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1 Introduction

Calibration of RAFM Micro
Mechanical Model for Creep
using Bayesian Optimization
for Functional Output

A Bayesian optimization procedure is presented for calibrating a multi-mechanism mi-
cromechanical model for creep to experimental data of FS82H steel. Reduced activation
ferritic martensitic (RAFM) steels based on Fe(8-9)%Cr are the most promising candi-
dates for some fusion reactor structures. Although there are indications that RAFM steel
could be viable for fusion applications at temperatures up to 600 °C, the maximum op-
erating temperature will be determined by the creep properties of the structural material
and the breeder material compatibility with the structural material. Due to the relative
paucity of available creep data on F82H steel compared to other alloys such as Grade
91 steel, micromechanical models are sought for simulating creep based on relevant de-
Sformation mechanisms. As a point of departure, this work recalibrates a model form that
was previously proposed for Grade 91 steel to match creep curves for F82H steel. Due to
the large number of parameters (9) and cost of the nonlinear simulations, an automated
approach for tuning the parameters is pursued using a recently developed Bayesian opti-
mization for functional output (BOFO) framework [1]. Incorporating extensions such as
batch sequencing and weighted experimental load cases into BOFO, a reasonably small
error between experimental and simulated creep curves at two load levels is achieved in
a reasonable number of iterations. Validation with an additional creep curve provides
confidence in the fitted parameters obtained from the automated calibration procedure to
describe the creep behavior of F82H steel.

Keywords: Model calibration, Crystal plasticity, Bayesian optimization, Microstructural
modeling, Generalized chi-square distribution

across a broad range of temperatures and applied stresses are not
available because these experiments are very difficult and expen-

The realization of nuclear fusion as a clean alternative energy
source requires the design and manufacture of fusion plants that
are safe and durable as well as produce minimal radioactive waste.
These overarching goals place significant demands on the perfor-
mance of structural materials and limit material choices. Re-
duced activation ferritic martensitic (RAFM) steels are the most
promising candidates for many fusion reactor structures to facil-
itate simplified waste management, and F82H steel is one of the
most well-studied variants of RAFM steels [2-4]. RAFM steels
are also preferred structural materials for fusion/fission applica-
tions because they have swelling resistance that outperforms their
austenitic counterparts. The determination of the structural in-
tegrity of the in-vessel components in the fusion reactor for creep
damage using design rules requires the availability of the time-
dependent allowable stress intensity, S;. This material property S;
is calculated from the creep rupture stress, the stress corresponding
to onset of tertiary creep, and the stress to cause a 1% creep strain
[5]. Unfortunately, these values for evaluating the S; of F82H steel
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sive [6,7].

Traditionally, extrapolating creep data from short term experi-
ments may produce unconservative values since creep deformation
mechanisms in ferritic martensitic (FM) steels are dependent on
stress level. As an alternative, numerical simulation of creep de-
formation can be a feasible approach to generate the needed creep
data for F82H steel [8]. Earlier creep models [9,10] have been de-
veloped based on phenomenological approaches that do not capture
microstructure evolution, but recent creep models employ physics-
based descriptions that capture glide and climb dislocation mech-
anisms [11], dislocation density, and precipitate evolution [12] in
the microstructure. Crystal plasticity (CP) models, initially limited
to describing creep in single crystals [13], have now been extended
to capture creep in high temperature polycrystals [14].

Also, the nucleation, growth, and diffusion of cavities within
grains and along grain boundaries contribute to creep deforma-
tion in FM steels. The present understanding of the distribution
and size variation of cavities within prior austenite grains (PAG)
and along their grain boundaries [15-19] have helped to develop
models for capturing individual cavities along the grain boundaries
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[20], void growth along grain boundaries in viscoplastic materials
[21], plastic dilatation cavity growth along grain boundaries [22]
in 2 dimensional domains.

A smeared-cavity-population physically based model [23,24]
was extended by Nassif et al. [25] to capture creep strain ef-
fects and stress triaxiality in material points of the grains adjacent
the grain boundaries. This model describes the physical and mate-
rial physics/mechanism such as dislocation climb and glide, diffu-
sion of point defects, grain boundary sliding cavity formation, and
growth and coalescence common to FM steels. Initially, Nassif et
al. [25] calibrated this model to describe the creep deformation
of Grade 91, a widely-used FM steel. Subsequently, the effects of
uncertainty in the constitutive model parameters were quantified
by Behnam et al. [8]. However, this model can potentially be re-
calibrated for F82H steel since it has microstructural features and
deformation mechanisms that are similar to Grade 91 steel.

Calibration of a CP model can be formulated as an optimization
problem in which the misfit between the CP model and the refer-
ence data is minimized. CP models can be challenging to calibrate
due to large numbers of parameters, computationally-intensive sim-
ulations, and high degree of nonlinearity. Various approaches have
been applied to this challenging continuous optimization problem,
broadly classified as either local or global optimization methods.

Gradient-based (local) optimization methods have gained sig-
nificantly popularity and proven to be highly effective over the
past decades, particularly with the advancement of automatic dif-
ferentiation. There have been numerous successful applications of
gradient-based optimization in deep learning, computational sci-
ence, and more recently, the calibration of the CP models [26].
Yet, given the complexity of CP models, the corresponding opti-
mization problem is not convex but rather may possess many local
optima. Hence, the effectiveness of gradient-based optimization
heavily relies on the initialization and may likely get trapped in a
local optimum [27]. Significant domain knowledge is required to
find good starting values for the parameters, which is not feasible
in most of the cases.

