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Abstract. GGM tree is widely used in the design of correlated oblivi-
ous transfer (COT), subfield vector oblivious linear evaluation (sVOLE),
distributed point function (DPF), and distributed comparison function
(DCF). Often, the cost associated with GGM tree dominates the compu-
tation and communication of these protocols. In this paper, we propose
a suite of optimizations that can reduce this cost by half.

– Halving the cost of COT and sVOLE. Our COT protocol intro-
duces extra correlation to each level of a GGM tree used by the
state-of-the-art COT protocol. As a result, it reduces both the num-
ber of AES calls and the communication by half. Extending this idea
to sVOLE, we are able to achieve similar improvement with either
halved computation or halved communication.

– Halving the cost of DPF and DCF. We propose improved two-
party protocols for the distributed generation of DPF/DCF keys.
Our tree structures behind these protocols lead to more efficient
full-domain evaluation and halve the communication and the round
complexity of the state-of-the-art DPF/DCF protocols.

All protocols are provably secure in the random-permutation model and
can be accelerated based on fixed-key AES-NI. We also improve the state-
of-the-art schemes of puncturable pseudorandom function (PPRF), DPF,
and DCF, which are of independent interest in dealer-available scenarios.

1 Introduction

The construction of Goldreich-Goldwasser-Micali (GGM) tree [26] yields a pseu-
dorandom function (PRF) family from any length-doubling pseudorandom gen-
erator (PRG). In this construction, a PRF key serves as a root and is expanded
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Table 1. Improvements of our protocols in the random-permutation model.
Computation is measured as the number of fixed-key AES calls. In sVOLE, communi-
cation varies as per two field sizes |F| and |K|. In DCF protocol, communication varies
as per the range size |R| of comparison functions.

Protocol Computation Communication # Rounds

COT (§4.1) 2× 2× −
sVOLE (§4.1) 2× 1 ∼ 2× −
sVOLE (§4.2) 1.33× 2× −
DPF (§5.2) 1.33× 3× 2×
DCF (§5.3) 1.6× 2 ∼ 3× 2×

into a full binary tree, where each non-leaf node defines two child nodes from
its PRG output. The PRF output for an input bit-string is defined as the leaf
node labeled by this bit-string. GGM tree has been adapted widely for various
cryptographic applications, especially in recent years.

A recent appealing application of GGM tree is to build efficient pseudoran-
dom correlation generators (PCGs) [8,10,12,42,43,46], e.g., correlated oblivious
transfer (COT), subfield vector oblivious linear evaluation (sVOLE), etc. In this
context, a GGM tree essentially serves as a puncturable pseudorandom function
(PPRF). PCGs serve as essential building blocks for secure multi-party com-
putation (MPC) (e.g., [27,33]), zero-knowledge proofs (e.g., [2,21,43]), private
set intersection (e.g., [23,40]), etc. Another related application of GGM tree is
to build function secret sharing (FSS). In an FSS scheme, a dealer produces
two keys, each defining an additive secret sharing of the full-domain evaluation
result of some function f without revealing the parameters of f . FSS is very
useful even for a simple f , and the dealer can be emulated using an MPC proto-
col. A distributed point function (DPF) [25] is an FSS scheme for the family of
point functions f•

α,β(x) that output β if x = α and 0 otherwise. DPF has found
various applications, including RAM-based secure computation [22], two-server
PIR [13,25], private heavy hitters [6], oblivious linear evaluation (OLE) [12],
etc. One important variation of DPF is distributed comparison function (DCF),
which is an FSS scheme for the family of comparison functions f<

α,β(x) that out-
put β if x < α and 0 otherwise. DCF has been applied to design mixed-mode
MPC [7,14], secure machine-learning inference [30], etc.

In all applications above, the cost associated with GGM tree can often be
significant. For example, in the most recent silent OT protocol [18], distribut-
ing GGM-tree-related correlations takes more than 70% of the computation and
essentially all communication. Similar bottlenecks have also been observed in
DPF. For example, in the DPF-based secure RAM computation [22], local expan-
sion of DPF keys takes a majority of the time as well.

1.1 Our Contribution

We propose a suite of half-trees as tailored alternatives for several GGM-tree-
based protocols, leading to halved computation/communication/round complex-
ity (Table 1, detailed complexity is compared in the sections). Our constructions
work in the random-permutation model (RPM) [4,41], which can be efficiently
instantiated via, e.g., fixed-key AES-NI.
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Correlated GGM Trees for Half-Cost COT and sVOLE. We introduce
correlated GGM (cGGM), a tree structure leading to both improved computation
and communication in COT. It has an invariant that all same-level nodes sum up
to the same global offset. We keep this invariant by setting a left child as the hash
of its parent and the associated right child as the parent minus the left child. By
plugging this tree into the state-of-the-art COT protocols [18,46], we can prove
the security of the whole protocol in the random-permutation model by carefully
choosing the hash function. Compared to the optimized GGM tree [28], this tree
reduces the number of random-permutation calls and the communication by half.

Using cGGM tree, we can realize sVOLE for any large field and its subfield.
This protocol reduces the computation of the prior protocols [10,43] by 2× using
a field-based random permutation. However, it only halves the communication
when the subfield size is significantly smaller than the field size. Then, we modify
our cGGM tree to obtain a pseudorandom correlated GGM (pcGGM) tree, which
is similar to a cGGM tree but has pseudorandom leaves. In contrast, pcGGM tree
leads to a 2× saving in communication and a 1.33× saving in computation.

Halved communication and round complexity in distributed key gen-
eration of DPF and DCF. We introduce another binary tree structure, which
adapts our pcGGM tree into a secretly shared form. This tree leads to a new DPF
scheme with an improved distributed key generation protocol. This DPF proto-
col reduces the computation, communication, and round complexity of the prior
work roughly by 1.33×, 3×, and 2×, respectively. When the range of point func-
tions is a general ring, this shared tree allows simpler secure computation than
the prior works in terms of the last correction word.

We also use an extended version of this shared pcGGM tree to design a new
DCF scheme also with an improved distributed key generation protocol. The tree
expansion in our DCF is much simpler than the prior work [7], where each parent
node has to quadruple in length to produce additional correction words. In our
extended shared pcGGM tree, this expansion factor in length is two or three,
and the resulting additional correction words are more 2PC-friendly. When used
in our DCF protocol with typical parameters, this extended tree leads to about
1.6×, 2 ∼ 3×, and 2× savings in terms of computation, communication, and
round complexity in contrast to the prior work.

1.2 Concurrent Work

Recently, Boyle et al. [9] propose two unpredictable punctured functions (UPFs)
that can be converted to PPRF with additional 0.5N RO calls for N -sized
domain. Their first UPF construction needs N RO calls and is provably secure
while the second UPF construction needs N RP calls but relies on an ad-hoc
conjecture. For m-sized sVOLE tuples, the sVOLE extension protocols based
on their proposal either needs 1.5m RO calls, or needs m RP calls plus 0.5m
RO calls. They also propose an sVOLE extension protocol that is based on a
stronger variation of UPF and requires m RO calls in total.

In contrast, our protocol is secure in the random-permutation model without
any conjecture. Our COT protocol, as a special case of sVOLE protocol, only
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Table 2. Comparison with the concurrent work. “RO/ROM” (resp.,
“RP/RPM”) is for random oracle (resp., permutation) and the model. P0 is the sender
with a global key, and P1 is the receiver. Assume weight-t regular LPN noises in sVOLE
extension with output length m, field F, and extension field K. Computation is mea-
sured by the amount of symmetric-key operations, and there is also LPN-related com-
putation in practice. Communication is measured by assuming P0 and P1 have access
to random precomputed tuples: (i) [9]: t log m

t
COTs (+ t sVOLEs, for general sVOLE

extension), (ii) our COT extension: t log m
t

COTs, (iii) our first sVOLE extension:
t(log m

t
+1) sVOLEs, and (iv) our second sVOLE extension: t log m

t
COTs + t sVOLEs.

Assump. Corr. Computation Communication (bits)

P0 → P1 P1 → P0

ROM sVOLE m RO calls

[9] Ad-hoca sVOLE m RP calls+ 0.5m RO calls
2t(log m

t
− 1)λ

+3t log |K|
t log |F|

COT m RP calls t(log m
t

− 1)λ + λ −

This work RPM sVOLE m RP calls
t(log m

t
− 1) log |K|

+λ
t(log m

t
+ 1) log |F|

sVOLE 1.5m RP calls
t(log m

t
− 2)λ

+3t log |K| + λ
t log |F|

a Security relies on the conjecture that the punctured result of the RPM-based UPF is unpredictable.

This UPF uses GGM-style tree expansion G(x) := H0(x) ‖ H1(x) for H0(x) := H(x) ⊕ x and H1(x) :=

H(x) + x mod 2λ.

requires m RP calls and can reduce communication by half; our two sVOLE
protocols need m or 1.5m RP calls with different levels of communication reduc-
tion. More importantly, we also demonstrate how the idea can be applied to
DPF/DCF protocols as well.

In Table 2, we compare the cost of sVOLE extension in the two works. The
sVOLE extension in both works can be easily turned into the extension of ran-
dom OTs via the standard transformation [3,10,34]. If we regard one (length-
preserving) RO call as two RP calls according to the XOR-based construction
of [5], our work also beats the concurrent one in terms of concrete efficiency.

2 Preliminaries

2.1 Notation

Let λ denote the computational security parameter. n = n(λ) means that n ∈ N

is polynomial in λ. Let negl(·) denote an unspecified negligible function and
log(·) denote the logarithm in base 2. Let x ← S denote sampling x uniformly
at random from a finite set S. Let [a, b) := {a, . . . , b− 1} and [a, b] := {a, . . . , b}.
Let G (resp., R) denote finite group (resp., ring). We use bold lowercase letters
(e.g., a) for vectors. For i ≥ 0, let a(i) denote the i-th entry of vector a. Let
unitG(n, α, β) ∈ G

n denote the vector whose α-th entry is β and others are 0.
For some field F and irreducible polynomial f(X) ∈ F[X], let K = F[X]/f(X)
denote an extension field. For some n ∈ N, we interchangeably use F2n , Fn

2 , and
{0, 1}n, where ⊕ is for bitwise-XOR. For some bit-string x ∈ {0, 1}n, let lsb(x)
denote its least significant bit (LSB), hb(x) denote its high n − 1 bits, and xi
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denote its i-th bit such that x1 is the most significant one. We use ‖ for bit-
string concatenation and ◦ for function composition. Let ConvertG : {0, 1}∗ → G

denote a function that maps random strings to pseudorandom G elements (see
Appendix F.1 of the full version [29] for its implementation).

Binary Trees. In an n-level tree, let Xj
i denote the j-th node on its i-level for

i ∈ [1, n] and j ∈ [0, 2i). We can write the superscript j into i-bit decomposition,
i.e., Xj1...ji

i := Xj
i . When a node Xj

i ∈ {0, 1}n, we can decompose it into a seed
sj

i := hb(Xj
i ) ∈ {0, 1}n−1 and a control bit tji := lsb(Xj

i ) ∈ {0, 1} such that
Xj

i = (sj
i ‖ tji ). We usually omit the superscript j if it is the i-bit prefix of a path

α ∈ {0, 1}n of particular interest in a given context. For completeness, let X0

denote the root. For some i ∈ [1, n] and b ∈ {0, 1}, let Kb
i denote the sum of the

2i−1 b-side (i.e., left or right) nodes on the i-th level.

