
Actively Secure Private Set Intersection in the Client-Server
Se�ing

Yunqing Sun
Northwestern University
Evanston, United States

yunqing.sun@northwestern.edu

Jonathan Katz
Google LLC

Washington DC, United States
University of Maryland

College Park, United States
jkatz2@gmail.com

Mariana Raykova
Google LLC

New York, United States
marianar@google.com

Phillipp Schoppmann
Google LLC

New York, United States
schoppmann@google.com

Xiao Wang
Northwestern University
Evanston, United States

wangxiao@northwestern.edu

Abstract
Private set intersection (PSI) allows two parties to compute the
intersection of their sets without revealing anything else. In some
applications of PSI, a server holds a large set and runs a PSI protocol
with multiple clients, each with its own smaller set. In this setting,
existing protocols fall short: they either achieve only semi-honest
security, or else require the server to run the protocol from scratch
for each execution.

We design an e�cient protocol for this setting with simulation-
based security against malicious adversaries. In our protocol, the
server publishes a one-time, linear-size encoding of its set. Then,
multiple clients can independently execute a PSI protocol with the
server, with complexity linear in the size of each client’s set. To
learn the intersection, a client can download the server’s encoding,
which can be accelerated via content-distribution or peer-to-peer
networks since the same encoding is used by all clients; alterna-
tively, clients can fetch only the relevant parts of the encoding
using veri�able private information retrieval. A key ingredient of
our protocol is an e�cient instantiation of an oblivious veri�able
unpredictable function, which may be of independent interest.

Our implementation shows that our protocol is highly e�cient.
For a server holding 108 elements and each client holding 103 ele-
ments, the size of the server’s encoding is 800MB; an execution of
the protocol uses 60MB of communication, runs in under 5s in a
WAN network with 120 Mbps bandwidth, and costs only 0.017 USD
when utilizing network-caching infrastructures, a 5⇥ saving com-
pared to a state-of-the-art PSI protocol.

CCS Concepts
• Security and privacy! Cryptography.

Keywords
Private set intersection

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690349

ACM Reference Format:
Yunqing Sun, Jonathan Katz,Mariana Raykova, Phillipp Schoppmann, andXiao
Wang. 2024. Actively Secure Private Set Intersection in the Client-Server
Setting. In Proceedings of the 2024 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’24), October 14–18, 2024, Salt Lake City, UT,
USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3658644.
3690349

1 Introduction
Protocols for private set intersection (PSI) allow two parties to
compute the intersection of their private sets without revealing
anything else. PSI has found many applications, including genome
testing [3], botnet detection [38], online advertising [28], compro-
mised credential checking [40], contact discovery [31], etc. In many
applications, one of the parties (a server) holds a large, fairly static
set and repeatedly executes a PSI protocol with several other par-
ties (clients) holding much smaller sets. This is the case, e.g., for
a “password checkup” service in which the server holds a large
set of compromised credentials while each client holds its own
credentials and wants to �nd out if any have been compromised.
This is also the case for contact discovery, where the server holds
a large database of contact information for multiple users while
clients each have their own list of contacts and want to learn which
among them are in the database.

One might naively think that any (actively secure) PSI protocol
could be used in the above setting. There are at least two draw-
backs to doing so. First, there is a security concern: independently
invoking a secure PSI protocol multiple times does not ensure that
a malicious server uses the same set in all executions. Second, even
if all parties are (semi-)honest, it can be prohibitively expensive to
require the server to repeatedly process its (large) input every time
it runs the protocol with a new client; more preferable are solutions
that allow the server to do work proportional to the size of its input
once in an o�ine phase, and then repeatedly run an online phase
with complexity linear in the size of a client’s set.

Existing PSI protocols fall short. While many PSI protocols allow
the server to re-use work done in an o�ine phase [14–16, 33],
existing solutions with this property do not achieve (full) security
against malicious attackers. On the other hand, while several recent
works have shown actively secure PSI protocols [19, 39, 41, 42, 44,

1478

https://orcid.org/0000-0003-1724-9614
https://orcid.org/0000-0001-6084-9303
https://orcid.org/0000-0002-1744-4025
https://orcid.org/0000-0001-7951-3930
https://orcid.org/0000-0002-5991-7417
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3690349
https://doi.org/10.1145/3658644.3690349
https://doi.org/10.1145/3658644.3690349
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658644.3690349&domain=pdf&date_stamp=2024-12-09

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yunqing Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, and Xiao Wang

45], all such protocols require the server to do work linear in the
size of its input in each execution.

1.1 Our Contributions
Actively secure PSI in the client-server setting. We design an ac-

tively secure PSI protocol that is particularly suitable for the multi-
client setting. In our protocol the server encodes its set once during
an o�ine phase, and can then repeatedly execute the online phase
of the protocol with multiple clients. Thus, the server’s initial en-
coding is reusable, so only needs to be computed once. Moreover,
clients do not need to know the server’s encoding when running
the online phase, but can retrieve it asynchronously even after the
online phase is complete. This o�ers �exibility, potentially allowing
the encoding to be distributed via content-distribution or peer-to-
peer networks. (See further discussion in Section 4.2.) Alternately,
the client can reduce bandwidth and retrieve only relevant portions
of the encoding (after completing the online phase of the protocol)
using veri�able private information retrieval [5, 18].

An e�cient oblivious VRF. Similar to prior work, our PSI proto-
col relies on a subprotocol for oblivious pseudorandom function
(OPRF) evaluation. To achieve security against a malicious server
(as explained further in Section 2.1) we strengthen this to oblivi-
ous evaluation of a veri�able pseudorandom function (OVRF). (For
technical reasons, it is actually more convenient for us to work
with veri�able unpredictable functions, or VUFs.) While OPRFs are
well-studied (see [12] for a systematic summary) we are not aware
of any prior work constructing (e�cient) OVUFs/OVRFs. Some
prior works consider veri�able OPRFs; however, e�cient construc-
tions [17, 23, 29, 34, 47, 49] are not extractable (thus not applicable
here), while extractable constructions are all far from being prac-
tical [1, 4, 7, 46]. We also show an e�cient OVUF/OVRF protocol
based on the (non-oblivious) VRF of Dodis and Yampolskiy [20].
Our protocol relies on techniques for converting secret shares from
multiplicative to additive form (aka MtA conversion), something
considered by several prior works in other contexts [13, 21, 51]. To
further improve e�ciency, we rely on an “imperfect” MtA protocol
that allows a cheating server to cause a client to output an incorrect
result. We show that this su�ces in our setting.

Practical e�ciency. We implemented our PSI protocol using state-
of-the-art building blocks, and our experimental results show that
our protocol is highly e�cient. For example, at the 128-bit com-
putational / 40-bit statistical security level, for a server holding
108 elements and a client holding 103 elements, the size of the
server’s encoding is 800MB; an execution of the protocol uses
60MB of communication, runs in under 5s in a WAN network with
120 Mbps bandwidth, and costs only 0.017 USD when utilizing
network caching infrastructures, a 5⇥ saving compared to a state-
of-the-art malicious PSI protocol without consistency guarantee.

1.2 Outline of the Paper
In Section 2 we give a technical overview of our PSI protocol, as
well as the OVUF/OVRF sub-protocol we propose. After giving
preliminary de�nitions in Section 3, we describe our PSI protocol in
detail, based on any OVUF, in Section 4. In Section 5, we present our

e�cient OVUF/OVRF protocol. We conclude with an experimental
evaluation, and comparison to prior work, in Section 6.

2 Technical Overview
In this section we give a more-detailed overview of our PSI protocol.
Our protocol can be based on any sub-protocol for oblivious evalu-
ation of a veri�able unpredictable function (OVUF); we provide an
overview of an e�cient construction of the latter as well.

2.1 Actively Secure PSI from OVUFs
As in prior work on PSI [19, 41, 44], our protocol relies on the
following idea: The server begins by generating a private key sk.
Then, in an o�ine phase, the server with set - = {G8 } computes
a deterministic encoding ⇢- = {4G8 = En(sk;G8)} of its set. To
compute the intersectionwith a set. = {~8 } held by some client, the
server runs an interactive protocol with the client (with complexity
linear in |. |) that allows the client to learn ⇢. = {En(sk;~8)}. Once
the client learns ⇢- it can compute ⇢- \ ⇢. , from which it can
deduce the elements in the intersection.

In prior work, the encoding of an element was done by setting
En(sk;G8) = �sk (G) for a pseudorandom function � . The server can
locally compute this encoding, while the client can compute this
encoding by interacting with the server in an OPRF sub-protocol.
This su�ces to achieve semi-honest security: informally, the client
learns nothing beyond the intersection (and the size of the server’s
set) since each encoding outside the intersection is random; the
server learns nothing about the client’s set due to the obliviousness
of the OPRF protocol.

Unfortunately, the above does not appear to allow for proving se-
curity against a malicious server. In that setting, it must be possible
to extract the server’s (e�ective) input from its published encod-
ing ⇢- . There is no obvious way to do this in the above protocol. In
particular, for a single value 4G published by the server, a simulator
has no way to even tell whether 4G is a (correct) encoding of some
element or a garbage value that will not match anything.

Malicious security via veri�ability. We address this issue by us-
ing a veri�able random function (VRF) [37]. A VRF is associated
with both a private key sk and a public key pk; informally, �sk (·)
should look random even given pk, but a VRF has the extra prop-
erty that G 0 = �sk (G) can be veri�ed as correct given G and pk by
running a veri�cation procedure Verify(pk, G, G 0). We modify the
protocol given above by having the server publish pk, and setting
En(sk;G8) = � (G, �sk (G)) for � a hash function modeled as a ran-
dom oracle. (This means we now need a sub-protocol for oblivious
evaluation of a VRF, which we present in the following section.)

To see how this allows for extraction of the server’s input, con-
sider again a single encoded value 4G published by the server. The
simulator can look for a corresponding � -query � (G, G 0) with out-
put 4G ; if a unique such query exists then 4G can only possibly
correspond to G . (If there is no � -query with output 4G , then the
simulator knows that 4G does not correspond to any element.) Cru-
cially, the simulator can then check whether 4G is indeed a (correct)
encoding of G by checking whether Verify(pk, G, G 0) = 1.

We remark that using a VRF also allows clients to verify that
their encoding ⇢. is computed correctly during the online phase

1479

Actively Secure Private Set Intersection in the Client-Server Se�ing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

of the protocol, something that is also critical for security against a
malicious server.

Finally, we observe that using a VRF is overkill, and it su�ces to
rely on a veri�able unpredictable function (VUF); we thus construct
an oblivious VUF (OVUF) sub-protocol in the next section.1

2.2 Constructing an OVUF
Our starting point is the VUF of Dodis and Yampolskiy [20] based
on a bilinear map 4 : G ⇥ G! G) .2 Let 6 be a generator of G. In
this VUF, the server’s public key is pk = 6sk 2 G, and evaluation
is de�ned as �sk (G) = 61/(sk+G) . Veri�cation is done by checking if
4 (�sk (G), pk · 6G) = 4 (6,6).

We now sketch a protocol for oblivious evaluation of this func-
tion, run between a server (holding sk and a client ⇠ holding
input ~. A a high level, our protocol works as follows:
(1) The parties choose randomvaluesq1 andq2, respectively, viewed

as an additive sharing of a random value.
(2) The parties run a multiplicative-to-additive share-conversion

protocol, where (uses sk and ⇠ uses q2; as a result, (and ⇠
obtain �1 and �2, respectively, such that �2 +�1 = q2 · sk.

(3) Similarly, the parties obtain ⌫1 and ⌫2 such that ⌫2 +⌫1 = q1 ·~.
(4) (sends q1 · sk+�1 +⌫1 and⇠ sends q2 ·~ +�2 +⌫2. The parties

then add these values to obtain E = (sk + ~) (q1 + q2).
(5) (sends 6q1/E to ⇠ , who computes 6q1/E · 6q2/E = 61/(sk+~) .
Note that⇠ can verify the �nal result using the veri�ability property
of the VUF and the server’s public key.

The bottleneck in the above is the subroutine for multiplicative-
to-additive (MtA) share conversion. Actively secure MtA protocols
have been a key building block in the context of threshold ECDSA,
and there have been proposals for constructing themusing oblivious
transfer (OT) [22, 26], Paillier encryption [11, 24, 36], and Castagnos-
Laguillaumie encryption [13]; see Xue et al. [51] for a more detailed
survey. In this paper, we focus on constructions from OT as they
are the most computationally e�cient.