Global optimization techniques, such as evolutionary algo-
rithms, are widely adopted as an alternative tool to handle non-
convex optimization with many local optima. They have been suc-
cessfully applied for parameters calibration in viscoplastic models
[28-30] and CP models [31-34]. Although global optimization
methods can be more effective at finding global minima, they of-
ten require numerous evaluations, e.g., on the order of thousands,
of the objective function, which can be computationally expensive
if the CP models themselves are costly to evaluate.

To tackle the expensive calibration of the CP models, various
researchers [35-37] proposed the use of Bayesian optimization
[38—41], the state-of-the-art global optimization approach that can
achieve comparable results using significantly fewer evaluations of
the objective functions compared to the evolutionary algorithm.
The essence of Bayesian optimization is to strategically select the
next set of parameters for evaluation by first constructing a surro-
gate model to learn the response surface of the objective function.
However, for the problem of model calibration, the theoretical anal-
ysis in [1,42,43] suggests that the standard Bayesian optimization
is not the most optimal approach given its least squares objective.
Instead, Huang et al. [1] built the surrogate model directly be-
tween the input material parameters and the physics model output,
and then derived the sequential Bayesian optimization selection
criterion for the least squares objective. The effectiveness of the
Bayesian optimization for functional output (BOFO) proposed by
Huang et al. [1] over standard Bayesian optimization has been
demonstrated numerically on the calibration of functional output
computer code for a loading scenario of a time-dependent vapor
phase infiltration problem. We aim to extend the BOFO method to
our problem of interest, namely to identify the material parameters
such that the creep strain curve (functional output) from our mi-
crostructural CP model would match with the experimental creep
strain curve.

The goal of this work is to model creep deformation mechanisms

2 /| PREPRINT FOR REVIEW

in the grains and grain boundaries of F82H steel using a recently
enhanced implementation of 3-dimensional Voce crystal plastic-
ity and smeared-cavity-population type damage models within the
MOOSE framework [44]. This implementation incorporates a lo-
cal Newton solver as a robust implicit time integration scheme for
the grain boundary state variables, contrasting with the explicit ap-
proach in WARP3D finite element (FE) code [45]. The material
parameters of this physically based microstructural model are cal-
ibrated to match the experimental creep data for two load levels
at 600 °C and validated against a third load level. Although the
maximum operating temperature is determined by the creep perfor-
mance and breeder material compatibility, there are indications that
F82H steel could still be viable for fusion applications at temper-
atures up to 600 °C. The BOFO method proposed specifically for
calibrating the functional output computer code in [1] is employed
for the parameter identification of our microstructural model, with
the initial ranges of the parameters determined from preliminary
simulations and from uncertainty quantification of time to mini-
mum creep strain rate for Grade 91 FM steel [8]. Enhancements
to BOFO such as batch sequencing are also introduced to improve
its effectiveness on this challenging calibration problem.

An outline of the remainder of the paper is as follows. In Sec-
tion 2, physical comparisons and justifications are made about the
microstructure of F82H and Grade 91 steels, and the constitutive
model form, the finite element model and the transient solver are
described. In Section 3, the ranges of the target material properties
are established, the objective function is formalized that effectively
weights the discrepancy measures between experimental and simu-
lated creep curves, and post-processing of the FE creep curves onto
uniform intervals is discussed. In Section 4, the Bayesian calibra-
tion approach is detailed, which starts with the standard Bayesian
optimization procedure and then discusses the variant proposed in
[1] for the calibration of functional output computer code. In Sec-
tion 5, the discrepancy measure is evaluated on the output from
the MaxPro samples, Bayesian optimization iterations are applied
to calibrate the model for the 150 and 180 MPa load levels, and
the model is validated by simulating the 160 MPa load level. In
Section 6, the features, limitations, impact and future extensions
of the Bayesian calibration framework are discussed. Conclusions
are drawn in Section 7.

2 Micro-structural Model for Creep in F82H Steel

This section first summarizes the material compositions, mi-
crostructural features, and deformation mechanisms common be-
tween Grade 91 and F82H steels. The similarity of features moti-
vates the retention of the model form proposed in Nassif et al. [25]
that combines grain dislocation creep with grain boundary cavita-
tion models. The next subsection briefly describes the constitutive
equations that represent the grain and grain boundary interaction
mechanisms of this micro-structural model, the material parame-
ters of which are the target in the calibration study of this work.
Subsequently, the simulation of creep boundary value problems us-
ing the FE code MOOSE is highlighted along with enhancements
to the formulation by Rovinelli et al. [46]. Lastly, simulated creep
curves using the calibrated parameters for Grade 91 are shown
alongside Grade 91 and F82H experimental data to illustrate the
desired level of fit from the BOFO calibration procedure. Further
discussion of the model form and its refinements are contained in
[25,46].

2.1 Material micro-structural and grain-boundary interac-
tion mechanisms in ferritic martensitic steels. Ferritic marten-
sitic (FM) steels such as Grade 91 and F82H are composed primar-
ily of iron and secondarily of chromium and have a long history of
development due to their creep resistance. RAFM steels are vari-
ants of Fe (8-9%Cr) FM steel produced by replacing high activation
elements such as Mo and Nb with low activation elements such as
W, V and Ta. Concentrations of other elements like Cu, Co, Al, Ni
and various impurities are also restricted in the process to limit the
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Table1 Chemical Composition (wt by percent) of 9Cr FM
steels and RAFM steels [51,52]

9Cr FM steels 9Cr RAFM steels

Element Grade 91 Grade 92 JFL-1 E97 F82H
C 0.09 0.11 0.1 0.11 0.09

N 0.04 0.05 0.05 0.03 0.01
Cr 8.7 9.3 9 9 7.70
Mn 0.35 0.41 0.45 0.4 0.16
\" 0.22 0.16 0.19 0.2 0.16
\%% - 1.67 2 1.1 1.95
Ta - - 0.07 0.07  0.02