Secret Sharings. For some additive Abelian group G and x ∈ G, we use 〈x〉A
to mean that x is additively shared between two parties and call it a secret
for short. For some secret 〈x〉A for x ∈ G and party b ∈ {0, 1}, let 〈x〉Ab ∈ G

denote the secret share of the party b such that x = 〈x〉A0 + 〈x〉A1 . We abbreviate
〈x〉A to 〈x〉 and 〈x〉Ab to 〈x〉b if G = {0, 1}n. For some secret 〈x〉 for x ∈ {0, 1}n

and efficiently computable (possibly non-linear) Boolean circuit H : {0, 1}n →
{0, 1}∗, let H(〈x〉) denote such a linear evaluation that returns a secret 〈y〉 with
share 〈y〉b := H(〈x〉b) for each b ∈ {0, 1}.

2.2 Security Model and Functionalities

We use the universal composability (UC) framework [15] to prove security in
the presence of a semi-honest, static adversary. We say that a protocol Π UC-
realizes an ideal functionality F if for any probabilistic polynomial-time (PPT)
adversary A, there exists a PPT adversary (simulator) S such that for any PPT
environment Z with arbitrary auxiliary input z, the output distribution of Z
in the real-world execution where the parties interact with A and execute Π
is computationally indistinguishable from the output distribution of Z in the
ideal-world execution where the parties interact with S and F.

Our protocols use the functionality FsVOLE (Fig. 1) of subfield vector oblivious
linear evaluation. If K = F2λ and F = F2, FsVOLE degenerates to the COT
functionality FCOT in [46]. If K = F, FsVOLE serves as the VOLE functionality in
[8,40,42]. We omit the session IDs and sub-session IDs in the functionalities for
simplicity. By convention, we can write sVOLE tuples as two-party information-
theoretic message authentication codes (IT-MACs) [20,38]. Let Δb ∈ K denote
the global key of one party Pb. Pb authenticates a value x ∈ F of the other party
P1−b by sampling a uniform one-time key Kb[x] ← K and giving to P1−b the
MAC M1−b[x] := Kb[x] + x · Δb ∈ K. If identity b ∈ {0, 1} is clear in a given
context, we write Δ, K[x], and M[x] for Δb, Kb[x], and M1−b[x], respectively.

2.3 Circular Correlation Robustness

Circular correlation robustness (CCR) [17,28] is the security notion first intro-
duced for the circuit garbling with Free-XOR optimization [37], where there
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Functionality FsVOLE

Parameters: Field F and its extension field K.

Initialize: Upon receiving (init) from P0 and P1, sample Δ ← K if P0 is honest;
otherwise, receive Δ ∈ K from the adversary. Store Δ and send it to P0. Ignore
all subsequent (init) commands.

Extend: This functionality allows polynomially many (extend) commands. Upon
receiving (extend, m) from P0 and P1:

1. If P0 is honest, sample v ← K
m; otherwise, receive v ∈ K

m from the adversary.
2. If P1 is honest, sample u ← F

m, and compute w := v+u ·Δ ∈ K
m; otherwise,

receive (u,w) ∈ F
m ×K

m from the adversary, and recompute v := w−u ·Δ ∈
K

m.
3. Send v to P0 and (u,w) to P1.

Global-key queries: If P1 is corrupted, upon receiving (guess, Δ′), where Δ′ ∈ K,
from the adversary, send (success) to the adversary if Δ = Δ′; send (fail) to the
adversary otherwise.

Fig. 1. Functionality for subfield VOLE.

exists a global key Δ offsetting the inputs and outputs of some function H. [28]
showed that a CCR function H can be constructed from a fixed-key block cipher
(e.g., AES) modeled as random permutation and a linear orthomorphism1. In
this construction, it takes one block-cipher call to invoke a CCR function.

Definition 1 (Circular Correlation Robustness, [28]). Let H : {0, 1}λ →
{0, 1}λ, χ be a distribution on {0, 1}λ, and Occr

H,Δ(x, b) := H(x ⊕ Δ) ⊕ b · Δ be
an oracle for x,Δ ∈ {0, 1}λ and b ∈ {0, 1}. H is (t, q, ρ, ε)-CCR if, for any
distinguisher D running in time at most t and making at most q queries to
Occr

H,Δ(·, ·), and any χ with min-entropy at least ρ, it holds that
∣
∣
∣
∣

Pr
Δ←χ

[DOccr
H,Δ(·,·)(1λ) = 1

] − Pr
f←Fλ+1,λ

[

Df(·,·)(1λ) = 1
]
∣
∣
∣
∣
≤ ε,

where D cannot query both (x, 0) and (x, 1) for any x ∈ {0, 1}λ.

In this work, D can only make CCR queries with restricted forms, which are
reminiscent of those in the Half-Gate garbling scheme [47]. We defer the formal
definition of these restricted queries to Appendix A of the full version [29].

1 A mapping σ : G → G for an additive Abelian group G is a linear orthomorphism
if (i) σ is a permutation, (ii) σ(x + y) = σ(x) + σ(y) for any x, y ∈ G, and (iii)
σ′(x) := σ(x) − x is also a permutation. [28] presents two efficient instantiations of
σ (with well-defined efficient σ−1, σ′, and σ′−1): (i) if G is a field, σ(x) := c · x for
some c �= 0, 1 ∈ G, and (ii) if G = {0, 1}n, σ(x) = σ(xL ‖ xR) := (xL ⊕ xR) ‖ xL

where xL and xR are the left and right halves of x. .
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2.4 Function Secret Sharing

A function secret sharing (FSS) is a secret sharing scheme where a dealer dis-
tributes the shares of a function f to multiple parties, and each party can use
its share to locally compute the share of f(x) for any public x in the domain of
f . In this work, we focus on two-party FSS schemes.

Definition 2 (Function Secret Sharing, [7,13]). For a family FX ,G of func-
tions with domain X and range G, where G is an Abelian group, a two-party
FSS scheme with key space K0 × K1 has the following syntax:

– (k0, k1) ← Gen(1λ, f̂). On input 1λ and the description f̂ ∈ {0, 1}∗ of a
function f ∈ FX ,G, output a key pair (k0, k1) ∈ K0 × K1.

– fb(x) ← Eval(b, kb, x). On input the party identifier b ∈ {0, 1}, the party’s key
kb ∈ Kb, and a point x ∈ X , output the share fb(x) ∈ G.

A two-party FSS scheme (Gen,Eval) is secure for the function family FX ,G

with leakage Leak : {0, 1}∗ → {0, 1}∗ if the following properties hold.

– Correctness. For any function f ∈ FX ,G with description f̂ , and any x ∈ X ,

Pr
[

(k0, k1) ← Gen(1λ, f̂) :
∑

b∈{0,1} Eval(b, kb, x) = f(x)
]

= 1.

– Security. There exists a PPT simulator Sim such that, for any function
f ∈ FX ,G with the description f̂ , any b ∈ {0, 1}, and any PPT adversary A,

∣
∣
∣Pr

[

(k0, k1) ← Gen(1λ, f̂) : A(1λ, kb) = 1
]

− Pr
[

kb ← Sim(1λ, b, Leak(f̂)) : A(1λ, kb) = 1
]∣
∣
∣ ≤ negl(λ).

By default, the leakage Leak(f̂) only involves the domain and the range of f .
The following two special FSS schemes have been proposed in [7,13].

Distributed Point Functions (DPFs). A two-party distributed point function
(DPF.Gen,DPF.Eval) with domain X and range G is a two-party FSS scheme for
the function family FX ,G = {f•

α,β}α∈X ,β∈G where f•
α,β is a point function such

that f•
α,β(α) = β, and f•

α,β(x) = 0 for x 
= α ∈ X .

Distributed Comparison Functions (DCFs). A two-party distributed com-
parison function (DCF.Gen,DCF.Eval) with domain X and range G is a two-party
FSS scheme for the function family FX ,G = {f<

α,β}α∈X ,β∈G where f<
α,β is a com-

parison function such that f<
α,β(x) = β if x < α ∈ X , and f<

α,β(x) = 0 otherwise.

3 Technical Overview

3.1 Improved COT/sVOLE from Correlated GGM Trees

Since COT/sVOLE can be constructed from its “single-point” version using an
appropriate LPN assumption, we focus on single-point COT/sVOLE, where the
vector u in a COT/sVOLE tuple w = v + u · Δ has exactly one non-zero entry.
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Correlated OT from Correlated GGM. The core idea behind our single-
point COT protocol is that, instead of using a GGM tree with pseudorandom
nodes as the state-of-the-art works, our protocol uses a correlated GGM (cGGM)
tree where the sum of all same-level nodes equals a global offset Δ. This invariant
can be maintained by using a generalized Davies-Meyer construction with a hash
function H: every parent x has left child H(x) and right child x − H(x). cGGM
tree leads to two improvements: (i) no additional hash computation is needed for
every right child so that the computation is halved, and (ii) if the global offset
Δ (i.e., the difference between two first-level nodes) is set up by precomputed
random COT tuples, the single-point COT protocol sends only λ bits per level,
in contrast to 2λ bits from a standard OT per level in the state-of-the-art works.

To explain our second improvement in detail, we first recall the prior con-
struction from the perspective of GGM tree. In this construction, the sender
holds an n-level GGM tree, whose 2n leaves in F2λ forms a vector v ∈ F

2n

2λ . The
receiver with a punctured point α = α1 . . . αn ∈ {0, 1}n uses, for each i ∈ [1, n],
a standard OT to select the XOR of all αi-side nodes on the i-th level. From
these n XORs, the receiver recovers the n off-path GGM-tree nodes just leaving
the path α and use these n nodes to recover all leaves except the α-th one, corre-
sponding to a vector w ∈ F

2n

2λ with the punctured entry w(α). The sender samples
Δ ← F2λ , defines its output as (Δ,v), and sends ψ := Δ ⊕ (⊕j∈[0,2n)v(j)) ∈ F2λ

to the receiver. The receiver patches w(α) := ψ ⊕ (⊕j �=αw(j)) and defines its
output as (u,w) for u = unitF2(2

n, α, 1). The computation is dominated by the
full GGM-tree expansion while the communication is from n parallel standard
OTs, which need n precomputed COT tuples via the standard technique [3,34].

In contrast, our cGGM-tree single-point COT, where the global offset in a
cGGM tree coincides with the global key in the n precomputed COT tuples,
can directly use these tuples. For each level i ∈ [1, n], let M[ri] = K[ri] ⊕ ri · Δ
be such a tuple where the sender has (Δ,K[ri]) ∈ F2λ × F2λ and the receiver
has (ri,M[ri]) ∈ F2 × F2λ , and Kb

i ∈ F2λ be the XOR of all b-side nodes for
b ∈ {0, 1}. To select Kαi

i as in the prior construction, the receiver sends αi ⊕ ri

to the sender, receives back ci := K0
i ⊕ K[ri] ⊕ (αi ⊕ ri) · Δ, and computes

ci ⊕ M[ri] = K0
i ⊕ K[ri] ⊕ (αi ⊕ ri) · Δ ⊕ M[ri] = K0

i ⊕ αi · Δ = Kαi
i ,

where the last equality holds since the cGGM tree uses Δ as global offset. For
each level, the sender sends λ bits to the receiver, only a half of the 2λ bits in a
standard OT. When the point α is random, the message αi ⊕ ri can be avoided
as well. The single-point COT outputs are defined as in the prior construction,
except that the receiver locally patches w(α) := ⊕j �=αw(j).