We adapt the MtA approach used by Doerner et al. [22] that
can be viewed as a malicious version of an idea by Gilboa [25].
For two parties with 0 and 1 as input, the high-level idea is to use
OT to generate additive secret sharings of 0 · 18 , where 18 is the
8th bit of 1. The two parties can then compute an additive secret
sharing of 0 · 1 as a linear combination of the shares of the {018 }.
To achieve security against malicious behavior, Doerner et al. made
two changes: (1) each OT will select two sets of values, where the
second set of values is used solely for checking correctness of the
output; (2) to prevent selective-failure attacks, they encode the bit
18 as a longer string of choice bits instead of using just 18 itself.
These changes lead to an overhead of 4–5⇥ in communication as
compared to the underlying semi-honest protocol.

We observe that since the �nal output in our application can be
veri�ed anyway, we can save half the communication by not doing
checking in the MtA protocol itself. Removing the check in the MtA
protocol complicates the proof of security. In particular, we are

1It is easy to turn a VUF � into a VRF � 0 in the random-oracle model by de�ning
� 0sk (G) = � (�sk (G)) . Nevertheless, relying on a VUF provides a cleaner abstraction
for our protocol. OVUFs may also be easier to construct than OVRFs.
2For e�ciency, we use Type-III pairings where the groups in the domain are di�erent;
here, we describe things in the Type-I setting for simplicity.

unable to de�ne an appropriate functionality that our “imperfect”
MtA sub-protocol realizes, and so instead we prove security of the
entire OVUF directly.

It is still possible for a malicious server to cheat by using an
incorrect value of sk in the protocol. This can even lead to a concrete
attack: to determine whether the client’s input is some value ~, a
malicious server can use sk⇤ = �~ in step 2 of the protocol and then
see whether E = 0 in step 4. To ensure that this does not happen, we
add an extra veri�cation step after the second step. Essentially, we
want to verify that the server holds �1 such that �1 +�2 = q2 · sk,
where �2,q2 are known to the client and sk = log6 pk. To do this,
we have the server send 6�1 , and the client checks if this is equal to
pkq2 ·6��2 . (When the server is honest, this does not reveal anything
to the client that it did not already know; on the other hand, if the
client is honest then �2 is uniform and so a cheating server will be
caught with overwhelming probability.) Using hashing, this check
can be batched when evaluating the VUF at multiple points; thus,
the check incurs negligible (amortized) communication and only a
few exponentiations.

3 Preliminaries
We use ^ as a computational security parameter and B as a statistical
security parameter. We use �1 (W) to denote the min-entropy of
a random variable W ; and use log to denote logarithms base 2. We
let [=] = {1, · · · ,=}. Bold lowercase letters like a represent row
vectors, where a8 denotes the 8th component of a. We also write
a � b for the Hadamard product of two vectors. For 1 2 Z@ , we use
⌫8CB (1) to denote the bit decomposition of 1. We write 0 (to
indicate that 0 is sampled uniformly from set (.

3.1 Veri�able Unpredictable Functions
A veri�able random function (VRF) is a keyed function whose
output is veri�able given a public key and an associated proof;
informally, the output should be indistinguishable from random
without the proof. A veri�able unpredictable function (VUF) is a
weaker primitive, where all that is required is for the output to be
unpredictable. Note, however, that in contrast to a VRF, the output
of a VUF can be veri�ed without any additional proof. We only rely
on VUFs in our work.

D��������� 1. A VUF consists of algorithms (Gen, � ,Vrfy) where
• Gen takes as input 1^ , and outputs a key pair (sk, pk).
• � takes as input a secret key sk and an element G and outputs ~.
• Vrfy takes as input a public key pk and elements G,~ and outputs
a bit.

It is required that for all (sk, pk) output by Gen and all G in the
domain of � , we have Vrfy(pk, G, �sk (G)) = 1.

Moreover, the following security properties hold:
Uniqueness: There do not exist (pk, G,~1,~2) with ~1 < ~2 and

Vrfy(pk, G,~1) = 1 = Vrfy(?:, G,~2).

Unpredictability: For any e�cient algorithm A, the following is
negligible:

%A
h
(sk, pk) Gen(1^); (G,~) A

�sk (·) (pk) : ~ = �sk (G)
i
,

where A does not query its oracle on G .

1480

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yunqing Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, and Xiao Wang

Functionality FPSI

There is a server (and clients⇠1,
Initialization: Upon receiving (init,-) from (, store - , send |- |

to A, and ignore subsequent initialization requests.
Computation: Upon receiving (PSI,.) from ⇠ 9 , send |. | to A

and (. If (sends ok and - is stored, send - \. to⇠ 9 . Other-
wise, send ? to⇠ 9 .

Figure 1: The private set intersection functionality.

For technical reasons, we also require that it is possible to iden-
tify whether a key pair (sk, pk) is valid or not; for a valid key
pair Vrfy(pk, G, �sk (G)) = 1 for all G , while for an invalid key pair
Vrfy(pk, G, �sk (G)) = 0 for all G .

We recall the VUF proposed by Dodis and Yampolskiy [20], based
on prior work of Boneh and Boyen [6]. Let G, G) be cyclic groups
of prime order @, with 4 : G ⇥ G! G) an e�ciently computable
pairing.3 The Dodis-Yampolskiy VUF is de�ned as follows:
(1) Gen: Choose sk Z@ and output (sk, pk = 6sk).
(2) �sk (G) = 61/(sk+G) . (We de�ne �sk (�sk) = 1.)
(3) Vrfy(pk, G,~) outputs 1 i� 4 (6G · pk,~) = 4 (6,6), or pk = 6�G

and ~ = 1.
The security of this construction for small domain relies on

variations of (bilinear) Di�e-Hellman assumptions. Subsequent
work [9] shows its security for general input domains in the generic
group model.

3.2 Ideal Functionalities
We prove security of our protocols in the UC framework [10], as-
suming static corruptions. Below we describe the PSI functionality
as well as other functionalities we use. We omit session IDs for
readability. Some of our protocols rely on a programmable ran-
dom oracle, which can be formalized as a functionality within the
generalized UC framework [8]; we do not do this explicitly here.
However, we note that our PSI functionality is explicitly de�ned
for a single server interacting with multiple clients. We assume
authenticated channels, but do not require private channels.

Private set intersection. Private set intersection (PSI) allows two
parties to jointly compute the intersection of their private sets with-
out revealing any additional information (except the sizes of their
sets). In Figure 1, we describe the ideal functionality corresponding
to PSI, which allows a server to compute intersections with multiple
clients. The functionality ensures that the server uses the same set
with every client.

Oblivious veri�able unpredictable function. One natural way to
formalize an oblivious VRF is via a functionality that internally
generates a random function � ; when queried by a client with
input (eval, G), the functionality returns � (G) to the client if the
server approves. Moreover, the functionality should allow any party
to query (verify, G,~) to learn whether ~ = � (G) (without notifying
the server or requiring its approval). There are at least two problem
with such an approach. First, it would need to be modi�ed to handle
a malicious server who may not choose a uniform key. While such
3Our implementation uses a Type-III pairing 4 : G1 ⇥G2 ! G) for e�ciency, but for
simplicity we describe our protocols using Type-I pairings.

Functionality FOVUF

There is a server (and clients⇠1, . . . Let (Gen, � ,Vrfy) be a VUF.
Initialization: Upon receiving (init, pk) from (, store pk, send pk

to A, and ignore subsequent initialization requests.
The queries below are ignored if pk is not stored.

Key query: Upon receiving fetch from⇠ 9 , send pk to⇠ 9 .
Evaluation: Upon receiving (eval, (~1, . . . , ~=)) from ⇠ 9 , send =

to (and A. When (responds with sk, check the validity of
(sk, pk) . If (sk, pk) is invalid, send ? to⇠ 9 . Otherwise, send
(�sk (~1), . . . , �sk (~=)) to⇠ 9 .

Figure 2: The OVUF functionality.

Functionality FCOT

Upon receiving 3 2 Z=@ from (and w 2 {0, 1}= from⇠ 9 , for 8 2 [=]
choose p8 Z@ and set q8 = w8 · 38 � p8 . Send p to (and q to⇠ 9 .

Figure 3: The correlated OT functionality.

Functionality FBB

There is a server (and clients⇠1,
Send: Upon receiving msg from (, send msg to A and store msg.

Ignore subsequent messages from (.
Fetch: Upon receiving fetch from ⇠ 9 , if msg is stored then send it

to⇠ 9 .

Figure 4: The bulletin board functionality.

a modi�cation is possible, it complicates things. Second, it seems
di�cult to model an unpredictable (rather than random) function
using this type of approach.

We therefore choose to model the OVUF functionality as a secure
evaluation of a concrete VUF, as shown in Figure 2. We allow the
client to request oblivious evaluation at multiple points (“batch
evaluation”), as this can allow for better e�ciency.

Correlated oblivious transfer. Correlated oblivious transfer (COT)
is a variant of oblivious transfer. See Figure 3.

Bulletin board. We use a bulletin board functionality that allows
the server to post messages that can be read by all clients. This
functionality is used for distribution of the server’s public key as
well as the server’s encoding. See Figure 4. In practice, the server’s
public key would be distributed through standard PKI mechanisms,
and we envision that the server’s encoding would be distributed
through content-distribution networks.

4 OVUF-based PSI
4.1 The PSI Protocol
We have already given an overview of our approach in Section 2.1.
The detailed PSI protocol ⇧PSI is shown in Figure 5.

T������ 1. Assume the VUF used by FOVUF is secure. If �
is modeled as a random oracle, then ⇧PSI UC-realizes FPSI in the
{FOVUF, FBB}-hybrid model.

P����. Let A be a PPT adversary that may corrupt the server
and any number of clients. We construct a simulator Sim with
access to functionality FPSI that runs A as a subroutine. Note that

1481

Actively Secure Private Set Intersection in the Client-Server Se�ing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Protocol ⇧PSI

The server (holds - and each client⇠ 9 holds .9 .
� : Z@ ⇥ G! {0, 1}f is a hash function.
Initialization:
(1) (runs (sk, pk) Gen and sends (init, pk) to FOVUF.
(2) For each G8 2 - , the server computes 4G8 = � (G8 , �sk (G8)) . It

then sends ⇢- = {4G8 } to FBB.
Compute intersection:
(1) ⇠ 9 sends (eval, ~1, · · · , ~=) to FOVUF. Upon receiving =

from FOVUF, (sends sk to FOVUF. Then FOVUF sends
(�sk (~1), · · · , �sk (~=)) to⇠ 9 . (If FOVUF sends?, then⇠ 9 aborts.)

(2) ⇠ 9 computes 4~8 = � (~8 , �sk (~8)) and lets ⇢. = {4~8 }.
(3) ⇠ 9 sends fetch to FBB, and receives ⇢- in return. It then outputs

{~8 : 4~8 2 ⇢- \ ⇢. }.

Figure 5: PSI protocol in the {FOVUF, FBB}-hybrid model.

there is nothing to simulate if a corrupted server interacts with a
corrupted client. When an honest server interacts with a corrupted
client, the only communication observed by the adversary is pk
and ⇢- ; thus, that case is covered in the same way as in the case of
an honest server interacting with a corrupted client.

Corrupted server with some honest clients. Sim runs A, simu-
lating � by returning random responses to A’s queries. Then:

(1) Let (init, pk) be the message A sends to FOVUF, and let ⇢- =
{4G8 } be the message A sends to FBB.

(2) Initialize - = ;. Then for each 4G 2 ⇢- , do:
(a) IfA did not make any� -query with output 4G , do nothing.
(b) If A made an � -query with output 4G , let � (G, G 0) be the

�rst such query. Add G to - i� Vrfy(pk, G, G 0) = 1.
Send - to FPSI on behalf of (.

(3) Upon receiving = from FPSI, send = to A on behalf of FOVUF.
If A does not respond, or responds with sk for which (sk, pk)
is invalid, send abort to FPSI. Otherwise, send ok to FPSI.

It is not hard to see that the simulation is statistically close to an
execution of ⇧PSI in the {FOVUF, FBB}-hybrid world. The unique-
ness of the VUF ensure that the simulator does not include wrong
elements: if the adversary could �nd values (G, G 0) that pass the
veri�cation but not a VUF input-output pair, the extraction would
include such an element incorrectly.

Corrupted clients with an honest server. Sim runs A, simulat-
ing � by returning random responses to A’s queries. Then:

(1) Run (sk, pk) Gen. If a corrupted client queries fetch to
FOVUF, send pk in response.

(2) Sim receives = from FPSI. It chooses 4G1, . . . , 4G= {0, 1}f and
sets ⇢- = {4G8 }. If any client (corrupted or not) queries FBB,
it sends ⇢- in response. Sim also maintains a table) indexed
by [=], initially empty.

(3) Whenever A sends (eval,~1, . . . ,~<) to FOVUF on behalf of a
corrupted client, do
(a) Send . = {~8 } to FPSI, and receive in return a set / ✓ . .

Send (�sk (~1), . . . , �sk (~<)) to A.
(b) For each I 2 / do: If there is an 8 with) [8] = I, do nothing.

