies. In connected vehicle applications, efforts to model benign
behaviors of ego/remote vehicles and detect model outliers as anom-
alies include various aspects such as temporal consistency [14],
physical constraints on message delivery or vehicle control [13, 27],
and cross-validation with local sensors [38]. Against the latest ad-
versarial attacks, CAD [56] leverages the spatial sensing from all
connected vehicles to jointly reveal inconsistencies by sharing oc-
cupancy maps. AmongUs [32] is a consensus-based solution that
repeatedly samples a subset of collaborating CAVs until their percep-
tion results converge, using this subset for collaborative perception.

Overall, existing defenses rely on detecting inconsistencies be-
tween clean and attacked perception data to identify attackers.
However, the detection is less effective if benign CAVs have limited
sensing capabilities and inaccuracy occurs in data processing, leav-
ing room for strong adaptive attacks. This paper proposes a new
attack that remains stealthy under existing defenses.

3 Problem Statement

We elaborate the threat model in ğ3.1, the limitation of existing
work in ğ3.2, and define design goals in ğ3.3.

3.1 Threat Model

We assume a Vehicle-to-Vehicle (V2V) scenario but our results can
be easily generalized to vehicle-to-infrastructure (V2I) settings by
replacing one or more vehicles with edge computing devices.

We assume that the attacker can physically control at least one
vehicle participating in collaborative perception. This control grants
the attacker privileges over the vehicle’s software and hardware, al-
lowing them to manipulate sensors, tamper with the local execution
of algorithms, and transmit arbitrary data through the network.
In other words, attackers can directly alter the shared data. We
also assume the attacker has white-box access to the autonomous
driving software stack, including deep learning models of object
detection and trajectory prediction.

We do not assume the attacker has prior knowledge of upcoming
traffic scenarios. Instead, the attacker gains knowledge about the
traffic solely through predefined static maps and the vehicle’s real-
time onboard perception system.

3.2 Limitation of Existing Attacks

Existing attacks mentioned in ğ2 have gaps towards realistic strong
attacks in stealthiness against anomaly detection and end-to-end
scenario construction. We elaborate on the two aspects as follows.
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The perception result (red) causes a 
large conflicted area (slash area).
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Figure 1: An illustration of existing anomaly detection [56].

It is hard to distinguish malicious attacks and benign percep-

tion errors when the conflicted area is geometrically small.

Stealthiness against anomaly detection. The state-of-the-art
defenses [32, 56] use anomaly detection to score data consistency
across CAVs, raising alerts when inconsistencies exceed a thresh-
old set to balance false positives and missed detections. Taking
CAD [56] as an example, the inconsistency level refers to the area
of conflicting regions in the 2D bird-eye view, and the threshold is
around 0.8𝑚2. Existing attacks, either randomly inject faults [48]
or spoofing/removing vehicles in a specific region [56], trigger
detection due to exceeding this threshold.

However, we found that if the attacker creates a minor pertur-
bation that is below the threshold, it is undetected and is hard to
distinguish from benign perception faults, as demonstrated in Fig-
ure 1. If carefully crafted, these small errors can disrupt downstream
components like object tracking and prediction, leading to signifi-
cant safety-critical driving errors. Our proposed attack exploits this
by focusing on small yet effective perturbations.

End-to-end scenario construction. The impact of perception
attacks varies by scenario. Previous work [56] showed attacks can
induce unsafe decisions during lane changes or unprotected turns.
However, without prior knowledge of traffic, it is unclear how
attackers schedule their attacks in dynamic traffic. To succeed,
attackers must first estimate traffic flow and then decide when,
where, and how to manipulate perception to maximize impact.
This crucial step, essential for end-to-end collaborative perception
attacks, has been overlooked by previous methods.

In this paper, we build the first end-to-end attack workflow
exploiting the data fabrication in collaborative perception. It is an
automated algorithm where the attacker searches for an optimal
plan to trigger unsafe driving behaviors of a remote CAV.