The security against the semi-honest sender is straightforward. However, a
subtle issue arises in proving the security against the semi-honest receiver. Note
that the environment Z can observe the global key Δ from the honest sender’s
output and use it to distinguish the two worlds. Let {X

α1...αi−1αi

i }i∈[1,n] be the
cGGM-tree off-path nodes recovered by the receiver. In the real world, these
off-path nodes satisfy the consistency with Δ: for j ∈ [2, n], X

α1...αj−1αj

j equals
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H
(

Δ ⊕ ⊕

i∈[1,j−1] X
α1...αi−1αi

i

)

⊕ αj ·
(

Δ ⊕ ⊕

i∈[1,j−1] X
α1...αi−1αi

i

)

. (1)

However, this consistency does not hold in the ideal world where {ci}i∈[1,n] sent
by the simulator are sampled at random so that the n off-path nodes will be
independently uniform in the ideal world. Thus, Z can trivially distinguish the
two worlds by using the known Δ to check (1). Our security proof addresses this
issue by carefully constructing H from a random permutation, allowing global-
key queries in the single-point COT functionality, and programming the random
permutation and its inverse to keep the consistency. The intuition is that, to
distinguish the two worlds, Z must query the random permutation or its inverse
with Δ-related transcripts. Thus, the simulator can observe these queries and
extract every potential Δ from them. Using global-key queries, the simulator
checks whether an extracted Δ matches that in the single-point COT function-
ality or not. If so, it immediately programs the two permutation oracles using
this Δ so that they are consistent with the simulated {ci}i∈[1,n]. Similar proof
technique in the random-oracle model have been used in TinyOT [32,38].

Subfield VOLE from Correlated GGM. We further propose a cGGM-based
blueprint of single-point sVOLE for field F and its exponentially large extension
K. In this blueprint, we construct an n-level cGGM tree from a hash function
H : K → K so that all nodes are in K, and extend the spirit of our single-point
COT. The spirit is that the equality w(α) = v(α) ⊕ Δ at the punctured point α
automatically holds by embedding Δ into a cGGM tree. For single-point sVOLE,
we want to likewise keep w(α) = v(α) + β · Δ for some β ∈ F

∗ and Δ ∈ K at
the punctured point α. However, we cannot use β · Δ, which is unknown to the
sender, as the cGGM-tree global offset. Instead, we can define this offset as the
sender’s additive share of β ·Δ so that the receiver can correct the automatically
preserved result at the point α by using its additive share of β · Δ.

In detail, the two parties use a random sVOLE tuple M[β] = K[β] + β · Δ
for the β · Δ term, where the sender has (Δ,K[β]) ∈ K×K and the receiver has
(β,M[β]) ∈ F

∗ × K. The sender uses K[β] as the global offset of its cGGM tree,
and the receiver selects, for each level i, the sum of all αi-side nodes. For the i-th
level, let Kb

i ∈ K be the sum of all b-side nodes for b ∈ {0, 1}, and let the two
parties have access to a special sVOLE tuple2 M[ri] = K[ri]+ ri ·K[β], where the
sender has K[ri] ∈ K and the receiver has (ri,M[ri]) ∈ F2 ×K. The sender sends
ci := K[ri] + K0

i ∈ K to the receiver, who defines αi := ri and can compute

(−1)ri · (−M[ri] + ci) = (−1)αi · (K0
i − αi · K[β]) = Kαi

i ,

where the last equality holds due to the cGGM invariant. The n selected sums
allow the receiver to recover, in a top-down manner, the n off-nodes with respect
to α and the 2n cGGM leaves except the α-th one. The sender defines v ∈ K

2n

from its 2n cGGM-tree leaves, while the receiver defines w ∈ K
2n

from the α-
exclusive 2n − 1 leaves and the locally patched punctured leaf w(α) := M[β] −
2 The special sVOLE tuples for selecting n sums can be obtained from n precomputed

random sVOLE tuples by the receiver sending n · log |F| bits.
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∑

j �=α w(j) = M[β] − (
∑

j �=α w(j) + v(α)) + v(α) = v(α) + β · Δ. If the sender
defines its output as (Δ,v) and the receiver defines its output as (u,w) for
u := unitF(2n, α, β), the two parties share a single-point sVOLE correlation.

Our cGGM-based single-point sVOLE protocol also has the issue in proving
the security against the semi-honest receiver as the environment Z sees Δ from
the honest sender’s output. Z can compute the cGGM offset K[β] = M[β]−β ·Δ
and, to distinguish the two worlds, check if the consistency (1) holds for K[β] or
not. As in our cGGM-based single-point COT, our simulator addresses this issue
by extracting every possible K[β] and the associated Δ = β−1 · (M[β] − K[β]),
querying the single-point sVOLE functionality with Δ, and programming the
random permutation and its inverse if the global-key query succeeds.

Subfield VOLE from Pseudorandom Correlated GGM. There is another
single-point sVOLE blueprint [10,43] basing its security on the pseudorandom-
ness of GGM-tree nodes: for some path α ∈ {0, 1}n, the n off-path nodes and the
α-th leaf are pseudorandom. Our cGGM tree cannot be used in this blueprint
since its same-level nodes are correlated under the global offset. However, we
observe that a cGGM tree can be modified into a pseudorandom cGGM (pcGGM)
tree with the required pseudorandomness.

In an n-level pcGGM tree, we preserve the cGGM invariant for the F2λ nodes
on the first n − 1 levels, i.e., using a hash function H′ : F2λ → F2λ and Davies-
Meyer construction to keep that all same-level nodes are XORed to a global
offset Δ ∈ F2λ . Nevertheless, we break the last-level correlation in the pcGGM
tree: every parent x ∈ F2λ on the (i − 1)-th level has left child H′(x) and right
child H′(x ⊕ 1). In sVOLE protocols for K 
= F2λ , the pcGGM leaves will be
further converted by the function ConvertK : F2λ → K.

Our core observation for arguing the pseudorandomness of the n + 1 pcGGM
nodes is that the inputs of the hash function H′ are of CCR forms. More specif-
ically, a global Δ ∈ F2λ offsets the two first-level nodes of the pcGGM tree and
induces the first n − 1 off-path nodes {X

α1...αi−1αi

i }i∈[1,n−1] according to (1) for
H′. Meanwhile, the last off-path node X

α1...αn−1αn
n ∈ F2λ and the α-th pcGGM

leaf Xn ∈ F2λ come from two hash calls of the following form: for b ∈ {0, 1},

Xα1...αn−1b
n = H′

(

Δ ⊕ (
⊕

i∈[1,n−1] X
α1...αi−1αi

i ) ⊕ b
)

.

Intuitively, we can use a CCR hash function H′ to argue the pseudorandomness
of the n off-path nodes and the α-th leaf, which is sufficient for the single-point
sVOLE blueprint. The challenge in this security reduction is to show that the CCR
queries to H′ are legal (i.e., no (x, 0) and (x, 1) for the same x) with overwhelming
probability. We address this challenge by resorting to the observation that these
inputs are restricted so that they are well-structured and are not arbitrarily chosen
by the corrupted receiver (the only case where we need the pseudorandomness).
Such restricted inputs are reminiscent of the “naturally derived keys” [28,47] in
the Half-Gate garbling scheme so that we can bound the probability similarly. We
defer the details to Appendix A of the full version [29]. Note that even if one uses
ConvertK to map the leaves intoK, the pseudorandomness of these nodes still holds
due to the pseudorandomness of ConvertK.
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By plugging our pcGGM tree into the prior single-point sVOLE blueprint, we
obtain a more efficient protocol. The improvement owes to the cGGM invariant
in its first n − 1 levels. In terms of communication, the receiver can use n − 1
precomputed random COTs to select the XORs on these levels and recover the
first n − 1 levels of the sender’s pcGGM tree; in contrast, the prior protocols
use a standard OT per level due to the two pseudorandom XORs. For the last
level in our protocol, the two parties also need a standard OT due to the broken
correlation of the two sums. Given the random-permutation-based CCR hash
functions in [28], our pcGGM-based single-point sVOLE protocol is secure in
the random-permutation model. In particular, this protocol can implement the
single-point sVOLE functionality without global-key queries since Δ ∈ F2λ is
only used in the pcGGM tree and is not included in the sender’s output.

3.2 DPF/DCF from Shared Pseudorandom Correlated GGM Trees

DPF Sheme and Protocol. Using a pcGGM-like trick, we present a new DPF
scheme, followed by a more efficient distributed protocol. Recall that, in the
prior DPF scheme [13], there are two parties sharing an n-level GGM-style tree
where the n nodes on some path α ∈ {0, 1}n are pseudorandom with LSB one,
and others are zero. Then, the two-party shares of the α-th leaf mask the DPF
payload β ∈ G. Our core observation is that we need the pseudorandom α-th
leaf to hide β, but the internal pseudorandom on-path nodes are not mandatory.
Instead, the two parties can share an n-level pcGGM-style tree (say, spcGGM
tree) where (i) the root X0 and the first n − 1 on-path nodes equal a global
offset Δ ∈ F2λ with lsb(Δ) = 1, (ii) the last on-path node (i.e., the α-th leaf)
is pseudorandom with LSB one, and (iii) other nodes are zero. As in the prior
scheme, the per-party share of this tree is compressed as a key including an XOR
share of the root and n + 1 public pseudorandom correction words.

We explain our construction of these correction words in detail. To keep the
invariant (i), the spcGGM tree uses a correction procedure different from the
prior one. For each level i ∈ [1, n − 1] with a public correction word CWi ∈ F2λ ,
and b ∈ {0, 1}, the b-side secret child of the (i − 1)-th on-path secret node
〈Xi−1〉 = 〈si−1 ‖ ti−1〉 is defined as follows:

〈Xα1...αi−1b
i 〉 := H′(〈Xi−1〉) ⊕ b · 〈Xi−1〉 ⊕ 〈ti−1〉 · CWi.

Solving this linear equation for the public CWi under the constraint (i), we have

CWi = H′(〈Xi−1〉0) ⊕ H′(〈Xi−1〉1) ⊕ αi · Δ.

As for (ii), we use a public correction word CWn = (HCW, LCW0, LCW1) ∈
F2λ−1 × F2 × F2 to follow the same last-level correction as the prior work. For
b ∈ {0, 1}, define a function H′

b(·) := H′(· ⊕ b) and the b-side secret child of the
(n − 1)-th on-path secret node 〈Xn−1〉 = 〈sn−1 ‖ tn−1〉 as follows:

〈Xα1...αn−1b
n 〉 := H′

b(〈Xn−1〉) ⊕ 〈tn−1〉 · (HCW ‖ LCWb).
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Solving this linear equation for the public CWn under the constraint (i) and (iii),

HCW = hb
(

H′
αn

(〈Xn−1〉0) ⊕ H′
αn

(〈Xn−1〉1)
)

,

∀b ∈ {0, 1} : LCWb = lsb
(

H′
b(〈Xn−1〉0) ⊕ H′

b(〈Xn−1〉1)
)

⊕ αn ⊕ b.
(2)

Note that the n off-path secret nodes {〈Xα1...αi−1αi

i 〉}i∈[1,n] are zero secrets
according to the above correction procedures. As a result, the two parties hold
identical shares of these n off-path nodes and their subtrees, given that the share
of a subtree is fully determined by the share of its root (i.e., an off-path node) and
the public correction words. This implies the constraint (iii). Finally, the (n+1)-
th public correction word is defined from the secret α-th leaf 〈Xn〉 = 〈sn ‖ tn〉
and the function ConvertG : F2λ−1 → G as follows:

CWn+1 = (〈tn〉0 − 〈tn〉1) ·
(

ConvertG(〈sn〉1) − ConvertG(〈sn〉0) + β
)

∈ G,

where the DPF payload β is masked by the XOR shares of the α-th leaf.
The DPF security primarily follows from that the first n correction words

are of CCR forms, i.e., for i ∈ [0, n − 1], 〈Xi〉0 ⊕ 〈Xi〉1 = Xi = Δ according to
the XOR secret sharing scheme and the invariant (i). The Δ-circular correlation
in CW1, . . . ,CWn−1 is obvious for either corrupted party. In CWn, the honest
party’s H′ inputs also differ from the corrupted party’s H′ inputs by Δ. Intu-
itively, these n correction words use CCR responses as one-time pads, and the
underlying CCR queries are as structured as those in the original pcGGM tree.
By using a CCR H′ and upper bounding the probability of illegal CCR queries,
we can prove the pseudorandomness of the first n correction words and the high
λ − 1 bits (i.e., sn) of the α-th leaf. The pseudorandom sn = 〈sn〉0 ⊕ 〈sn〉1 and
ConvertG ensure the pseudorandom CWn+1 for either corrupted party.