Si 0.29 0.1 <0.1 0.04 0.11

generation of high long-term radioactivity [4]. The Mn concen-
tration in RAFM steel is usually kept high to avoid the formation
of delta ferrite. The addition of W increases the creep rupture
strength but also increases ductile to brittle transition temperature
(DBTT) [47,48]. Tantalum in RAFM steel plays a vital role in low-
ering DBTT through its effect on prior austenitic grain refinement
[49], but higher W and Ta content in RAFM steels could adversely
decrease the weldability properties [48,50]. However, addition of
Ta helps to restrict the grain growth during normalization and acts
as a strong carbide former. Several variants of RAFM steels exist
such as Eurofer 97, F82H, ODS and CNAs with variation of W,
V and Ta within their material composition. However, F82H steel
is one of the most well-studied variants of RAFM steels and has a
large database of material properties [6]. The chemical composi-
tion of various FM steels, including the F82H steel samples used
in the creep experiments reported later in this paper, are listed in
Table 1.

These FM steels including Grade 91 and F82H exhibit a complex
microstructure within their prior austenite grains (PAG) that forms
during the normalizing and tempering processes [53,54]. These
microstructural features have length scales varying from approx-
imately 30 pm diameter for the roughly equiaxed PAGs down to
the laminar lath structures with a layer width of 0.2 pm, with sev-
eral martensitic blocks and packets existing at intermediate length
scales. The numerical modeling of this study considers explicitly
only the PAG highest length scale. Analysis of dislocation density
of Grade 91 shows an initial dislocation density on the order of
10*131~2 [53], which forms particularly within the dense networks
of lath boundaries. Meanwhile, a significant portion of the dislo-
cation density within lath interiors can be easily mobilized during
creep loading. Another key feature of FM steels are their carbide
and nitride precipitates, in particular the M23C6 (M = Cr-rich)
precipitates that cluster along PAG and packet boundaries within
Grade 91 [53,54]. These precipitates, with diameters around 100
nm [55], contribute to increased creep strength by stabilizing the
material at high temperatures and pinning the dislocation networks.
Meanwhile, the MX precipitates (M = Nb/Ta/V, X= C/N) with size
usually around 20 nm are more uniformly distributed across the
packets and block interiors [25]. Besides developments of these
phases, it has been observed that other Laves and Z phases could
be formed during service under sustained stress and temperature
[56,57].

The substitution between Grade 91 and F82H of the alloying
elements Mo and Va with W and Ta does not disrupt the over-
all appearance and role of these aforementioned microstructural
features according to different studies. For example, the exist-
ing scanning electron microscopy (SEM) images of RAFM steels
[48,58] from a range of compositions and austenitizing tempera-
tures confirm the presence of 10-30 pm diameter PAG and M23C6
precipitates along grain boundaries. Note that the alloying element
compositions and austenitizing temperature certainly influence the
initial size and coarsening of precipitates [48], the PAG size [58],
and lath size [59]. Meanwhile, according to the review of Huang
et al. [60], F82H shows slightly higher yet similar creep strength
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to Grade 91 at 600 °C in contrast to other candidate RAFM steels
with lower creep strength. Meanwhile, Tan et al. [52] have noted
that the size of the M23C6 precipitates in some batches of F82H
could easily coarsen to a size of > 200pm which reduces their
effectiveness in pinning the grain boundaries during creep. Also,
there can be smaller amounts of MX precipitates (~0.12 vol %) in
F82H steel compared to ~0.35 % in Grade 91 steel. This lower
density of MX precipitates provides lessened grain boundary pin-
ning and thereby can cause F82H to have lower creep resistance
to Grade 91 [52]. Nonetheless, the similarities of microstructural
features and mechanical behavior between Grade 91 and F82H mo-
tivate the recalibration of the Grade 91 model form Nassif et al.
[25] pursued in this work.

In FM steel, during both primary and secondary creep, the
primary deformation mechanisms involve dislocation motion and
point defect motion. Initially, there is a reduction in mobile dislo-
cations [61] followed by the kinetics of high-density immobilized
dislocations being influenced by the processes of climb over pre-
cipitates and other recovery mechanisms [55]. This manifests as a
power-law relationship between stress and creep rate. Additionally,
point defects (vacancies and inclusions) utilize subgrain, block,
and packet boundaries as diffusional pathways. In pure metals,
the diffusion of point defects at high temperatures and low stress
typically results in a linear correlation between stress and creep
rate [62,63]. When comparing Grade 91 test data from minimum
state creep rates obtained across several experiments and load lev-
els [64-66], a distinct shift in the power-law dependence of strain
rate with stress becomes apparent near the 100 MPa load level.
These observations are critical for devising numerical models of
PAG creep deformation.

Meanwhile, the interacting mechanisms within PAG occur si-
multaneously with the evolving condition of grain boundaries dur-
ing progressive creep deformation. A significant mode of creep
damage, observed experimentally in metals (including low and high
chromium alloy steels), involves the formation and enlargement of
cavities along grain boundaries [67,68]. Both new cavity nucle-
ation and growth of existing cavities contribute to creep damage
evolution [16,17,69,70]. Additionally, grain boundary sliding has
been detected in Grade 91 [16,71], contributing to overall creep
strain and creating stress concentrations around particles and triple
junctions that drive cavity formation. Consequently, analysis of
these features suggests that a physics-based grain boundary model
for creep damage should be chosen to consider the intrinsic connec-
tions between these processes and the state of neighboring grains.

