Check for
Updates

Actively Secure Private Set Intersection in the Client-Server
Setting

Yunging Sun Jonathan Katz Mariana Raykova
Northwestern University Google LLC Google LLC
Evanston, United States Washington DC, United States New York, United States
yunging.sun@northwestern.edu University of Maryland marianar@google.com

College Park, United States
jkatz2@gmail.com

Phillipp Schoppmann
Google LLC
New York, United States
schoppmann@google.com

Abstract

Private set intersection (PSI) allows two parties to compute the
intersection of their sets without revealing anything else. In some
applications of PSI, a server holds a large set and runs a PSI protocol
with multiple clients, each with its own smaller set. In this setting,
existing protocols fall short: they either achieve only semi-honest
security, or else require the server to run the protocol from scratch
for each execution.

We design an efficient protocol for this setting with simulation-
based security against malicious adversaries. In our protocol, the
server publishes a one-time, linear-size encoding of its set. Then,
multiple clients can independently execute a PSI protocol with the
server, with complexity linear in the size of each client’s set. To
learn the intersection, a client can download the server’s encoding,
which can be accelerated via content-distribution or peer-to-peer
networks since the same encoding is used by all clients; alterna-
tively, clients can fetch only the relevant parts of the encoding
using verifiable private information retrieval. A key ingredient of
our protocol is an efficient instantiation of an oblivious verifiable
unpredictable function, which may be of independent interest.

Our implementation shows that our protocol is highly efficient.
For a server holding 10® elements and each client holding 10° ele-
ments, the size of the server’s encoding is 800MB; an execution of
the protocol uses 60MB of communication, runs in under 5s in a
WAN network with 120 Mbps bandwidth, and costs only 0.017 USD
when utilizing network-caching infrastructures, a 5X saving com-
pared to a state-of-the-art PSI protocol.

CCS Concepts
« Security and privacy — Cryptography.

Keywords

Private set intersection

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690349

This work is licensed under a Creative Commons Attribution
International 4.0 License.

1478

Xiao Wang
Northwestern University
Evanston, United States
wangxiao@northwestern.edu

ACM Reference Format:

Yunqing Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, and Xiao
Wang. 2024. Actively Secure Private Set Intersection in the Client-Server
Setting. In Proceedings of the 2024 ACM SIGSAC Conference on Computer and
Communications Security (CCS °24), October 14-18, 2024, Salt Lake City, UT,
USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3658644.
3690349

1 Introduction

Protocols for private set intersection (PSI) allow two parties to
compute the intersection of their private sets without revealing
anything else. PSI has found many applications, including genome
testing [3], botnet detection [38], online advertising [28], compro-
mised credential checking [40], contact discovery [31], etc. In many
applications, one of the parties (a server) holds a large, fairly static
set and repeatedly executes a PSI protocol with several other par-
ties (clients) holding much smaller sets. This is the case, e.g., for
a “password checkup” service in which the server holds a large
set of compromised credentials while each client holds its own
credentials and wants to find out if any have been compromised.
This is also the case for contact discovery, where the server holds
a large database of contact information for multiple users while
clients each have their own list of contacts and want to learn which
among them are in the database.

One might naively think that any (actively secure) PSI protocol
could be used in the above setting. There are at least two draw-
backs to doing so. First, there is a security concern: independently
invoking a secure PSI protocol multiple times does not ensure that
a malicious server uses the same set in all executions. Second, even
if all parties are (semi-)honest, it can be prohibitively expensive to
require the server to repeatedly process its (large) input every time
it runs the protocol with a new client; more preferable are solutions
that allow the server to do work proportional to the size of its input
once in an offline phase, and then repeatedly run an online phase
with complexity linear in the size of a client’s set.

Existing PSI protocols fall short. While many PSI protocols allow
the server to re-use work done in an offline phase [14-16, 33],
existing solutions with this property do not achieve (full) security
against malicious attackers. On the other hand, while several recent
works have shown actively secure PSI protocols [19, 39, 41, 42, 44,

https://orcid.org/0000-0003-1724-9614
https://orcid.org/0000-0001-6084-9303
https://orcid.org/0000-0002-1744-4025
https://orcid.org/0000-0001-7951-3930
https://orcid.org/0000-0002-5991-7417
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3690349
https://doi.org/10.1145/3658644.3690349
https://doi.org/10.1145/3658644.3690349
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658644.3690349&domain=pdf&date_stamp=2024-12-09

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

45], all such protocols require the server to do work linear in the
size of its input in each execution.

1.1 Our Contributions

Actively secure PSI in the client-server setting. We design an ac-
tively secure PSI protocol that is particularly suitable for the multi-
client setting. In our protocol the server encodes its set once during
an offline phase, and can then repeatedly execute the online phase
of the protocol with multiple clients. Thus, the server’s initial en-
coding is reusable, so only needs to be computed once. Moreover,
clients do not need to know the server’s encoding when running
the online phase, but can retrieve it asynchronously even after the
online phase is complete. This offers flexibility, potentially allowing
the encoding to be distributed via content-distribution or peer-to-
peer networks. (See further discussion in Section 4.2.) Alternately,
the client can reduce bandwidth and retrieve only relevant portions
of the encoding (after completing the online phase of the protocol)
using verifiable private information retrieval [5, 18].

An efficient oblivious VRF. Similar to prior work, our PSI proto-
col relies on a subprotocol for oblivious pseudorandom function
(OPRF) evaluation. To achieve security against a malicious server
(as explained further in Section 2.1) we strengthen this to oblivi-
ous evaluation of a verifiable pseudorandom function (OVRF). (For
technical reasons, it is actually more convenient for us to work
with verifiable unpredictable functions, or VUFs.) While OPRFs are
well-studied (see [12] for a systematic summary) we are not aware
of any prior work constructing (efficient) OVUFs/OVRFs. Some
prior works consider verifiable OPRFs; however, efficient construc-
tions [17, 23, 29, 34, 47, 49] are not extractable (thus not applicable
here), while extractable constructions are all far from being prac-
tical [1, 4, 7, 46]. We also show an efficient OVUF/OVRF protocol
based on the (non-oblivious) VRF of Dodis and Yampolskiy [20].
Our protocol relies on techniques for converting secret shares from
multiplicative to additive form (aka MtA conversion), something
considered by several prior works in other contexts [13, 21, 51]. To
further improve efficiency, we rely on an “imperfect” MtA protocol
that allows a cheating server to cause a client to output an incorrect
result. We show that this suffices in our setting.

Practical efficiency. We implemented our PSI protocol using state-
of-the-art building blocks, and our experimental results show that
our protocol is highly efficient. For example, at the 128-bit com-
putational / 40-bit statistical security level, for a server holding
108 elements and a client holding 10> elements, the size of the
server’s encoding is 800MB; an execution of the protocol uses
60MB of communication, runs in under 5s in a WAN network with
120 Mbps bandwidth, and costs only 0.017 USD when utilizing
network caching infrastructures, a 5X saving compared to a state-
of-the-art malicious PSI protocol without consistency guarantee.

1.2 Outline of the Paper

In Section 2 we give a technical overview of our PSI protocol, as
well as the OVUF/OVREF sub-protocol we propose. After giving
preliminary definitions in Section 3, we describe our PSI protocol in
detail, based on any OVUF, in Section 4. In Section 5, we present our

Yunging Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, and Xiao Wang

efficient OVUF/OVREF protocol. We conclude with an experimental
evaluation, and comparison to prior work, in Section 6.

2 Technical Overview

In this section we give a more-detailed overview of our PSI protocol.
Our protocol can be based on any sub-protocol for oblivious evalu-
ation of a verifiable unpredictable function (OVUF); we provide an
overview of an efficient construction of the latter as well.

2.1 Actively Secure PSI from OVUFs

As in prior work on PSI [19, 41, 44], our protocol relies on the
following idea: The server begins by generating a private key sk.
Then, in an offline phase, the server with set X = {x;} computes
a deterministic encoding EX = {ex; = En(sk;x;)} of its set. To
compute the intersection with a set Y = {y;} held by some client, the
server runs an interactive protocol with the client (with complexity
linear in |Y]) that allows the client to learn EY = {En(sk;y;)}. Once
the client learns EX it can compute EX N EY, from which it can
deduce the elements in the intersection.

In prior work, the encoding of an element was done by setting
En(sk; x;) = Fg(x) for a pseudorandom function F. The server can
locally compute this encoding, while the client can compute this
encoding by interacting with the server in an OPRF sub-protocol.
This suffices to achieve semi-honest security: informally, the client
learns nothing beyond the intersection (and the size of the server’s
set) since each encoding outside the intersection is random; the
server learns nothing about the client’s set due to the obliviousness
of the OPRF protocol.

Unfortunately, the above does not appear to allow for proving se-
curity against a malicious server. In that setting, it must be possible
to extract the server’s (effective) input from its published encod-
ing EX. There is no obvious way to do this in the above protocol. In
particular, for a single value ex published by the server, a simulator
has no way to even tell whether ex is a (correct) encoding of some
element or a garbage value that will not match anything.

Malicious security via verifiability. We address this issue by us-
ing a verifiable random function (VRF) [37]. A VRF is associated
with both a private key sk and a public key pk; informally, Fg(-)
should look random even given pk, but a VRF has the extra prop-
erty that x” = Fg (x) can be verified as correct given x and pk by
running a verification procedure Verify (pk, x, x”). We modify the
protocol given above by having the server publish pk, and setting
En(sk; x;) = H(x, Fg(x)) for H a hash function modeled as a ran-
dom oracle. (This means we now need a sub-protocol for oblivious
evaluation of a VRF, which we present in the following section.)

To see how this allows for extraction of the server’s input, con-
sider again a single encoded value ex published by the server. The
simulator can look for a corresponding H-query H(x, x”) with out-
put ex; if a unique such query exists then ex can only possibly
correspond to x. (If there is no H-query with output ex, then the
simulator knows that ex does not correspond to any element.) Cru-
cially, the simulator can then check whether ex is indeed a (correct)
encoding of x by checking whether Verify(pk, x, x”) = 1.

We remark that using a VRF also allows clients to verify that
their encoding EY is computed correctly during the online phase

1479

Actively Secure Private Set Intersection in the Client-Server Setting

of the protocol, something that is also critical for security against a
malicious server.

Finally, we observe that using a VRF is overkill, and it suffices to
rely on a verifiable unpredictable function (VUF); we thus construct
an oblivious VUF (OVUF) sub-protocol in the next section.!

2.2 Constructing an OVUF

Our starting point is the VUF of Dodis and Yampolskiy [20] based
on a bilinear map e : G x G — Gr.2 Let g be a generator of G. In
this VUF, the server’s public key is pk = gSk € G, and evaluation
is defined as Fg (x) = gl/ (sk+x) Verification is done by checking if
e(Fsic(x), pk - g%) = e(g, 9)-

We now sketch a protocol for oblivious evaluation of this func-
tion, run between a server S holding sk and a client C holding
input y. A a high level, our protocol works as follows:

(1) The parties choose random values ¢; and ¢, respectively, viewed
as an additive sharing of a random value.

(2) The parties run a multiplicative-to-additive share-conversion
protocol, where S uses sk and C uses ¢; as a result, S and C
obtain A; and Ay, respectively, such that Ay + Aj = ¢ - sk.

(3) Similarly, the parties obtain By and By such that By +B1 = ¢1 - y.

(4) S sends ¢1 -sk+A; +Bj and C sends ¢, - y+ Ay + By. The parties
then add these values to obtain v = (sk + y) (@1 + ¢2).

(5) S sends g?1/? to C, who computes g#1/? . g#2/? = gl/(sk+y)

Note that C can verify the final result using the verifiability property
of the VUF and the server’s public key.

The bottleneck in the above is the subroutine for multiplicative-
to-additive (MtA) share conversion. Actively secure MtA protocols
have been a key building block in the context of threshold ECDSA,
and there have been proposals for constructing them using oblivious
transfer (OT) [22, 26], Paillier encryption [11, 24, 36], and Castagnos-
Laguillaumie encryption [13]; see Xue et al. [51] for a more detailed
survey. In this paper, we focus on constructions from OT as they
are the most computationally efficient.