3.3 Towards Adaptive and Realistic Adversary

We propose a new attack against collaborative perception which
should satisfy the following requirements.

• Effectiveness. The attack should be able to trigger unsafe behav-
iors of CAVs, such as sudden brakes or risk of collisions.
• Stealthiness. The attack should be hardly detected by existing
anomaly detection [32, 56].
• No prior knowledge. The attacker recognizes on-road traffic by
onboard sensors and determines the attack strategy at runtime.

4 Attack Methodology

In this section, we introduce our design of an end-to-end scenario-
aware stealthy attack against collaborative perception and explain
how the new attack achieves design goals in ğ3.3.

Obtain Location 
and motion of 

objects

Select an attack 
scenario

An initial 
attack strategy

Optimization of 
attack strategy

Latest
location and 

motion of objects

An updated attack 
strategy

Attack initialization 
before attack starts

In each perception 
cycle after initialization

Attack on 
collaborative 
perception

False messages 
sent

Victim

Spoofed vehicle

Spoof vehicles

Victim

Removed vehicle

Remove vehicles

Victim

Shifted vehicle

Shift vehicles

Evaluation of 
attack quality

Figure 2: Overview of the attack methodology. Only attack

scenarios of shifting vehicles is performed in this paper.

No attack: the victim takes no action With attack:
The other vehicle locations are perturbed; 

trajectory prediction has a high error;
the victim vehicle brakes hard

Attacker another vehicle
(target)victim

Figure 3: Illustraion of łshift to move inž attack scenario.

4.1 Overview

We depict the overview of the attack in Figure 2. Our proposed
attack is a systematic integration of various attack techniques.

Perception attack. The perception attack on collaborative per-
ception models is the key to influence the victim vehicle. Validated
by prior work [48, 56], an attacker CAV can join the system of
collaborative perception, send crafted falsified messages to a desig-
nated victim CAV, and inject false detection at certain locations. In
this work, we improve the prior attack to make it sophisticated in
controlling locations of false detection.

Scenario-aware attack strategies. The attacker needs to know
when and where to launch the perception attacks. One attack strat-
egy in our attack is the scheduling of a series of perception attacks
over continuous frames. More importantly, such an attack strategy
depends on the traffic scenarios. The attacker can either spoof fake
vehicles cutting in the lane of the victim CAV to force it to stop,
remove vehicles around the victim CAV to make it ignore potential
risks, or inject errors on the locations of detected CAVs to influence
the victim CAV’s decisions.

Online optimization of attack strategies. As the attacker
cannot get complete knowledge of the dynamic on-road traffic, the
attacker needs to periodically optimize the attack strategy based on
the latest sensing results. It aims to maximize the quality of attack
considering attack effectiveness, stealthiness, and realizability.

Workflow. The attacker controls a CAV to join the network of
collaborative perception. The attacker uses its onboard sensors to
sense the surrounding traffic and obtains an estimation of previous
and future trajectories of on-road objects through the processing of
a pipeline of object detection, tracking, and prediction. The attacker
selects an initial attack strategy based on known information and
launches the attack. In each following frame of perception, the
attacker executes a perception attack following the attack strategy
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and also optimizes the strategy based on new information in the
latest frame. In this way, the attacker intelligently arranges a series
of perception attacks to achieve attack goals.

4.2 Adversarial Attack on Perception Models

Zhang et al. [56] has proposed adversarial attacks to spoof or remove
objects from the perception results. However, accurately modifying
object locations by a small distance (e.g., <0.5 meter) is challenging,
and requires sophisticated control of the perturbation. To bridge
the gap, we propose the łobject shifting attackž.

We first define the problem of the adversarial attack. We denote
LiDAR data at frame 𝑖 ∈ N from the attacker, the victim, and other

benign vehicles by 𝐴𝑖 , 𝑉𝑖 , and 𝑋
( 𝑗 )
𝑖 , 𝑗 ∈ {0, 1, . . . 𝑁 }, respectively.