Our DPF scheme enables a more efficient distributed key generation protocol
due to the construction of the first n − 1 correction words. The insight is that
the two parties, who share 〈α〉 and 〈β〉A, can use their precomputed COT tuples
to set up a secret 〈Δ〉 with lsb(Δ) = 1 and share {〈αi · Δ〉}i∈[1,n] in two rounds,
and use the black-box evaluation technique in [22] to locally share each secret
H′(〈Xi−1〉). This technique relies on the invariant (iii) so that, for each i ∈ [1, n],
summing the shares of the 2i nodes on the i-th level returns the share of the
i-th level on-path node. Given the two-party shares of 〈αi · Δ〉 and H′(〈Xi−1〉),
the secure computation of each CWi only needs one round for revealing 〈CWi〉,
leading to n − 1 rounds for the first n − 1 correction words in total. In contrast,
the prior protocol [22] uses (2) for each correction word, and the i-th level HCW
depends on αi and should be computed level-by-level. Thus, it securely computes
the first n − 1 correction words in 2(n − 1) rounds: for each level, one round is
to share 〈CWi〉 from standard OTs, and another round is to reveal this secret.

We remark that our CWn+1 construction uses 〈tn〉0 − 〈tn〉1 to replace the
(−1)〈tn〉1 term in the prior construction. The correctness is unaffected due to
the non-zero LSB (i.e., tn) of the α-th leaf. However, when G is a ring, our
CWn+1 allows the two parties to locally share 〈tn〉0 − 〈tn〉1 on the ring via the
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black-box evaluation technique [22]. Thus, the secure computation of CWn+1

uses only one secure multiplication of two locally shared ring operands.

DCF Scheme and Protocol. We further show that our spcGGM tree can be
extended to realize more efficient DCF scheme and its distributed protocol. Note
that comparison function f<

α,β(x) can be written as the sum of point function
f•

α,−αn·β(x) and a prefix function Vα,β(x), which returns αh+1 · β ∈ G such that
α1 . . . αh = x1 . . . xh is the longest common prefix of α and x (for completeness,
αn+1 := αn). We have shown how to realize the DPF scheme for point function
f•

α,−αn·β(x) from spcGGM tree. Then, we want to compute Vα,β(x) by reusing
the prefix information with respect to α and x when traversing the spcGGM
tree to evaluate the point function. Following the GGM-style DCF scheme [7],
we do this by introducing more nodes to the spcGGM tree and an additional
correction procedure to ensure that the sum of the introduced nodes along the
path x equals Vα,β(x). However, our extended spcGGM tree can use less nodes
and simpler correction words to compute Vα,β(x).

To give more details, we first recall how [7] works. It extends a shared GGM
tree by replacing its length-doubling PRG with a length-quadrupling PRG so
that each secret parent spawns two more secret children in F2λ . For each level
i ∈ [1, n], let 〈v0

i 〉 and 〈v1
i 〉 denote such two secret children of the (i − 1)-th

on-path secret parent 〈Xi−1〉 = 〈si−1 ‖ ti−1〉, and the two parties correct their
additive shares for Vα,β(x) via the public correction word VCWi:

Vi−1 :=
∑

b∈{0,1}(−1)1−b ·
(

ConvertG(〈vαi−1
i−1 〉b) − ConvertG(〈vαi−1

i−1 〉b)
)

∈ G,

VCWi := (−1)〈ti−1〉1 ·
(

(ConvertG(〈vαi
i 〉1) − ConvertG(〈vαi

i 〉0))

− Vi−1 + (αi − αi−1) · β
)

∈ G. (V0 := 0 ∈ G, α0 = 0)

The DCF key per party includes its DPF key for f•
α,−αn·β(x) and {VCWi}i∈[1,n].

The DCF security also requires the pseudorandomness of the n VCWi’s.
In contrast, our DCF scheme shows that it is overkill to introduce two more

secret children to each secret parent for the DCF security. For each i ∈ [1, n],
one additional secret child 〈vi〉 = 〈v0

i 〉 = 〈v1
i 〉 of the secret parent 〈Xi−1〉 suffices,

and the pseudorandomness of VCWi relies on a random vi = 〈vi〉0 ⊕ 〈vi〉1 ∈ F2λ

as ConvertG maps random strings to pseudorandom G elements. We can argue
the pseudorandomness of vi based on the CCR induced by Xi−1 = Δ, if we use
vi := H′(〈Xi−1〉0 ⊕ 2) ⊕ H′(〈Xi−1〉1 ⊕ 2). Collecting all H′ inputs for the DPF
part and vi’s, we find that these inputs are as structured as those in the original
pcGGM tree. The DCF security can follow from a similar hybrid argument.

Our DCF protocol is extended from our DPF protocol with the additional
secure computation of {VCWi}i∈[1,n]. Compared with the prior work, our DCF
protocol achieves better efficiency due to not only its optimized DPF part but
also the structure of each VCWi. This structure makes the ConvertG difference
term independent of αi. This independence allows the two parties to locally share
the ConvertG difference via the black-box evaluation technique [22], in contrast
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to the technique plus OT-based 2PC in the prior protocol. Since there is only
one more secret child for each secret parent, the local computation for sharing
this difference is halved as well. We can also replace the (−1)〈ti−1〉1 term in
the prior VCWi construction by a linear term 〈ti−1〉0 − 〈ti−1〉1, which can be
locally shared via the same black-box evaluation technique if G is a ring. As
a result, except the 2PC for sharing {〈αi · β〉A}i∈[1,n], the secure computation
of {VCWi}i∈[1,n] requires n secure multiplications of two shared ring elements.
These secure multiplications can run in parallel with that for CWn+1.

In our DCF protocol, each 〈αi · β〉A is secretly shared by carefully reusing
the two precomputed COT tuples, which were used to share 〈αi · Δ〉, to run a
COT-based multiplication between the XOR shared αi and the additively shared
β on the ring. This multiplication generalizes the binary case [1,28] for an XOR
shared bit and an XOR shared string by using the well-known arithmetic XOR
on the ring: 〈αi〉0 ⊕ 〈αi〉1 = 〈αi〉0 + 〈αi〉1 − 2 · 〈αi〉0 · 〈αi〉1.

Functionality FspsVOLE

Parameters: Field F and its extension field K.

Initialize: Upon receiving (init) from P0 and P1, sample Δ ← K if P0 is honest;
otherwise, receive Δ ∈ K from the adversary. Store Δ and send it to P0. Ignore
all subsequent (init) commands.

Extend: This functionality allows polynomially many (extend) commands. Upon
receiving (extend, N) from P0 and P1:

1. If P0 is honest, sample v ← K
N ; otherwise, receive v ∈ K

N from the adversary.
2. If P1 is honest, sample u ← F

N with exactly one nonzero entry, and compute
w := v+u ·Δ ∈ K

N ; otherwise, receive (u,w) ∈ F
N ×K

N from the adversary,
where u has at most one nonzero entry, and recompute v := w−u · Δ ∈ K

N .
3. Send v to P0 and (u,w) to P1.

Global-key queries: If P1 is corrupted, upon receiving (guess, Δ′), where Δ′ ∈ K,
from the adversary, send (success) to the adversary if Δ = Δ′; send (fail) to the
adversary otherwise.

Fig. 2. Functionality for single-point subfield VOLE.

4 Subfield VOLE Extension

Our sVOLE extension follows the blueprint of [10,42,43,46], which uses LPN to
locally convert t single-point sVOLE (spsVOLE) tuples output by functionality
FspsVOLE (Fig. 2) into an sVOLE tuple. We focus on the efficient spsVOLE pro-
tocol that UC-realizes FspsVOLE. Note that the spsVOLE protocol dominates the
computation and contributes all communication in sVOLE extension.

FspsVOLE is parameterized by a field F and its extension K, and covers the
single-point COT functionality FspCOT if F = F2 and K = F2λ . This functionality
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is the same as that in [43], except that FspsVOLE will not abort for an incorrect
global-key query. Allowing for global-key queries has been considered in [32,38]
and does not weaken the effective security. In the spsVOLE protocol based on
pseudorandom correlated GGM, such global-key queries can be removed.

In essence, our spsVOLE protocols work as the PCG protocol [10–12,18] of
spsVOLE correlation, although we do not divide the correlation generation into
two explicit PCG phases. In Appendix E.1 of the full version [29], we show how
to modify one of our spsVOLE protocols to define such two phases, in order to
satisfy the “silent property” that a long spsVOLE tuple can be stored as two
sublinearly short correlated seeds.

4.1 Single-Point COT and sVOLE from Correlated GGM

In Fig. 3, we present the two evaluation algorithms for our correlated GGM tree,
which is defined by two first-level nodes (k,Δ−k) ∈ K

2. For every non-leaf node
x ∈ K, its left child is defined as H(x) ∈ K while its right child is defined as
x − H(x) ∈ K. The following claim is straightforward from an induction.

Parameters: Tree depth n ∈ N. Field K with |K| ≥ 2λ. Hash function H : K → K.

cGGM.FullEval(Δ, k): Given (Δ, k) ∈ K
2,

1: X0
1 := k ∈ K, X1

1 := Δ − k ∈ K.
2: for i ∈ [2, n], j ∈ [0, 2i−1) do
3: X2j

i := H(Xj
i−1) ∈ K, X2j+1

i := Xj
i−1 − X2j

i ∈ K.

4: v := (X0
n, . . . , X2n−1

n ) ∈ K
2n

.
5: for i ∈ [1, n] do K0

i :=
∑

j∈[0,2i−1) X2j
i ∈ K.

6: return (v, {K0
i }i∈[1,n])

cGGM.PuncFullEval(α, {Kαi
i }i∈[1,n]): Given (α, {Kαi

i }i∈[1,n]) ∈ {0, 1}n × K
n,

1: Xα1
1 := Kα1

1 ∈ K.
2: for i ∈ [2, n] do
3: for j ∈ [0, 2i−1), j �= α1 . . . αi−1 do
4: X2j

i := H(Xj
i−1) ∈ K, X2j+1

i := Xj
i−1 − X2j

i ∈ K.

5: X
α1...αi−1αi

i := Kαi
i − ∑

j∈[0,2i−1),j �=α1...αi−1
X2j+αi

i ∈ K.