Otherwise, choose a uniform empty entry) [8], set) [8] = I,
and program � so that � (I, �sk (I)) = 4G8 .

It is again not hard to see that the simulation is statistically close
to an execution of ⇧PSI in the {FOVUF, FBB}-hybrid world. In par-
ticular, the simulation relies on the fact that corrupted clients do
not query (I, �sk (I)) to RO ahead of time, which reduces to the
unpredictability of the underlying VUF. ⇤

4.2 Distributing the Server Encoding
Here we discuss several solutions that could be used in practice to
distribute the server encoding.
Network caching. Network caching technologies like content
distribution network (CDN) are good at distributing content cheaply
and quickly. This is the standard technique to distribute common
website and streaming services. Our service encoding can take
advantage of CDN networks since the server encoding is identical
for all clients. Note that prior works on malicious PSI cannot take
advantage of CDN since the communication with each client is
di�erent.
Veri�able private information retrieval. One can also use ver-
i�able PIR [18, 27] to allow the clients getting only a subset of
encodings relevant to their own PSI. Unlike normal PIR, veri�able
PIR publishes a digest of the data, which ensures that anyone with
the digest can verify that the PIR results are consistent with a global
database, something needed to prevent attacks from a corrupted
server. However, state-of-the-art veri�able PIR has a digest size
of around 600MB for a database of 800MB [18] and thus the cur-
rent savings are small. With more advances in their e�ciency, we
believe this solution could be highly valuable.
Other solutions. There are other potential solutions with some
trade o�s between security and e�ciency. First of all, one could
directly fetch the needed encodings through a TOR network to hide
their identity, which requires assumptions of trusting TOR. Buck-
etization is another solution that provides better e�ciency with
reduced privacy. In detail, one can use a hash function to partition
all encodings into buckets and reveal which buckets the clients are
looking. Indeed, this solution has been used by Google and Cloud-
�are for credential checking, but there are also demonstration of
attacks for various bucketization techniques [35].

5 An Oblivious VUF
In this section, we present anOVUF protocol for theDodis-Yampolskiy
VUF, with security against malicious adversaries. Our protocol
works in the (FBB, FCOT)-hybrid model with a sub-protocol named
imperfect multiplicative to additive shares ⇧MtA. In Section 5.1, we
review a randomized encoding scheme. Then, in Section 5.2, we
introduce the sub-protocol ⇧MtA, which leverages the encoding
scheme. The OVUF protocol, described in Section 5.3, is constructed
based on ⇧MtA. Then, we give a complexity analysis of the pro-
posed OVUF protocol in Section 5.4. We leave the discussion of
further optimization in Section A.

5.1 Encoding for Coalesced Multiplication
We provide a brief recap of the randomized encoding scheme de-
scribed by Doerner et al. [22]. However, we prove some slightly
di�erent properties of the encoding where we also take the random-
ness of the encoding vector gR. This is valid in our protocol because,

1482

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yunqing Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, and Xiao Wang

as shown in Figure 6, we sample gR only after the adversary chooses
where to cheat.
Single encoding. De�ne coe�cient vector g = gG | |gR, where
gG 2 Zlog@@ , gG8 = 28�1, and gR 2 Zlog@+2B@ .

A�������� 1. ⇢=2>34 (gR 2 Zlog@+2B@ , V 2 Z@)

(1) Sample W {0, 1}log@+2B .
(2) Output ⌫8CB (V � hgR,Wi) | |W .

L���� 1. Given uniform W {0, 1}log@+2B and gR Zlog@+2B@ ,
⌘g' (W) := hgR,Wi is statistically close to uniform distribution with a
statistical distance of at most 2�B .

P����. We defer the proof to our full version [48]. ⇤

Batch encoding.When encoding more than one element, it is pos-
sible to perform better than encoding each element independently.

A�������� 2. ⌫0C2⌘⇢=2>34 (gR 2 Zlog@+2B@ , {V1, · · · , V=} 2 Z=@)

(1) Sample W1 {0, 1}log@ , · · · ,W= {0, 1}log@ , W=+1 {0, 1}2B
(2) Output

⌫8CB (V1 � hgR,W1 | |W=+1i) | |W1 | | · · · | |

⌫8CB (V= � hgR,W= | |W=+1i) | |W= | |W=+1

L���� 2. Given uniform $ = W1 | | · · · | |W=+1 {0, 1}= log@+2B

and gR Zlog@+2B@ , ⌘gR ($) := hgR,W1 | |W=+1i | | · · · | |hgR,W= | |W=+1i
is within statistical distance B�B of uniform.

P����. We defer the proof to our full version [48]. ⇤

5.2 Imperfect MtA Protocol
The imperfect multiplicative to additive (MtA) shares protocol trans-
forms multiplicative shares to additive shares. It is imperfect be-
cause a malicious sender can execute attacks that lead to incorrect
additive secret shares, depending on the receiver’s input. This pro-
tocol is specially designed for our e�cient DY-based oblivious VUF
protocol because it does not directly instantiate the MtA function-
ality due to the lack of correctness guarantee. Therefore, we do not
model it as a functionality. The correctness will be checked for free
as part of the OVUF protocol.

We use oblivious transfer based constructions to achieve this
MtA. For the semi-honest version, given value 0 2 Z@ on the sender
side and 1 2 Z@ on the receiver side, the sender execute log@ itera-
tions of FCOT with 0 as input in each 8th iteration, while the receiver
inputs b8 , representing the 8th bit of the binary representation of 1.
The procedure and its correctness are detailed below:
(1) For 8 2 [log@], the receiver inputs b8 to FCOT, while the sender

inputs 0. FCOT sends q8 to receiver and p8 to sender, such that
q8 + p8 = 0 · b8 .

(2) De�ne 3 =
Õ
82 [log@] 28�1q8 , 2 =

Õ
82 [log@] 28�1p8 . Then

3 + 2 =
’

82 [log@]
28�1q8 +

’
82 [log@]

28�1p8

= 0
’

82 [log@]
28�1b8 = 0 · 1 .

However, a malicious sender could potentially execute attacks to
the semi-honest protocol above. Speci�cally, it samples an error
vector e 2 Z=@ and inputs 0 + e8 to FCOT in its 8th iteration. It re-
sults 3 + 2 = 0 · 1 +

Õ
82 [log@] 28�1e8b8 . Given e8 , the correctness

of MtA transformation depends on the receiver’s input 1. Specif-
ically, the transformation is correct when

Õ
82 [log@] 28�1e8b8 = 0.

Prior works incorporate consistency checks and encoding to resist
such malicious behaviors [22]. The consistency check, for input 0
in di�erent iterations, leaks information. Encoding is involved to
further protect privacy. In our construction, MtA is used in OVUF
protocol in Section 5.3. Since the veri�ability of OVUF implicitly
gives the same property as a consistency check, we only incorporate
the encoding algorithm in [22] to give an imperfect MtA protocol.
To enhance e�ciency, we give a batch version in Figure 6. In this
scenario, two parties hold collections of = elements, denoted as
a 2 Z=@ and b 2 Z=@ , respectively. There is a receiver that employs
⌫0C2⌘⇢=2>34 (gR, b) algorithm to encode each element of its input
into a batched binary representation. gR 2 Zlog@+2B@ is randomly
chosen by the receiver and sent to the sender after executing FCOT.
To run FCOT s correctly in each iteration, the sender inputs a8
and the receiver inputs corresponding b8 in its batch encoded bit
representation form.

We show correctness of Figure 6 in its single encoded version:

(1) De�new = ⇢=2>34 (gR,1) 2 {0, 1}2 log@+2B , which is the encod-
ing of 1. For 8 2 [C + 2B], C = 2 log@, the receiver inputs w8 to
FCOT, while the sender inputs 0. FCOT sends q8 to receiver and
p8 to sender, such that q8 + p8 = w8 · 0.

(2) For g = gG | |gR, de�ne 3 =
Õ
82 [C] g8q8 +

Õ
82 [2B] gC+8qC+8 and

2 =
Õ
82 [C] g8p8 +

Õ
82 [2B] gC+8pC+8 . We have

3 + 2 =
’
82 [C]

g8q8 +
’

82 [2B]
gC+8qC+8 +

’
82 [C]

g8p8 +
’

82 [2B]
gC+8pC+8

=
’
82 [C]

g8 (q8 + p8) +
’

82 [2B]
gC+8 (qC+8 + pC+8)

= 0(
’
82 [C]

g8w8 +
’

82 [2B]
gC+8wC+8)

= 0 · 1

For a malicious sender executing the attacks described above,
the relation will be resulted as 3 + 2 = 0 · 1 +

Õ
82 [C] g8e8w8 +Õ

82 [2B] gC+8eC+8wC+8 with respect to the value ofw = ⇢=2>34 (gR,1) 2
ZC+2B@ . Forw = ⌫0C2⌘⇢=2>34 (gR, b) 2 Z=C+2B@ , malicious behavior of
sender will result in d8 + c8 = a8 · b8 + f8 , where

f8 :=
’
9 2 [C]

g9w (8�1)C+9 e (8�1)C+9 +
’

:2 [2B]
gC+:w=C+:e=C+(:�1)=+8 (1)

We will show how to catch this incorrectness in Section 5.3 below
with respect to the detailed OVUF protocol.

5.3 An Oblivious VUF from Imperfect MtA
Based on the imperfect MtA protocol from Section 5.2, we construct
an OVUF protocol as follows.

(1) The server �rst uses pk to initiate the bulletin board FBB. Then,
upon receiving pk from FBB, the client checks whether 6�~8 =

1483

Actively Secure Private Set Intersection in the Client-Server Se�ing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Protocol ⇧MtA

Inputs: %0 holds a 2 Z=@ . %1 holds b 2 Z=@ .
Protocol:
(1) %1 samples gR Zlog@+2B@ . %1 encodes b by computing w :=

⌫0C2⌘⇢=2>34 (gR,b) 2 {0, 1}=C+2B , where C = 2 log@.
(2) For 8 2 [=], 9 2 [C], %1 inputs w(8�1)C+9 to FCOT. %0 inputs

a8 2 F@ to FCOT. %0 receives p8,9 2 F@ from FCOT. %1 receives
q8,9 2 F@ from FCOT.

(3) For : 2 [2B], %1 inputs w=C+: to FCOT. %0 inputs a 2 F=@ to
FCOT. %0 receives {p01,: , · · · , p

0

=,: } 2 F
=
@ from FCOT. %1 receives

{q01,: , · · · , q
0

=,: } 2 F
=
@ from FCOT.

(4) %1 sends gR to %0.
(5) For 9 2 [C], : 2 [2B], 8 2 [=], %0 computes c8 =

Õ
92 [C] g9 ·

p8,9 +
Õ

:2 [2B] gC+: · p08,: and %1 computes d8 =
Õ

92 [C] g9 · q8,9 +Õ
:2 [2B] gC+: · q08,: such that d8 + c8 = a8 · b8 .

Figure 6: The MtA protocol in the FCOT-hybrid model.

pk for each ~8 in its input set (~1, · · · ,~=). If so, the client re-
places these ~8 values with random values to avoid corner cases
in the protocol.

(2) Given input value sk on the server side and input vector (~1, · · · ,~=) 2
Z=@ on the client side, both parties uniformly choose random
vectors 51 2 Z=@ and 52 2 Z=@ respectively.

(3) The inputs and random vectors are speci�cally ordered as
(sk, 581) 2 Z

2
@, 8 2 [=] and (582,~8) 2 Z

2
@, 8 2 [=], which serves

as input vector for ⇧MtA in its 8th iteration. By running ⇧MtA
on both sides for = times, both parties obtain additive secret
shares �81 and ⌫

8
1 of sk · 582 and additive secret shares �82 and

⌫82 of 5
8
1 · ~8 .

(4) Then, the server raise 6 to �81 for each 8 2 [=], where �81 is
the secret share of sk · 582, and apply a hash function to these
values. The server sends the hash result to the client, allowing
it to check whether sk used by the server in each iteration is
consistent with the pk initialized on FBB.

(5) Then, both parties are able to locally compute sk · 581 +�
8
1 + ⌫

8
1

and 582 · ~8 +�
8
2 + ⌫

8
2, respectively. The results are regarded as

secret shares of v8 = (581 + 582) (sk +~8). Both parties exchanges
the results to recover v8 .

(6) Both parties are able to compute 65
8
1/v8 and 65

8
2/v8 , respectively.