LiDAR data with the same frame index will be merged on the
victim side to generate perception results. We denote pre-process
before data sharing as 𝑓 and post-process after data sharing as 𝑔.
A normal collaborative perception for the victim on frame 𝑖 can
be described as 𝑦𝑖 = 𝑔(𝑓 (𝑉𝑖 ), 𝑓 (𝐴𝑖 ), 𝑓 (𝑋 0

𝑖 ), 𝑓 (𝑋
1
𝑖 ), ..., 𝑓 (𝑋

𝑁
𝑖 )). The

attacker can replace 𝑓 (𝐴𝑖 ) by malicious data. For instance, the
attacker can append a minor perturbation 𝛿𝑖 to craft malicious data
as 𝑓 (𝐴𝑖 ) +𝛿𝑖 , which will change the original perception result from
𝑦𝑖 to 𝑦′𝑖 = 𝑔(𝑓 (𝑉𝑖 ), 𝑓 (𝐴𝑖 ) + 𝛿𝑖 , 𝑓 (𝑋

0
𝑖 ), 𝑓 (𝑋

1
𝑖 ), ..., 𝑓 (𝑋

𝑁
𝑖 )).

However, when the attacker optimizes 𝛿𝑖 , other data in the same
frame such as 𝑓 (𝑉𝑖 ) is not available because of the delay of commu-
nication in the real system, which is well discussed in the previous
work [56]. Therefore, the attacker uses dated data at frame 𝑖 − 1 to
optimize the attack at frame 𝑖 .

In Early-fusion system, the attacker crafts a malicious point
cloud. We design the shifting attack as a series connection of the
removal attack and the spoofing attack proposed in the previous
work [56]. Whenever there is a conflict between removal and spoof-
ing attacks, e.g., the same point is modified by two attacks, we
prioritize the object spoofing. In general, the removal attack first
introduces noise in the point cloud to lower the original detection
confidence, and then the spoofing attack introduces the new object
that is shifted from the original location.

In intermediate-fusion system, 𝑓 (𝐴𝑖 ) is a feature map. We de-
fine 𝛿𝑖 as a patch that perturbs the feature values in a specific region
of the feature map, and the region is associated with the geome-
try location of the target object to be shifted, following Zhang et

al. [56]. In particular, we introduce a new loss function that is suit-
able for shifting detection boxes and enables universal adversarial
perturbation to improve success rate. The optimization problem is:

min
∑︁

1≤𝑖≤𝑁

∑︁

(𝑧,𝑧𝜎 ) ∈𝑔 (𝑓 (𝐴𝑖 )+𝛿,· ),
𝐼𝑜𝑈 (𝑧,𝑧𝑡 )>0,

𝑧𝜎>𝜖𝜎

log(1 − 𝐼𝑜𝑈 (𝑧, 𝑧𝑡 )) −𝐶 · 𝑧𝜎

s.t. |𝛿 | < 𝜖

(1)

where 𝛿 is the perturbation on the feature map, 𝑧 and 𝑧𝜎 represent
individual detection proposals and confidence scores, and 𝑧𝑡 is the
target locationwewant the object tomove to. The optimization tries
to obtain a perturbation 𝛿 that is universally effective on multiple
consecutive history frames, and the number of frames is denoted
by 𝑁 . 𝛿 is then applied to the next frame to trigger the attack. On
each history frame, the optimization selects promising proposals
that are geometrically close to the target object, determined by the

Intersection over Union (IoU) function, and have a high confidence
score, determined by threshold 𝜖𝜎 . It then optimizes 𝛿 to maximize
the IoUwith the target location of these promising proposals, which
is the main objective, and also penalizes the decrement of their
confidence scores to ensure these proposals are remained after
the processing of the Non-Maximum Selection (NMS) stage. The
optimization uses Projected Gradient Descent (PGD).