6: Xα
n := − ∑

j∈[0,2n),j �=α Xj
n ∈ K, w := (X0

n, . . . , X2n−1
n ) ∈ K

2n

.
7: return w

Fig. 3. Two full-evaluation algorithms for correlated GGM tree.

Claim (Leveled correlation). For any two first-level nodes (k,Δ − k) ∈ K
2 and

any i ∈ [1, n], the offset Δ ∈ K equals the sum of all nodes on the i-th level of
the correlated GGM tree expanded from (k,Δ − k) as per cGGM.FullEval.
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Corollary 1. For any α ∈ [0, 2n), any (k,Δ − k) ∈ K
2, and

(v, {K0
i }i∈[1,n]) := cGGM.FullEval(Δ, k),

w := cGGM.PuncFullEval(α, {Kαi
i }i∈[1,n]),

where Kαi
i := αi · Δ + (−1)αi · K0

i for i ∈ [1, n], we have w(α) − v(α) = −Δ.

Proof. Claim 4.1 and the definition of cGGM.FullEval imply that Kαi
i ∈ K in this

corollary defines the sum of all αi-side nodes on the i-th level of the correlated
GGM tree. Then, it follows from the definition of cGGM.PuncFullEval that v(j) =
w(j) for any j 
= α ∈ [0, 2n). Using Claim 4.1 for the last level, we have w(α) −
v(α) = −∑

j∈[0,2n),j �=α w(j) − v(α) = −∑

j∈[0,2n),j �=α v(j) − v(α) = −Δ.

Single-Point COT. Figure 4 describes our single-point COT protocol ΠspCOT

that runs in the FCOT-hybrid model and uses the cGGM expansion in Fig. 3.

The same Δin correlated GGM trees. Note that FspCOT produces single-
point COT tuples with the same global key Δ ∈ F2λ in a number of Extend exe-
cutions. To realize FspCOT, our protocol ΠspCOT proceeds as sketched in Sect. 3.1
but uses the same Δ for the cGGM trees of these executions, each of which sam-
ples a fresh k ← F2λ for cGGM.FullEval(Δ, k). A merit of using the same Δ in
several tree instances is that ΠspCOT only invokes one FCOT instance, and the
amortized cost per precomputed COT tuple can be small.

Protocol ΠspCOT

Parameters: Field F2 and its extension field F2λ .

Initialize: This procedure is executed only once.

1. P0 and P1 send (init) to FCOT, which returns Δ ∈ F2λ to P0. P0 outputs Δ.

Extend: This procedure can be executed many times. P0 and P1 input N = 2n

and use cGGM (c.f. Figure 3) for n and F2λ .

2. P0 and P1 send (extend, n) to FCOT, which returns (K[r1], . . . ,K[rn]) ∈ F
n
2λ to

P0 and ((r1, . . . , rn), (M[r1], . . . ,M[rn])) ∈ F
n
2 × F

n
2λ to P1 such that M[ri] =

K[ri] ⊕ ri · Δ for i ∈ [1, n].
3. P0 samples c1 ← F2λ and sets k := K[r1] ⊕ c1,

(v, {K0
i }i∈[1,n]) := cGGM.FullEval(Δ, k),

and ci := K[ri] ⊕ K0
i for i ∈ [2, n]. P0 sends (c1, . . . , cn) to P1.

4. P1 sets α = α1 . . . αn := r1 . . . rn ∈ [0, N), Kαi
i := M[ri]⊕ ci for i ∈ [1, n], and

u := unitF2(N, α, 1), w := cGGM.PuncFullEval(α, {Kαi
i }i∈[1,n]).

5. P0 outputs v and P1 outputs (u,w).

Fig. 4. cGGM-based single-point COT protocol in the FCOT-hybrid model.
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Security. We prove Theorem 1 by following the sketched intuition in Sect. 3.1
and defer the proof to Appendix B.1 of the full version [29]. Our proof consid-
ers polynomially many concurrent Extend executions (strictly speaking, sub-
sessions with unique sub-session IDs) that uses the one-time initialized Δ.

Theorem 1. Given random permutation π : F2λ → F2λ , efficiently computable
linear orthomorphism σ : F2λ → F2λ with efficiently computable σ−1, σ′(x) :=
σ(x) ⊕ x, and σ′−1 (Footnote 1), and hash function H(x) := π(σ(x)) ⊕ σ(x),
protocol ΠspCOT (Fig. 4) UC-realizes functionality FspCOT (Fig. 2) against any
semi-honest adversary in the FCOT-hybrid model and the RPM.

Communication Optimization. For t concurrent Extend executions (e.g.,
in COT extension), the random c1’s in these executions can be compressed via a
PRF F : F2λ ×{0, 1}∗ → F2λ . Concretely, P0 samples a PRF key kprf ← F2λ after
receiving its COT outputs in all executions and sends this key to P1. For each
execution with sub-session ID ssid, the two parties locally defines the element
c1 := F (kprf, ssid). This PRF key is only used for the t concurrent executions.
The security of this optimization follows from the PRF security and the fact
that, in the concurrent executions, the COT messages chosen by the corrupted
receiver cannot depend on the PRF key to be sampled by the honest sender.

Complexity Analysis. Consider the complexity per execution when the PRF-
based optimization is used in t concurrent Extend executions. ΠspCOT needs n
precomputed COT tuples. P0 sends (n − 1) · λ + λ

t bits, and P1 sends nothing.
The computation per party comes from the tree expansion with N RP calls.

In the FCOT-hybrid model, the prior single-point COT protocol [46] consumes
n precomputed COT tuples. However, P0 sends 2n · λ bits. Each party performs
about N length-doubling PRG calls, which in turn result in 2N RP calls. We
can see that our protocol halves both the computation and communication in
the prior work. When looking at the whole protocol, the improvement is still
huge. For example, the micro benchmark in Silver [18] reported that 70% of the
time is spent on GGM-tree-related computation, and thus our protocol will lead
to at least 50% of end-to-end computational improvement in COT.

Single-Point sVOLE. We can also realize single-point sVOLE from our cGGM
tree by using the high-level idea sketched in Sect. 3.1. This protocol extends
ΠspCOT by using a cGGM tree whose nodes are in a general exponentially large
extension field K. The tree expansion therein uses a hash function constructed
from a random permutation and a linear orthomorphism over K. We defer the
detailed protocol and its security proof to Appendix B.2 of the full version [29].

4.2 Single-Point sVOLE from Pseudorandom Correlated GGM

We can adapt our correlated GGM tree for a pseudorandom correlated one with
the property that the leaf node at some punctured position α is pseudorandom.
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This pseudorandom correlated GGM tree pcGGM is defined in Fig. 5, where the
first n − 1 levels preserve the correlation in Claim 4.1 but all last-level nodes
are processed by HS to break this correlation. The keyed hash function HS uses
some key S ∈ F2λ , which can be sampled by the receiver in single-point sVOLE
and, for simplicity, is assumed to have been sent to the sender before protocol
execution. The implementation of HS is given in Theorem 2. In fact, this pcGGM
tree yields PPRF, which is proved in Appendix C of the full version [29].

The pseudorandomness only at the cost of the last-level correlation allows us
to follow the single-point sVOLE blueprint in [10,43] but also take advantage of
the correlation in the first n − 1 levels. The protocol is presented in Fig. 6. In
this protocol, the sender P0 only sends λ bits to the receiver P1 for each of the
first n − 1 levels, given a precomputed COT tuple. For the last level, the two
parties use a COT tuple and the standard technique [3,34] to emulate the string
OT as in the prior protocols. To amortize the cost per precomputed COT tuple,
the pcGGM trees in many Extend executions also use the same Δ set by FCOT.

Security. The security against the semi-honest P0 resorts to the one-time pad s
from FsVOLE. Meanwhile, the security against the semi-honest P1 relies on that (i)

Parameters: Tree depth n ∈ N. Field K. Keyed hash function HS : F2λ → F2λ .
Function ConvertK : F2λ → K.

pcGGM.FullEval(Δ, k): Given (Δ, k) ∈ F
2
2λ ,

1: X0
1 := k ∈ F2λ , X1

1 := Δ ⊕ k ∈ F2λ .
2: for i ∈ [2, n − 1], j ∈ [0, 2i−1) do
3: X2j

i := HS(Xj
i−1) ∈ F2λ , X2j+1

i := Xj
i−1 ⊕ X2j

i ∈ F2λ .

4: for j ∈ [0, 2n−1), b ∈ {0, 1} do X2j+b
n := ConvertK(HS(Xj

n−1 ⊕ b)) ∈ K.

5: v := (X0
n, . . . , X2n−1

n ) ∈ K
2n

.
6: for i ∈ [1, n − 1] do K0

i := ⊕j∈[0,2i−1)X
2j
i ∈ F2λ .

7: (K0
n, K1

n) := (
∑

j∈[0,2n−1) X2j
n ,

∑
j∈[0,2n−1) X2j+1

n ) ∈ K
2.

8: return (v, {K0
i }i∈[1,n−1], (K

0
n, K1

n))

pcGGM.PuncFullEval(α, {Kαi
i }i∈[1,n], γ): Given (α, {Kαi

i }i, γ) ∈ {0, 1}n ×K
n ×K,

1: Xα1
1 := Kα1

1 ∈ F2λ .
2: for i ∈ [2, n − 1] do
3: for j ∈ [0, 2i−1), j �= α1 . . . αi−1 do
4: X2j

i := HS(Xj
i−1) ∈ F2λ , X2j+1

i := Xj
i−1 ⊕ X2j

i ∈ F2λ .

5: X
α1...αi−1αi

i := Kαi
i ⊕ (⊕j∈[0,2i−1),j �=α1...αi−1

X2j+αi
i ) ∈ F2λ .

6: for j ∈ [0, 2n−1), j �= α1 . . . αn−1, b ∈ {0, 1} do
7: X2j+b

n := ConvertK(HS(Xj
n−1 ⊕ b)) ∈ K.

8: X
α1...αn−1αn
n := Kαn

n − ∑
j∈[0,2n−1),j �=α1...αn−1

X2j+αn
n ∈ K.

9: Xα
n := γ − ∑

j∈[0,2n),j �=α Xj
n ∈ K, w := (X0

n, . . . , X2n−1
n ) ∈ K

2n

.
10: return w

Fig. 5. Two full-evaluation algorithms for pseudorandom correlated GGM tree.
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the pcGGM tree with a CCR structure has n pseudorandom off-path nodes and
the punctured leaf, giving pseudorandom c1, . . . , cn−1 and (crn

n , ψ), and (ii) the
mask of the unselected message crn

n in the emulated last-level OT is computed
by applying ConvertK to a CCR response, which is for a legal CCR query with
overwhelming probability due to the uniform μ. The proof of Theorem 2 can be
found in Appendix B.3 of the full version [29], where we consider polynomially
many concurrent Extend executions, which use the one-time initialized Δ.

Theorem 2. Given CCR function H : F2λ → F2λ , function ConvertK : F2λ →
K, and keyed hash function HS(x) := H(S ⊕ x) with some key S ← F2λ , pro-
tocol ΠspsVOLE−pcGGM (Fig. 6) UC-realizes functionality FspsVOLE (Fig. 2) with-
out global-key queries against any semi-honest adversary in the (FCOT,FsVOLE)-
hybrid model.

Communication Optimization. ΠspsVOLE−pcGGM can be optimized as follows:

– The two random (c1, μ) to be sent by the sender in ΠspsVOLE−pcGGM can be
compressed via the PRF technique for ΠspCOT. In t concurrent Extend exe-
cutions, all such random messages can also be compressed in batch.