2.2 Micro-structural creep model: MOOSE code and
problem description. Following the discussion on the constitu-
tive relations within the microstructural finite element analysis ap-
proach, the focus of this subsection is to briefly describe the history
of the numerical implementation of the model within two finite el-
ement codes. Then, the spatial and temporal discretization of the
F82H unit cell model is described in regards to simulating creep
boundary value problems.

In the analysis of the preceding experimental data related to FM
steels, two primary mechanisms emerge: (a) the collective defor-
mation of grain bulks, influenced by both dislocation motion and
point defect diffusion, and (b) the local deformation of grain bound-
aries due to viscous sliding as well as void formation, growth, and
coalescence. These observations serve as the basis for a microme-
chanical finite element modeling approach, which considers both
grain boundary and bulk deformation using a three-dimensional
(3D) cell model. Figure 1 illustrates a typical microstructure, fea-
turing (a) prior austenite grains (PAG) represented as solid ele-
ments and (b) prior austenite grain boundaries (PAGB) represented
as interface elements. The major constitutive relations which are
applicable for representing these two primary microstructural fea-
tures of FM steels have been developed in our prior work on Grade
91 [25,46]. For completeness, the major relations are provided in
Appendices A and B.
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Fig. 1 FE microstructural cell model of F82H, with solid
elements representing PAG and interface elements rep-
resenting PAGB.

The original development and implementation of the Grade
91 microstructural creep model took place in the finite ele-
ment code WARP3D [45], and its model parameters were man-
vally calibrated to fit the experimental datasets of Kimura et
al. [66], and Kloc and Skleni¢ka [64]. However, subsequent
work by Rovinelli et al. [46,72] led to the re-implementation
of the creep constitutive model form using the MOOSE finite
element framework [44]. Specifically, their work is contained
within a MOOSE application called DEER (https://github.com/
Argonne-National-Laboratory/deer) and will be referenced herein
simply as “MOOSE”.

The MOOSE implementation offers several enhancements that
better suit the automated calibration process for F§2H steel; these
enhancements are described in greater detail within [72]. No-
tably, adjusting material parameters introduces a wide range of
time scales into the simulated creep curves, spanning three orders
of magnitude [8]. To achieve numerical stability across this broad
range, the MOOSE platform incorporates a local Newton solver as
a robust implicit time integration scheme for the grain boundary
state variables, contrasting with the explicit approach in WARP3D.
Implicit time integration allows the global FE transient solver to
converge efficiently, eliminating the need for meticulously crafted
time step sequencing in the WARP3D analyses [25].

Additional enhancements from [72] that also contribute to the
numerical robustness of the MOOSE implementation are briefly
enumerated:

(1) Smooth Penalty Function for Contact Modeling: Compared
to the previous linear penalty function, the relation proposed
in (B8) helps reduce the amount of interpenetration.

(2) Adaptive Sub-stepping in Local Newton Solver: The grain
boundary quadrature point Newton solver includes adaptive
sub-stepping such that failure to converge the state variable
evolution equations triggers a local sequential time step cal-
culation rather than triggering a global time step division.

(3) Consistent Algorithmic Tangent Matrix Computation: Be-
cause of the adaptive sub-stepping for the grain boundary
model, the work of Pérez-Foguet et al. [73] is employed to
compute the consistent algorithmic tangent matrix using a
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formulation of the implicit function theorem.

(4) Enforcing Three Physical Constraints along the Grain
Boundaries using Lagrange Multipliers: A void cannot close
or shrink below the radius of the carbide particle (a > ag);
the cavity number density remains non-decreasing (b < 0);
and a grain boundary is fully damaged once b = a so that
generally b > a.

(5) Transitional Near-Failure Model at High Values of Porosity:
The grain boundary damage model as a function of porosity

v/ (a/b) exhibits exponential behavior near failure. To mit-
igate numerical challenges, a smoother traction-separation
law that decays to zero is employed once a material point
is labeled as “near-failure”. This label is determined locally
for each grain boundary quadrature point by evaluating three
criteria in terms of the local state variables.

Similar to our previous work on Grade 91 steel, the present cali-
bration study on creep behavior of bulk F82H uses a 3D microstruc-
tural cell FE model. The FE model includes 100 regions repre-
senting prior austenite grains. The polycrystalline mesh generator
Neper [74] can create both cuboid and fully periodic grain collec-
tions through Voronoi tessellation and space-filling with quadratic
tetrahedral elements (as shown in Figure 1). MOOSE creates
zero-thickness interface elements using its "BreakMeshByBlock-
Generator" command, which employs node duplication procedures
from [75]. The cell model used for finite element analysis has
dimensions of 0.2 x 0.2 x 0.2mm?, resulting in an average grain
size of approximately 50 pm with a log-normal distribution and
sampled from a random texture. The standard cuboid model con-
sists of 15,494 nodes and 6,159 elements. Notably, Messner et al.
[76] demonstrated that using 100 grains adequately reproduces the
macroscopic material behavior of Grade 91 when employing block
periodic boundary conditions.

In this study, each uniaxial creep simulation adheres to a com-
mon load-hold strategy, in which we apply symmetry boundary
conditions on the three faces (x =0,y = 0, z = 0), and nodes along
the transverse faces (y = 0.2 and z = 0.2) are constrained to move
as a plane in the normal direction. The applied traction on the
x-face increases linearly from O to the prescribed load level over
0.1 hours and remains constant for the remainder of the simula-
tion. This procedure replicates the triaxial creep test methodology
proposed in [77], which accounts for the dead-load imposed on the
creep specimen through constant force boundary conditions and
mitigates the unit cell free-surface effects. Because the strain rates
exhibited by the unit cell are small, the governing equations are
considered as quasi-static, and thus the time dependence happens
only from the ODE state variable equations which are solved with
Backward Euler time integration. Generically, the solution at time
tn serves as the basis for computing the solution at the subsequent
time step, t,,+1 = tn +At, where At represents the time step for that
interval.