In late-fusion system, vehicles directly share bounding boxes
and confidence scores. The attack is straightforward: the attacker
simply modifies the location of the target object and fakes a high
confidence score, to overwrite correct bounding boxes from other
benign vehicles during the NMS process.

4.3 Scenario-aware Attack Strategy

An attack strategy plans a sequence of perception attacks to trigger
safety hazards. This paper focuses on the "shift to move in" strategy,
where object shifting causes the victim to mistakenly predict a
nearby vehicle cutting into their lane, leading to a hard brake (see
Figure 3). Analysis of other strategies is left for future work. A
typical attack strategy consists of the following elements:

• An identified victim vehicle.
• A selected target vehicle whose location will be perturbed.
• An adversarial trajectory representing the perturbed trajectory
of the target vehicle.

With the attack strategy, the attacker tries to inject the adversar-
ial trajectory into the perception results of the victim by perception
attacks. Assuming the perception attack could be successful, the
attack impact is determined by the quality of the malicious trajec-
tory. To this end, we design a fitness function to rate the quality.
We consider three aspects of quality:

• Effectiveness. The adversarial trajectory should be able to trig-
ger the safety hazard. In our case, the victim would make an
unsafe hard brake if the prediction of the target object’s future
trajectory overlaps with the victim’s planned trajectory.
• Stealthiness. The adversarial trajectory cannot have too much
conflict that is over the threshold of the anomaly detection meth-
ods. In our case, we calculate the overlap area of the estimated
visible space of the victim with the fake objects. The threshold is
pre-computed by benchmarking the anomaly detection methods.
• Realizability. The adversarial trajectory must be achievable by
the perception attacks on perception models. For instance, the
trajectory must be covered by the attacker’s feature map.

An example fitness function implementation considering the above
three aspects is shown in Algorithm 1.

4.4 End-to-end Online Attack

As the on-road traffic is highly dynamic, the attacker is supposed
to periodically update the attack strategy according to its latest
sensing. We introduce the end-to-end attack in Algorithm 1.

The attacker initially identifies the victim vehicle and uses its
local autonomous driving software stack to track on-road vehicles.
Assuming that the attack will last for 𝐾 frames, before launching
attacks, the attacker predicts the trajectories of these vehicles in
these 𝐾 future frames. At this moment, the attacker generates a
set of attack strategy candidates and picks the top candidate based
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Algorithm 1: End-to-end online attack algorithm.

Input: The attacker identified a victim vehicle 𝑝 . The attack lasts
for 𝐾 frames and optimizes attack impact on frames
𝐾 −𝑀 + 1, ..., 𝐾 . The attacker maintains observed or
predicted trajectories of other vehicles, denoted by a set𝑇
where𝑇𝑖 is the trajectory of vehicle index 𝑖 in a length of 𝐾 .

1 Function OnlineAttack():

2 𝑇𝑎𝑑𝑣 ← argmax𝑇𝑖 ∈𝑇 AttackQuality(𝑇𝑖 ) ; ⊲ Choose a strategy;

3 for Frame 𝑖 = 1, ..., 𝐾 do

4 PerceptionAttack(𝑇 𝑖
𝑎𝑑𝑣
) ;

5 𝑇 ← LocalPerception(𝑇 ) ;

6 ⊲ Update trajectories by latest sensing;

7 𝑇 1:𝐾
𝑎𝑑𝑣
← PGDUpdate(𝑇𝑎𝑑𝑣, 𝑖 : 𝐾 ) ;

8 end

9 Function AttackQuality(𝑇𝑎𝑑𝑣):

10 𝑙𝑒 ← −
∑
𝐾−𝑀+1≤𝑖≤𝐾 log Distance(Prediction(𝑇 1:𝑖

𝑎𝑑𝑣
),

11 Prediction(𝑇 1:𝑖
𝑝 ) ) ; ⊲ Attack effectiveness score;

12 𝑙𝑠 ← 𝐴𝑛𝑜𝑚𝑎𝑙𝑦𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 (𝑇𝑎𝑑𝑣 ) ; ⊲ Stealthiness score;