Given 65
8
1/v8 , the client computes �sk (~8) = 65

8
1/v8 · 65

8
2/v8 and

veri�es correctness of the protocol using the fetched pk.
The detailed scheme is shown in Figure 7. Its correctness can

be directly veri�ed. For security, we assume the client acts as a
receiver in the execution of FCOT in sub-protocol ⇧MtA, while the
server acts as a sender. A malicious client might send the wrong ~8
or u8 to the server. Incorrect ~8 can be extracted by Sim given gR

from the client. Incorrect u8 leads to abort with all but negligible
probability, which can be simulated by Sim constructing message h8
to manipulate abort probability. A malicious server could execute
selective failure attack in ⇧OVUF and bias the secret shares of v8
to be u8 +m8 = di�i + (581 + 582) (sk + ~8) = di�i + v8 . di�i resulted
from the incorrectness stated in Section 5.2 that di�i = f 81 + f 82 .
f 81 resulted from incorrect 581 · ~8 and f 82 resulted from incorrect
sk · 582. In the server’s perspective, gR is received after the selective
failure attack has been executed. For any element gRi uniformly

Protocol ⇧OVUF

Inputs and parameters: Hash function � modeled as RO. Client⇠ 9

holds (~1, . . . , ~=) 2 Z=@ .
Initialization: (chooses sk 2 Z@ , sets pk = 6sk, and sends pk to
FBB.
Key query: Client⇠ 9 sends fetch to FBB and receives pk.
Evaluation:
(1) ⇠ 9 checks if 6�~8 = pk for each 8 2 [=]. If it is,⇠ 9 inserts 8 to set

� and sample uniform ~8 Z@ .
(2) Server (chooses 51 Z=@ ; client⇠ 9 chooses 52 Z=@ .
(3) For 8 2 [=], (holds vector (sk,58

1) 2 Z
2
@ , ⇠ 9 holds vector

(58
2, ~8) 2 Z

2
@ . Both parties run ⇧MtA with the stated input vector

above. Then, (receives (�8
1,⌫

8
1) 2 Z

2
@ ,⇠ 9 receives (�8

2,⌫
8
2) 2 Z

2
@ ,

such that �8
2 +�8

1 = 58
2 · sk, ⌫

8
2 + ⌫8

1 = 58
1 · ~8 .

(4) (computes+(= � (6�
1
1 , · · · ,6�

=
1) , and sends+(to⇠ 9 .⇠ 9 com-

putes +' = � (pk5
1
2 /6�

1
2 , · · · , pk5

=
2 /6�

=
2) . ⇠ 9 checks whether

+' = +(and aborts if they are not equal.
(5) (sends m to ⇠ 9 , where m8 = 58

1 · sk + �8
1 + ⌫8

1. ⇠ 9 computes
u8 = 58

2 · ~8 + �8
2 + ⌫8

2 and sends it to (. Both parties compute
v = m + u.

(6) For each 8 2 [=], (computes h8 = 65
8
1/v8 . Then (sends h to

⇠ 9 .⇠ 9 sets �sk (~8) = 1, 8 2 � . For each 8 2 [=] \ � ,⇠ 9 computes
�sk (~8) = h8 · 6

58
2/v8 .

(7) ⇠ 9 outputs (�sk (~1), · · · , �sk (~=)) if 4 (6~8 · pk, �sk (~8)) =
4 (6,6) for each 8 2 [=] \ � . Otherwise it aborts.

Figure 7: OVUF protocol in the (FCOT, FBB)-hybrid model
with sub-protocol ⇧MtA.

distributed over Z@ , di�i is uniformly distributed over Z@ . If the
server sends m8 and h8 honestly, the veri�cation of �sk (~8) passes
if and only if di�i = 0, which is with negligible probability. If not,
the veri�cation of �sk (~8) passes if and only if di� equals a speci�c
number that results in correct �sk (~8), which is negligible either.
Thus, the server’s malicious behavior can be simulated by Sim with
all but negligible abort probability. The detailed proof of the security
of the proposed ⇧OVUF with sub-protocol ⇧MtA in the hybrid of
(FBB, FCOT) is shown in Theorem 2.

T������ 2. If � is modeled as a random oracle, then protocol
⇧OVUF with sub-protocol ⇧MtA shown in Figure 7 UC-realizes FOVUF
in (FBB, FCOT)-hybrid model.

P����. Let A be a PPT adversary that allows to corrupt the
server or the client. We construct a PPT simulator Sim with ac-
cess to functionality FOVUF, which simulates the adversary’s view.
We consider the following two cases: malicious client and mali-
cious server. The client acts as the receiver of FCOT in sub-protocol
⇧MtA, while the server acts as the sender. We will prove that the
joint distribution over the output of A and the honest party in the
real world is indistinguishable from the joint distribution over the
outputs of Sim and the honest party in the ideal world execution.

Corrupted client. Let Sim access to FOVUF as an honest client
and interact with A as an honest server. Sim passes all communi-
cation between A and environment Z.

0. Sim emulates FBB, once it receives fetch from A. Sim sends
fetch to FOVUF and receives pk. Sim sends pk to A.

1484

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yunqing Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, and Xiao Wang

2-3. For 8 2 [=], Sim simulates the 8th iteration of sub-protocol ⇧MtA
below.

(1)-(3) Sim emulates FCOT and receivesw 2 Z2C+2B@ from A. Sim
samples q Z2C@ , q0 Z4B@ and sends them to A.

(4) Sim receives g' fromA. Sim computes 582 and~8 as follows:

582 =
’
9 2 [C]

g9w 9 +
’

9 2 [C+1,C+2B]
g9wC+9

~8 =
’
9 2 [C]

g9wC+9 +
’

9 2 [C+1,C+2B]
g9wC+9

(5) Sim computes�82,⌫
8
2 as an honest %1 does in step 5 in ⇧MtA.

4. Sim samples+ ⇤(and sends it toA. Sim emulates� and receives
query @ from A. If @ = (pk5

1
2/6�

1
2 , · · · , pk5

=
2 /6�

=
2), Sim sends

+ ⇤' = + ⇤(toA. Otherwise, Sim uniformly samples+ ⇤' and sends
it to A. Sim aborts if A aborts.

5. Sim sends m⇤8 Z@ to A. Sim receives u from A. Sim com-
putes v.

6. Sim sends (eval, (~1, · · · ,~=)) to FOVUF and waits to receive
(�sk (~1), · · · , �sk (~=)). For each 8 2 [=], Sim checks whether
u8 = ~8 · 582 + �

8
2 + ⌫

8
2. If it is, Sim simulates h⇤8 = �sk (~8)

65
8
2/v8

, and

sends it to A. Otherwise, Sim simulates h⇤8 G and sends it
to A.

7. Sim aborts if A aborts and outputs what A outputs.
We are going to show the simulated execution is indistinguishable
from the real protocol execution.

Hybrid H0. Same as real-world execution in the (FCOT, FBB)-
hybrid model.

Hybrid H1. This hybrid is identical to H0 except Sim emulates
FBB, FCOT, the random oracle, and simulates the messages to A

as follows:
For step 0, Sim emulates FBB. Upon receiving fetch fromA, Sim

sends fetch to FOVUF and receives pk. Sim sends pk toA. In hybrid
H0, FBB was initialized by an honest server with pk and sends it
to A upon receiving fetch. Thus, the pk sends by Sim is same as
the one in hybrid H0.

For step 2-3, Sim emulates FCOT, receives w 2 Z2C+2B@ from A.

Sim samples q Z2C@ , q0 Z4B@ to A, and receives g' 2 Zlog@+2B@
fromA. In HybridH0, q and q0 are uniformly distributed according
to FCOT. Thus, the q, q0 sampled by Sim is indistinguishable from
the one in Hybrid H0.

For step 4, Sim samples+ ⇤(toA. Then, Sim emulates random ora-
cle and returns+ ⇤' = + ⇤(toA for query@ = (pk5

1
2/6�

1
2 , · · · , pk5

=
2 /6�

=
2),

where �82 and 5
8
2 are recovered by Sim. For other queries, Sim sam-

ples + ⇤' to A. In hybrid H0, an honest server uses sk that corre-
sponding to pk in ⇧MtA and computes+(= � (6�

1
1 , · · · ,6�

=
1). Since

�81 +�
8
2 = sk · 582 holds for an honest server, the received+(equals

to +' if +' is computed from (pk5
1
2/6�

1
2 , · · · , pk5

=
2 /6�

=
2) honestly.

Thus, the simulated + ⇤' equals to + ⇤(if A query random oracle
honestly, which is indistinguishable from Hybrid H0.

For step 5, Sim sends random m⇤8 Z@ to A. In hybrid H0,
an honest server computes m8 = 581 · sk + �81 + ⌫

8
1 and sends it

to A. m8 satis�es the distribution that m8 + ~8 · 582 + �
8
2 + ⌫

8
2 =

v8 = (581 + 5
8
2) (sk +~8). Since 5

8
1 is randomly sampled by an honest

server, A has no idea about the distribution of m8 . The simulated
m⇤8 is randomly uniform in Z@ as well, which is indistinguishable
from hybrid H0. Thus, the view simulated by Sim is identical to
hybrid H0.

For step 6, Sim sends (eval, (~1, · · · ,~=)) to FOVUF and waits
for (�sk (~1), · · · , �sk (~=)). Sim checks whether the received u8
is computed from ~8 · 582 + �82 + ⌫82 correctly. If it is, Sim sends
h⇤8 = �sk (~8)

65
8
2/(m

⇤
8 +u8)

to A, such that h⇤8 · 6
58
2/(m

⇤

8 +u8) = �sk (~8). Oth-

erwise, Sim samples h⇤8 G and sends it to A. In hybrid H0,
an honest server sends h8 = 65

8
1/(m8+u8) to A. If u8 is computed

honestly from ~8 · 582 + �
8
2 + ⌫

8
2, then h8 · 65

8
2/(m8+u8) = �sk (~8).

Thus, the view of h⇤8 in hybridH0 is identical to h8 in HybridH0.If
u8 is not computed honestly , then m8 + u8 < (581 + 582) (sk + ~8)

and thus h8 · 65
8
2/(m8+u8) < �sk (~8). In hybrid H1, Sim simulates

h⇤8 G, we have h
⇤
8 · 6

58
2/(m

⇤

8 +u8) = �sk (~8) w.p. 2� log@ , which is
indistinguishable from hybridH0. Thus, the view simulated by Sim
is identical to hybrid H0.

Corrupted server. Let Sim access to the FOVUF as an honest
server and interact with A as an honest client. Sim passes all com-
munication between A and environment Z.

0. Sim emulates FBB, once it receives the pk fromA, Sim stores pk
and ignores subsequent messages from A. Sim sends (init, pk)
to FOVUF.

2-3. Upon receiving = from FOVUF, Sim simulates iterations of ⇧MtA
for each 8 2 [=]. The 8th iteration of ⇧MtA is simulated as
follows:

(1)-(3) Sim emulates FCOT and receives a vector 3 2 Z2(C+2B)@

from A. Sim samples p Z2C@ , p0 Z4B@ and sends

them to A. Sim checks whether the received 3 2 Z2(C+2B)@
satis�es a pattern that for : 2 [2], all the bits 3 9 , 9 2
[(: � 1)C + 1,:C] [9 = 2C + : + (; � 1)2, ; 2 [2B] are the
same. For : = 1, if 3 9 are the same, Sim extracts sk0 = 3 9 .
For : = 2, if 3 9 are the same, Sim extracts 581 = 3 9 .

(4) Sim samples g' Zlog@+2B@ and sends g' to A.
(5) Sim computes�81,⌫

8
1 as an honest %0 does in step 5 in ⇧MtA.

4. Sim emulates random oracle � and receives query @ from A.
Sim samples+(to A and records (@,+(). Once Sim receives+(
from A, Sim �rst checks whether sk0s have been extracted and
are the same in last step. Sim also checks whether 6sk

0

= pk.
Then, Sim checks if the corresponded @ = (6�

1
1 , · · · ,6�

=
1). If all

these requirements are satis�ed, Sim continue; Otherwise, Sim
aborts.

5. Sim receives m from A. Sim samples u⇤ Z=@ to A. Sim
computes v⇤ = m + u⇤.

6. Sim waits to receive h.
7. For each 8th iteration, if 581 is extracted, Sim checks whether

h8 = 65
8
1/v
⇤

8 , m8 = 581 · sk
0
+ �81 + ⌫

8
1 and sends sk0 to FOVUF.

Otherwise, Sim aborts.

We are going to show the simulated execution is indistinguish-
able from the real protocol execution.

HybridH0. Same as real-world execution in (FBB,FCOT)-hybrid
model.

1485

Actively Secure Private Set Intersection in the Client-Server Se�ing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Hybrid H1. This hybrid is identical to H0 except Sim emulates
FBB, FCOT, the random oracle, and generates the messages to A

as follows:
For Step 2-3, Sim emulates FCOT and waits to receive 3 . Then,

Sim sends p Z2C@ and p0 Z4B@ to A. Sim samples gR

Z
log@+2B
@ and sends it to A. For an honest client in hybrid H0, it

samples p Z2C@ , p0 Z4B@ , gR Zlog@+2B@ as well, which is
indistinguishable from this hybrid.