We adapt the MtA approach used by Doerner et al. [22] that
can be viewed as a malicious version of an idea by Gilboa [25].
For two parties with a and b as input, the high-level idea is to use
OT to generate additive secret sharings of a - b;, where b; is the
ith bit of b. The two parties can then compute an additive secret
sharing of a - b as a linear combination of the shares of the {ab;}.
To achieve security against malicious behavior, Doerner et al. made
two changes: (1) each OT will select two sets of values, where the
second set of values is used solely for checking correctness of the
output; (2) to prevent selective-failure attacks, they encode the bit
b; as a longer string of choice bits instead of using just b; itself.
These changes lead to an overhead of 4-5X in communication as
compared to the underlying semi-honest protocol.

We observe that since the final output in our application can be
verified anyway, we can save half the communication by not doing
checking in the MtA protocol itself. Removing the check in the MtA
protocol complicates the proof of security. In particular, we are

!t is easy to turn a VUF F into a VRF F’ in the random-oracle model by defining
Fs’k (x) = H(Fs(x)). Nevertheless, relying on a VUF provides a cleaner abstraction
for our protocol. OVUFs may also be easier to construct than OVRFs.

2For efficiency, we use Type-III pairings where the groups in the domain are different;
here, we describe things in the Type-I setting for simplicity.

1480

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

unable to define an appropriate functionality that our “imperfect”
MtA sub-protocol realizes, and so instead we prove security of the
entire OVUF directly.

It is still possible for a malicious server to cheat by using an
incorrect value of sk in the protocol. This can even lead to a concrete
attack: to determine whether the client’s input is some value y, a
malicious server can use sk* = —y in step 2 of the protocol and then
see whether v = 0 in step 4. To ensure that this does not happen, we
add an extra verification step after the second step. Essentially, we
want to verify that the server holds A; such that A; + Ay = ¢ - sk,
where A, ¢ are known to the client and sk = log, pk. To do this,

we have the server send g1, and the client checks if this is equal to
pk‘f’z -g~42_ (When the server is honest, this does not reveal anything
to the client that it did not already know; on the other hand, if the
client is honest then Aj is uniform and so a cheating server will be
caught with overwhelming probability.) Using hashing, this check
can be batched when evaluating the VUF at multiple points; thus,
the check incurs negligible (amortized) communication and only a
few exponentiations.

3 Preliminaries

We use k as a computational security parameter and s as a statistical
security parameter. We use Hoo(y) to denote the min-entropy of
a random variable y; and use log to denote logarithms base 2. We
let [n] = {1,---,n}. Bold lowercase letters like a represent row
vectors, where a; denotes the ith component of a. We also write
a o b for the Hadamard product of two vectors. For b € Zg, we use
Bits(b) to denote the bit decomposition of b. We write a < S to
indicate that a is sampled uniformly from set S.

3.1 Verifiable Unpredictable Functions

A verifiable random function (VRF) is a keyed function whose
output is verifiable given a public key and an associated proof;
informally, the output should be indistinguishable from random
without the proof. A verifiable unpredictable function (VUF) is a
weaker primitive, where all that is required is for the output to be
unpredictable. Note, however, that in contrast to a VRF, the output
of a VUF can be verified without any additional proof. We only rely
on VUFs in our work.

DEFINITION 1. A VUF consists of algorithms (Gen, F, Vrfy) where

o Gen takes as input 1%, and outputs a key pair (sk, pk).

o F takes as input a secret key sk and an element x and outputs y.

o Vrfy takes as input a public key pk and elements x, y and outputs
a bit.

It is required that for all (sk, pk) output by Gen and all x in the
domain of F, we have Vrfy(pk, x, F5 (x)) = 1.
Moreover, the following security properties hold:

Uniqueness: There do not exist (pk, x,y1,y2) withys # y2 and
Vrfy(pk, x,y1) = 1 = Vrfy(pk, x, y2).

Unpredictability: For any efficient algorithm A, the following is
negligible:

Pr [(sk pl) = Gen(1); (x,) = AT+ (pk) 1y = Fue(w)].

where A does not query its oracle on x.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Yunging Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, and Xiao Wang

Functionality Fps)
There is a server S and clients Cy,
Initialization: Upon receiving (init, X) from S, store X, send |X|
to A, and ignore subsequent initialization requests.
Computation: Upon receiving (PSI,Y) from Cj, send |Y| to A
and S. If S sends ok and X is stored, send X N'Y to C;. Other-
wise, send L to Cj.

Figure 1: The private set intersection functionality.

For technical reasons, we also require that it is possible to iden-
tify whether a key pair (sk, pk) is valid or not; for a valid key
pair Vrfy(pk, x, Fsi (x)) = 1 for all x, while for an invalid key pair
Vrfy (pk, x, Fg (x)) = 0 for all x.

We recall the VUF proposed by Dodis and Yampolskiy [20], based
on prior work of Boneh and Boyen [6]. Let G, Gt be cyclic groups
of prime order ¢, with e : G X G — Gr an efficiently computable
pairing.® The Dodis-Yampolskiy VUF is defined as follows:

(1) Gen: Choose sk < Zg and output (sk, pk = gSk).

(2) Fy(x) = g"/ (k%) (We define Fy (—sk) = 1.)

(3) Vrfy(pk, x,y) outputs 1 iff e(g* - pk,y) = e(g,g), or pk = g=*
andy = 1.

The security of this construction for small domain relies on
variations of (bilinear) Diffie-Hellman assumptions. Subsequent
work [9] shows its security for general input domains in the generic
group model.

3.2 Ideal Functionalities

We prove security of our protocols in the UC framework [10], as-
suming static corruptions. Below we describe the PSI functionality
as well as other functionalities we use. We omit session IDs for
readability. Some of our protocols rely on a programmable ran-
dom oracle, which can be formalized as a functionality within the
generalized UC framework [8]; we do not do this explicitly here.
However, we note that our PSI functionality is explicitly defined
for a single server interacting with multiple clients. We assume
authenticated channels, but do not require private channels.

Private set intersection. Private set intersection (PSI) allows two
parties to jointly compute the intersection of their private sets with-
out revealing any additional information (except the sizes of their
sets). In Figure 1, we describe the ideal functionality corresponding
to PSI, which allows a server to compute intersections with multiple
clients. The functionality ensures that the server uses the same set
with every client.

Oblivious verifiable unpredictable function. One natural way to
formalize an oblivious VRF is via a functionality that internally
generates a random function F; when queried by a client with
input (eval, x), the functionality returns F(x) to the client if the
server approves. Moreover, the functionality should allow any party
to query (verify, x, y) to learn whether y = F(x) (without notifying
the server or requiring its approval). There are at least two problem
with such an approach. First, it would need to be modified to handle
a malicious server who may not choose a uniform key. While such

30ur implementation uses a Type-IIl pairing e : G; X G, — Gr for efficiency, but for
simplicity we describe our protocols using Type-I pairings.

Functionality Fovur
There is a server S and clients Cy, ... Let (Gen, F, Vrfy) be a VUF.
Initialization: Upon receiving (init, pk) from S, store pk, send pk
to A, and ignore subsequent initialization requests.
The queries below are ignored if pk is not stored.
Key query: Upon receiving fetch from Cj, send pk to C;.
Evaluation: Upon receiving (eval, (y1,...,yn)) from Cj, send n
to S and A. When S responds with sk, check the validity of
(sk, pk). If (sk, pk) is invalid, send L to C;. Otherwise, send
(Fsk(y1)> .- -3Fsk(yn)) to Cj-

Figure 2: The OVUF functionality.

Functionality Fcot

Upon receiving 7 € ZS from S and w € {0,1}" from Cj, for i € [n]
choose p; < Zg and set q; = w; - 7; — p;. Send p to S and q to C;.

Figure 3: The correlated OT functionality.

Functionality ¥gp
There is a server S and clients Cy,
Send: Upon receiving msg from S, send msg to A and store msg.
Ignore subsequent messages from S.
Fetch: Upon receiving fetch from Cj, if msg is stored then send it
to C e

Figure 4: The bulletin board functionality.

a modification is possible, it complicates things. Second, it seems
difficult to model an unpredictable (rather than random) function
using this type of approach.

We therefore choose to model the OVUF functionality as a secure
evaluation of a concrete VUF, as shown in Figure 2. We allow the
client to request oblivious evaluation at multiple points (“batch
evaluation”), as this can allow for better efficiency.

Correlated oblivious transfer. Correlated oblivious transfer (COT)
is a variant of oblivious transfer. See Figure 3.

Bulletin board. We use a bulletin board functionality that allows
the server to post messages that can be read by all clients. This
functionality is used for distribution of the server’s public key as
well as the server’s encoding. See Figure 4. In practice, the server’s
public key would be distributed through standard PKI mechanisms,
and we envision that the server’s encoding would be distributed
through content-distribution networks.

4 OVUPF-based PSI
4.1 The PSI Protocol

We have already given an overview of our approach in Section 2.1.
The detailed PSI protocol ITpg; is shown in Figure 5.

THEOREM 1. Assume the VUF used by Foyur is secure. If H
is modeled as a random oracle, then Ilpg; UC-realizes Fps; in the
{?_OVUFa TBB}—hybrid model.

Proor. Let A be a PPT adversary that may corrupt the server
and any number of clients. We construct a simulator Sim with
access to functionality Fpg) that runs A as a subroutine. Note that

1481

Actively Secure Private Set Intersection in the Client-Server Setting

Protocol Ilpg,

The server S holds X and each client C; holds Y.

H:ZgxG — {0,1}7 is a hash function.

Initialization:

(1) S runs (sk, pk) « Gen and sends (init, pk) to Fovur-

(2) For each x; € X, the server computes ex; = H(x;, Fs(x;)). It
then sends EX = {ex;} to Fgg.

Compute intersection:

(1) Cj sends (eval,yi,---,yn) to Fovur. Upon receiving n
from Fovur, S sends sk to Fovur. Then Foyur sends
(Fsk (Y1), - -+, Fsk(yn)) to Cj. (If Fovur sends L, then C; aborts.)

(2) C;j computes ey; = H(y;, Fo(y;)) and lets EY = {ey; }.

(3) Cj sends fetch to #gp, and receives EX in return. It then outputs
{yi:ey; e EXNEY}.

Figure 5: PSI protocol in the {Foyuyr, Fas }-hybrid model.

there is nothing to simulate if a corrupted server interacts with a
corrupted client. When an honest server interacts with a corrupted
client, the only communication observed by the adversary is pk
and EX; thus, that case is covered in the same way as in the case of
an honest server interacting with a corrupted client.

Corrupted server with some honest clients. Sim runs A, simu-
lating H by returning random responses to A’s queries. Then:

(1) Let (init, pk) be the message A sends to Fovyr, and let EX =
{ex;} be the message A sends to Fgp.
(2) Initialize X = 0. Then for each ex € EX, do:
(a) If A did not make any H-query with output ex, do nothing.
(b) If A made an H-query with output ex, let H(x, x”) be the
first such query. Add x to X iff Vrfy(pk, x, x) = 1.
Send X to Fps| on behalf of S.
(3) Upon receiving n from Fpg), send n to A on behalf of Fovur.
If A does not respond, or responds with sk for which (sk, pk)
is invalid, send abort to ¥pg|. Otherwise, send ok to #ps;.

It is not hard to see that the simulation is statistically close to an
execution of IIpg; in the {Fovur, Fap }-hybrid world. The unique-
ness of the VUF ensure that the simulator does not include wrong
elements: if the adversary could find values (x, x”) that pass the
verification but not a VUF input-output pair, the extraction would
include such an element incorrectly.

Corrupted clients with an honest server. Sim runs A, simulat-
ing H by returning random responses to A’s queries. Then:

(1) Run (sk,pk) <« Gen. If a corrupted client queries fetch to
Fovur, send pk in response.