13 𝑙𝑟 ← 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐶ℎ𝑒𝑐𝑘 (𝑇𝑎𝑑𝑣 ) ; ⊲ Realizability score;

14 if 𝑙𝑠 ≤ 0 ∨ 𝑙𝑟 ≤ 0 then

15 return 0;

16 end

17 return 𝑙𝑒 ;

18 Function PGDUpdate(𝑇𝑎𝑑𝑣 , i:j):

19 𝜆 ← max{𝜆 | AttackQuality(𝜆 (𝑇𝑎𝑑𝑣 − 𝑇𝑞 ) +𝑇𝑞 ) > 0};

20 𝑇𝑎𝑑𝑣 ← 𝜆 (𝑇𝑎𝑑𝑣 − 𝑇𝑞 ) +𝑇𝑞 ;

21 return AdamOptimizer(AttackQuality(𝑇𝑎𝑑𝑣 ),𝑇
𝑖 :𝑗

𝑎𝑑𝑣
) ;

on the fitness function for attack quality. For a łshift to move inž
attack, for instance, the attacker intends to perturb the location of
the vehicle which is very close to the victim.

The attacker then launches the𝐾-frame attack. In each frame, the
attacker first launches a perception attack to shift the target object
according to the current attack strategy. Meanwhile, the attacker
leverages the latest sensing results to update its knowledge of the
trajectories of surrounding vehicles. Based on the latest knowledge,
the attacker applies Projected Gradient Descent (PGD) algorithm
to optimize the adversarial trajectory to maximize attack quality.
In particular, the optimization focuses on maximizing the effec-
tiveness score while maintaining the stealthiness and realizability
of the attack. Note that only the future frames of the adversarial
trajectory are updated, as the perception attacks on previous frames
have been finalized. Eventually, the attacker finalized a 𝐾-frame
adversarial trajectory that would invoke a high error on the victim
vehicle’s trajectory prediction model and simultaneously launched
perception attacks to realize the trajectory.

4.5 Discussion of mitigation

The attack relies on the adversarial attacks on either perception or
prediction models thereby adversarial robustness improvements
such as data augmentation, adversarial training, and certified learn-
ing are potentially beneficial. Vehicular reputation systems could
also be crucial for identifying misbehaving vehicles among the pop-
ulation. We aim to reveal the potential vulnerabilities for future
research, especially on defense solutions.

Table 1: Performance of object shifting attacks.

Target system Method Success
IoU Score

Before After Before After

Early-fusion Ray casting 45.4% 0.22 0.32 0.53 0.21
Intermediate-fusion Adversarial ML 87.1% 0.31 0.49 0.80 0.82

Late-fusion Naive 100% 0.29 0.95 0.59 0.99

5 Evaluation

We evaluate the effectiveness of our proposed attack on simulated
multi-vehicle sensor data, involving the object-shifting perception
attack and the end-to-end online attack.

5.1 Implementation

We use the OPV2V [52] dataset for evaluation, an multi-vehicle
dataset generated through a co-simulation of the CARLA simula-
tor [4] and SUMO simulator [8]. We randomly selected 46 attack
scenarios, each consisting of 60 frames (6 seconds).

We implement a typical autonomous driving software stack as
the subject of the attack. It is a pipeline of various collaborative
perception models from OpenCOOD [52], multi-object tracking
AB3DMOT [50], and trajectory prediction GRIP++ [31]. All models
are trained on a separate training set of OPV2V.