For Step 5, Sim receives m and samples u⇤8 Z@ to A. In the
hybridH0, for 8th iteration, if A sends 3 correctly , u8 + 581 · sk +
�81 + ⌫

8
1 = v8 = (581 + 582) (sk + ~8), which is uniformly distributed

over Z@ . Thus, u8 is uniformly distributed, same as the sampled
one in this hybrid. If there exists an error e sampled by A, an
honest client computes u8 such that u8 + 581 · sk + �

8
1 + ⌫

8
1 = v8 =

(581 + 582) (sk + ~8) + di�i. di�i = f 81 + f 82 , where f
8
1 resulted from

incorrect 581 · ~8 and f
8
2 resulted from incorrect sk · 582 as stated in

Equation 1. Since e is de�ned by A before knowing gR, gR appears
uniformly random over Zlog@+2B@ to A at this time. Thus, for any
givenw and e, f8 is uniformly distributed over Z@ . Therefore, di�i is
uniformly distributed over Z@ . u8 is uniformly distributed over Z@ ,
which is identically distributed as the simulated u⇤8 in this hybrid.

Hybrid H2. This hybrid is identical to H1 except Sim aborts at
Step 4 in the following conditions: 1) any sk0 in ⇧MtA iterations
is not extractable; 2) the extracted sk0s are not the same or any
6sk
0

< pk; 3) the @ corresponding to the received +(is not equal to
(6�

1
1 , . . . ,6�

=
1). Sim aborts at Step 7 in the following conditions: 1)

any 581 in ⇧MtA iterations is not extractable; 2) h⇤8 < 65
8
1/(m8+u⇤8)

or m8 < 581 · sk +�
8
1 + ⌫

8
1.

For Step 4 in hybridH1, an honest client aborts if the received
+(< +' . The client computes +' = � (pk5

1
2/6�

1
2 , . . . , pk5

=
2 /6�

=
2).

For each pk5
8
2/6�

8
2 , it equals to 6sk·5

8
2��

8
2 . 1) Adversary A might

add error e to 3 on bits related to sk in one iteration of ⇧MtA. In
this case, sk0 is unextractable. If we set a value as sk0, then both
parties holds equation�81 +�

8
2 = sk0 ·582 +f2, where f2 is computed

according to Equation. 1. As we analyzed above, f2 is uniformly
distributed over Z@ for any givenw and e. Thus, with+(computed
from �81, +(< +' . Furthermore, even A tries to manipulate +(,
A is unable to construct �8

0

1 = sk · 582 � �
8
2 as 582 and �82 are

uniformly distributed. Thus, the client aborts with all but negligible
probability, which is indistinguishable from condition (1) in hybrid
H2. 2) Adversary A might use inconsistent sk in di�erent ⇧MtA
iterations. If A use sk0 < sk in ⇧MtA, both parties holds equation
�81 +�

8
2 = sk0 · 582. Thus, with +(computed from �81, +(< +' . A

is not able to construct �8
0

1 to manipulate+(either. Thus, the client
aborts with all but negligible probability, which is indistinguishable
from condition (2) in hybrid H2. 3) When adversary use correct
sk but manipulate +(from inconsistent @, an honest client aborts
which is indistinguishable from condition (3) in hybrid H2.

For Step 7 in hybrid H1, an honest client aborts when �sk (~8)
does not satisfy 4 (6~8 · ?:, �sk (~8)) = 4 (6,6), where �sk (~8) = h8 ·

65
8
2/(m8+u8) . 1) For the 8th iteration of ⇧MtA, if adversary adds error

e to 3 such that q81 is not extractable, then di�i < 0 with all but
negligible probability. Thus,m8 +u8 < (sk+~8) (581+5

8
2) with all but

negligible probability. Consequently, h8 ·65
8
2/(m8+u8) < �sk (~8) with

all but negligible probability, identical to condition (1) in hybrid
H2. 2) If ⇧MtA is executed honestly byA, an honest client aborts if
A provides an incorrect m8 or h8 , which will result in an incorrect
�sk (~8) that does not satisfy the veri�cation procedure, identical
to condition (2) in hybridH2. Therefore, this hybrid is identically
distributed as the previous one.

The above hybrid argument completes this proof. ⇤

5.4 Complexity Analysis
For each input element ~8 2 . , ⇧OVUF requires 4 log@ + 4B COT
and one gR. Thus, this protocol requires (4 log@ + 4B)= COT and
= gR in total. To improve its complexity, we propose an improved
OVUF in Section A that reduces the number of gRs to two and
achieves better RAM usage. The key idea is to batch operations
with correlated randomness together but refer to Section A for
complete description of the protocol and the proof.

6 Performance Evaluation
We implement our protocols using EMP [50] for COT and RELIC [2]
for pairings. We benchmark the performance of our protocol when
FCOT is instantiated using KOS [32] and Ferret [52].

6.1 Benchmark Setup
We instantiate everything ensuring a computational security pa-
rameter ^ = 128 and a statistical security parameter B = 40. To
this end, we use BLS12-381 for all type-III pairing operations. We
show the performance in two di�erent network settings: a LAN
network with 5Gbps bandwidth and aWAN network with 120 Mbps
bandwidth. All experiments are performed on AWS EC2 instances
of 6a.8xlarge type with 32vCPU and 128 GB memory.

6.2 E�ciency of Server’s Encoding
First, we benchmark the performance of the server encoding pro-
cess. Note that this computation only needs to be executed once
given a set of elements. Recall that this step mainly computes
the VUF on the input elements. Following conventions from prior
works, we hash the output to 64-bit strings, which helps in reducing
the encoding size. For example, the encoding �le for a set of 108
elements is of size 800 MB.

We prepare a list of 256-bit values in a �le as the server’s set. The
benchmark results include the time to: 1) read all elements from
the �le (w/ disk access), 2) compute the VUF value of each element
and then hash it into a 64-bit string, and 3) write the resulting
hashes into another �le (w/disk access). In Figure 8a, we show the
performance of our server computation with di�erent set sizes and
threads. From the �gure, we can see that the performance of the
server’s local encoding is linear to the set size. We observe a 3.8⇥
improvement when increasing the threads from 1 to 4 and 15⇥ from
1 to 32 threads. We didn’t make the �le I/O multi-threaded which
we believe could be the bottleneck when we use 32 threads.

6.3 E�ciency of Online Computation
Now we show the performance of the interactive process between
a server with a VUF secret key, and a client with a private set. As

1486

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yunqing Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, and Xiao Wang

102 103 104 105 106 107 108

Server set size n

101

102

103

104

105

106

107

W
al

lc
lo

ck
tim

e
(m

s)

32 threads
4 threads
1 thread

(a) Local encoding

101 102 103 104 105

Client set size n

102

103

104

105

W
al

lc
lo

ck
tim

e
(m

s)

KOS + 32 threads
KOS + 4 threads
KOS + 1 thread
FERRET + 32 threads
FERRET + 4 threads
FERRET + 1 thread

(b) Interaction phase (LAN setting)

101 102 103 104 105

Client set size n

102

103

104

105

106

W
al

lc
lo

ck
tim

e
(m

s)

KOS + 32 threads
KOS + 4 threads
KOS + 1 thread
FERRET + 32 threads
FERRET + 4 threads
FERRET + 1 thread

(c) Interaction phase (WAN setting)

Figure 8: Performance of our protocol. We show the performance of both phases. The one-time o�ine local encoding time for the server
set is depicted in (a). The interactive online encoding time for the client set is shown in (b) under LAN network and (c) under WAN network.
Both (b) and (c) utilize di�erent OT methods (KOS/FERRET) and number of threads (1/4/32) for comparison.

0 1000 2000 3000 4000
Bandwidth Mbps

2000

4000

6000

8000

W
al

lc
lo

ck
tim

e
(m

s)

KOS + 32 thread
KOS + 4 thread
KOS + 1 thread

Ferret + 32 thread
Ferret + 4 thread
Ferret + 1 thread

(a) Performance dependency on bandwidth

0 25 50 75 100 125 150 175 200 225 250 275 300
Latency (ms)

103

104

105

106

W
al

lc
lo

ck
tim

e
(m

s)

set size 101

set size 102
set size 103

set size 104
set size 105

(b) Performance dependency on latency

101 102 103 104 105

Set size n
0

100

101

102

103

104

B
an

dw
id

th
(M

B
)

FERRET KOS

(c) Bandwidth consumption performance

Figure 9: Our performance under di�erent network settings. We show our performance of time consumption as bandwidth varies in
(a) and as latency varies in (b). (a) uses client set size 103 to compare performance under di�erent OT methods (KOS/FERRET) and di�erent
thread numbers (1/4/32). (b) takes OT method KOS to compare performance as set sizes vary. Figure (c) shows our protocol’s bandwidth
consumption as the set size varies.

the output, the client will get VUF evaluation on its own set, which
can be further used to lookup the server encoding.
Wallclock time. In Figure 8b and Figure 8c, we show the wallclock
of the protocol for di�erent client set sizes. Similarly, the time
reported includes the client: 1) reading its own elements from a �le,
2) running OVUF with a server to compute �sk (G8); 3) computing
the hash to derive 64-bit strings that can be used for local matching.

With 1 thread, the average cost for the client to process each
element is 8.29<B in theWAN setting and 4.17<B in the LAN setting.
With 32 threads, the average cost is 4.53<B in the WAN setting and
0.43<B in the LAN setting. Noted that Ferret computes COT in
large batches, it is not competitive when the set is small, where
the protocol cannot consume all COTs. When the set size is large,
our protocol in the LAN setting using KOS or Ferret does not show
much di�erence as they have similar computational costs. In the
WAN setting, we can observe a slight improvement with Ferret
because it consumes less bandwidth. However, the improvement is
not huge because the communication caused by our protocol, not
counting the cost of COT, is already signi�cant.
Performance dependence on network. We show the e�ciency
of our protocol under di�erent network condition in Figure 9a and
Figure 9b. According to Figure 9a, the e�ciency of a client with a
set size of 103 in aWAN environment increases as the bandwidth in-
creases. However, once the bandwidth reaches 1⌧1?B , the e�ciency
does not improve signi�cantly with further increases in bandwidth.

100 1000 10000
Set size of each client

0.00

0.02

0.04

0.06

0.08

0.10

Se
rv

er
co

st
(U

SD
pe

rc
lie

nt
)

Ours Ours

Ours

Blazing-PSI Blazing-PSI Blazing-PSI

CDN cost Comm. cost Comp. cost

Figure 10: Server cost comparison with Blazing-PSI [42]. All
experiments are run on AWS instance. Costs are estimated based
on AWS instance pricing and network pricing.

This indicates that our protocol performs best with bandwidth
larger than 1⌧1?B . In TCP networks, there is a dependency be-
tween latency and bandwidth limitations, wherein an increase in
latency leads to a decrease in available bandwidth. Figure 9b illus-
trates that the total protocol wallclock time increases as bandwidth
decreases due to added latency. For larger sets that use up more
bandwidth, the rise in wallclock time is more signi�cant than for
smaller sets experiencing the same increase in latency.

1487

Actively Secure Private Set Intersection in the Client-Server Se�ing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Set size Security Protocol O�line Online
|- | |. | time (s) comm. (MB) time (s) comm. (MB)

228 210 Semi-honest

[33] (w/ LowMC) 164.82 2144 1.37 23.6
[33] (w/ NR) 44681 2144 0.63 6.07

[14] 4628 0 12.1 18.4
[16] 4371 0 23.35 12.86
[43] 3684.1 2415 0.16 0.07

Malicious Ours (w/ KOS) 1556.7 2147 0.44 63.23

228 27 Semi-honest

[33] (w/ LowMC) 164.82 2144 0.41 2.96
[33] (w/ NR) 44681 2144 0.13 0.77

[14] 4628 0 12.1 18.4
[16] 4350 0 25.65 12.81
[43] 3684.1 2415 0.02 0.008

Malicious Ours (w/ KOS) 1556.7 2147 0.11 7.92

220 210 Semi-honest

[33] (w/ LowMC) 0.51 8.37 1.37 23.6
[33] (w/ NR) 173.41 8.37 0.63 6.07

[14] 1.1 0 0.5 5
[16] 13.4 0 1.1 2.04
[43] 18.17 9.43 0.06 0.031

Malicious Ours (w/ KOS) 5.85 8.38 0.44 63.23

220 27 Semi-honest

[33] (w/ LowMC) 0.51 8.37 0.41 2.96
[33] (w/ NR) 173.41 8.37 0.13 0.77

[14] 1.2 0 0.2 3.9
[16] 13.5 0 1.1 1.99
[43] 18.17 9.43 0.027 0.004

Malicious Ours (w/ KOS) 5.85 8.38 0.11 7.92

Table 1: Performance of unbalanced PSI with server set- and
client set. .Our protocol and [16] were testedwith 32 threads, with
[16] using 256 GB RAM for a 228 server set. [14] is obtained based on
numbers from their paper, which is based on faster hardware than
our testbed. [33] is tested with 32 threads for the o�ine phase and 1
thread for the online phase. [43] is tested with 1 thread, except the
case of |- | = 228 where the online performance are extrapolated.