(2) Sim receives n from Fpg). It chooses exy, . . ., exp < {0,1}° and
sets EX = {ex;}. If any client (corrupted or not) queries ¥gg,
it sends EX in response. Sim also maintains a table T indexed
by [n], initially empty.

(3) Whenever A sends (eval, yy, . .
corrupted client, do

(a) Send Y = {y;} to Fps|, and receive in return a set Z C Y.
Send (Fsi (y1), - - -, Fsk(ym)) to A.

(b) For each z € Z do: If there is an i with T[i] = z, do nothing.
Otherwise, choose a uniform empty entry T[i], set T[i] = z,
and program H so that H(z, Fs(2)) = ex;.

.»Ym) to Fovur on behalf of a

1482

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

It is again not hard to see that the simulation is statistically close
to an execution of Ilps; in the {Fovur, Fap }-hybrid world. In par-
ticular, the simulation relies on the fact that corrupted clients do
not query (z, Fgi(z)) to RO ahead of time, which reduces to the
unpredictability of the underlying VUF. O

4.2 Distributing the Server Encoding

Here we discuss several solutions that could be used in practice to
distribute the server encoding.

Network caching. Network caching technologies like content
distribution network (CDN) are good at distributing content cheaply
and quickly. This is the standard technique to distribute common
website and streaming services. Our service encoding can take
advantage of CDN networks since the server encoding is identical
for all clients. Note that prior works on malicious PSI cannot take
advantage of CDN since the communication with each client is
different.

Verifiable private information retrieval. One can also use ver-
ifiable PIR [18, 27] to allow the clients getting only a subset of
encodings relevant to their own PSI. Unlike normal PIR, verifiable
PIR publishes a digest of the data, which ensures that anyone with
the digest can verify that the PIR results are consistent with a global
database, something needed to prevent attacks from a corrupted
server. However, state-of-the-art verifiable PIR has a digest size
of around 600MB for a database of 800MB [18] and thus the cur-
rent savings are small. With more advances in their efficiency, we
believe this solution could be highly valuable.

Other solutions. There are other potential solutions with some
trade offs between security and efficiency. First of all, one could
directly fetch the needed encodings through a TOR network to hide
their identity, which requires assumptions of trusting TOR. Buck-
etization is another solution that provides better efficiency with
reduced privacy. In detail, one can use a hash function to partition
all encodings into buckets and reveal which buckets the clients are
looking. Indeed, this solution has been used by Google and Cloud-
flare for credential checking, but there are also demonstration of
attacks for various bucketization techniques [35].

5 An Oblivious VUF

In this section, we present an OVUF protocol for the Dodis-Yampolskiy
VUF, with security against malicious adversaries. Our protocol
works in the (Fgg, Fcor)-hybrid model with a sub-protocol named
imperfect multiplicative to additive shares ITp¢a. In Section 5.1, we
review a randomized encoding scheme. Then, in Section 5.2, we
introduce the sub-protocol IIpa, which leverages the encoding
scheme. The OVUF protocol, described in Section 5.3, is constructed
based on ITpm¢a. Then, we give a complexity analysis of the pro-
posed OVUF protocol in Section 5.4. We leave the discussion of
further optimization in Section A.

5.1 Encoding for Coalesced Multiplication

We provide a brief recap of the randomized encoding scheme de-
scribed by Doerner et al. [22]. However, we prove some slightly
different properties of the encoding where we also take the random-
ness of the encoding vector gR. This is valid in our protocol because,

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

as shown in Figure 6, we sample gR only after the adversary chooses
where to cheat.

Single encoding. Define coefficient vector g = g©||gR, where

g c Z10gq G _ 9i-1 logq+2$

g; ,and gR €Z,

ALGORITHM 1. Encode(gR € Zl;g q+2$,ﬂ €Zg)
(1) Sampley «— {0, 1}1089+25
(2) Output Bits(f — (g*, y))ly-

LEmMMA 1. Given uniformy « {0, 1}1°89+25 gnd gR Zbg s

gR(y) = (g ,y) is statistically close to uniform dzstrlbutlon with a
statistical distance of at most 27°.

Proor. We defer the proof to our full version [48]. O

Batch encoding. When encoding more than one element, it is pos-
sible to perform better than encoding each element independently.

B} e Zy)
— {0,1}%

ALGORITHM 2. BatchEncode(g € ZIqu+ZS {BL,---

1) Sampley « {0, 1}logq’ <Ly o, l}logq’ },n+1
(2) Output
Bits(B' = (g% v lly™ ™Iyl -l
Bits(™ — (g®. y" Iy DIly"|ly™*

n+1

||)/ — {o, l}nlogq+25
n+1>|| ..

LEMMA 2. Given uniformy = y!||---

log g+2s
BT hgr (y) = (8" vy
is within statzstlcal dlstance s~ of uniform.

n+1>

and gR — Z 11¢gR v lly

Proor. We defer the proof to our full version [48].

5.2 Imperfect MtA Protocol

The imperfect multiplicative to additive (MtA) shares protocol trans-
forms multiplicative shares to additive shares. It is imperfect be-
cause a malicious sender can execute attacks that lead to incorrect
additive secret shares, depending on the receiver’s input. This pro-
tocol is specially designed for our efficient DY-based oblivious VUF
protocol because it does not directly instantiate the MtA function-
ality due to the lack of correctness guarantee. Therefore, we do not
model it as a functionality. The correctness will be checked for free
as part of the OVUF protocol.

We use oblivious transfer based constructions to achieve this
MtA. For the semi-honest version, given value a € Zg on the sender
side and b € Zg on the receiver side, the sender execute log g itera-
tions of FcoT with a as input in each ith iteration, while the receiver
inputs b;, representing the ith bit of the binary representation of b.
The procedure and its correctness are detailed below:

(1) Fori € [logq], the receiver inputs b; to Fcot, while the sender
inputs a. Fcot sends q; to receiver and p; to sender, such that
qgi+pi=a-b;

(2) Define d = Zze [logq] 2

d+c= Z

ic({logq]

_1¢1i, c= Zie[logq] 2 _lpi. Then

2l D) 2
i€[logq]
=a 21_1bi =a-b.
i€(logq]

Yunging Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, and Xiao Wang

1483

However, a malicious sender could potentially execute attacks to
the semi-honest protocol above. Specifically, it samples an error
vector e € ZZ and inputs a + e; to Fcor in its ith iteration. It re-
sultsd +c¢ = a- b+ Xiellogq] 2i=le;b;. Given e;, the correctness
of MtA transformation depends on the receiver’s input b. Specif-
ically, the transformation is correct when 2;e[10g4] 2 “le;b; = 0.
Prior works incorporate consistency checks and encoding to resist
such malicious behaviors [22]. The consistency check, for input a
in different iterations, leaks information. Encoding is involved to
further protect privacy. In our construction, MtA is used in OVUF
protocol in Section 5.3. Since the verifiability of OVUF implicitly
gives the same property as a consistency check, we only incorporate
the encoding algorithm in [22] to give an imperfect MtA protocol.
To enhance efficiency, we give a batch version in Figure 6. In this
scenario, two parties hold collections of n elements, denoted as
ac Z;’ and b € Z;, respectively. There is a receiver that employs

BatchEncode(gR, b) algorithm to encode each element of its input

log +2s 4 randomly

into a batched binary representation. gt € Zg
chosen by the receiver and sent to the sender after executing FcoT-
To run Fcort s correctly in each iteration, the sender inputs a;
and the receiver inputs corresponding b; in its batch encoded bit
representation form.

We show correctness of Figure 6 in its single encoded version:

(1) Definew = Encode(gR, b) € {0,1}21°89+25 which is the encod-
ing of b. For i € [t + 2s], t = 2log g, the receiver inputs w; to
FcoT, while the sender inputs a. Fcot sends q; to receiver and
pi to sender, such that q; + p; =w; - a.

(2) For g = g°||gR, define d = Tic(s) 8iqi + Sic(2s] 8e+iqr+i and
€= ie[t] 8iPi + Lie[2s] 8t+iPr+i- We have

d+c= Z giqi + Z Sr+iqr+i t Z gipi + Z St+iPt+i

i€[2s] ie[2s]
= Z gi(qi+p)+ Y gt+l—<qt+i+pt+i)
ielt] ie[2s]
=a(Z giwi + Z Sr+iWeti)
i€[2s]

a-b

For a malicious sender executing the attacks described above,
the relation will be resulted as d + ¢ = a - b + X;c[;) gieiwi +

Die [25] Bt+i€L+iWe+i with respect to the value ofw = Encode(gR, b) €
71428 Forw = BatchEncode(gR, b) € ZZHZS, malicious behavior of
sender will result in d; + ¢; = a; - b; + fi, where

fi= Z 8iW(i-1)t+j€(i-1)t+j + Z Br+kWnr+knt(k-Dn+i (1)
jelt] kel2s)

We will show how to catch this incorrectness in Section 5.3 below
with respect to the detailed OVUF protocol.

5.3 An Oblivious VUF from Imperfect MtA

Based on the imperfect MtA protocol from Section 5.2, we construct
an OVUF protocol as follows.

(1) The server first uses pk to initiate the bulletin board #gg. Then,
upon receiving pk from Fgg, the client checks whether g~ ¥ =

Actively Secure Private Set Intersection in the Client-Server Setting

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Protocol IIpia

Inputs: Pj holds a € Z;. P; holds b € Zg.

Protocol:

(1) P, samples gR « Zg’g s, P; encodes b by computing w

BatchEncode(gR, b) € {0,1}™+25 where t = 2logq.

(2) For i € [n],j € [t], Py inputs w(j_1)s+;j to Fcor. Po inputs
a; € Fy to Fcort. Po receives p; j € Fy from Fcot. Py receives
qi,j € Fy from Fcor.

(3) For k € [2s], P; inputs wys4k to Fcot. Po inputs a € Fg to
Fcor. Py receives {P,l,k’ e ’P;I,k} € Fg from Fcor. Py receives
{9} > q,,} € Fg from Feor.

(4) Py sends g® to Py.

(5) For j € [t], k € [2s],i € [n], Po computes ¢; = ¥ je,18; -
Pij* Lyeas) 8t+k - Py and Py computes di = ¥ je ;) 85 - qij +
Dke[zs] 8e+k - G such that d; + c; = a; - by.

Figure 6: The MtA protocol in the Fcot-hybrid model.

pk for each y; in its input set (y1,- - - ,yn). If so, the client re-
places these y; values with random values to avoid corner cases
in the protocol.

Given input value sk on the server side and input vector (y, - - -
Zg on the client side, both parties uniformly choose random
vectors ¢1 € Zy and ¢y € Zg respectively.

The inputs and random vectors are specifically ordered as
(sk, ¢§) € Z2,i € [n] and (¢’;,yi) € 72,i € [n], which serves
as input vector for ITpma in its ith iteration. By running ITp¢a
on both sides for n times, both parties obtain additive secret
shares Ai and Bi of sk - d); and additive secret shares Aé and
B of ¢} - yi. . .
Then, the server raise g to A] for each i € [n], where A] is
the secret share of sk - ¢é, and apply a hash function to these
values. The server sends the hash result to the client, allowing
it to check whether sk used by the server in each iteration is
consistent with the pk initialized on ¥gp.

Then, both parties are able to locally compute sk - ¢i + A’i + Bi

—
(5))
=

and ¢£ Sy + A; + Bé, respectively. The results are regarded as

secret shares of v; = (¢i + ¢é)(sk +y;). Both parties exchanges

the results to recover v;.))

Both parties are able to compute g‘l’i/ % and g‘l’é/ i respectively.