– The optimization for a large field F in ΠspsVOLE−cGGM also applies.
– If F = F2, ΠspsVOLE−pcGGM degenerates to single-point COT and can do away

with FsVOLE so that the receiver need not send a difference d ∈ F. Instead,
the sender locally samples Γ ∈ K and masks this value with the sum of all
last-level nodes in a pcGGM tree. This optimization has been used in [10].

Complexity Analysis. Consider the complexity per execution when the PRF-
based optimization is used in t concurrent Extend executions. ΠspsVOLE−pcGGM

uses n precomputed COT tuples and one precomputed sVOLE tuple. P0 sends
(n − 2) · λ + 3 · log |K| + λ

t bits, and P1 sends log |F| bits. The computation is
dominated by the tree expansion with 1.5N RP calls for each party. Compared
with the prior works [10,43], our protocol roughly halve the communication, and
the reduction in computation is 25%. This computation cost includes no PRG
call in ConvertK, which can be implemented from cheap modulo operations for
the field size |K| considered in many sVOLE applications, e.g., [40,43–45].
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Protocol ΠspsVOLE−pcGGM

Parameters: Field F and its extension field K.

Initialize: This procedure is executed only once.

1. P0 and P1 send (init) to FCOT, which returns Δ ∈ F2λ to P0.
2. P0 and P1 send (init) to FsVOLE, which returns Γ ∈ K to P0. P0 outputs Γ .

Extend: This procedure can be executed many times. P0 and P1 input N = 2n

and use pcGGM (c.f. Figure 5) for n, K, keyed hash function HS : F2λ → F2λ , and
function ConvertK : F2λ → K.

3. P0 and P1 send (extend, n) to FCOT, which returns (K[r1], . . . ,K[rn]) ∈ F
n
2λ to

P0 and ((r1, . . . , rn), (M[r1], . . . ,M[rn])) ∈ F
n
2 × F

n
2λ to P1 such that M[ri] =

K[ri] ⊕ ri · Δ for i ∈ [1, n].
4. P0 and P1 send (extend, 1) to FsVOLE, which returns K[s] ∈ K to P0 and

(s,M[s]) ∈ F × K to P1 such that M[s] = K[s] + s · Γ .
5. P1 samples β ← F

∗, sets M[β] := M[s], and sends d := s − β ∈ F to P0.
P0 sets K[β] := K[s] + d · Γ such that M[β] = K[β] + β · Γ .

6. P0 samples (c1, μ) ← F
2
2λ and sets k := K[r1] ⊕ c1,

(v, {K0
i }i∈[1,n−1], (K

0
n, K1

n)) := pcGGM.FullEval(Δ, k),

ci := K[ri] ⊕ K0
i for i ∈ [2, n − 1], cb

n := ConvertK(HS(μ ⊕K[rn] ⊕ b · Δ)) + Kb
n

for b ∈ {0, 1}, and ψ := K0
n + K1

n − K[β].
P0 sends (c1, . . . , cn−1, μ, c0n, c1n, ψ) to P1.

7. P1 sets α = α1 . . . αn := r1 . . . rn ∈ [0, N), Kαi
i := M[ri] ⊕ ci for i ∈ [1, n − 1],

Kαn
n := crn

n − ConvertK(HS(μ ⊕ M[rn])), and

u := unitF(N, α, β), w := pcGGM.PuncFullEval(α, {Kαi
i }i∈[1,n], ψ + M[β]).

8. P0 outputs v and P1 outputs (u,w).

Fig. 6. pcGGM-based single-point sVOLE protocol in the (FCOT, FsVOLE)-hybrid model.

5 DPF and DCF Correlation Generation

We model DPF/DCF correlation generation in functionality FFSS (Fig. 7), which
includes distributed key generation and local full-domain evaluation. By putting
both procedures in the same functionality, we are able to model FSS as an ideal
functionality and avoid caveats in the proof. FFSS focuses on N = 2n for n ∈ N,
and we can define a similar functionality for a general N ∈ N. Using padding,
our protocols for FFSS also works in this general case.
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Functionality FFSS

Parameters: Ring R. FSS ∈ {DPF,DCF} with domain [0, N), where domain size
N = 2n for n ∈ N, and range R.

Gen: This functionality allows polynomially many (gen) commands. Upon receiv-
ing (gen, 〈α〉b, 〈β〉Ab ) from Pb for each b ∈ {0, 1}, where (〈α〉b, 〈β〉Ab ) ∈ [0, N) × R:

1. Set α := 〈α〉0 ⊕ 〈α〉1 ∈ [0, N), β := 〈β〉A0 + 〈β〉A1 ∈ R, and r ∈ RN such that
– If FSS = DPF, r(j) = 0 for j ∈ [0, N), j �= α, and r(α) = β.
– If FSS = DCF, r(j) = 0 for j ∈ [0, N), j ≥ α, and r(j) = β otherwise.

2. If both parties are honest, sample 〈r〉A0 , 〈r〉A1 ← RN such that 〈r〉A0 + 〈r〉A1 = r;
otherwise (i.e., Pb is corrupted), receive 〈r〉Ab ∈ RN from the adversary and
recompute 〈r〉A1−b := r − 〈r〉Ab ∈ RN .

3. Send 〈r〉A0 to P0 and 〈r〉A1 to P1.

Fig. 7. Functionality for DPF/DCF correlation generation.

One can view FFSS as an alternative to the FSS key generation functionality
that outputs each FSS key in the key pair to the designated party, who locally
uses its key to evaluate its shares of the evaluation results at several points. We
note that the full-domain evaluation included in FFSS does not complicate its
implementation in contrast to the known protocols [7,22] of the FSS key gener-
ation functionality. The reason is that, using the black-box evaluation technique
[22], these protocols also perform full-domain evaluation. If FSS correlations are
generated for immediate use without long-term storage (e.g., [22]), FFSS can be
a drop-in replacement of the FSS key generation functionality. However, we also
show in Appendix E.2 of the full version [29] that our protocols for FFSS can be
adapted to realize this key generation functionality.

5.1 DPF and DCF Schemes

Note that DPF/DCF scheme may be used in not only distributed settings (e.g.,
[22]) but also the scenarios where a trusted dealer is available (e.g., two-server
PIR [13,25]). It would be better for us to present the two schemes alone.

We present in Fig. 8 (resp., Fig. 9) our DPF (resp., DCF) scheme, which is
implicitly constructed from a shared pseudorandom correlated GGM tree. For
simplicity of exposition, we slightly abuse the function ConvertG : {0, 1}∗ → G so
that it can map random strings of either λ or λ− 1 bits to pseudorandom group
elements in G. Our DCF scheme makes non-black-box use of our DPF scheme.

Note that our DPF and DCF schemes use a keyed hash function HS . When
there is a trusted dealer, the key S can be uniformly sampled by the dealer. In
our DPF and DCF protocols in the upcoming sections, it can be jointly sampled
by two parties using one-time public coin-tossing. This hash key can be reused
across polynomially many FSS key pairs.
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Complexity Analysis. Consider the group G (e.g., in [7,13,14,22,25]) with the
PRG-free implementation of ConvertG (c.f. Appendix F.1 of the full version [29]).

Our DPF scheme has a full-domain evaluation that takes 1.5N RP calls,
in contrast to the 2N RP calls in the state-of-the-art construction of [13]. Its
key generation algorithm uses about 2n + 2 RP calls while this figure is about
4n in the prior work. In our scheme, the key size is n · λ + (λ + 1) + log |G|
bits, and the evaluation algorithm takes about n RP calls, both remaining the
same complexity as those in the prior work. In our DCF scheme, the full-domain
evaluation requires 2.5N RP calls, in contrast to 4N RP calls in the state-of-the-
art construction [7]. Its key generation needs about 4n + 2 RP calls, in contrast
to 8n RP calls in the prior work. The key size is n · λ + (λ + 1) + (n + 1) · log |G|
bits, and the evaluation requires about 2n RP calls, without any improvement.

Parameters: Domain size N = 2n for n ∈ N. Group G. Keyed hash function
HS : F2λ → F2λ . Function ConvertG : {0, 1}∗ → G.

DPF.Gen(1λ, (α, β, n,G)):

1: Parse α = α1 . . . αn ∈ {0, 1}n and β ∈ G.
2: Sample Δ ← {0, 1}λ such that lsb(Δ) = 1.
3: Sample 〈s0 ‖ t0〉0, 〈s0 ‖ t0〉1 ← {0, 1}λ such that 〈s0 ‖ t0〉0 ⊕ 〈s0 ‖ t0〉1 = Δ.
4: for i ∈ [1, n − 1] do
5: CWi := HS(〈si−1 ‖ ti−1〉0) ⊕ HS(〈si−1 ‖ ti−1〉1) ⊕ αi · Δ
6: 〈si ‖ ti〉0 := HS(〈si−1 ‖ ti−1〉0) ⊕ αi · 〈si−1 ‖ ti−1〉0 ⊕ 〈ti−1〉0 · CWi

7: 〈si ‖ ti〉1 := HS(〈si−1 ‖ ti−1〉1) ⊕ αi · 〈si−1 ‖ ti−1〉1 ⊕ 〈ti−1〉1 · CWi

8: 〈highσ ‖ lowσ〉0 := HS(〈sn−1 ‖ tn−1〉0 ⊕ σ) for σ ∈ {0, 1}
9: 〈highσ ‖ lowσ〉1 := HS(〈sn−1 ‖ tn−1〉1 ⊕ σ) for σ ∈ {0, 1}

10: HCW := 〈highαn〉0 ⊕ 〈highαn〉1
11: LCW0 := 〈low0〉0 ⊕ 〈low0〉1 ⊕ αn, LCW1 := 〈low1〉0 ⊕ 〈low1〉1 ⊕ αn

12: CWn := (HCW ‖ LCW0 ‖ LCW1)
13: 〈sn ‖ tn〉0 := 〈highαn ‖ lowαn〉0 ⊕ 〈tn−1〉0 · (HCW ‖ LCWαn)
14: 〈sn ‖ tn〉1 := 〈highαn ‖ lowαn〉1 ⊕ 〈tn−1〉1 · (HCW ‖ LCWαn)
15: CWn+1 := (〈tn〉0 − 〈tn〉1) · (ConvertG(〈sn〉1) − ConvertG(〈sn〉0) + β)
16: kb := (〈s0 ‖ t0〉b, {CWi}i∈[1,n+1]) for b ∈ {0, 1}
17: return (k0, k1)

DPF.Eval(b, kb, x):

1: Parse kb = (〈s00 ‖ t00〉b, {CWi}i∈[1,n+1]), CWn = (HCW ‖ LCW0 ‖ LCW1), and
x = x1 . . . xn ∈ {0, 1}n.