Bandwidth consumption. Regarding bandwidth consumption
in Figure 9c, we observed that if the set size is less than 102, the
protocol using KOS OT performs better in terms of bandwidth
usage compared to that using FERRET OT. However, this situation
changes once the set size exceeds 102. For a set size of 105, the
KOS OT protocol requires 61.7 ⌫ to process one element, while
the FERRET OT protocol needs 43.0 ⌫ to encode one element. This
is the same reason as we stated in Wallclock time, that Ferret
computes COT in large batches but consumes less bandwidth for
each COT compared with KOS. For small set size, Ferret is more
bandwidth-intensive as it generates more COT than necessary.
However, for large set size, Ferret is more e�cient as the generated
COTs can be utilized and each one consumes less bandwidth than
KOS.

6.4 Comparison with Other Protocols
Our protocol works in a special setting where a server with one
set repeatedly runs PSI with many clients with small sets. We no-
ticed that existing prior works do not perform well if used in our
setting directly; this is not surprising as they are not designed for
this setting. Below, we show some comparisons to state-of-the-art
protocols in classical PSI settings.
Comparing with state-of-the-art PSI. The �rst possible solution
is to use the best fully malicious secure PSI protocol [42], and have
the server run this protocol with each client. However, there exists
a security issue that the server might di�erentiate its set among
di�erent clients. Additionally, the performance is poor: each execu-
tion of PSI with a di�erent client requires the server to transmit a

di�erent encoding of its set over the internet, which incurs great
costs. In Figure 10, we compare the cost by the server per client
between our protocol and the Blazing-fast [42], which is so far the
fastest and improved upon VOLE-based PSI [44]. We assume the
server set has 108 elements, and the client set ranges from 102 to
104 elements. We use the real execution time and the instance’s unit
price (0.1728USD/Hour for 6a.xlarge) to compute computational
cost. We also estimate the communication cost by multiplying the
data size that the server transfers out by the communication unit
price (0.05USD/GB). Notice that for our scheme, since the server’s
encoding is reusable, we use AWS CloudFront (CDN) to manage
it, thereby reducing this part of the communication cost to a lower
unit price (0.02USD/GB). The computation of this reusable server
set encoding is a one-time and o�ine process, making the cost per
client negligible when amortized. For our scheme, the total cost
is 3x lower for a client set 10000 and 5x lower for client sets 100
and 1000. With smaller set sizes, the cost is primarily dominated by
the CDN cost, which is a �xed value of 0.016 USD per client. If we
switch to managing the server’s encoding through a peer-to-peer
network to eliminate the CDN cost, our scheme achieves an 8x re-
duction in communication cost and a 2x reduction in computation
cost compared to Blazing-PSI for a client size of 10000. In this case,
the cost of our scheme scales linearly with the client set size and
performs better with smaller client sizes.

Comparingwith PSI featuring reusable server encoding. Some
unbalanced PSI could be better suited to our setting which allows
pushing some work to the o�ine stage as well. In Table 1, we show
our protocol performs scalably compared to related protocols across
server set sizes {220, 228} and client set sizes {27, 210}:

• OPRF-based solutions by [33] allows the server to reuse its com-
putation and encoding that is linear to - across multiple clients.
We include two solutions, one based on LowMC PRF and one
based on Naor–Reingold PRF. We also update their hash output
to achieve a similar level of false positive rate. Our protocol runs
at a similar time to OPRF-based protocols with about three times
more communication; however, that allows us to achieve full
malicious security.

• FHE-based solution [14, 16] does not require sending large en-
coding but requires more computation. The computation could
be made reusable across multiple clients by performing OPRF
on top of the value, but existing FHE-PSI implementations or
benchmarks do not include these extra steps. We can see that our
solution is much faster in terms of online time when the server
set is at a large scale of 228, albeit with higher communication
costs. All FHE-based solutions only implement their semi-honest
version and could not be made fully malicious secure; however,
we do believe that by incorporating our OVUF-based solution, it
is possible to achieve full malicious security as well, which we
leave as future work.

• Finally, we also compare with a DH-based solution by Resende
and Aranha [43]. The solution is semi-honest, but the original
proposal by Jarecki and Liu [30] also includes malicious coun-
terparts, which require further use of zero-knowledge proofs to
show correct encoding. This approach essentially follows the VO-
PRF method, where all e�cient solutions do not allow extracting

1488

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yunqing Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, and Xiao Wang

client’s input in the proof. As such, their solution requires much
less communication.

7 Discussion
In this work, we designed an e�cient OVUF protocol and used it
to construct a malicious protocol that allows a server to compute
PSI with multiple clients while ensuring consistency. Interesting
future works include extending the model to general-purpose MPC
and also reducing the size of server encodings.

Acknowledgments
Work of XiaoWang is supported byNSF award #2236819 andGoogle
Research Awards.

References
[1] Martin R. Albrecht, Alex Davidson, Amit Deo, and Nigel P. Smart. 2021. Round-

Optimal Veri�able Oblivious Pseudorandom Functions from Ideal Lattices. In
PKC 2021, Part II (LNCS, Vol. 12711).

[2] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao. [n. d.].
RELIC is an E�cient Library for Cryptography. https://github.com/relic-toolkit/
relic.

[3] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene
Tsudik. 2011. Countering GATTACA: e�cient and secure testing of fully-
sequenced human genomes. In ACM CCS 2011.

[4] Andrea Basso. 2024. A Post-Quantum Round-Optimal Oblivious PRF from Isoge-
nies. In SAC 2023 (LNCS).

[5] Shany Ben-David, Yael Tauman Kalai, and Omer Paneth. 2022. Veri�able Private
Information Retrieval. In TCC 2022, Part III (LNCS, Vol. 13749).

[6] Dan Boneh and Xavier Boyen. 2004. Short Signatures Without Random Oracles.
In EUROCRYPT 2004 (LNCS, Vol. 3027).

[7] Dan Boneh, Dmitry Kogan, and Katharine Woo. 2020. Oblivious Pseudorandom
Functions from Isogenies. In ASIACRYPT 2020, Part II (LNCS, Vol. 12492).

[8] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gre-
gory Neven. 2018. The Wonderful World of Global Random Oracles. In EURO-
CRYPT 2018, Part I (LNCS, Vol. 10820).

[9] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and
Mira Meyerovich. 2006. How to win the clonewars: E�cient periodic n-times
anonymous authentication. In ACM CCS 2006.

[10] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. In 42nd FOCS. IEEE Computer Society Press.

[11] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi
Peled. 2020. UC Non-Interactive, Proactive, Threshold ECDSA with Identi�able
Aborts. In ACM CCS 2020.

[12] Sílvia Casacuberta, Julia Hesse, and Anja Lehmann. 2022. SoK: oblivious pseudo-
random functions. In IEEE EuroS&P.

[13] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and
Ida Tucker. 2019. Two-Party ECDSA from Hash Proof Systems and E�cient
Instantiations. In CRYPTO 2019, Part III (LNCS, Vol. 11694).

[14] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. 2018. Labeled PSI from
Fully Homomorphic Encryption with Malicious Security. In ACM CCS 2018.

[15] Hao Chen, Kim Laine, and Peter Rindal. 2017. Fast Private Set Intersection from
Homomorphic Encryption. In ACM CCS 2017.

[16] Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia
Iliashenko, Kim Laine, and Michael Rosenberg. 2021. Labeled PSI from Homo-
morphic Encryption with Reduced Computation and Communication. In ACM
CCS 2021.

[17] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo
Valsorda. 2018. Privacy Pass: Bypassing Internet Challenges Anonymously.
PoPETs 2018, 3 (July 2018).

[18] Leo de Castro and Keewoo Lee. 2024. VeriSimplePIR: Veri�ability in SimplePIR
at No Online Cost for Honest Servers. In USENIX Security 2024.

[19] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. 2010. Linear-Complexity
Private Set Intersection Protocols Secure in Malicious Model. In ASIACRYPT 2010
(LNCS, Vol. 6477).

[20] Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A Veri�able Random Function
with Short Proofs and Keys. In PKC 2005 (LNCS, Vol. 3386).

[21] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. 2018. Secure Two-
party Threshold ECDSA from ECDSA Assumptions. In 2018 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press.

[22] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. 2019. Threshold ECDSA
from ECDSA Assumptions: The Multiparty Case. In 2019 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press.

[23] Adam Everspaugh, Rahul Chatterjee, Samuel Scott, Ari Juels, and Thomas Ris-
tenpart. 2015. The Pythia PRF Service. In USENIX Security 2015.

[24] Rosario Gennaro and Steven Goldfeder. 2018. Fast Multiparty Threshold ECDSA
with Fast Trustless Setup. In ACM CCS 2018.

[25] Niv Gilboa. 1999. Two Party RSAKeyGeneration. InCRYPTO’99 (LNCS, Vol. 1666).
[26] Iftach Haitner, Nikolaos Makriyannis, Samuel Ranellucci, and Eliad Tsfadia. 2022.

Highly E�cient OT-Based Multiplication Protocols. In EUROCRYPT 2022, Part I
(LNCS, Vol. 13275).

[27] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah Meikle-
john, and Vinod Vaikuntanathan. 2023. One Server for the Price of Two: Simple
and Fast Single-Server Private Information Retrieval. In USENIX Security 2023.

[28] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena,
Karn Seth,Mariana Raykova, David Shanahan, andMoti Yung. 2020. On deploying
secure computing: Private intersection-sum-with-cardinality. In EuroS&P. IEEE.

[29] Stanislaw Jarecki, Hugo Krawczyk, and Jason K. Resch. 2019. Updatable Oblivious
Key Management for Storage Systems. In ACM CCS 2019.

[30] Stanislaw Jarecki and Xiaomin Liu. 2010. Fast Secure Computation of Set Inter-
section. In SCN 10 (LNCS, Vol. 6280).

[31] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and
Christian Weinert. 2019. Mobile Private Contact Discovery at Scale. In USENIX
Security 2019.

[32] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2015. Actively Secure OT
Extension with Optimal Overhead. In CRYPTO 2015, Part I (LNCS, Vol. 9215).

[33] Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny Pinkas. 2017.
Private Set Intersection for Unequal Set Sizes with Mobile Applications. PoPETs
2017, 4 (Oct. 2017).

[34] Ben Kreuter, Tancrède Lepoint, Michele Orrù, andMariana Raykova. 2020. Anony-
mous Tokenswith PrivateMetadata Bit. InCRYPTO 2020, Part I (LNCS, Vol. 12170).

[35] Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul Chatterjee, and Thomas
Ristenpart. 2019. Protocols for Checking Compromised Credentials. In ACM CCS
2019.

[36] Yehuda Lindell and Ariel Nof. 2018. Fast Secure Multiparty ECDSA with Practical
Distributed Key Generation and Applications to Cryptocurrency Custody. In
ACM CCS 2018.

[37] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. 1999. Veri�able Random
Functions. In 40th FOCS. IEEE Computer Society Press.

[38] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita
Borisov. 2010. BotGrep: Finding P2P Bots with Structured Graph Analysis. In
USENIX Security 2010.

[39] Ofri Nevo, Ni Trieu, and Avishay Yanai. 2021. Simple, Fast Malicious Multiparty
Private Set Intersection. In ACM CCS 2021.

[40] Bijeeta Pal, Mazharul Islam, Marina Sanusi Bohuk, Nick Sullivan, Luke Valenta,
Tara Whalen, Christopher A. Wood, Thomas Ristenpart, and Rahul Chatter-
jee. 2022. Might I Get Pwned: A Second Generation Compromised Credential
Checking Service. In USENIX Security 2022.

[41] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2020. PSI from PaXoS:
Fast, Malicious Private Set Intersection. In EUROCRYPT 2020, Part II (LNCS,
Vol. 12106).

[42] Srinivasan Raghuraman and Peter Rindal. 2022. Blazing Fast PSI from Improved
OKVS and Sub�eld VOLE. In ACM CCS 2022.

[43] Amanda C. Davi Resende and Diego F. Aranha. 2018. Faster Unbalanced Private
Set Intersection. In FC 2018 (LNCS, Vol. 10957).

[44] Peter Rindal and Phillipp Schoppmann. 2021. VOLE-PSI: Fast OPRF and Circuit-
PSI from Vector-OLE. In EUROCRYPT 2021, Part II (LNCS, Vol. 12697).

[45] Mike Rosulek and Ni Trieu. 2021. Compact and Malicious Private Set Intersection
for Small Sets. In ACM CCS 2021.