We implement the attack algorithm in Python. For the 60-frame
scenario, the attacker executes the attack from the 20-th frame to the
40-th frame (𝐾 = 20) and optimizes attack impact on the 40-th frame
(𝑀 = 1). The object-shifting attack against intermediate-fusion
leverages 5 steps of PGD update for each frame and aggregates 3
frames in each optimization step. In the fitness function of attack
quality, the threshold of stealthiness is 0.8𝑚2 conflicted area.

In our experiments, we feed the data from OPV2V to our built
autonomous driving software stack to simulate the scenarios. The
attack algorithm manipulates the input of autonomous driving.

5.2 Performance of Perception Attack

Wemeasure the effectiveness of our proposed object shifting attack,
including the three variants for early-fusion, intermediate-fusion,
and late-fusion collaborative perception systems respectively, as
introduced in ğ4.2. We picked 300 attack tasks from OPV2V by
randomly selecting the attacker, the victim, and the target object,
and the attack goal is to move the target object towards a random
direction by 1 meter in the victim’s perception results. The attack
results are summarized in Table 1. We regard the attack as suc-
cessful when the detection bounding box has a larger Intersection
over Union (IoU) with the target object location than the original
location. Besides an overall success rate, we extract the bounding
box associated with the target object before and after the attack
and average the IoU with the target location and the confidence
score. An effective attack should show a significant increment of
IoU and maintain a reasonably high score after the attack.

From the results, the late-fusion attack is the easiest to succeed,
achieving a 100% success rate and nearly perfect IoU and score.
This is reasonable as the attacker can freely inject fake bounding
boxes with high confidence scores. Intermediate-fusion attack is
considerably effective and is successful in 87.1% of cases. The aver-
age IoU of 0.49 is also considered accurate by the computer vision
community. Early-fusion attacks are less successful because of a
fundamental challenge that the attacker cannot overwrite any Li-
DAR points from other vehicles and the malicious point clouds
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Table 2: The impact of łshift to move inž attack.

No attack Ideal attack w/ tracking w/ late-fusion
w/ intermediate-

fusion

Avg(ADE) 1.83 7.38 5.77 5.34 5.67
Avg(MinDist) 5.37 2.34 3.61 3.56 4.21
%(MinDist<3) 6.5% 80.4% 39.1% 38.3% 26.7%

are constrained by physical laws. In conclusion, with the current
attack methodology, the perception attack is stably successful on
intermediate-fusion and late-fusion systems.

5.3 End-to-end performance of the Attack

In this section, we launch an end-to-end full attack. In the case of
łshift to move inž attacks. To validate the attack’s impact on realistic
driving scenes, we evaluate how the attack affects the downstream
components of the victim vehicle including trajectory prediction
and motion planning. To this end, we introduce three evaluation
metrics as below. Formally speaking, for a trajectory 𝑇 , we denote
the trajectory point at frame 𝑖 as 𝑇 (𝑖 ) , and 𝑙2 denotes L2 distance.

• ADE(𝑇𝑔𝑡 ,𝑇𝑝 ) = (
1
𝑁

∑
𝑖=1...𝑁 𝑙2 (𝑇

(𝑖 )
𝑔𝑡 ,𝑇

(𝑖 )
𝑝 ))

1
2 . Average Displace-

ment Error (ADE) between the ground-truth target object trajec-
tory 𝑇𝑝 and predicted target object trajectory 𝑇𝑔𝑡 .

• MinDist(𝑇𝑝 ,𝑇𝑣) = min𝑖=1...𝑁 𝑙2 (𝑇
(𝑖 )
𝑝 ,𝑇

(𝑖 )
𝑣 )

1
2 . Minimum distance

between predicted target object trajectory 𝑇𝑝 and the victim
vehicle trajectory 𝑇𝑣 .
• %(MinDist<3) is the percentile of the cases where MinDist < 3
meters, which we consider a close distance the victim vehicle
should brake to react.

Either a large prediction error or wrong estimation of the distance
to other vehicles has a critical negative impact on driving safety.