Given ¢g%1/% the client computes Fy (y;) = g?1/% - g#2/% and

verifies correctness of the protocol using the fetched pk.
The detailed scheme is shown in Figure 7. Its correctness can
be directly verified. For security, we assume the client acts as a
receiver in the execution of Fcot in sub-protocol ITpta, while the
server acts as a sender. A malicious client might send the wrong y;
or u; to the server. Incorrect y; can be extracted by Sim given gR
from the client. Incorrect u; leads to abort with all but negligible
probability, which can be simulated by Sim constructing message h;
to manipulate abort probability. A malicious server could execute
selective failure attack in IIgyyf and bias the secret shares of v;
to be u; + m; = diff; + (¢§ + ¢;)(sk +y;) = diff; + v;. diff; res‘ulted
from the incorrectness stated in Section 5.2 that diff; = f] + f.
fl’ resulted from incorrect ¢§ -y; and le resulted from incorrect

sk - ¢é In the server’s perspective, g® is received after the selective

failure attack has been executed. For any element giR uniformly

,yn) €

1484

Protocol Igyyr

Inputs and parameters: Hash function H modeled as RO. Client C;

holds (y1,...,yn) € Zg.

Initialization: S chooses sk € Zg, sets pk = g%, and sends pk to

FB8-

Key query: Client C; sends fetch to #gp and receives pk.

Evaluation:

(1) Cj checks if g7Y = pk for each i € [n].If it is, C; inserts i to set
I and sample uniform y; « Zg.

(2) Server S chooses ¢1 < Zg; client C; chooses ¢ — Zg.

(3) For i € [n], S holds vector (sk, ¢§) € Z2, C;j holds vector

(¢§, yi) € Zé. Both parties run [Ty;a with the stated input vector

above. Then, S receives (Ai, B{) €72, Cj receives (AL, B;) €72,

such that A; +Ai = ¢é - sk, Bé +B{ = ¢i - Y.

S computes Vs = H(gA%, cee ,gA?)> and sends Vs to C;. C; com-

putes Vg = H(pkq% /gAﬁ, e ,pk‘/’g /gAS’) Cj checks whether

VR = Vs and aborts if they are not equal.

S sends m to Cj, where m; = ¢§ - sk +Ai + Bi. Cj computes

u; = ¢£ Sy + Aé + Bé and sends it to S. Both parties compute

v=m+u.)

(6) For each i € [n], S computes h; = g'p;/"i. Then S sends h to
C;j.Cj sets Fy(y;) = 1,i € I. For each i € [n] \ I, Cj computes
Fy(yi) = hy - g%/

(7) Cj outputs (Fe(y1), - -+, Fs(yn)) if e(g¥" - pk Foc(yi)) =
e(g,g) for each i € [n] \ I. Otherwise it aborts.

©

®)

Figure 7: OVUF protocol in the (FcoT, F8)-hybrid model
with sub-protocol IIp¢a.

distributed over Zg, diff; is uniformly distributed over Zg. If the
server sends m; and h; honestly, the verification of Fg (y;) passes
if and only if diff; = 0, which is with negligible probability. If not,
the verification of Fy (y;) passes if and only if diff equals a specific
number that results in correct Fy (y;), which is negligible either.
Thus, the server’s malicious behavior can be simulated by Sim with
all but negligible abort probability. The detailed proof of the security
of the proposed IIgyyr with sub-protocol IIpy¢a in the hybrid of
(FBB> FCoT) is shown in Theorem 2.

THEOREM 2. If H is modeled as a random oracle, then protocol
oyur with sub-protocol Tipmea shown in Figure 7 UC-realizes Fovur
in (8B, Fcot)-hybrid model.

Proor. Let A be a PPT adversary that allows to corrupt the
server or the client. We construct a PPT simulator Sim with ac-
cess to functionality Foyyr, which simulates the adversary’s view.
We consider the following two cases: malicious client and mali-
cious server. The client acts as the receiver of Fcot in sub-protocol
ITpmta, while the server acts as the sender. We will prove that the
joint distribution over the output of A and the honest party in the
real world is indistinguishable from the joint distribution over the
outputs of Sim and the honest party in the ideal world execution.

Corrupted client. Let Sim access to Fovyr as an honest client
and interact with A as an honest server. Sim passes all communi-
cation between A and environment Z.

0. Sim emulates Fgp, once it receives fetch from A. Sim sends
fetch to Fovur and receives pk. Sim sends pk to A.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA Yunging Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, and Xiao Wang

2-3. Fori € [n], Sim simulates the ith iteration of sub-protocol ITpmta server, A has no idea about the distribution of m;. The simulated
below. m] is randomly uniform in Z4 as well, which is indistinguishable
(1)-(3) Sim emulates Fcot and receivesw € Zé”zs from A. Sim from hybrid Hjy. Thus, the view simulated by Sim is identical to
samples q « Zflt ,q — Z‘;s and sends them to A. hybrid Ho. . _
(4) Sim receives gi from A. Sim computes ¢! and y; as follows: For step 6, Sim sends (evgl, (Y1, . yn)) to Fovur an(.i waits
for (Fg(y1),- -, Fsk(yn)). Sim checks whether the received u;
¢; = Z gjwj + Z gjWeej is computed from y; - ¢, + A} + B, cor‘rectly. If it is, Sim sends
jelt] je[trTe+2s] hi = % to A, such that k! - g/ (mi+u) = F (y;). Oth-
Yi = Z gjWr+j + Z 8jWi+j erwisg, Sim samples h;f «— @G and sends it to A. In hybrid H,
jete] jeleattais] an honest server sends h; = g‘t’{/('"i“"') to A. If u; is computed
(5) Sim computes Ai,B; as an honest P; does in step 5 in ITpA- honestly from y; - ¢£ + A; + Bé, then h; - g¢§/(mi+ui) = Fa(yi).
4. Sim samples VS* and sends it to A. Sim emulates H and receives Thus, the view of b7 in hybrid Hj is identical to h; in Hybrid Ho.If
query g from A.If g = (pk‘i’% /gAé’ -+, pk?? /g47), Sim sends u; is not computed honestly , then m; +u; # (¢! +¢L)(sk +yi)
Vg,‘ = V;f to A. Otherwise, Sim uniformly samples V};‘ and sends and thus h; - g¢§/(mi+ui) # Fy(y;). In hybrid i, Sim simulates
it to A. Sim aborts if A aborts. h? « G, we have b .g¢§'/(mj.+u,») = Fy(yi) wp. 271089 which is
5. Sim sends mj ¢ Zq to A. Sim receives u from A. Sim com- indistinguishable from hybrid Hj. Thus, the view simulated by Sim
putes v. is identical to hybrid Hp.
6. Sim sends (eval, (y1,- -, yn)) to Fovur and waits to receive Corrupted server. Let Sim access to the Foyyr as an honest
(Fsic(y1), -+~ Fsic(yn)). For each i € [n], Sim checks whether server and interact with A as an honest client. Sim passes all com-
uj =y;- ¢é + Aé + BQ. If it is, Sim simulates h} = %, and munication between A and environment Z.
sends it to A. Otherwise, Sim simulates h*lf — G afld sends it

0. Sim emulates #gp, once it receives the pk from A, Sim stores pk

t .
oA and ignores subsequent messages from A. Sim sends (init, pk)

7. Sim aborts if A aborts and outputs what A outputs.

to Fovur-
We are going to show the simulated execution is indistinguishable 2-3. Upon receiving n from Foyur, Sim simulates iterations of ITpea
from the real protocol execution. for each i € [n]. The ith iteration of IIpp is simulated as
Hybrid Hy. Same as real-world execution in the (Fcot, F8B)- follows:
hybrid rr?odel. . o .) (1)-(3) Sim emulates Fcot and receives a vector T € Z(ZI(HZS)
Hybrid #;. This hybrid is 1dent1ca'l to Ho except Sim emulates from A. Sim samples p — Z(th, P Zés and sends
8B, FcoT, the random oracle, and simulates the messages to A 2(++25)

them to A. Sim checks whether the received 7 € Zq

satisfies a pattern that for k € [2], all the bits 7, j €
[(k-=1Dt+1Lkt]Uj=2t+k+(-1)2,1 € [2s] are the
same. For k = 1, if 7; are the same, Sim extracts sk’ = Tj.

as follows:

For step 0, Sim emulates Fgg. Upon receiving fetch from A, Sim
sends fetch to Fovur and receives pk. Sim sends pk to A. In hybrid
Ho, Fap was initialized by an honest server with pk and sends it

to A upon receiving fetch. Thus, the pk sends by Sim is same as For k = 2, if 7; are the same, Sim extracts ¢] = ;.
the one in hybrid Hp. (4) Sim samples gR « Zg)g 7*25 and sends gk to A.

For step 2-3, Sim emulates FcoT, receives w € Zé“’zs from A. (5) Sim computes Ai,Bi as an honest Py does in step 5 in ITp¢A.
Sim samples ¢ « Zét ,q — Zés to A, and receives gR c Zl;g q+2s 4. Sim emulates random oracle H and receives query g from A.
from A. In Hybrid Hy, q and q’ are uniformly distributed according Sim samples Vs to A and records (g, Vs). Once Sim receives Vs
to Fcor. Thus, the g, ¢’ sampled by Sim is indistinguishable from from (A, Sim first checks whether sk’s have been extract/ed and
the one in Hybrid Ho. are the same in last step. Sim also checks w}llether gSk = pk.

For step 4, Sim samples V¢ to A. Then, Sim emulates random ora- Then, Sim checks if the corresponded ¢q = (g1, - - - ,gA?). If all
cle and returns VE — V; to A for query q = (pk‘i’% /gAé, . pk"’g /gAg)’ these requirements are satisfied, Sim continue; Otherwise, Sim

aborts.

5. Sim receives m from A. Sim samples u* « Zg to A. Sim
computes v* = m + u*.

. Sim waits to receive h.
)) PR . For each ith iteration, if ¢i is extracted, Sim checks whether
to Vi if Vg is computed from (pk®2 /g%2, - - -, pk?? /g2) honestly. h; = gq);'/ui* mi = ¢i sk’ + Al + Bl and sends sk’ to Fovur.
Thus, the simulated Vy equals to V¢ if A query random oracle g ! A
honestly, which is indistinguishable from Hybrid Hp.

For step 5, Sim sends random m:.‘ — Zgto A. In hybrid Ho,

where Aé and q)é are recovered by Sim. For other queries, Sim sam-
ples V; to A. In hybrid Hp, an honest server uses sk that corre-

sponding to pk in IIp¢s and computes Vs = H(gA%, -+, ¢A7). Since 6
Al + Aj, = sk ¢}, holds for an honest server, the received Vs equals 7

Otherwise, Sim aborts.

We are going to show the simulated execution is indistinguish-

an honest server computes m; = ¢i - sk + A‘i + Bi and sends it able from the real protocol execution.
to A. m; satisfies the distribution that m; +y; - ¢, + A, + B, = Hybrid H,. Same as real-world execution in (Fgg,FcoT)-hybrid
v; = (@] +¢3)(sk+y;). Since @] is randomly sampled by an honest model.

1485

Actively Secure Private Set Intersection in the Client-Server Setting

Hybrid H;. This hybrid is identical to Hy except Sim emulates
BB, FcoT, the random oracle, and generates the messages to A
as follows:

For Step 2-3, Sim emulates Fcot and waits to receive 7. Then,
Sim sends p « Zét and p’ « Zés to A. Sim samples gR «
Zg)g qras and sends it to A. For an honest client in hybrid Hy, it

log g+2s

q as well, which is

samples p — ZZ, p’ — Z, R 2z
indistinguishable from this hybrid.

For Step 5, Sim receives m and samples u; < Zg to A. In the
hybrid Hy, for ith iteration, if A sends 7 correctly , u; + ¢§ - sk +
A’i + Bi =v; (¢i + ¢£)(sk + y;i), which is uniformly distributed
over Zg. Thus, u; is uniformly distributed, same as the sampled
one in this hybrid. If there exists an error e sampled by A, an
honest client computes u; such that u; + ¢i - sk + Ai + B’i =v;
(¢i + ¢;)(s.k +yi) + d?ffi. diff; = fll + le where fll rgsulted from
incorrect ¢] - y; and f, resulted from incorrect sk - ¢, as stated in

Equation 1. Since e is defined by A before knowing gR, gR appears
uniformly random over Zlqu %% to A at this time. Thus, for any
givenw and e, f; is uniformly distributed over Zg. Therefore, diff; is
uniformly distributed over Zg. u; is uniformly distributed over Zg,
which is identically distributed as the simulated u; in this hybrid.