[46] István András Seres, Máté Horváth, and Péter Burcsi. 2023. The Legendre Pseu-
dorandom Function as a Multivariate Quadratic Cryptosystem: Security and
Applications. Applicable Algebra in Engineering, Communication and Computing
(2023).

[47] Tjerand Silde and Martin Strand. 2022. Anonymous Tokens with Public Metadata
and Applications to Private Contact Tracing. In FC 2022 (LNCS, Vol. 13411).

[48] Yunqing Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, and Xiao
Wang. 2024. Actively Secure Private Set Intersection in the Client-Server Setting.
Cryptology ePrint Archive, Report 2024/570. https://eprint.iacr.org/2024/570.

[49] Nirvan Tyagi, Sofía Celi, Thomas Ristenpart, Nick Sullivan, Stefano Tessaro, and
Christopher A. Wood. 2022. A Fast and Simple Partially Oblivious PRF, with
Applications. In EUROCRYPT 2022, Part II (LNCS, Vol. 13276).

[50] Xiao Wang, Alex J. Malozemo�, and Jonathan Katz. 2016. EMP-toolkit: E�cient
MultiParty computation toolkit. https://github.com/emp-toolkit.

[51] Haiyang Xue, Man Ho Au, Xiang Xie, Tsz Hon Yuen, and Handong Cui. 2021.
E�cient Online-friendly Two-Party ECDSA Signature. In ACM CCS 2021.

[52] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. 2020. Ferret:
Fast Extension for Correlated OT with Small Communication. In ACM CCS 2020.

1489

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://eprint.iacr.org/2024/570
https://github.com/emp-toolkit

Actively Secure Private Set Intersection in the Client-Server Se�ing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

A Batched OVUF with Improved E�ciency
In this section, we give an optimized maliciously secure oblivious
veri�able unpredictable protocol ⇧OVUF2 in terms of e�ciency.
This protocol combines a new sub-protocol ⇧U�MtA called unbal-
anced imperfect multiplicative to additive shares transformation,
introduced in Appendix A.1. The details and proof of ⇧OVUF2 are
depicted in Appendix A.2.

A.1 Unbalanced Imperfect MtA
This transformation computes the additive secret shares of scaler-
vector multiplication, where the scaler and vector held by di�erent
parties are regarded as unbalanced input. Its imperfection follows
the same idea as Section 5.2 that a malicious sender can execute
attacks and result in incorrect additive secret shares depending on
the receiver’s input.

The most straightforward way to achieve imperfect scaler-vector
multiplicative to additive shares is as follows: Given the input vector
a 2 Z=@ on party %0 and scaler 1 2 Z@ on party %1, let %1 create a
new vector b with each element b8 = 1. Then, both parties execute
⇧MtA, using a and b as inputs. However, in our construction in
Figure 11, we designate %1 as receiver of FCOT and have %1 employ
⇢=2>34 (gR,1). Sender %0 inputs vector element a8 and the receiver
%1 inputs encoded bit element of 1 to run FCOT to compute the
additive secret share of a8 ·1. This approach consumes=(2 log@+2B)
iterations of FCOT, the same as the straightforward approach stated
above. However, it eliminates pseudorandom vector W of length
(= � 1) log@ and repetitive encoding of 1 of length (= � 1) log@
when implementing the encoding algorithm.

For the incorrectness caused by the sender %0’s malicious behav-
ior as stated in Section 5.2, it follows the same error representation
as the single encoded version in Section 5.2, that d8 + c8 = a8 ·1 +f8 .
f8 is denote as follows with respect tow = ⇢=2>34 (gR,1) 2 ZC+2B@ .

f8 =
’
82 [C]

g8e8w8 +
’

82 [2B]
gC+8eC+8wC+8 (2)

Given e, the correctness of MtA transformation depends onw and
gR. Speci�cally, the transformation is correct when f8 = 0. Still, this
incorrectness will be caught by ⇧U�MtA in Appendix A.2 with a
detailed proof.

A.2 OVUF with Improved E�ciency
In Section 5, we introduced the basic version of oblivious veri�able
unpredictable protocol. In the context of ⇧OVUF, when each client
holds a set of = elements (~1, . . . ,~=) and collaborates with a server
to compute OVUF, the ⇧OVUF processes each input element ~8 , 8 2
[=] one by one. This sequential processing involves = iterations
of ⇧MtA. For each iteration of ⇧MtA, it runs with input vector
(B:, 581) 2 Z

2
@ and (582,~8) 2 Z

2
@ to compute additive share of B: · 582

and 581 · ~8 . In this section, we maximize the batch feature of MTA
protocols and execute B: · 582 and 5

8
1 ·~8 for each 8 2 [=] as follows:

(1) Execute ⇧U�MtA to e�ciently compute additive shares of B: ·

582, 8 2 [=].
(2) Execute ⇧MtA to compute additive shares of 581 · ~8 , 8 2 [=].

The other parts of this optimized-oblivious veri�able unpre-
dictable protocol ⇧OVUF2 follow the same idea as ⇧OVUF. The

Protocol ⇧U�MtA

Inputs: %0 holds a 2 Z=@ . %1 holds 1 2 Z@ .
Protocol:
(1) %1 samples gR Zlog@+2B@ , and encodes 1 by computing w :=

⇢=2>34 (g',1) 2 {0, 1}C+2B .
(2) %1 inputs w9 , 9 2 [C + 2B] to FCOT. %0 inputs a 2 F=@ to

FCOT. %0 receives {p1,9 , · · · , p=,9 } 2 F=@ from FCOT. %1 receives
{q1,9 , · · · , q=,9 } 2 F=@ from FCOT.

(3) %1 sends gR to %0.
(4) For 9 2 [C + 2B], 8 2 [=], %0 computes

c8 =
’

92 [C+2B]
g9 · p8,9

%1 computes
d8 =

’
92 [C+2B]

g9 · q8,9

such that d8 + c8 = a8 · 1.

Figure 11: The U-MtA protocol in FCOT-hybrid.

Protocol ⇧OVUF2

Inputs and parameters: Hash function � modeled as RO. Client⇠ 9

holds vector (~1, . . . , ~=) 2 Z=@ .
Initialization: (chooses sk 2 Z@ , sets pk = 6sk, and sends pk to
FBB.
Key query: Client⇠ 9 sends fetch to FBB and receives pk.
Evaluation:
(1) ⇠ 9 checks if 6�~8 = pk for each 8 2 [=]. If it is,⇠ 9 inserts 8 to set

� and sets ~8 Z@, 8 2 � .
(2) Server (chooses 51 Z=@ ; client⇠ 9 chooses 52 Z=@ .
(3) (and ⇠ 9 inputs sk and 52 2 Z=@ to ⇧U�MtA, receives �1 2 Z=@

and �2 2 Z=@ respectively, such that �1 +�2 = sk · 52.
(4) (and⇠ 9 inputs51 2 Z=@ and (~1, . . . , ~=) 2 Z=@ to⇧MtA, receives

⌫1 2 Z=@ and ⌫2 2 Z=@ respectively, such that ⌫8
1 + ⌫8

2 = 58
1 · ~8

for each 8 2 [=].
(5) (samples C 2 [=], computes+(= � (6�

C
1) , and sends (C,+() to

⇠ 9 . ⇠ 9 computes +' = � (pk5
C
2 /6�

C
2) . ⇠ 9 checks whether +' =

+(and aborts if they are not equal.
(6) (sends m that m8 = sk · 58

1 + �8
1 + ⌫8

1 to ⇠ 9 . ⇠ 9 sends u that
u8 = ~8 · 58

2 +�8
2 + ⌫8

2 to (. Both (and⇠ 9 computes v = u +m.
(7) For each 8 2 [=], (sends h8 = 658 /v8 to ⇠ 9 . ⇠ 9 sets �sk (~8) =

1, 8 2 � . For each 8 2 [=] \ � ,⇠ 9 computes �sk (~8) = h8 · 6
58
2/v8 .

(8) ⇠ 9 outputs (�sk (~1), . . . , �sk (~=)) if 4 (6~8 · pk, �sk (~8)) =
4 (6,6) for each 8 2 [=] \ � . Otherwise it aborts.

Figure 12: The OVUF2 protocol in (FCOT, FBB)-hybrid model
with sub-protocol ⇧MtA and ⇧U�MtA.

detailed scheme is shown in Figure 12. Its correctness can be ver-
i�ed directly. Security-wise, this protocol involves two di�erent
MtA transformations. For ⇧U�MtA, the client ⇠ 9 is regarded as the
sender of FCOT and the one who executes a selective failure attack
to ⇧OVUF2. For ⇧MtA, we assume server (as the sender of FCOT
and the one who executes selective failure attacks to ⇧OVUF2 with-
out loss of generality. We prove that ⇧OVUF2 (with sub-protocols
⇧MtA and ⇧U�MtA) is secure in the (FCOT, FBB)-hybrid model.

T������ 3. If � is modeled as a random oracle, then protocol
⇧OVUF2 UC-realizes FOVUF in the (FCOT, FBB)-hybrid model with
sub-protocol ⇧MtA and ⇧U�MtA.

1490

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yunqing Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, and Xiao Wang

P����. Let A be a PPT adversary that allows to corrupt the
server or the client. We construct a PPT simulator Sim with access
to functionality FOVUF, which simulates the adversary’s view. We
consider the following two cases: malicious client and malicious
server. We will prove that the joint distribution over the output of
A and the honest party in the real world is indistinguishable from
the joint distribution over the outputs of Sim and the honest party
in the ideal world execution.

Corrupted client. Let Sim access to the FOVUF as an honest
client and interact with A as an honest server. Sim passes all com-
munication between A and environment Z.
0. Sim emulates FBB, once it receives fetch from A. Sim sends

fetch to FOVUF and receives pk. Sim sends pk to A.
2-3. Sim simulates the sub-protocol ⇧U�MtA and acts as an honest

receiver of FCOT below.
(1)-(2) Sim emulates FCOT. Sim receives 3 2 Z=C+2=B@ and sends

p Z=C+2=B@ to A. Sim checks whether the received 3
satisfy the pattern that for 8 2 [=], all the bits 3 9 , 9 =
(: � 1)C + 8,: 2 [C + 2B] are the same. Then, Sim extracts
582 = 3 9 .

(3) Sim sends g' Zlog@+2B@ to A.
(4) Sim computes �2 2 Z=@ as an honest %0 does in step 4 in

⇧U�MtA.
4. Sim simulates the sub-protocol ⇧MtA and acts as an honest

sender of FCOT below.
(1)-(3) Sim emulates FCOT and receivesw 2 Z=C+2B@ . Sim samples

q Z=C@ , q0 Z2=B@ and sends them to A.
(4) Sim receives g' from A. Sim computes ~8 for each 8 2 [=]

as follows:

~8 =
’
9 2 [C]

g9w (8�1)C+9 +
’

9 2 [C+1,C+2B]
g9w=C+9

(5) Sim computes ⌫2 2 Z@ as an honest %1 does in step 5 in
⇧MtA.

5. Sim samples C 2 [=], + ⇤(G to A. Sim emulates � . Once 5C2
is extracted in step 3 and the received query @ = (pk5

C
2 /6�

C
2),

Sim sends + ⇤(to A. Otherwise, Sim sends a random value to
A.

6. Sim sendsm⇤8 Z@ toA. Sim receives u fromA and computes
v.

7. Sim sends (eval, (~1, . . . ,~=)) to FOVUF and waits to receive
(�sk (~1), . . . , �sk (~=)). For each 8 2 [=], Sim checks whether
582 is extracted and u8 = 582 · ~8 + �

8
2 + ⌫

8
2. If all requirements

are satis�ed, Sim simulates h⇤8 =
�sk (~8)

65
8
2/(m

⇤
8 +u8)

and sends it to A.

Otherwise, Sim simulates h⇤8 G and sends h⇤ to A.
8. Sim aborts if A aborts and outputs what A outputs.
We are going to show the simulated execution is indistinguishable
from the real protocol execution.

HybridH0. Same as real-world execution in (FBB, FCOT)-hybrid.
Hybrid H1. This hybrid is identical to H0 except Sim emulates

FBB, FCOT, the random oracle, and simulates the messages to A

as follows:
For step 0, Sim emulates FBB. Upon receiving fetch fromA, Sim

sends fetch to FOVUF and receives pk. Sim sends pk toA. In hybrid
H0, FBB was initialized by an honest server with pk and sends it

to A upon receiving fetch. Thus, the pk sends by Sim is same as
the one in hybrid H0.

For step 2-3, Sim simulates sub-protocol ⇧U�MtA. Sim emulates
FCOT, sends p Z=C+2=B@ to A. Sim sends gR Zlog@+2B@ to A.
In HybridH0, p is uniformly distributed over Z=C+2=B@ according to
FCOT. gR is sampled by the client and uniformly distributed to A.
Thus, the sampled p and gR are indistinguishable from Hybrid H0.