2: for i ∈ [1, n − 1] do
3: 〈sx1...xi

i ‖ tx1...xi
i 〉b := HS(〈sx1...xi−1

i−1 ‖ t
x1...xi−1
i−1 〉b)

⊕ xi · 〈sx1...xi−1
i−1 ‖ t

x1...xi−1
i−1 〉b ⊕ 〈tx1...xi−1

i−1 〉b · CWi

4: 〈high ‖ low〉b := HS(〈sx1...xn−1
n−1 ‖ t

x1...xn−1
n−1 〉b ⊕ xn)

5: 〈sx
n ‖ tx

n〉b := 〈high ‖ low〉b ⊕ 〈tx1...xn−1
n−1 〉b · (HCW ‖ LCWxn)

6: return yb := (−1)b · (ConvertG(〈sx
n〉b) + 〈tx

n〉b · CWn+1)

Fig. 8. Our DPF scheme with domain [0, N) and range G.
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Security. We prove the following theorems in Appendix D.2 and Appendix D.3
of the full version [29]. These theorems turn to the intuition that CW1, . . . ,CWn

are masked by pseudorandom CCR outputs (as the root and the first n − 1
on-path shared nodes are Δ), and CWn+1,VCW1, . . . ,VCWn are masked by some
pseudorandom ConvertG terms taking (pseudo)random CCR outputs as input.

Parameters: Domain size N = 2n for n ∈ N. Group G. Keyed hash function
HS : F2λ → F2λ . Function ConvertG : {0, 1}∗ → G.

DCF.Gen(1λ, (α, β, n,G)):

1: Parse α = α1 . . . αn ∈ {0, 1}n and β ∈ G. Let α0 := 0.
2: Run (k′

0, k
′
1) ← DPF.Gen(1λ, (α, −αn ·β, n,G)) and store its internal variables.

3: for i ∈ [1, n] do
4: 〈vi〉0 := HS(〈si−1 ‖ ti−1〉0 ⊕ 2)
5: 〈vi〉1 := HS(〈si−1 ‖ ti−1〉1 ⊕ 2)
6: VCWi := (〈ti−1〉0 − 〈ti−1〉1)

· (ConvertG(〈vi〉1) − ConvertG(〈vi〉0) + (αi − αi−1) · β)

7: kb := (k′
b, {VCWi}i∈[1,n]) for b ∈ {0, 1}

8: return (k0, k1)

DCF.Eval(b, kb, x):

1: Parse kb = (k′
b, {VCWi}i∈[1,n]). Let V 0

b := 0 ∈ G.
2: Run y′

b := DPF.Eval(b, k′
b, x) and store its internal variables.

3: for i ∈ [1, n] do
4: 〈vx1...xi−1

i 〉b := HS(〈sx1...xi−1
i−1 ‖ t

x1...xi−1
i−1 〉b ⊕ 2)

5: V i
b := V i−1

b + (−1)b · (ConvertG(〈vx1...xi−1
i 〉b) + 〈tx1...xi−1

i−1 〉b · VCWi)

6: return yb := y′
b + V n

b

Fig. 9. Our DCF scheme with domain [0, N) and range G.

Theorem 3. Given CCR function H : F2λ → F2λ , function ConvertG : F2λ−1 →
G, and keyed hash function HS(x) := H(S ⊕ x) with some key S ← F2λ , Fig. 8
gives a DPF scheme with domain [0, N) and range G.

Theorem 4. Given CCR function H : F2λ → F2λ , function ConvertG : F2� → G

with � ∈ {λ − 1, λ}, and keyed hash function HS(x) := H(S ⊕ x) with some key
S ← F2λ , Fig. 9 gives a DCF scheme with domain [0, N) and range G.

5.2 DPF Correlation Generation

We define a leveled evaluation algorithm DPF.NextLevel such that, on input a
level index i ∈ [1, n], all nodes on the (i − 1)-th level of the share of a shared
pseudorandom correlated GGM tree, and the public correction word CWi for the
i-th level, outputs all nodes one the i-th level.
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Protocol ΠDPF

Parameters: Domain size N = 2n for n ∈ N. Ring R. Keyed hash function
HS : F2λ → F2λ . Function ConvertR : {0, 1}∗ → R. Let H′ := hb ◦ HS .

DPF Gen: This procedure can be executed many times. For each b ∈ {0, 1}, Pb

inputs (〈α〉b, 〈β〉Ab ) ∈ [0, N) × R and proceeds as follows:

1. The two parties run sub-protocol ΠPREP (Figure 11), which, for each b ∈ {0, 1},
returns 〈Δ〉b and {(Kb[〈αi〉1−b],Mb[〈αi〉b])}i∈[1,n] to Pb such that lsb(〈Δ〉0 ⊕
〈Δ〉1) = 1, and Mb[〈αi〉b] = K1−b[〈αi〉b] ⊕ 〈αi〉b · 〈Δ〉1−b for i ∈ [1, n].

2. The two parties send (sample, λ) to FRand, which returns W ∈ {0, 1}λ to them.
3. Pb computes 〈s00 ‖ t00〉b := 〈Δ〉b ⊕ W . For i ∈ [1, n − 1], Pb sends to P1−b

〈CWi〉b := (⊕j∈[0,2i−1)HS(〈sj
i−1 ‖ tj

i−1〉b))

⊕ 〈αi〉b · 〈Δ〉b ⊕ Kb[〈αi〉1−b] ⊕ Mb[〈αi〉b],

receives 〈CWi〉1−b from P1−b, and computes CWi := 〈CWi〉b ⊕ 〈CWi〉1−b and

{〈sj
i ‖ tj

i 〉b}j∈[0,2i) := DPF.NextLevel(i, {〈sj
i−1 ‖ tj

i−1〉b}j∈[0,2i−1),CWi).

4. Pb samples μb ← {0, 1}λ, computes

〈Xhighσ ‖Xlowσ〉b := ⊕j∈[0,2n−1)HS(〈sj
n−1 ‖ tj

n−1〉b ⊕ σ) for σ ∈ {0, 1},

db := H′(μb ⊕ Kb[〈αn〉1−b]) ⊕ H′(μb ⊕ Kb[〈αn〉1−b] ⊕ 〈Δ〉b) ⊕ 〈Xhigh0 ⊕ Xhigh1〉b,

sends (μb, db) to P1−b, and receives (μ1−b, d1−b) from P1−b. Then, Pb computes

〈HCW〉b := 〈Xhigh〈αn〉b〉b ⊕ H′(μb ⊕ Kb[〈αn〉1−b])

⊕ H′(μ1−b ⊕ Mb[〈αn〉b]) ⊕ 〈αn〉b · d1−b,

〈LCW0〉b := 〈Xlow0〉b ⊕ 〈αn〉b ⊕ b, 〈LCW1〉b := 〈Xlow1〉b ⊕ 〈αn〉b,

sends 〈CWn〉b := (〈HCW〉b ‖ 〈LCW0〉b ‖ 〈LCW1〉b) to P1−b, receives 〈CWn〉1−b

from P1−b, and computes CWn := 〈CWn〉b ⊕ 〈CWn〉1−b and

{〈sj
n ‖ tj

n〉b}j∈[0,N) := DPF.NextLevel(n, {〈sj
n−1 ‖ tj

n−1〉b}j∈[0,2n−1),CWn).

5. (Binary field R = F2� , without FOLE)
Pb computes 〈CWn+1〉Ab := (

∑
j∈[0,N) ConvertR(〈sj

n〉b)) + 〈β〉Ab .

(General ring R, using FOLE)
The two parties run sub-protocol ΠMULT (Figure 12), which, for each b ∈ {0, 1},
takes as input

〈A〉Ab := (−1)b · ∑
j∈[0,N)〈tj

n〉b ∈ R,

〈B〉Ab := (−1)1−b · ∑
j∈[0,N) ConvertR(〈sj

n〉b) + 〈β〉Ab ∈ R,

and returns 〈CWn+1〉Ab to Pb.
In either case, Pb sends 〈CWn+1〉Ab to P1−b, receives 〈CWn+1〉A1−b from P1−b,
and computes CWn+1 := 〈CWn+1〉Ab + 〈CWn+1〉A1−b.

6. Pb computes kb := (〈Δ〉b⊕W, {CWi}i∈[1,n+1]) and 〈r(j)〉Ab := DPF.Eval(b, kb, j)
for j ∈ [0, N), and outputs 〈r〉Ab ∈ RN .

Fig. 10. DPF correlation generation in the (FCOT, FRand, FOLE)-hybrid model.
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In Fig. 10, we present our DPF correlation generation protocol ΠDPF. This
protocol operates in the (FCOT,FRand,FOLE)-hybrid model. FRand is the standard
coin-tossing functionality that outputs a uniform string to both parties. FOLE

is the functionality for oblivious linear evaluation (OLE) on ring R, where P0

(resp., P1) is given random (x0, z0) ∈ RN ×RN (resp., (x1, z1) ∈ RN ×RN ) such
that z0 + z1 equals the component-wise multiplication x0 �x1. We refer readers
to Appendix F.2 and Appendix F.3 of the full version [29] for the definitions
and instantiations of FRand and FOLE. If β is a bit-string, ΠDPF never uses FOLE.

ΠDPF requires FRand for the following reason. Note that ΠDPF uses the same
global offset Δ as the roots of polynomially many shared trees, each of which
defines a fresh DPF correlation. So, the two shares of this identical root should
be “re-randomized” to avoid the identical per-party shares of the defined corre-
lations. The two parties do this re-randomization by calling FRand for a public
randomness W and XORing this value to their shares of Δ, respectively.

Protocol ΠPREP

Initialize: This procedure is executed only once for each b ∈ {0, 1}. The two
parties send (init) to Fb

COT with identifier b, which returns Δ′
b ∈ {0, 1}λ to Pb.

Pb sends lsb(Δ′
b) to P1−b, receives lsb(Δ′

1−b) from P1−b, and sets 〈Δ〉b := Δ′
b ⊕

(0λ−1 ‖ (lsb(Δ′
1−b) ⊕ b)) such that lsb(〈Δ〉0 ⊕ 〈Δ〉1) = 1.

For each b ∈ {0, 1}: Pb inputs 〈α〉b ∈ {0, 1}n and proceeds as follows.

1-1. The two parties send (extend, n) to Fb
COT with identifier b, which returns

kb ∈ F
n
2λ to Pb and (r1−b,m1−b) ∈ F

n
2 × F

n
2λ to P1−b such that m1−b =

kb ⊕ r1−b · Δ′
b.

1-2. Pb sets gb := 〈α〉b ⊕ rb, sends gb to P1−b, and receives g1−b from P1−b. For
i ∈ [1, n], Pb sets

Kb[〈αi〉1−b] := k
(i)
b ⊕ g

(i)
1−b · 〈Δ〉b,

Mb[〈αi〉b] := m
(i)
b ⊕ r

(i)
b · (0λ−1 ‖ (lsb(Δ′

b) ⊕ (1 − b))).

1-3. Pb outputs 〈Δ〉b and {(Kb[〈αi〉1−b],Mb[〈αi〉b])}i∈[1,n].

Fig. 11. Preprocessing sub-protocol for DPF/DCF correlation generation.

Protocol ΠMULT

For each b ∈ {0, 1}: Pb inputs (〈A〉Ab , 〈B〉Ab ) ∈ R2 and proceeds as follows.

1. The two parties send (extend, 2) to FOLE, which, for each b ∈ {0, 1}, returns
(xb, zb) ∈ R2 × R2 to Pb such that z0 + z1 = x0 · x1.

2. Pb computes (γb, ζb) := (〈A〉Ab , 〈B〉Ab ) + (x
(b)
b ,x

(1−b)
b ), sends (γb, ζb) to P1−b,

and receives (γ1−b, ζ1−b) from P1−b.

3. Pb outputs 〈A · B〉Ab := 〈A〉Ab · 〈B〉Ab + 〈A〉Ab · ζ1−b − x
(1−b)
b · γ1−b + z

(0)
b + z

(1)
b .

Fig. 12. OLE-based multiplication sub-protocol.
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In ΠDPF, the key S of the keyed hash function HS can be produced by one
FRand invocation before protocol execution, and we omit this setup for simplicity.