These creep simulations pose challenges due to their inherent
nonlinearity, resulting in stiff nonlinear equations. The computa-
tional cost is substantial, with simulation times ranging from 10
to 30 hours when utilizing 10 parallel cores. To address this, we
employ adaptive time stepping. Specifically, we adjust the time
step At to ensure convergence of the nonlinear equation solver. In
an adaptive scheme, we target 5 Newton iterations. If 4 or fewer
iterations occur in the previous step, we increase Af, while more
than 6 iterations prompts a decrease.

2.3 Calibrated model performance for Grade 91 and ex-
perimental creep curves for F§2H. Combining together the con-
stitutive model forms with the spatial and temporal representation
of the microstructural unit cell, the MOOSE FE code realizes a
physics-based model for mapping the applied stress level into the
creep strain versus time response of FM steel. We calculate the
creep strain as the average engineering strain in the loading direc-
tion simulated by the FE model. The unit cell representation herein
cannot account for the details of creep crack propagation through
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(b) Experimental data of Grade 91 and F82H steel.

Fig. 2 Creep curves of FM steels.

a component or sample and so we select a fixed value of strain,
specifically 6%, as a consistent termination criteria.

To illustrate the character of FM steel creep curves, we present
the log-log representation of the Grade 91 calibrated creep curves
in Figure 2(a), where the legend reports the applied stress level in
MPa. Herein, "creep strain" is reported as engineering strain rep-
resenting the volume average of the unit cell to match with the rel-
ative elongation reported in [51]. The solid lines are the WARP3D
FE simulated creep curves [25] and the circles are the experimen-
tal data [66]. These curves depict the characteristic behavior of
creep, showing strain accumulation over time as a stress-driven
process. The simulated creep curves generally capture the trend of
the Grade 91 experimental data, although the log-log scale accents
the values at earlier elapsed time in contrast to linear-linear plots
that accent later-time fitness. Next, in Figure 2(b), we compare the
experimental creep curves for Grade 91 [66] and F82H [51] at 600
°C across three similar load levels. Notably, F82H appears slightly
stronger than Grade 91 at a stress level of 160 MPa since the strain
accumulation of F82H occurs over a longer time period than Grade
91. Producing simulated creep curves from the MOOSE code that
closely match the data in Figure 2(b) is the target for the work of
the following sections.

3 Calibration of Crystal Plasticity Models for Creep
in F82H Steel

Our goal in this paper is to achieve a comparable level of ac-
curacy in simulating the F82H creep curves as achieved for the
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calibrated Grade 91 model in Figure 2(a). Qualitatively, this goal
entails modifying the parameter values in Tables 4 and 5 such
that the simulated creep curves from MOOSE at stresses 150, 160,
and 180 MPa are close to the experimental F82H creep curves in
Figure 2(b). A distinguishing feature of the present study is that
the material parameters of both volumetric and interfacial govern-
ing partial differential equations will be calibrated simultaneously,
producing a challenging inverse problem.

In the upcoming parts of this section, we start by firstly estab-
lishing the ranges for key material parameters that we will calibrate,
then presenting the mathematical model for the calibration prob-
lem including motivation of the error metric, and lastly discussing a
post-processing step of the MOOSE FE code result for developing
datasets for the following analysis and model fitting.

3.1 Key material parameters and their ranges. By examin-
ing Table 4 and Table 5, there are 22 material parameters within
the FM steel model form. Of these 22 parameters, 13 are either
physical constants, material properties directly measurable from
simple experiments, or have been found to have limited sensitivity
on the simulated creep curves [8]. These parameters are addressed
first, followed by estimating ranges on the remaining 9 parameters.

Beginning first with the PAG parameters, the Young’s modulus
E and Poisson’s ratio v are assigned using experimental data at
600 °C reported in [3]. The initial slip resistance y is linked via
r through the power law relation to 7y and 7g4¢; thus, its value is
retained from the Grade 91 parameter set in Table 4. Lastly, the
diffusional creep constant A primarily relates to behavior at lower
applied stress level. Since the current calibration is performed for
stresses exceeding 100 MPa, the value of A is also retained from
[25].

Next considering the PAGB parameters, the traction nucleation
exponent B and cavity half tip angle ¥ are commonly adopted val-
ues from cavity growth models [24,25]. The interface elasticity
parameters (Egp, Ggp, W and P|_w) have been estimated for
numerical stability in [72] and are retained in this study. The nor-

malized maximum cavity density NI{,“;‘X is linked to the normalized
nucleation rate constant i,—’;’ such that the former will be retained
from the Grade 91 parameter set in Table 5. Lastly, Behnam et
al. [8] found that the initial cavities half radius aq is an insen-
sitive parameter for the creep behavior of Grade 91, and thus the
value is retained as a value representing typical radii of the M23C6
precipitates in FM steel alloys.

After adjusting the values of these parameters, we arrive at the
summarized list of parameters in Table 2 for the F§2H creep model.
Each of the 9 free parameters are assumed to have a linear variation
with the following exceptions: the creep exponent r is restricted
to integer values, and D and ng are assumed to have a logarith-
mic variation. The mean values of these nine parameters were
estimated through manual tuning during initial exploration by the
authors launching from the Grade 91 parameter values in Table 4
and Table 5. To determine the parameter ranges, we followed a
similar approach employed in [8] for an uncertainty quantification
study of Grade 91 steel. Specifically, we considered temperature-
dependent material properties related to creep rupture of Grade
91 between 550 °C and 650 °C, as documented in the work by
Messner et al. [78]. While the parametric ranges in Table 2 might
appear fairly narrow, their variation is still large enough to produce
creep curves with several orders of magnitude variation in the time
to 6% strain as reported in the later sections of this paper.