Hybrid H>. This hybrid is identical to #; except Sim aborts at
Step 4 in the following conditions: 1) any sk’ in IIy4 iterations
is not extractable; 2) the extracted sk’s are not the same or any
gSk/ # pk; 3) the g corresponding to the received Vs is not equal to
(gAi e ,gA;l). Sim aborts at Step 7 in the following conditions: 1)
any ¢i in ITp¢A iterations is not extractable; 2) hY # g/ (mitup)
orm; # ¢§ -sk+Ali +Bi.

For Step 4 in hybrid H;, an honest client aborts if the received

Vs # VR. The client computes Vg = H(pkd’; /gA% . pk‘l’;/gA;).

For each pk‘iJé / gAé, it equals to gSk'¢5_A§. 1) Adversary A might
add error e to T on bits related to sk in one iteration of ITpa. In
this case, sk’ is unextractable. If we set a value as sk’, then both
parties holds equation A’i +A§ =sk’ ~¢é + f2, where f is computed
according to Equation. 1. As we analyzed above, f is uniformly
distributed over Z for any given w and e. Thus, with Vs computed
from Ai, Vs # VR. Furthermore, even A tries to manipulate Vg,
A is unable to construct A’; sk - ¢§ - Aé as ¢§ and Aé are
uniformly distributed. Thus, the client aborts with all but negligible
probability, which is indistinguishable from condition (1) in hybrid
Ho. 2) Adversary A might use inconsistent sk in different Iy
iterations. If A use sk’ # sk in ITpta, both parties holds equation
Ai + A; =sk’- ¢é Thus, with Vs computed from Ai, Vs # Vg A
is not able to construct A’; to manipulate Vs either. Thus, the client
aborts with all but negligible probability, which is indistinguishable
from condition (2) in hybrid H>. 3) When adversary use correct
sk but manipulate Vs from inconsistent g, an honest client aborts
which is indistinguishable from condition (3) in hybrid H>.

For Step 7 in hybrid i, an honest client aborts when Fy (y;)
does not satisfy e(g¥: - pk, Fs(yi)) = e(g,g), where F (y;) = h; -

g‘/’é/ (mituy) q) For the ith iteration of IIpta, if adversary adds error
e to 7 such that ¢i is not extractable, then diff; # 0 with all but
negligible probability. Thus, m;+u; # (sk+y;) (¢§ +¢;) with all but

1486

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

negligible probability. Consequently, h;-g®2/ (™i*#:) 2 Fy (y;) with
all but negligible probability, identical to condition (1) in hybrid
Hy. 2) If TIpmea is executed honestly by A, an honest client aborts if
A provides an incorrect m; or h;, which will result in an incorrect
Fyi (yi) that does not satisfy the verification procedure, identical
to condition (2) in hybrid Hjy. Therefore, this hybrid is identically
distributed as the previous one.

The above hybrid argument completes this proof. O

5.4 Complexity Analysis

For each input element y; € Y, IIoyyF requires 4log q + 4s COT
and one gR. Thus, this protocol requires (4 log g + 4s)n COT and
n gR in total. To improve its complexity, we propose an improved
OVUF in Section A that reduces the number of gRs to two and
achieves better RAM usage. The key idea is to batch operations
with correlated randomness together but refer to Section A for
complete description of the protocol and the proof.

6 Performance Evaluation

We implement our protocols using EMP [50] for COT and RELIC [2]
for pairings. We benchmark the performance of our protocol when
Fcor is instantiated using KOS [32] and Ferret [52].

6.1 Benchmark Setup

We instantiate everything ensuring a computational security pa-
rameter ¥k = 128 and a statistical security parameter s = 40. To
this end, we use BLS12-381 for all type-III pairing operations. We
show the performance in two different network settings: a LAN
network with 5Gbps bandwidth and a WAN network with 120 Mbps
bandwidth. All experiments are performed on AWS EC2 instances
of 6a.8xlarge type with 32vCPU and 128 GB memory.

6.2 Efficiency of Server’s Encoding

First, we benchmark the performance of the server encoding pro-
cess. Note that this computation only needs to be executed once
given a set of elements. Recall that this step mainly computes
the VUF on the input elements. Following conventions from prior
works, we hash the output to 64-bit strings, which helps in reducing
the encoding size. For example, the encoding file for a set of 108
elements is of size 800 MB.

We prepare a list of 256-bit values in a file as the server’s set. The
benchmark results include the time to: 1) read all elements from
the file (w/ disk access), 2) compute the VUF value of each element
and then hash it into a 64-bit string, and 3) write the resulting
hashes into another file (w/disk access). In Figure 8a, we show the
performance of our server computation with different set sizes and
threads. From the figure, we can see that the performance of the
server’s local encoding is linear to the set size. We observe a 3.8x
improvement when increasing the threads from 1 to 4 and 15X from
1 to 32 threads. We didn’t make the file I/O multi-threaded which
we believe could be the bottleneck when we use 32 threads.

6.3 Efficiency of Online Computation

Now we show the performance of the interactive process between
a server with a VUF secret key, and a client with a private set. As

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Yunging Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, and Xiao Wang

S
2

~—~#— KOS + 32 threads
KOS + 4 threads
~ro— KOS + 1 thread

—e- 32 threads pre
4 threads P
—e- | thread g -*

Q
ES
.

3

»
N

\
N

104 FERRET + 4 threads
-+®- FERRET + 1 thread

3
Y
.
DR
A\
N

3
\
\

Wallclock time (ms)
>
X
\
S
\\
\
\
Wallclock time (ms)

=S
1
\
\
>
1)
D

-+®- FERRET + 32 threads

Q
S

~—~®— KOS + 32 threads
KOS + 4 threads

—o— KOS + | thread

-r®-- FERRET + 32 threads
FERRET + 4 threads

--®-- FERRET + | thread

3 =

Wallclock time (ms)
2,

10

10 103 10* 10° 10° 107 10 10! 102
Server set size n

(a) Local encoding

Client set size n

(b) Interaction phase (LAN setting)

103 10* 10° 10! 102 103 10* 10°
Client set size n

(c) Interaction phase (WAN setting)

Figure 8: Performance of our protocol. We show the performance of both phases. The one-time offline local encoding time for the server
set is depicted in (a). The interactive online encoding time for the client set is shown in (b) under LAN network and (c) under WAN network.
Both (b) and (c) utilize different OT methods (KOS/FERRET) and number of threads (1/4/32) for comparison.

100
8000

-y
1=}
1=
=)

g
g
Wallclock time (ms)

Wallclock time (ms)
=
S

»HM_M 10*

|

2
-% 10!
=}
<
Mm
10° I
10! 10% 03 10* 10°

10°
0 1000 2000 3000 4000 0 25 50 75 100 125 150 175 200 225 250 275 300 0
Bandwidth Mbps Latency (ms))
—— KOS+32thread o+ Ferret +32 thread o etsize 10! —o— setsize 100 —o— sotsize 10° Set size n
KOS +4 thread Ferret + 4 thread setsize 102 —e— setsize 10 W= FERRET KOS
==o— KOS + 1 thread +*® - Ferret + | thread

(a) Performance dependency on bandwidth

(b) Performance dependency on latency

(c) Bandwidth consumption performance

Figure 9: Our performance under different network settings. We show our performance of time consumption as bandwidth varies in
(a) and as latency varies in (b). (a) uses client set size 10° to compare performance under different OT methods (KOS/FERRET) and different
thread numbers (1/4/32). (b) takes OT method KOS to compare performance as set sizes vary. Figure (c) shows our protocol’s bandwidth

consumption as the set size varies.

the output, the client will get VUF evaluation on its own set, which
can be further used to lookup the server encoding.

Wallclock time. In Figure 8b and Figure 8c, we show the wallclock
of the protocol for different client set sizes. Similarly, the time
reported includes the client: 1) reading its own elements from a file,
2) running OVUF with a server to compute F (x;); 3) computing
the hash to derive 64-bit strings that can be used for local matching.

With 1 thread, the average cost for the client to process each
element is 8.29ms in the WAN setting and 4.17ms in the LAN setting.
With 32 threads, the average cost is 4.53ms in the WAN setting and
0.43ms in the LAN setting. Noted that Ferret computes COT in
large batches, it is not competitive when the set is small, where
the protocol cannot consume all COTs. When the set size is large,
our protocol in the LAN setting using KOS or Ferret does not show
much difference as they have similar computational costs. In the
WAN setting, we can observe a slight improvement with Ferret
because it consumes less bandwidth. However, the improvement is
not huge because the communication caused by our protocol, not
counting the cost of COT, is already significant.

Performance dependence on network. We show the efficiency
of our protocol under different network condition in Figure 9a and
Figure 9b. According to Figure 9a, the efficiency of a client with a
set size of 10 in a WAN environment increases as the bandwidth in-
creases. However, once the bandwidth reaches 1Gbps, the efficiency
does not improve significantly with further increases in bandwidth.

GO.IO
% Blazing-PSI Blazing-PSI Blazing-PSI
50.08
[
Q
o
N 0.06
v
2
—0.04
@
8 Ours
50.02 Ours Ours
Z
@

0.00

100 . 1000 . 10000
Set size of each client
N CDN cost Comm. cost Comp. cost

Figure 10: Server cost comparison with Blazing-PSI [42]. All
experiments are run on AWS instance. Costs are estimated based
on AWS instance pricing and network pricing.

This indicates that our protocol performs best with bandwidth
larger than 1Gbps. In TCP networks, there is a dependency be-
tween latency and bandwidth limitations, wherein an increase in
latency leads to a decrease in available bandwidth. Figure 9b illus-
trates that the total protocol wallclock time increases as bandwidth
decreases due to added latency. For larger sets that use up more
bandwidth, the rise in wallclock time is more significant than for
smaller sets experiencing the same increase in latency.

1487

Actively Secure Private Set Intersection in the Client-Server Setting

Set size Securit Protocol Offline Online
IXTTTY] y time (s)[comm. (MB)[time (s)][comm. (MB)
[33] (w/ LowMC)| 164.82 2144 1.37 23.6
[33] W/ NR) | 44681 2144 0.63 6.07
928 | 910 Semi-honest] [14] 4628 0 12.1 18.4
[16] 4371 0 23.35 12.86
[43] 3684.1 2415 0.16 0.07
Malicious | Ours (w/ KOS) | 1556.7 2147 0.44 63.23
[33] (w/ LowMC)| 164.82 2144 0.41 2.96
B33] W/ NR) | 44681 2144 0.13 0.7
928 | o7 Semi-honest] 14 4628 0 12.1 18.4
16 4350 0 25.65 12.81
43 3684.1 2415 0.02 0.008
Malicious | Ours (w/ KOS) | 1556.7 2147 0.11 7.92
[33] (w/ LowMC)| 0.51 8.37 1.37 23.6
B3] W/ NR) | 17341 337 0.63 6.07
920 | 510 Semi-honest] 14] 1.1 0 0.5 5
16] 134 0 11 2.04
43] 18.17 9.43 0.06 0.031
Malicious | Ours (w/ KOS)| 5.85 8.38 0.44 63.23
[33] (w/ LowMC)| 0.51 8.37 0.41 2.96
B3] W/ NR) | 17341 337 0.13 0.7
920 | o7 Semi-honest] [14] 1.2 0 0.2 3.9
[16] 135 0 11 1.99
[43] 18.17 9.43 0.027 0.004
Malicious | Ours (w/ KOS)| 5.85 8.38 0.11 7.92

Table 1: Performance of unbalanced PSI with server set X and
client set Y. Our protocol and [16] were tested with 32 threads, with
[16] using 256 GB RAM for a 228 server set. [14] is obtained based on
numbers from their paper, which is based on faster hardware than
our testbed. [33] is tested with 32 threads for the offline phase and 1
thread for the online phase. [43] is tested with 1 thread, except the
case of |X| = 228 where the online performance are extrapolated.