Results are shown in Table 2. Overall, the attack can significantly
increase prediction ADE by 201%, decrease MinDist by 27%, and ef-
fectively influence the victim’s behavior in 26%-38% of cases. As
an ablation study, we also evaluate the attack results when certain
components are disabled. The ideal attack assumes the attack strat-
egy is perfectly executed and the victim vehicle sees the same target
object trajectory as adversarial trajectory defines. In this ideal case,
%(MinDist<3) is 80% which means most cases make an impact on
the victim’s behavior except for hard cases where the victim has
no surrounding vehicles nearby. However, as the adversarial tra-
jectory is optimized using only the trajectory prediction model,
the attack is less effective when the victim vehicle applies object
tracking to refine observed trajectories, causing the increment of
MinDist. More uncertainties are introduced when using the real
perception attacks, and %(MinDist<3) dropped to 38.3% and 26.7%
on early-fusion and intermediate-fusion systems respectively. The
results demonstrate the challenge of realistic attacks where the
attackers have partial knowledge of the scene.

We then apply existing anomaly detectionmethods CAD [56] and
ROBOSAC [32] on attack scenarios. CADdetects 13% of intermediate-
fusion attacks and 4.5% of late-fusion attacks, while ROBOSAC
detects 4.5% and 2.2% of attacks respectively. CAD relies on the
detection of łconflicted areasž as discussed in ğ3.2 but our attack
restricts the łconflicted areasž to be below the detection threshold.
CAD has a higher detection rate on intermediate-fusion attacks
because of the uncertainty of the perception attack, which may not
realize the attack strategy exactly. ROBOSAC relies on a consensus
algorithm and focuses on a threat model where the attacker blindly

Traffic scene observed by the victim before attack

Victim
Target

Attacker

Victim

Target

Attacker

Absurdly high 
prediction error

Perturbed object locations

Brake to yield

Traffic scene observed by the victim after attack

Figure 4: A case study of the łshift to move inž attack.

manipulates all objects and introduces lots of false positives. It is
not optimized for the single-object targeted perception attack.

Figure 4 demonstrates an example of the attack on the late-fusion
system. When the target vehicle and the victim vehicle are driving
alongside, the small perception error on the locations of the target
vehicle eventually causes a high error of trajectory prediction and
improper driving decisions.

5.4 Computational Overhead

We benchmark attack algorithms on a server with an Intel Xeon Sil-
ver 4110 CPU and NVIDIA RTX 2080Ti. The perception attack takes
82 ms, 69 ms (one-step PGD), and 0.4 ms on early-, intermediate-,
and late-fusion systems, respectively. Attack optimization time is
linear to the adversarial trajectory length, requiring 13 ms for a
20-frame trajectory and 2 ms for the final frame.

In a realistic attack, perception and optimization run concur-
rently within a typical LiDAR cycle ( 100 ms). Early- and late-fusion
attacks meet this constraint easily, while intermediate-fusion can
only complete one PGD iteration. Future work could enhance at-
tacks via parallelization and caching.

6 Limitations and Future Work

It is an in-progress work to enhance the results presented in this pa-
per. Firstly, we aim to extend the scenario-aware attack to consider
more complex attack strategies, which could apply object spoofing,
removal, and shifting on multiple objects to trigger an intrinsic
safety hazard. Secondly, the object shifting attack is not stably suc-
cessful on early-fusion collaborative perception systems and it is
a future work to explore advanced attack methods. Thirdly, the
intermediate-fusion object shifting attack is expensive in computa-
tion, which requires further optimization. We also aim to validate
the mitigation methods as discussed in ğ4.5.

7 Conclusion

We propose a stealthy, scenario-aware attack on vehicular collabo-
rative perception that induces unsafe driving behaviors with partial
knowledge of dynamic traffic scenes. The attack exploits small per-
ception errors, amplified by downstream components like trajectory
prediction, revealing new security challenges in autonomous driv-
ing systems.
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