3.2 Mathematical model for calibration problem. Calibra-
tion is a type of an inverse problem, i.e., we want to find the input
of a model that gives the desired output. Like typical inverse prob-
lem formulations involving FE models, we can view the MOOSE
code as a black box forward model that maps material parameters
(input) into creep curves (output). Mathematically, let H : @ — Y
denote the MOOSE code, where © denotes the calibration space of
the nine material parameters and Y denotes the space of the creep
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Table 2 F82H creep model input parameters and their
range of variation.

Parameter Min Max Type
E 178000 178000 Fixed
v 0.3 0.3 Fixed
r 12 15 Integer
) 28 52 Linear
Tsat 12 18 Linear
() 800 1000 Linear
Yo 3.0x1078 3.0x107%  Fixed
A 1.2x 1072 1.2%x107°  Fixed
B 2 2 Fixed
n 5 5 Fixed
ap 5.0x107 50x1075  Fixed
bo 0.06 0.08 Linear
D 2.00x 10710 300107  Log
v 75 75 Fixed
20 200 260 Linear
Fy/Np 2.00x 10* 2.60x10*  Linear
Nmax/Ni 1.0 x 10 1.0 x 103 Fixed
ns 3.00 x 10° 4.00 x 100 Log

curves. The objective of calibration is to find the optimal material
parameters 6" € © such that the discrepancy between the MOOSE
code output H(6*) and the experimental creep curve y* € Y is
minimized, i.e.,

0" = arg min £(6) = j [H@:0) -y 2de, (1)

X

where the squared norm is used for measuring the discrepancy.
Note that the space of creep curves Y is a set of square-integrable
functions with input x. This is known as the L, calibration, and
its statistical properties are studied in [79]. The two main reasons
for choosing to measure discrepancy via the squared norm (i.e.
functional data) as opposed to selected features of the test data are
1) to provide a larger dataset for optimization of the nine mate-
rial parameters and 2) to better capture all three regimes of the
creep process, providing confidence in using the calibrated model
in triaxial and other loading scenarios.

Typically the creep curves are defined with abscissa, i.e., x-axis
in the coordinate system, representing time and ordinate represent-
ing strain (Figure 2). While the shape of the creep curves for each
load are similar, the time axis varies by several orders of mag-
nitude. Similarly in [8] and the simulation results herein, some
model parameter combinations take 50 hours to reach 6% creep
strain value, while some take more than 5000 hours. This variation
makes it very difficult to evaluate (1), the squared error between
curves measured along the strain axis, as it is not reasonable to
estimate a strain value at time 5000 hours if we only observe the
simulation creep strain curve to 50 hours. Instead, we see that all
the curves are running up to 5% to 6% strain. Hence, contrary
to the standard presentation of creep curves, for our calibration
approach we will exchange the axes, using strain as the abscissa
and time as the ordinate. In another words, let us denote y*(x) for
the duration in the physical experiment taken to attain x% strain
value and H(x;0) for the corresponding amount of time required
by MOOSE code with the material parameter 6. An example of
the exchanged figures are shown in Figure 3.

As shown in Figure 2(b), we have three available experimental
creep curves at 600 °C from [51]: at applied stresses 150, 160,
and 180 MPa. We choose to reserve the 160 curve for validation
and will use 150 and 180 for calibration to capture a larger loading
range. Let H (150) and H(180) denotes the MOOSE code for the

150 and 180 MPa respectively, similarly let y*<1so> and y*“go) de-
notes the flipped experimental creep strains for 150 MPa and 180
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Fig. 3 Simulated creep curves expressed on graphs
with exchanged strain and time axes. Post-processing
using splines is applied to interpolate and extrapolate the
curves at uniform strain intervals between 0% and 6%
strain.

MPa. Following these observations, the final objective function for
the calibration is

£(0) =wf 159 (g) + £(180) (g),

0 6% ) (@3
f (9>:J [H®) (x:6) -y (0)] 2,

To

where w is some weight that balances the fits between the two
experimental data, e.g., picking w = 1 considers a simple average
between the two squared errors. From Figure 2(b), we can see that
their values exhibit very different magnitudes: the range is from
0 to 3000 for 150 MPa while for 180 MPa it is only from O to
only 400. A simple summation would favor finding parameters
that better fits the experimental data from 150 MPa. Hence, it is
more appropriate to consider

_ Var(y*(]go))

N ™) v
which is the ratio between the variances of the two experimental
observations. Hence, the weighted objective function (2) becomes
the target for finding 6* using the BOFO method. The effectiveness
of this objective at yielding close fits to both the 150 and 180 MPa
creep curves will be assessed in Section 5.

3.3 Post-processing of MOOSE results. Two features of the
simulated creep curves from MOOSE emerge from examining Fig-
ure 3 that will lead to challenges for computing the objective func-
tion (2). Firstly, because creep simulations are load rather than
displacement driven as well as because of the adaptive time con-
trol, simulations from different material parameters do not record
values of elapsed time at the same predefined sequence of ac-
cumulated strains. Secondly, the material properties significantly
influence the rate at which strain accumulates. In certain cases,
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the parameter set introduces a higher degree of nonlinearity or dif-
ficulty. Specifically, when the strain level reaches a point where
the unit cell becomes significantly distorted, the nonlinear equa-
tion solver may fail. Typically, this occurs at strains greater than
6%, although occasionally it may be less as illustrated in Figure 3.
Even if the strain reaches 5%, it is still considered a valuable cal-
ibrated parameter set that can be accepted. Common reasons for
convergence failure include large element distortion, substantial
gaps between grains, approaching saturation stress in the crystal
plasticity model, difficulties in local extrapolation for the Newton
method, and encountering division by zero or fractional powers of
negative numbers.