Bandwidth consumption. Regarding bandwidth consumption
in Figure 9c, we observed that if the set size is less than 102, the
protocol using KOS OT performs better in terms of bandwidth
usage compared to that using FERRET OT. However, this situation
changes once the set size exceeds 10%. For a set size of 10°, the
KOS OT protocol requires 61.7KB to process one element, while
the FERRET OT protocol needs 43.0K B to encode one element. This
is the same reason as we stated in Wallclock time, that Ferret
computes COT in large batches but consumes less bandwidth for
each COT compared with KOS. For small set size, Ferret is more
bandwidth-intensive as it generates more COT than necessary.
However, for large set size, Ferret is more efficient as the generated
COTs can be utilized and each one consumes less bandwidth than
KOs.

6.4 Comparison with Other Protocols

Our protocol works in a special setting where a server with one
set repeatedly runs PSI with many clients with small sets. We no-
ticed that existing prior works do not perform well if used in our
setting directly; this is not surprising as they are not designed for
this setting. Below, we show some comparisons to state-of-the-art
protocols in classical PSI settings.

Comparing with state-of-the-art PSI. The first possible solution
is to use the best fully malicious secure PSI protocol [42], and have
the server run this protocol with each client. However, there exists
a security issue that the server might differentiate its set among
different clients. Additionally, the performance is poor: each execu-
tion of PSI with a different client requires the server to transmit a

1488

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

different encoding of its set over the internet, which incurs great
costs. In Figure 10, we compare the cost by the server per client
between our protocol and the Blazing-fast [42], which is so far the
fastest and improved upon VOLE-based PSI [44]. We assume the
server set has 10% elements, and the client set ranges from 10% to
10* elements. We use the real execution time and the instance’s unit
price (0.1728USD/Hour for 6a.xlarge) to compute computational
cost. We also estimate the communication cost by multiplying the
data size that the server transfers out by the communication unit
price (0.05USD/GB). Notice that for our scheme, since the server’s
encoding is reusable, we use AWS CloudFront (CDN) to manage
it, thereby reducing this part of the communication cost to a lower
unit price (0.02USD/GB). The computation of this reusable server
set encoding is a one-time and offline process, making the cost per
client negligible when amortized. For our scheme, the total cost
is 3x lower for a client set 10000 and 5x lower for client sets 100
and 1000. With smaller set sizes, the cost is primarily dominated by
the CDN cost, which is a fixed value of 0.016 USD per client. If we
switch to managing the server’s encoding through a peer-to-peer
network to eliminate the CDN cost, our scheme achieves an 8x re-
duction in communication cost and a 2x reduction in computation
cost compared to Blazing-PSI for a client size of 10000. In this case,
the cost of our scheme scales linearly with the client set size and
performs better with smaller client sizes.

Comparing with PSI featuring reusable server encoding. Some
unbalanced PSI could be better suited to our setting which allows
pushing some work to the offline stage as well. In Table 1, we show
our protocol performs scalably compared to related protocols across
server set sizes {220,228} and client set sizes {27, 210}:

e OPRF-based solutions by [33] allows the server to reuse its com-
putation and encoding that is linear to X across multiple clients.
We include two solutions, one based on LowMC PRF and one
based on Naor-Reingold PRF. We also update their hash output
to achieve a similar level of false positive rate. Our protocol runs
at a similar time to OPRF-based protocols with about three times
more communication; however, that allows us to achieve full
malicious security.

FHE-based solution [14, 16] does not require sending large en-
coding but requires more computation. The computation could
be made reusable across multiple clients by performing OPRF
on top of the value, but existing FHE-PSI implementations or
benchmarks do not include these extra steps. We can see that our
solution is much faster in terms of online time when the server
set is at a large scale of 228, albeit with higher communication
costs. All FHE-based solutions only implement their semi-honest
version and could not be made fully malicious secure; however,
we do believe that by incorporating our OVUF-based solution, it
is possible to achieve full malicious security as well, which we
leave as future work.

Finally, we also compare with a DH-based solution by Resende
and Aranha [43]. The solution is semi-honest, but the original
proposal by Jarecki and Liu [30] also includes malicious coun-
terparts, which require further use of zero-knowledge proofs to
show correct encoding. This approach essentially follows the VO-
PRF method, where all efficient solutions do not allow extracting

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

client’s input in the proof. As such, their solution requires much
less communication.

7

Discussion

In this work, we designed an efficient OVUF protocol and used it
to construct a malicious protocol that allows a server to compute
PSI with multiple clients while ensuring consistency. Interesting
future works include extending the model to general-purpose MPC
and also reducing the size of server encodings.

Acknowledgments

Work of Xiao Wang is supported by NSF award #2236819 and Google
Research Awards.

References

(1]

[10]

(1

[12]

[13

[14]

[15

[16]

[17]

[18]

[19

[20

[21]

[22]

Martin R. Albrecht, Alex Davidson, Amit Deo, and Nigel P. Smart. 2021. Round-
Optimal Verifiable Oblivious Pseudorandom Functions from Ideal Lattices. In
PKC 2021, Part II (LNCS, Vol. 12711).

D. F. Aranha, C. P. L. Gouvéa, T. Markmann, R. S. Wahby, and K. Liao. [n.d.].
RELIC is an Efficient Library for Cryptography. https://github.com/relic-toolkit/
relic.

Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene
Tsudik. 2011. Countering GATTACA: efficient and secure testing of fully-
sequenced human genomes. In ACM CCS 2011.

Andrea Basso. 2024. A Post-Quantum Round-Optimal Oblivious PRF from Isoge-
nies. In SAC 2023 (LNCS).

Shany Ben-David, Yael Tauman Kalai, and Omer Paneth. 2022. Verifiable Private
Information Retrieval. In TCC 2022, Part III (LNCS, Vol. 13749).

Dan Boneh and Xavier Boyen. 2004. Short Signatures Without Random Oracles.
In EUROCRYPT 2004 (LNCS, Vol. 3027).

Dan Boneh, Dmitry Kogan, and Katharine Woo. 2020. Oblivious Pseudorandom
Functions from Isogenies. In ASIACRYPT 2020, Part II (LNCS, Vol. 12492).

Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gre-
gory Neven. 2018. The Wonderful World of Global Random Oracles. In EURO-
CRYPT 2018, Part I (LNCS, Vol. 10820).

Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and
Mira Meyerovich. 2006. How to win the clonewars: Efficient periodic n-times
anonymous authentication. In ACM CCS 2006.

Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. In 42nd FOCS. IEEE Computer Society Press.

Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi
Peled. 2020. UC Non-Interactive, Proactive, Threshold ECDSA with Identifiable
Aborts. In ACM CCS 2020.

Silvia Casacuberta, Julia Hesse, and Anja Lehmann. 2022. SoK: oblivious pseudo-
random functions. In IEEE EuroS&P.

Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and
Ida Tucker. 2019. Two-Party ECDSA from Hash Proof Systems and Efficient
Instantiations. In CRYPTO 2019, Part IIl (LNCS, Vol. 11694).

Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. 2018. Labeled PSI from
Fully Homomorphic Encryption with Malicious Security. In ACM CCS 2018.
Hao Chen, Kim Laine, and Peter Rindal. 2017. Fast Private Set Intersection from
Homomorphic Encryption. In ACM CCS 2017.

Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia
Iliashenko, Kim Laine, and Michael Rosenberg. 2021. Labeled PSI from Homo-
morphic Encryption with Reduced Computation and Communication. In ACM
CCS 2021.

Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo
Valsorda. 2018. Privacy Pass: Bypassing Internet Challenges Anonymously.
PoPETs 2018, 3 (July 2018).

Leo de Castro and Keewoo Lee. 2024. VeriSimplePIR: Verifiability in SimplePIR
at No Online Cost for Honest Servers. In USENIX Security 2024.

Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. 2010. Linear-Complexity
Private Set Intersection Protocols Secure in Malicious Model. In ASIACRYPT 2010
(LNCS, Vol. 6477).

Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A Verifiable Random Function
with Short Proofs and Keys. In PKC 2005 (LNCS, Vol. 3386).

Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. 2018. Secure Two-
party Threshold ECDSA from ECDSA Assumptions. In 2018 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press.

Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. 2019. Threshold ECDSA
from ECDSA Assumptions: The Multiparty Case. In 2019 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press.

Yunging Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, and Xiao Wang

[23] Adam Everspaugh, Rahul Chatterjee, Samuel Scott, Ari Juels, and Thomas Ris-

tenpart. 2015. The Pythia PRF Service. In USENIX Security 2015.

Rosario Gennaro and Steven Goldfeder. 2018. Fast Multiparty Threshold ECDSA
with Fast Trustless Setup. In ACM CCS 2018.

Niv Gilboa. 1999. Two Party RSA Key Generation. In CRYPTO’99 (LNCS, Vol. 1666).
Iftach Haitner, Nikolaos Makriyannis, Samuel Ranellucci, and Eliad Tsfadia. 2022.
Highly Efficient OT-Based Multiplication Protocols. In EUROCRYPT 2022, Part I
(LNCS, Vol. 13275).

Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah Meikle-
john, and Vinod Vaikuntanathan. 2023. One Server for the Price of Two: Simple
and Fast Single-Server Private Information Retrieval. In USENIX Security 2023.
Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena,
Karn Seth, Mariana Raykova, David Shanahan, and Moti Yung. 2020. On deploying
secure computing: Private intersection-sum-with-cardinality. In EuroS&P. IEEE.
Stanislaw Jarecki, Hugo Krawczyk, and Jason K. Resch. 2019. Updatable Oblivious
Key Management for Storage Systems. In ACM CCS 2019.

Stanislaw Jarecki and Xiaomin Liu. 2010. Fast Secure Computation of Set Inter-
section. In SCN 10 (LNCS, Vol. 6280).

Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and
Christian Weinert. 2019. Mobile Private Contact Discovery at Scale. In USENIX
Security 2019.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2015. Actively Secure OT
Extension with Optimal Overhead. In CRYPTO 2015, Part I (LNCS, Vol. 9215).
Agnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny Pinkas. 2017.
Private Set Intersection for Unequal Set Sizes with Mobile Applications. PoPETs
2017, 4 (Oct. 2017).

Ben Kreuter, Tancréde Lepoint, Michele Orru, and Mariana Raykova. 2020. Anony-
mous Tokens with Private Metadata Bit. In CRYPTO 2020, Part I (LNCS, Vol. 12170).
Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul Chatterjee, and Thomas
Ristenpart. 2019. Protocols for Checking Compromised Credentials. In ACM CCS
2019.

Yehuda Lindell and Ariel Nof. 2018. Fast Secure Multiparty ECDSA with Practical
Distributed Key Generation and Applications to Cryptocurrency Custody. In
ACM CCS 2018.

Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. 1999. Verifiable Random
Functions. In 40th FOCS. IEEE Computer Society Press.

Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita
Borisov. 2010. BotGrep: Finding P2P Bots with Structured Graph Analysis. In
USENIX Security 2010.

Ofri Nevo, Ni Trieu, and Avishay Yanai. 2021. Simple, Fast Malicious Multiparty
Private Set Intersection. In ACM CCS 2021.

Bijeeta Pal, Mazharul Islam, Marina Sanusi Bohuk, Nick Sullivan, Luke Valenta,
Tara Whalen, Christopher A. Wood, Thomas Ristenpart, and Rahul Chatter-
jee. 2022. Might I Get Pwned: A Second Generation Compromised Credential
Checking Service. In USENIX Security 2022.

Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2020. PSI from PaXoS:
Fast, Malicious Private Set Intersection. In EUROCRYPT 2020, Part II (LNCS,
Vol. 12106).