For step 4, Sim simulates sub-protocol⇧MtA. Sim emulates FCOT,
sends q Z=C@ , q0 Z2=B@ to A. In Hybrid H0, q and q0 are uni-
formly distributed according to FCOT. Thus, the q and q0 sampled
by Sim are indistinguishable from those in Hybrid H0.

For step 5, Sim samples (C,+ ⇤() to A. Sim also programs random
oracle � and sends + ⇤(to A if it receives query @ = pk5

C
2 /6�

C
2

with 5C2 extracted. Otherwise, Sim samples a random value to A.
In hybrid H0, an honest server uses sk that corresponding to pk
in ⇧U�MtA and computes +(= � (6�

C
1) for a randomly sampled

C [=]. Since �C1 + �
C
2 = sk · 5C2 holds for an honest server and

honest client, the received +(equals to +' if +' is computed from
(pk5

C
2 /6�

C
2) honestly. Thus, the simulated + ⇤' equals to + ⇤(if A

query random oracle honestly, which is indistinguishable from
HybridH0. IfA adds error e 2 Z=C+2=B@ in the execution of ⇧U�MtA,
�C1 + �

C
2 = sk · 5C2 + fC holds for honest server and the adversary.

fC is computed from Equation 2. Since e is de�ned by A before
knowing gR, gR is uniformly distributed overZlog@+2B@ toA. For any
givenw and e, f8 is uniformly distributed over Z@ to A. Thus, �C1
is uniformly distributed over Z@ to A and + ⇤(is indistinguishable
from +(in hybrid H0.

For step 6, Sim sends m⇤8 Z@ to A. In hybrid H0, an honest
server computes m8 = 581 · sk + �81 + ⌫81 and sends it to A. If
A acts honestly in previous steps, m8 satis�es the distribution
that m8 + ~8 · 582 + �

8
2 + ⌫

8
2 = v8 = (581 + 582) (sk + ~8). Since 581

is randomly sampled by an honest server, A has no idea about
the distribution of m8 . The simulated m⇤8 is randomly uniform in
Z@ as well, which is indistinguishable from hybrid H0. Thus, the
view simulated by Sim is identical to hybrid H0. If there exists
an error e sampled by A in sub-protocol ⇧U�MtA, m8 satis�es the
distribution thatm8 +~8 ·582+�

8
2+⌫

8
2 = v8 = (581+5

8
2) (sk+~8) +di�i.

di�i resulted from incorrect sk · 582, computed by Equation 2. As
analyzed above, di�i is uniformly distributed over Z@ to A. Thus,
m8 is uniformly distributed over Z@ toA, which is indistinguishable
from the simulatedm⇤8 . Thus, the view simulated by Sim is identical
to hybrid H0.

For step 7, Sim sends (eval, (~1, · · · ,~=)) to FOVUF and waits for
(�sk (~1), · · · , �sk (~=)). Sim checks whether 582 is extractable and
the received u8 is computed from~8 ·582+�

8
2+⌫

8
2 correctly. If it is, Sim

sends h⇤8 = �sk (~8)

65
8
2/(m

⇤
8 +u8)

to A, such that h⇤8 · 6
58
2/(m

⇤

8 +u8) = �sk (~8).

Otherwise, Sim samples h⇤8 G and sends it to A.
In hybrid H0, an honest server sends h8 = 65

8
1/(m8+u8) to A.

If u8 is computed honestly from ~8 · 582 + �82 + ⌫82, where 582 is
extracted, then h8 · 65

8
2/(m8+u8) = �sk (~8). Thus, the view of h⇤8

in hybrid H0 is identical to h8 in Hybrid H0. If u8 is computed
honestly, but there exists an error e sampled by A in sub-protocol
⇧U�MtA in hybridH0, thenm8 +u8 = (sk+~8) (581+5

8
2) +di�i. Since

1491

Actively Secure Private Set Intersection in the Client-Server Se�ing CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

di�i is uniformly distributed over Z@ , h8 · 65
8
2/(m8+u8) = �sk (~8)

with negligible probability. In HybridH1, Sim simulates h⇤8 G.
h⇤8 · 6

58
2/(m

⇤

8 +u8) = �sk (~8) is negligible and indistinguishable from
hybrid H0. If u8 is not computed honestly, then m8 + u8 < (581 +

582) (sk + ~8) and thus h8 · 65
8
2/(m8+u8) < �sk (~8). In hybrid H1,

Sim simulates h⇤8 G, we have h⇤8 · 65
8
2/(m

⇤

8 +u8) = �sk (~8) w.p.
2� log@ , which is indistinguishable from hybrid H0. Thus, the view
simulated by Sim is identical to hybrid H0.

Corrupted server. Let Sim access to the FOVUF as an honest
server and interact with A as an honest client. Sim passes all com-
munication between A and environment Z.
0. Sim emulates FBB, once it receives the pk fromA, Sim stores pk

and ignores subsequent messages from A. Sim sends (init, pk)
to FOVUF.

2-3. Sim simulates the sub-protocol ⇧U�MtA and acts as an honest
sender below.

(1)-(2) Sim emulates FCOT. Sim receives w 2 ZC+2B@ and sends
q Z=C+2=B@ to A.

(3) Sim receives g' 2 Zlog@+2B@ from A. Sim recover B: 0 as:
sk0 =

Õ
82 [2 log@+2B] giw8 .

(4) Sim computes �1 2 Z=@ as an honest %1 does in step 4 in
⇧U�MtA.

4. Sim simulates sub-protocol ⇧MtA and acts as an honest receiver.
(1)-(3) Sim emulates FCOT and receives a vector 3 2 Z

= (C+2B)
@ . Sim

samples p Z=C@ , p0 Z2=B@ and sends them to A. Sim

checks whether the received3 2 Z= (C+2B)@ satis�es a pattern
that for 8 2 [=], all the bits 3 9 , 9 2 [(8 � 1)C + 1, 8C] [9 =
=C + 8 + (; � 1)=, ; 2 [2B] are the same. Then, it extracts
581 = 3 9 .

(4) Sim samples g' Zlog@+2B@ and sends it to A.
(5) Sim computes ⌫1 2 Z=@ as an honest %0 does in step 5 in

⇧MtA.
5. Sim emulates random oracle � and receives query @ from A.

Sim samples + ⇤(to A and records (@,+ ⇤(). Once Sim receives
(C,+ ⇤() from A, Sim �rst checks whether 6sk

0

= pk and aborts
if not. Then, Sim checks whether the corresponded @ = 6�

C
1 . If

it is, Sim continue; Otherwise, Sim aborts.
6. Sim receives m from A. Sim sends u⇤8 Z@ to A.
7. Sim waits to receive h.
8. For each 8th iteration, if 581 is extracted, Sim checks whether

h8 = 65
8
1/v
⇤

8 , m8 = 581 · sk
0
+ �81 + ⌫

8
1 and sends sk0 to FOVUF.

Otherwise, Sim aborts.
We are going to show the simulated execution is indistinguishable
from the real protocol execution.

HybridH0. Same as real-world execution in (FBB,FCOT)-hybrid
model.

Hybrid H1. This hybrid is identical to H0 except Sim emulates
FBB, FCOT, the random oracle, and generates the messages to A

as follows:
For Step 2-3, Sim simulates sub-protocol ⇧MtA. Sim emulates

FCOT, sends p Z=C@ ,p0 Z2=B@ to A. Sim also samples gR

Z
log@+2B
@ and sends it to A. In HybridH0, p,p0 are uniformly dis-

tributed according to FCOT. gR is sampled by client and uniformly

distributed over Zlog@+2B@ to A. Thus, the simulated p,p0, gR are
indistinguishable from Hybrid H0.

For step 4, Sim simulates sub-protocol ⇧U�MtA. Sim emulates
FCOT, sends q Z

= (C+2B)
@ to A. In Hybrid H0, q is uniformly

distributed over Z= (C+2B)@ according to FCOT. Thus, the sampled q
is indistinguishable from Hybrid H0.

For Step 6, Sim receives m from A, and sends u⇤8 Z@ to
A. In Hybrid H0, if A acts honestly in previous steps, we have
u8 +581 · sk+�

8
1 +⌫

8
1 = v8 = (sk+~8) (581 +5

8
2). Since 5

8
2 Z@ toA,

we have u8 is uniform distributed over Z@ toA. IfA adds error e in
step 4, an honest client computes u8 such that u8 +581 ·sk+�

8
1�⌫

8
1 =

v8 = (sk + ~8) (581 + 582) + di�i. Since di�i is uniform distributed
over Z@ , u8 is uniform distributed over Z@ to A as well. If A uses
sk0 < sk in step 2-3, u8 +581 · sk

0
+�81 +⌫

8
1 = v8 = (sk0+~8) (581 +5

8
2).

u8 is still uniformly distributed as 582 is distributed uniformly to A.
Thus, the simulated u⇤8 is indistinguishable from the distribution of
u8 in Hybrid H0.

Hybrid H2. This hybrid is identical to H1 except Sim aborts at
step 5 in the following conditions: 1) the @ corresponding to the
received+ ⇤(not equal to 6�

C
1 ; 2) 6sk

0

< pk. Sim also aborts at Step 8
in the following conditions: 1) 6sk

0

< pk; 2) 581s are not extractable;
3) m8 < 581 · sk

0
+�81 + ⌫

8
1 or h

⇤
8 < 6

58
1/(m8+u⇤8) .

For step 5 in hybridH1, an honest client aborts if the received
+(< +' . The client computes+' = � (pk5

C
2 /6�

C
2). For each pk5

C
2 /6�

C
2 ,

it equals to 6sk·5
C
2��

C
2 = 6�

C
1 , where sk is corresponded to pk. When

adversary use correct sk but manipulate +(by using inconsistent
query @ < 6�

C
1 , an honest client aborts in hybrid H1 , which is

indistinguishable from condition (1) in hybrid H2. Adversary A

might use invalid sk0 that 6sk
0

< pk in ⇧MtA, then both parties
holds equation �C1 + �

C
2 = sk0 · 5C2. Thus, with +(computed from

�C1, +(= 6�
C
1 = 6sk

0
·5C

2��
C
2 < +' = pk · 65

C
2��

C
2 . Moreover, because

of the uniformity of 5C2 and �
C
2, A is not able to construct �C

0

1 that

6�
C0
1 = pk · 65

C
2��

C
2 either. Thus, the client aborts with all but negli-

gible probability, which is indistinguishable from condition (2) in
hybrid H2.

For step 8 in hybrid H1, an honest client aborts when �sk (~8)
does not satisfy 4 (6~8 · pk, �sk (~8)) = 4 (6,6), where �sk (~8) = h8 ·

65
8
2/(m8+u8) . If6sk

0

< pk, the probability thatm8+u8 = (sk+~8) (581+
582) with negligible probability. Thus, the value of h8 · 65

8
2/(m8+u8)

satisfy the veri�cation equation with all but negligible probability.
The honest client aborts with all but negligible probability which
is indistinguishable from condition (1) in hybrid H2. For the Cth
iteration, if A adds error e to 3 and 5C2 is not extractable, di�i < 0
with all but negligible probability. Thus,m8 +u8 < (sk+~8) (58 +582)
with all but negligible probability. The value of h8 · 65

8
2/(m8+u8)

satisfy the veri�cation equation with all but negligible probability.
The honest client aborts with all but negligible probability which is
indistinguishable from condition (2) in hybridH2. IfA sends either
wrong m8 or wrong h8 in protocol, it will result in wrong �sk (~8)
that does not satisfy 4 (6~8 · pk, �sk (~8)) = 4 (6,6). The honest client
aborts with all but negligible probability which is indistinguishable
from condition (3) in hybridH2. Therefore, this hybrid is identically
distributed as the previous one. This completes the proof. ⇤

1492

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Outline of the Paper

	2 Technical Overview
	2.1 Actively Secure PSI from OVUFs
	2.2 Constructing an OVUF

	3 Preliminaries
	3.1 Verifiable Unpredictable Functions
	3.2 Ideal Functionalities

	4 OVUF-based PSI
	4.1 The PSI Protocol
	4.2 Distributing the Server Encoding

	5 An Oblivious VUF
	5.1 Encoding for Coalesced Multiplication
	5.2 Imperfect MtA Protocol
	5.3 An Oblivious VUF from Imperfect MtA
	5.4 Complexity Analysis

	6 Performance Evaluation
	6.1 Benchmark Setup
	6.2 Efficiency of Server's Encoding
	6.3 Efficiency of Online Computation
	6.4 Comparison with Other Protocols

	7 Discussion
	Acknowledgments
	References
	A Batched OVUF with Improved Efficiency
	A.1 Unbalanced Imperfect MtA
	A.2 OVUF with Improved Efficiency