Hence, for the subsequent analysis and model fitting, we first
post-process both the simulation and the experimental creep curves
to some standardized format. Namely, we want all data to have
time values defined on a carefully designed set of creep strain
values: 0.0000,0.0003,0.006, .. .,0.0597,0.0600, total of 201
equally spaced points between 0 and 6%. For the case where
the simulation reaches 6% creep strain value, we fit a monotonic
interpolating spline using Hyman filtering [80] and obtain the time
estimation for reaching different creep strain values from the spline
directly. Monotonic spline is used because the time it takes to reach
a specific strain value always increases as the strain value climbs.
For the case that the simulation does not reach 6% creep strain
(Figure 3), we need to first extrapolate the time vs. creep strain
curve to 6% creep strain value. This is done by first fitting an
interpolating spline with the available simulation data, and then
performing one-step ahead prediction repeatedly until the creep
strain curves reach 6%. The orange dashed line in Figure 3 shows
the extrapolation for one of the simulations that did not reach 6%
creep strain value. Similarly, we perform the same post-processing
step for the experimental data (Figure 2(b)) but using smoothing
splines [81] to handle the noisy data.

4 Bayesian Optimization for Calibration

Following the description of the calibration problem and math-
ematical models to solve the problem in Section 3, this section
describes the theoretical and numerical aspects of solving this opti-
mization problem with an efficient approach. Recall from Section 3
that the objective is to solve for the material parameters 6* € ®
such that the simulation creep curves from the MOOSE code match
with the experimental ones according to (1). However, the com-
plexity of the MOOSE code H prevents the derivation of analytical
gradients and hence hinder the use of first-order optimization meth-
ods such as gradient descent. Though numerical gradients could
be computed via finite difference method, this approach requires
many evaluations of the forward model H, making it practically
infeasible given each evaluation takes more than 20 hours. Fur-
thermore, this substantial computational burden also impedes the
use of the genetic algorithm, which also typically requires thou-
sands of samples, i.e., thousands evaluations of H. Hence, our
goal is to solve (1) using as few evaluations of the forward model
H as possible. A Bayesian optimization based solution method
named Bayesian Optimization for Functional Output (BOFO) de-
veloped in [1] is used to solve this optimization problem. In the
following parts of this section, the features of standard BO are
first reviewed before highlighting the suitable features of BOFO,
a batch sequencing extension of BOFO to accommodate discrete
parameters and expensive forward models is discussed, and a flow
chart of the algorithm is presented.

4.1 Standard Bayesian optimization. Bayesian optimization
(BO) [41] is one of the leading methods for solving optimiza-
tion problems with expensive objective functions. The standard
BO procedure first constructs a probabilistic surrogate model f to
approximate the response surface of the complicated and multi-
modal objective function f in (2) and then leverage this predictive
information to strategically select the next design via an acqui-
sition function. Expected Improvement (EI) [82] is one popular
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acquisition function that finds the design which maximizes the im-
provement over the current optimal in expectation, i.e.,

ag1(0) = E [{ finin — F(O)}|Dn] 4)

where {#}* = max(e,0) denotes the Macaulay brackets, D, =
{(6;, f (6’,-)};’=1 is the set of designs that we have evaluated the
objective function up to iteration n, and fyi, = min; f(6;) is the
optimal value from the existing data. The next design is computed
from maximizing the acquisition function (4). The BO procedure
iterates until a stopping criterion is met, e.g., reaching the budget
limit or minimal improvement in the optimal value.

One choice of the surrogate model is the Gaussian process [83,
84], which is specified by a mean function ¢ : ® — R and a
covariance function X : R xR4 — R. Conditional on the existing
designs D,,, the predictive distribution of f on a new unseen design
0 is

F(O))Dn ~ N((6),5%(0)), )
where

fi(8) = u(8) + K (6, 0)K(0,0)' (f(©) - 1(0)),
(6)
52(8) = K(6,6) — K(6,0)K(0,0)"'%X(0, ),

where @ = (61, ...,0,). The above can be derived from the prop-
erty of the conditional multivariate Gaussian distribution. With the
Gaussian predictive distribution, the EI acquisition function (4) can
be derived in closed-form,

o MO\ (A®)
o1(6: D) = AO)D (%) +5(0) (m) )

where A(0) = finin — A(0), and ®(-) and ¢(-) are the cumulative
distribution function and probability density function of the stan-
dard normal distribution, respectively. Maximizing the acquisition
function not only favors exploring the high uncertainty region of
the response surface but also attempts to locate a better solution,
demonstrating the balancing between exploration and exploitation.

Last, an initial design is necessary for the preliminary explo-
ration of the parameter space, for which we utilize the Maximum
Projection (MaxPro) designs [85,86]. MaxPro designs is chosen
over other popular designs such as Latin Hypercube [87] and Max-
imin [88] for ensuring a good space-filling property on any subset
of the factors, which have been proven to be effective in many real
world applications [1].