Srinivasan Raghuraman and Peter Rindal. 2022. Blazing Fast PSI from Improved
OKVS and Subfield VOLE. In ACM CCS 2022.

Amanda C. Davi Resende and Diego F. Aranha. 2018. Faster Unbalanced Private
Set Intersection. In FC 2018 (LNCS, Vol. 10957).

Peter Rindal and Phillipp Schoppmann. 2021. VOLE-PSI: Fast OPRF and Circuit-
PSI from Vector-OLE. In EUROCRYPT 2021, Part II (LNCS, Vol. 12697).

Mike Rosulek and Ni Trieu. 2021. Compact and Malicious Private Set Intersection
for Small Sets. In ACM CCS 2021.

Istvan Andras Seres, Maté Horvath, and Péter Burcsi. 2023. The Legendre Pseu-
dorandom Function as a Multivariate Quadratic Cryptosystem: Security and
Applications. Applicable Algebra in Engineering, Communication and Computing
(2023).

Tjerand Silde and Martin Strand. 2022. Anonymous Tokens with Public Metadata
and Applications to Private Contact Tracing. In FC 2022 (LNCS, Vol. 13411).
Yunqing Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, and Xiao
Wang. 2024. Actively Secure Private Set Intersection in the Client-Server Setting.
Cryptology ePrint Archive, Report 2024/570. https://eprint.iacr.org/2024/570.
Nirvan Tyagi, Sofia Celi, Thomas Ristenpart, Nick Sullivan, Stefano Tessaro, and
Christopher A. Wood. 2022. A Fast and Simple Partially Oblivious PRF, with
Applications. In EUROCRYPT 2022, Part I (LNCS, Vol. 13276).

Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-toolkit: Efficient
MultiParty computation toolkit. https://github.com/emp-toolkit.

Haiyang Xue, Man Ho Au, Xiang Xie, Tsz Hon Yuen, and Handong Cui. 2021.
Efficient Online-friendly Two-Party ECDSA Signature. In ACM CCS 2021.

Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. 2020. Ferret:
Fast Extension for Correlated OT with Small Communication. In ACM CCS 2020.

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://eprint.iacr.org/2024/570
https://github.com/emp-toolkit

Actively Secure Private Set Intersection in the Client-Server Setting

A Batched OVUF with Improved Efficiency

In this section, we give an optimized maliciously secure oblivious
verifiable unpredictable protocol IIpyyr; in terms of efficiency.
This protocol combines a new sub-protocol ITy_pma called unbal-
anced imperfect multiplicative to additive shares transformation,
introduced in Appendix A.1. The details and proof of IIgyyr; are
depicted in Appendix A.2.

A.1 Unbalanced Imperfect MtA

This transformation computes the additive secret shares of scaler-
vector multiplication, where the scaler and vector held by different
parties are regarded as unbalanced input. Its imperfection follows
the same idea as Section 5.2 that a malicious sender can execute
attacks and result in incorrect additive secret shares depending on
the receiver’s input.

The most straightforward way to achieve imperfect scaler-vector
multiplicative to additive shares is as follows: Given the input vector
a € Zg on party Py and scaler b € Zq on party Py, let Py create a
new vector b with each element b; = b. Then, both parties execute
ITpmta, using a and b as inputs. However, in our construction in
Figure 11, we designate P; as receiver of #cot and have P; employ
Encode(gR, b). Sender P inputs vector element a; and the receiver
Py inputs encoded bit element of b to run Fcot to compute the
additive secret share of @; - b. This approach consumes n(2 log g+2s)
iterations of Fcot, the same as the straightforward approach stated
above. However, it eliminates pseudorandom vector y of length
(n — 1) log g and repetitive encoding of b of length (n — 1) logq
when implementing the encoding algorithm.

For the incorrectness caused by the sender Py’s malicious behav-
ior as stated in Section 5.2, it follows the same error representation
as the single encoded version in Section 5.2, that d; + ¢; = a; - b+ fi.
f;i is denote as follows with respect tow = Encode(gR, b) € Zf;zs.

fi= Z gieiw; + Z ()
ie[t]

i€[2s
Given e, the correctness of MtA transformation depends on w and
gR. Specifically, the transformation is correct when f; = 0. Still, this
incorrectness will be caught by ITy_mta in Appendix A.2 with a
detailed proof.

St+i€r+iWer+i
]

A.2 OVUF with Improved Efficiency

In Section 5, we introduced the basic version of oblivious verifiable
unpredictable protocol. In the context of IIgyyr, when each client
holds a set of n elements (y1, . . ., yn) and collaborates with a server
to compute OVUF, the IIgyyF processes each input element y;, i €
[n] one by one. This sequential processing involves n iterations
of IIpm¢a. For each iteration of ITpta, it runs with input vector
(sk, ¢§) € Zé and (¢o£, yi) € Zé to compute additive share of sk - ¢§
and d)i - y;. In this section, we maximize the batch feature of MTA
protocols and execute sk - ([)é and ([)i -y; for each i € [n] as follows:

(1) Execute ITy_m¢a to efficiently compute additive shares of sk -
@51 € [n].
(2) Execute ITpta to compute additive shares of ¢§ -y;, i € [n].

The other parts of this optimized-oblivious verifiable unpre-
dictable protocol IIgyyr, follow the same idea as IIgyyf. The

1490

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Protocol IIy_mia

Inputs: Pj holds a € ZZ. Py holds b € Z.

Protocol:

(1) P, samples gR « Z{;g %25 and encodes b by computing w

Encode(gR, b) € {0,1}7*%.

(2) Py inputs wj,j € [t + 2s] to Fcor. Po inputs a €]FZ to
Fcot. Po receives {p1j, - ,pnj} € IFZ from Fcor. P; receives
{91, . qn;} € Fg from Fcor.

(3) Pj sends gR to P;.

(4) For j € [t+2s],i € [n], Py computes

ci=) g pij

Je[t+2s]

d; = Z g 4ij

Jjelt+2s]
such that d; + ¢; = a; - b.

P; computes

Figure 11: The U-MtA protocol in Fco7-hybrid.

Protocol IIovyr:

Inputs and parameters: Hash function H modeled as RO. Client C;

holds vector (y1, ..., yn) € Zg.

Initialization: S chooses sk € Zg, sets pk = g%, and sends pk to

FBs-

Key query: Client C; sends fetch to #gg and receives pk.

Evaluation:

(1) Cj checks if g7Y = pk for each i € [n].If it is, C; inserts i to set
I and sets y; « Zg,i€l

(2) Server S chooses ¢; «— Z;; client C; chooses ¢ ZZ.

(3) S and C; inputs sk and ¢, € Zg to IIy_mta, receives A; € ZZ
and A, € ZZ respectively, such that A; + Ay = sk - ¢s.

(4) Sand C; inputs ¢; € Z(’; and (y1,...,Yn) € Zg to ITpmta, receives
By € Zg and B, € Zg respectively, such that B] + B, = ¢} - y;
foreachi € [n].

(5) S samples t € [n], computes Vs = H(gAg), and sends (¢, Vs) to
Cj. Cj computes Vg = H(pk'pé /gAé) C;j checks whether Vg =
Vs and aborts if they are not equal.

(6) S sends m that m; = sk - ¢{ + Ai + Bi to Cj. C; sends u that
u; = y; - ¢; + A, + B to S. Both S and C; computes v = u + m.

(7) For each i € [n], S sends h; = g¢i/”i to Cj. Cj sets Fy (y;) =
1,i € I.Foreach i € [n] \ I, Cj computes Fy (y;) = h; ~g¢5/”i.

(8) Cj outputs (Fsk(y1), ..., Fsk(yn)) if e(g¥t - pk, Fy(y:)) =
e(g,g) for each i € [n] \ I. Otherwise it aborts.

Figure 12: The OVUF2 protocol in (Fcot, F8s)-hybrid model
with sub-protocol ITpia and ITy_pmea.

detailed scheme is shown in Figure 12. Its correctness can be ver-
ified directly. Security-wise, this protocol involves two different
MtA transformations. For ITy_m¢a, the client Cj is regarded as the
sender of Fcot and the one who executes a selective failure attack
to Igyyp,. For Ipmta, we assume server S as the sender of Fcot
and the one who executes selective failure attacks to [Ioyygr, with-
out loss of generality. We prove that IIoyyr, (with sub-protocols
ITpmea and IIy_mta) is secure in the (FcoT, FaB)-hybrid model.

THEOREM 3. If H is modeled as a random oracle, then protocol
oyurz UC-realizes Fovur in the (Fcot, Fae)-hybrid model with
sub-protocol Tipma and Ty pmeA.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Proor. Let A be a PPT adversary that allows to corrupt the
server or the client. We construct a PPT simulator Sim with access
to functionality Fovur, which simulates the adversary’s view. We
consider the following two cases: malicious client and malicious
server. We will prove that the joint distribution over the output of
A and the honest party in the real world is indistinguishable from
the joint distribution over the outputs of Sim and the honest party
in the ideal world execution.

Corrupted client. Let Sim access to the Foyyr as an honest
client and interact with A as an honest server. Sim passes all com-
munication between A and environment Z.

0. Sim emulates Fgp, once it receives fetch from A. Sim sends
fetch to Fovur and receives pk. Sim sends pk to A.
2-3. Sim simulates the sub-protocol ITy_mta and acts as an honest
receiver of Fcot below.

(1)-(2) Sim emulates Fcot. Sim receives T €
P« th+2ns to A. Sim checks whether the received 7
satisfy the pattern that for i € [n], all the bits 7, j =
(k — 1)t +1i,k € [t + 2s] are the same. Then, Sim extracts
¢y = 1j.

(3) Sim sends gR — Zg)g T+ 4o A
(4) Sim computes Ay € ZZ as an honest Py does in step 4 in
Hy-mta-

4. Sim simulates the sub-protocol IIyta and acts as an honest

sender of Fcot below.

(1)-(3) Sim emulates FcoT and receives w € ZZ“’ZS. Sim samples

ZZt +2n5 and sends

q— th, q « Zé"s and sends them to A.

(4) Sim receives gR from A. Sim computes y; for each i € [n]
as follows:

Yyi = Z giW(i-1)t+j + Z
jelz]

jel[t+L,t+2s]

gjWnt+j

(5) Sim computes By € Zg as an honest Py does in step 5 in
IImeA-

5. Sim samples t € [n], V§ « G to A. Sim emulates H. Once ¢é
is extracted in step 3 and the received query q = (pk‘l’g /gAé),
Sim sends VS* to A. Otherwise, Sim sends a random value to
A.

6. Sim sends m; « Zg to A. Sim receives u from A and computes
v.

7. Sim sends (eval, (y1,...,yn)) to Fovur and waits to receive
(Fsk(y1), ..., Fsx(yn)). For each i € [n], Sim checks whether
¢; is extracted and u; = ¢; Sy + A; + Bé. If all requirements

llcsk(—gl) and sends it to A.
gP2/miru)

Otherwise, Sim simulates h;f «— G and sends h* to A.
8. Sim aborts if A aborts and outputs what A outputs.

are satisfied, Sim simulates h;.‘ =

We are going to show the simulated execution is indistinguishable
from the real protocol execution.

Hybrid Hj. Same as real-world execution in (Fgg, Fcor)-hybrid.

Hybrid H;. This hybrid is identical to Hy except Sim emulates
BB, FcoT, the random oracle, and simulates the messages to A
as follows:

For step 0, Sim emulates Fgg. Upon receiving fetch from (A, Sim
sends fetch to Fovur and receives pk. Sim sends pk to A. In hybrid
Ho, Fap was initialized by an honest server with pk and sends it

Yunging Sun, Jonathan Katz, Mariana Raykova, Phillipp Schoppmann, and Xiao Wang

to A upon receiving fetch. Thus, the pk sends by Sim is same as
the one in hybrid Hp.