Security. We prove Theorem 5 in Appendix D.4 of the full version [29]. This
proof will consider polynomially many concurrent Gen executions that uses the
one-time initialized Δ. Intuitively, the security primarily follows from the COT-
based secure computation of correction words, where the COT tuples are related
to the global offset Δ so that the transcripts are masked by CCR responses. In
particular, the intermediate transcript db is masked by a CCR response coming
from a legal CCR query with overwhelming probability due to the uniform μb.

Theorem 5. Given CCR function H : F2λ → F2λ , function ConvertR : F2λ−1 →
R, and keyed hash function HS(x) := H(S ⊕x) with some key S ← F2λ , protocol
ΠDPF (Fig. 10) UC-realizes functionality FDPF (Fig. 7) against any semi-honest
adversary in the (FCOT,FRand,FOLE)-hybrid model. If R = F2� for � ∈ N, protocol
ΠDPF never invokes FOLE.

Table 3. The efficiency of distributed correlation generation for our DPF scheme. All
numbers are in milliseconds (ms).

n = 20 n = 22 n = 24 n = 26 n = 28

R = F2127 LAN 50 120 397 1501 5920

WAN 2752 3020 3492 4786 9355

R = F2 LAN 29 30 34 52 120

WAN 2930 3132 3337 3554 3823

Communication Optimization. ΠDPF has the following two optimizations:

– For t concurrent Gen executions (e.g., in its applications to RAM-based
computation [22], FSS-based MPC [7], and OLE extension [12], etc.), each Pb

can compress all μb’s in these executions via a PRF F : F2λ × {0, 1}∗ → F2λ

with a fresh key kprf,b ← F2λ sampled after receiving its COT outputs (from
both Fb

COT and F1−b
COT) in all executions. For each execution with sub-session

ID ssid, the two parties define μb := F (kprf,b, ssid).
– All invocations of FRand can be compressed via another independent PRF key

sampled after the one-time initialization of Fb
COT and F1−b

COT so that the root
of each Pb’s tree is (pseudo)random.

– Another method to save the communication for random μb’s is to replace
HS by a hash function that meets “CCR for naturally derived keys” [28,47],
which can also be implemented in one RP call. Note that μb is introduced to
prevent the replay attack, which results from the manipulation of COT out-
puts, against the hashing mask in db. The alternative hash function addresses
this attack by adding non-repeating tweaks.
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Complexity Analysis (Binary Field). Consider the complexity per execu-
tion when the first PRF-based optimization is used in t concurrent Gen execu-
tions. The cost is symmetric. ΠDPF uses n COT tuples per party and one FRand

call. Each party sends (n + 1) + (n + 1) · λ + λ
t + log |R| bits. The computation

per party is dominated by the tree expansion in n DPF.NextLevel calls, or 1.5N
RP calls. ΠDPF runs in n + 3 rounds (without counting the one-time setup).

In contrast, the binary-field protocol [22] can be implemented from GMW-
style 2PC and n string OTs each with (λ − 1)-bit payloads. One can cast these
string OTs into n precomputed COT tuples according to [3,34]. Using these
tuples, each party sends n + n · (3λ − 1) + log |R| bits, and the computation per
party is dominated by the 2N RP calls in GGM tree expansion. This protocol
can proceed in 2n + 2 rounds: one for sending n masked choice bits, two for
sharing and revealing each of the first n correction words, and one for revealing
the (n+1)-th correction word. Our savings in computation, communication, and
round complexity are about 25%, 66.6%, and 50%, respectively.

We implement ΠPREP and ΠDPF in C++, and perform benchmarks on a pair of
Amazon EC2 R5.xlarge instances. We take binary fields R = F2127 and R = F2

under computational security parameter λ ≈ 128. The reported time include
both distributed key generation and full-domain evaluation. We set 1Gbps band-
width with no latency as our LAN setting, and 20Mbps bandwidth with 100ms
latency as our WAN setting. The results are shown in Table 3. We can see that
our protocol is practically efficient, especially for two-server PIR. Although all
numbers are reported based on one thread, performing one correlation genera-
tion for 228 127-bit values takes about 6 s, which is about 30% to 40% faster
than the performance from a prior implementation in the same threads [22].

Complexity Analysis (General Ring). The two parties additionally need two
precomputed OLE tuples for the secure multiplication. Overall, each party sends
(n + 1) + (n + 1) · λ + λ

t + 3 · log |R| bits, and the protocol runs in n + 4 rounds.
In contrast, the binary-field protocol [22] can be adapted for the general-ring

CWn+1 in the DPF scheme [13]. Securely computing this CWn+1 consumes two
OLE tuples and needs the level-by-level 2PC, which leads to two additional bits
in each OT payload per level, to share the last-level control bit 〈tn〉1. Each party
sends at most n + n · (3λ + 3) + 3 · log |R| bits, and the protocol runs in 2n + 3
rounds. The improvement is the same as the binary-field case.

5.3 DCF Correlation Generation

Our DCF protocol ΠDCF in Fig. 13 extends ΠDPF by also computing n value
correction words and defining the evaluation result as per our DCF scheme. If
β is a bit-string, the two parties can compute n value correction words without
using precomputed OLE tuples. Otherwise, for a general ring element β, these
correction words are obtained from OLE-based secure multiplication.
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Security. We prove Theorem 6 in Appendix D.5 of the full version [29], where
polynomially many concurrent Gen executions are considered. The security is
also based on the COT- and OLE-based secure computation of the n additional
correction words of our DCF scheme. Note that the intermediate yi

b’s are pseu-
dorandom due the masking CCR responses, which are for the legal CCR queries
with overwhelming probability in the presence of uniform xi

b’s.

Theorem 6. Given CCR function H : F2λ → F2λ , function ConvertR : F2� → R
for � ∈ {λ − 1, λ}, and keyed hash function HS(x) := H(S ⊕ x) with some key
S ← F2λ , protocol ΠDCF (Fig. 13) UC-realizes functionality FDCF (Fig. 7) against
any semi-honest adversary in the (FCOT,FRand,FOLE)-hybrid model. If R = F2�

for � ∈ N, protocol ΠDCF never invokes FOLE.

Protocol ΠDCF

Parameters: Domain size N = 2n for n ∈ N. Ring R. Keyed hash function
HS : F2λ → F2λ . Function ConvertR : {0, 1}∗ → R. Let H∗ := ConvertR ◦ HS .

DCF Gen: This procedure can be executed many times. For each b ∈ {0, 1}, Pb

inputs (〈α〉b, 〈β〉Ab ) ∈ [0, N)×R and proceeds as in ΠDPF (Figure 8), with the same
Step 1, 2 and the following modifications to the subsequent steps:

3. Along with 〈CWi〉b for i ∈ [1, n − 1], Pb samples xi
b ← {0, 1}λ, computes

yi
b := H∗(xi

b ⊕ Kb[〈αi〉1−b]) − H∗(xi
b ⊕ Kb[〈αi〉1−b] ⊕ 〈Δ〉b) + 〈β〉Ab − 2 · 〈αi〉b · 〈β〉Ab ,

sends (xi
b, y

i
b) to P1−b, receive (xi

1−b, y
i
1−b) from P1−b, and computes

〈αi · β〉Ab := 〈αi〉b · 〈β〉Ab − H∗(xi
b ⊕ Kb[〈αi〉1−b]) + H∗(xi

1−b ⊕ Mb[〈αi〉b]) + 〈αi〉b · yi
1−b.

4. Along with 〈CWn〉b, Pb repeats Step 3 for i = n and computes 〈αn · β〉Ab .
5. For i ∈ [1, n] and j ∈ [0, 2i−1), Pb computes 〈vj

i 〉b := HS(〈sj
i−1 ‖ tj

i−1〉b ⊕ 2)
and 〈α0 · β〉Ab := 0. Pb computes 〈CWn+1〉Ab by using 〈αn · β〉Ab instead of 〈β〉Ab ,
and:
(Binary field R = F2� , without FOLE) For i ∈ [1, n] in parallel:
Pb computes 〈VCWi〉Ab := (

∑
j∈[0,2i−1) ConvertR(〈vj

i 〉b)) + 〈αi · β〉Ab − 〈αi−1 · β〉Ab .

(General ring R, using FOLE) For i ∈ [1, n] in parallel:
The two parties run sub-protocol ΠMULT (Figure 12), which, for each b ∈ {0, 1},
takes as input

〈Ai〉Ab := (−1)b · ∑
j∈[0,2i−1)〈tj

i−1〉b ∈ R,

〈Bi〉Ab := (−1)1−b · ∑
j∈[0,2i−1) ConvertR(〈vj

i 〉b) + 〈αi · β〉Ab − 〈αi−1 · β〉Ab ∈ R,

and returns 〈VCWi〉Ab to Pb.
In either case, along with 〈CWn+1〉Ab , Pb sends 〈VCWi〉Ab to P1−b, receives
〈VCWi〉A1−b from P1−b, and computes VCWi := 〈VCWi〉Ab + 〈VCWi〉A1−b.

6. Pb computes kb := (〈Δ〉b ⊕ W, {CWi}i∈[1,n+1], {VCWi}i∈[1,n]) and 〈r(j)〉Ab :=
DCF.Eval(b, kb, j) for j ∈ [0, N), and outputs 〈r〉Ab ∈ RN .

Fig. 13. DCF correlation generation in the (FCOT, FRand, FOLE)-hybrid model.
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Communication Optimization. The optimizations in Sect. 5.2 also applies
to the DCF protocol ΠDCF. Moreover, the random elements {xi

b}i∈[1,n] in ΠDCF

can also be compressed using the same technique for the random μb’s.

Complexity Analysis (Binary Field). Consider the complexity per execu-
tion when the first PRF-based optimization is used in t concurrent Gen execu-
tions. The cost is symmetric. ΠDCF consumes n COT tuples per party and one
FRand call. Each party sends (n+1)+ (n+1) ·λ+ λ

t +(2n+1) · log |R| bits, and
the computation per party comes from the 2.5N RP calls in the tree expansion.
ΠDCF has round complexity n + 3, the same as ΠDPF in the binary-field case.

In contrast, the state-of-the-art protocol of [7] requires n string OTs to run
GMW-style 2PC. The string OTs consume n precomputed COT tuples and
have payloads of (λ − 1) + 2 · log |R| bits. Using n COT tuples, each party sends
n + n · (3λ − 1 + 5 · log |R|) + log |R| bits, and the computation per party is
dominated by the 4N RP calls in GGM tree expansion in 2n + 2 rounds. Our
savings in computation and round complexity are 37.5% and 50%, respectively.
For a typical ring R with size |R| ≈ 2λ, the communication reduction is about
62.5%. When R is sufficiently small, this reduction can be 66.6%.

Complexity Analysis (General Ring). ΠDCF also works for general R at
the cost of additionally using 2n+2 precomputed OLE tuples. This general-ring
version proceeds in n + 4 rounds, and the overall outgoing communication per
party is (n + 1) + (n + 1) · λ + λ

t + (4n + 3) · log |R| bits.
In contrast, the OT-based protocol [7] can run in 2n + 3 rounds. Each party

sends at most n + n · (3λ + 3 + 4 · log |R|) + (3n + 3) · log |R| bits and uses
2n + 2 OLE tuples. Our savings in communication and round complexity are
about 50% ∼ 66.6% and 50%, respectively, for typical ring size |R| ≤ 2λ.
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