For step 2-3, Sim simulates sub-protocol ITj_pmta- Sim emulates

Fcot, sends p «— ZZHZ”S to A. Sim sends gt « Zg’g WS ¢ A

In Hybrid Hy, p is uniformly distributed over th +2ns according to

Fcort- gR is sampled by the client and uniformly distributed to A.
Thus, the sampled p and gR are indistinguishable from Hybrid Ho.
For step 4, Sim simulates sub-protocol ITp¢a. Sim emulates FcoT,
sends q « ZZ[, q « Zé"s to A. In Hybrid Hp, q and q’ are uni-
formly distributed according to Fcot. Thus, the q and q” sampled
by Sim are indistinguishable from those in Hybrid Hp.
For step 5, Sim samples (¢, V) to A. Sim also programs random

oracle H and sends VS* to A if it receives query g = pk¢§ / gA5
with ¢§ extracted. Otherwise, Sim samples a random value to A.
In hybrid Hj, an honest server uses sk that corresponding to pk
in ITy_mta and computes Vs = H(gAg) for a randomly sampled
t « [n]. Since Ai + Ag =sk- (I); holds for an honest server and
honest client, the received Vg equals to Vg if Vg is computed from
(pk‘i’zt /gAé) honestly. Thus, the simulated V; equals to V¢ if A
query random oracle honestly, which is indistinguishable from
Hybrid Hp. If A adds error e € th +215 in the execution of TIy_m¢a,
Ai + A; =sk- ¢§ + f; holds for honest server and the adversary.

[t is computed from Equation 2. Since e is defined by A before

knowing g®, gR is uniformly distributed over Zg)g q+2s

to A.For any
given w and e, f; is uniformly distributed over Z4 to A. Thus, Ai
is uniformly distributed over Z4 to A and V{ is indistinguishable
from Vs in hybrid Hp.

For step 6, Sim sends m:.‘ — Zg to A.In hybrid Hp, an honest
server computes m; = ¢i - sk + Ai + Bi and sends it to A. If
A acts honestly in previous steps, m; satisfies the distribution
that m; + y; - ¢é + Aé + B; =v; = (¢§ + ¢£)(sk + y;). Since ¢§
is randomly sampled by an honest server, A has no idea about
the distribution of m;. The simulated m] is randomly uniform in
Zg as well, which is indistinguishable from hybrid Hjy. Thus, the
view simulated by Sim is identical to hybrid Hj. If there exists
an error e sampled by A in sub-protocol ITy_mta, m; satisfies the
distribution that m; +y; -¢; +A; +B; =v; = (¢i +¢;) (sk+y;) +diff;.
diffj resulted from incorrect sk - ¢;, computed by Equation 2. As
analyzed above, diff; is uniformly distributed over Z4 to A. Thus,
m; is uniformly distributed over Zg to A, which is indistinguishable
from the simulated m:.‘, Thus, the view simulated by Sim is identical
to hybrid Hp.

For step 7, Sim sends (eval, (y1,- - - , yn)) to Foyur and waits for
(Fsk(y1), - -+, Fsk(yn)). Sim checks whether ¢; is extractable and
the received u; is computed from y; -¢; +A; +B§ correctly. If it is, Sim

) 4o 7 such that h; gl (mivu) = B (yp).

oL/ (m+u;)
Otherwise, Sim samples h;f < G and sends it to A.

In hybrid Hp, an honest server sends h; = g‘/’i/("‘i*'“i) to A.
If u; is computed honestly from y; - ¢; + A} + B;, where ¢, is
extracted, then h; - g%/ (Mi*4:) = Fy (y;). Thus, the view of h;
in hybrid Hp is identical to h; in Hybrid Hp. If u; is computed
honestly, but there exists an error e sampled by A in sub-protocol
My-mtea in hybrid Ho, then m; +u; = (sk+y;) (@] +¢;) +diff;. Since

sends h} =

1491

Actively Secure Private Set Intersection in the Client-Server Setting

diff; is uniformly distributed over Zg, h; - g‘pé/(””’”i) = Fy(yi)
with negligible probability. In Hybrid %3, Sim simulates h} < G.
h;- g%/ (mi+ti) = F (y;) is negligible and indistinguishable from
hybrid Hp. If u; is not computed honestly, then m; + u; # (¢§ +
¢'§)(sk + ;) and thus h; - g®/(Mi*4) % F (y;). In hybrid H;,
Sim simulates h} « G, we have h} - gPe/ (mirw) = B (y;) wp.
271089 \which is indistinguishable from hybrid Hj. Thus, the view
simulated by Sim is identical to hybrid Hj.

Corrupted server. Let Sim access to the Fovyr as an honest
server and interact with A as an honest client. Sim passes all com-
munication between A and environment Z.

0. Sim emulates Fgp, once it receives the pk from A, Sim stores pk
and ignores subsequent messages from A. Sim sends (init, pk)
to Fovur-

2-3. Sim simulates the sub-protocol ITy_mta and acts as an honest
sender below.

(1)-(2) Sim emulates Fcot. Sim receives w € Zf;zs and sends

q < ZZ“’Z”S to A.

log g+2s
q

sk’ = Zie[z log g+2s] 8iWi-

(4) Sim computes A; € Zg as an honest P; does in step 4 in

Hy-miA-
4. Sim simulates sub-protocol ITp¢z and acts as an honest receiver.
n(t+23). Sim
q

(3) Sim receives gR € Z from A. Sim recover sk’ as:

(1)-(3) Sim emulates FcoT1 and receives a vector 7 € Z

samples p « th, P« Z?I"S and sends them to A. Sim

checks whether the received 7 € Z"*%) satisfies a pattern

that for i € [n], all the bits 7j, j € [(i — 1)t + 1,it] U j =
nt+i+ (I —1)n, [€ [2s] are the same. Then, it extracts
d)i = 1.

(4) Sim samples gR — Zlqog 9*25 and sends it to A.

(5) Sim computes B € Zg as an honest Py does in step 5 in
IImea-

5. Sim emulates random oracle H and receives query q from A.
Sim samples V¢ to A and records (g, V). Once Sim receives

(t,Vg) from A, Sim first checks whether g°¢' = pk and aborts

if not. Then, Sim checks whether the corresponded g = gAf If
it is, Sim continue; Otherwise, Sim aborts.

6. Sim receives m from A. Sim sends u} « Zq to A.

7. Sim waits to receive h.

8. For each ith iteration, if ¢§ is extracted, Sim checks whether
hi = g%/% m; = ¢§ - sk’ +A§ + B‘i and sends sk’ to Fovur.
Otherwise, Sim aborts.

We are going to show the simulated execution is indistinguishable
from the real protocol execution.

Hybrid Hj. Same as real-world execution in (¥gg,Fcot)-hybrid
model.

Hybrid H;. This hybrid is identical to Hy except Sim emulates
F8B, FcoT, the random oracle, and generates the messages to A
as follows:

For Step 2-3, Sim simulates sub-protocol IIpa. Sim emulates
Fcot, sends p «— th,p’ — Z(ZI”S to A. Sim also samples gf «

Z;Og 7*25 and sends it to A. In Hybrid Ho, p, p” are uniformly dis-

tributed according to Fcot. gR is sampled by client and uniformly

1492

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

distributed over Z;og ar2s to A. Thus, the simulated p, p’, gR are

indistinguishable from Hybrid Hp.

For step 4, Sim simulates sub-protocol IIy_mta. Sim emulates
n(t+2s)
q
distributed over Z;(st) according to Fcot. Thus, the sampled g
is indistinguishable from Hybrid Hp.

For Step 6, Sim receives m from A, and sends u;‘ — Zg to
A. In Hybrid Hy, if A acts honestly in previous steps, we have
u; +¢i -sk+A§ +B§ =v; = (sk+yi)(¢»i +¢£). Since ¢§ — Zgto A,
we have u; is uniform distributed over Zy to A. If A adds error e in
step 4, an honest client computes u; such that u; +¢§ -sk +A’i - Bi =
v; = (sk+ y,~)(¢i + ¢£) + diff;. Since diff; is uniform distributed
over Zg, u; is uniform distributed over Z4 to A as well. If A uses
sk’ # sk in step 2-3, u; +¢§ -sk’ +A’i'+Bi =0v; = (sk’ +yi)(¢i +¢é)
u; is still uniformly distributed as ¢, is distributed uniformly to A.
Thus, the simulated u;‘ is indistinguishable from the distribution of
u; in Hybrid Hp.

Hybrid H;. This hybrid is identical to H; except Sim aborts at

step 5 in the following conditions: 1) the g corresponding to the
sk’

Fcot, sends ¢ «— Z to A. In Hybrid Hj, q is uniformly

received V¢ not equal to gAf; 2) g* # pk. Sim also aborts at Step 8

in the following conditions: 1) gSk/ # pk; 2) ¢is are not extractable;
3)m; # ¢i - sk’ +A’i +B’i orh} # g¢{/(mi+"§).

For step 5 in hybrid Hj, an honest client aborts if the received
Vs # VR. The client computes Vg = H(pk“ﬁz€ /gAé) For each pk“ﬁz€ /gAé ,
it equals to gSk"l’;_Ag = gA{, where sk is corresponded to pk. When
adversary use correct sk but manipulate Vs by using inconsistent
query q # gAf, an honest client aborts in hybrid H; , which is
indistinguishable from condition (1) in hybrid H. Adversary A
might use invalid sk’ that gSk, # pk in ITpm¢a, then both parties
holds equation Ai + Ag =sk’ - ¢§. Thus, with Vs computed from
Ai, Vs = gAi = gsk'<¢£—A§ + Vg = pk- g¢§_A§. Moreover, because
of the uniformity of ¢£ and Ag, A is not able to construct Ail that

gAi/ = pk- g¢§ =4} either. Thus, the client aborts with all but negli-
gible probability, which is indistinguishable from condition (2) in
hybrid H,.

For step 8 in hybrid Hj, an honest client aborts when Fyy (y;)
does not satisfy e(g¥* - pk, Fsi (yi)) = e(g, g), where Fg (y;) = h; -
gP2/ (mirtss) 1 65K 4 bl the probability that m;+u; = (sk+y;) (¢§ +
¢1) with negligible probability. Thus, the value of h; - g2/ (mi+1:)
satisfy the verification equation with all but negligible probability.
The honest client aborts with all but negligible probability which
is indistinguishable from condition (1) in hybrid H;. For the tth
iteration, if A adds error e to T and ¢§ is not extractable, diff; # 0
with all but negligible probability. Thus, m; +u; # (sk+y;)(¢i + ¢;)
with all but negligible probability. The value of h; - g2/ (mi*t:)
satisfy the verification equation with all but negligible probability.
The honest client aborts with all but negligible probability which is
indistinguishable from condition (2) in hybrid H>. If A sends either
wrong m; or wrong h; in protocol, it will result in wrong Fgy (y;)
that does not satisfy e(g¥: - pk, Fs (yi)) = e(g, g). The honest client
aborts with all but negligible probability which is indistinguishable
from condition (3) in hybrid H>. Therefore, this hybrid is identically
distributed as the previous one. This completes the proof. O

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Outline of the Paper

	2 Technical Overview
	2.1 Actively Secure PSI from OVUFs
	2.2 Constructing an OVUF

	3 Preliminaries
	3.1 Verifiable Unpredictable Functions
	3.2 Ideal Functionalities

	4 OVUF-based PSI
	4.1 The PSI Protocol
	4.2 Distributing the Server Encoding

	5 An Oblivious VUF
	5.1 Encoding for Coalesced Multiplication
	5.2 Imperfect MtA Protocol
	5.3 An Oblivious VUF from Imperfect MtA
	5.4 Complexity Analysis

	6 Performance Evaluation
	6.1 Benchmark Setup
	6.2 Efficiency of Server's Encoding
	6.3 Efficiency of Online Computation
	6.4 Comparison with Other Protocols

	7 Discussion
	Acknowledgments
	References
	A Batched OVUF with Improved Efficiency
	A.1 Unbalanced Imperfect MtA
	A.2 OVUF with Improved Efficiency