4.2 Bayesian optimization for calibration of functional out-
put model. However, given the least square objective in (2), the
standard BO procedure that builds the surrogate model on f may
not be the optimal approach [42,43], since (i) it can only retrieve
some aggregated insights about the forward model H and (ii) it
cannot guarantee that the prediction from the surrogate model is
non-negative. Recently, Huang et al. [1] proposed a BOFO ap-
proach specifically designed to address the optimization problem
in the form of (2), in which the surrogate model (Gaussian pro-
cess) is fitted to emulate the complicated forward model H. In this
way the full input/output information from H can be utilized for
selecting the next design points. The distinctions of BOFO with
respect to standard BO are summarized below.

Directly fitting a Gaussian process emulation on the functional
output data is known to be computationally very expensive [89,90]
due to its high dimensionality. Functional principal component
analysis [91] is one efficient way to reduce the dimension of the
functional data. Similar to how principal component analysis
(PCA) [92] is applied to vectors of data, functional PCA is applied
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Simulaton Principal Component Scores
A b 3
1 -0.764 0.102 -0.617
2 2.176 -2.345 -0.890
3 -0.862 0.026 -0.204
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Eigonvectors (150 MPa)
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Data)
Principal Component Scores.

Based on eigenvalues and eigenvectors computed from simulation data

Fig.4 Workflow of functional principal component anal-
ysis that converts interpolated creep curves into princi-
pal component scores.

to decompose any square-integrable function y(x) with x € T into
a set of orthogonal components such that

Y@ = u@) + P B (), ®)
k=1

where 71 > 1) > --- are the eigenvalues, ¥, ¥», ... are the re-
spective orthonormal eigenvectors / eigenfunctions, and Sy is the
k-th principal component score. As shown in [1], given that ¥ ’s
are orthonormal, the squared distance between any two functions
y(x) and y*(x) defined on 0% < x < 6% can be simplified to

6% sl
[ bw-y@Pa=Y aec-g2 o
0% =

where BZ is the corresponding k-th principal component score
for y*(x) with respect to eigenvalues 7;’s and eigenvectors i ’s.
Moreover, in practice it is often the case that the top K components
can already explain the majority of the variation, and this will
give a good approximation of the above squared error. Hence, the
objective function (2) simplifies to

F(0) ~wf 10 (9) + 715 (g),
K©® (10)
PO =3 B o -5 1

k=1

where the superscripts in the notations refer to the two experimen-
tal load levels of 150 MPa and 180 MPa. See [91] and [1] for
more details about functional PCA. Please see Figure 4 for the de-
tailed functional PCA workflow on the 150 MPa data. A similar
procedure is also applied for the 180 MPa load level.

To evaluate the objective function (10) on any 6, we only

need the estimations for the principal component scores ,Bl((lso) 0)

and ﬁ](clso)(e), and this can be done by fitting independent one-
dimensional output Gaussian processes [83,84] on the principal
component scores of the simulation data. This substantially accel-
erates the fitting of the emulator.

Now it is left to derive the acquisition function for finding the
next promising design points. Assume that Gaussian processes

have been fitted onto ,8]((150) (0) and ﬁ](clgo) (), in other words that

ﬁA]((ISO)(b‘)|Dn and BA]((ISO)(GHDn will follow some Gaussian dis-
tributions. This assumption then implies that the predictive dis-
tribution of f(0)|D,, follows a generalized chi-square distribution.
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Similarly, Huang et al. [1] derived that the corresponding EI ac-
quisition function is

- Smin
e (05D,) = Bl foin = FO)120] = [ Ga(rds, 1)

where G, » denotes the cumulative distribution function of the gen-
eralized chi-square distribution. Although we do not have the
closed-form EI acquisition function as in the standard Bayesian
optimization, (11) can be evaluated efficiently via quadrature [93]
such that the additional computational overhead is minimal. Please
see [1] for the detailed derivation and numerical techniques used
for efficient estimation.

We note that almost all BO formulations, including this BOFO
approach, are formulated for unconstrained optimization over con-
tinuous intervals of parameters as in Table 2. If much larger ranges
of the PAG and PAGB constitutive parameters are considered, it
can be possible that the nonlinear solvers in the MOOSE code
simply won’t converge and fail to provide useful data even with
the extrapolation scheme shown in Figure 3. The current formula-
tion of BOFO does not handle these infeasible regions or unknown
constraints. Future work based on approaches for known [94,95]
or unknown [96] constraints could help extend BOFO to address
this limitation. However, as shown in Section 5, the initial designs
generated from Table 2 did not encounter convergence issues while
still producing a large range of output response.

4.3 Batch sequential designs for discrete parameters. The
usual Bayesian optimization setting is to generate one new design
at a time [82]. Therein, the forward model is evaluated on this new
design, the input/output pair is added to the simulation data D,,,
and the Gaussian process is fitted to the expanded dataset to find the
next design. However, for our calibration problem, the parameter
r is a discrete parameter restricted to four different integer values,
and we want to get a good learning for each value of r. Thus, we
instead generate four new designs each run, with one design for
each value of r. On the other hand, generating four designs each
time also allows for parallel evaluations of the computationally
expensive MOOSE model. Thus, we refer to this extension of
BOFO as batch sequencing and will explore its suitability on this
problem with one discrete parameter and an expensive forward
model.

For simplicity, we follow the constant liar heuristic [97] to gen-
erate the batch of four designs. We start with a random r, and find
the best design for this » via the acquisition function (11). Now
instead of evaluating the forward model H on this new design, we
set the prediction to be the mean, and add this “fake" input / output
pair to the data for updating the Gaussian process to find the next
design. We iterate this procedure till we find all four new designs,
with one for each value of r, and then evaluate the forward model
on all four designs. The creep curves obtained from the MOOSE
model on these designs are then post-processed using the proce-
dure in Section 3.3 and then are augmented into the set of designs
Dy, to begin the next iteration n + 1 of the Bayesian optimization.

4.4 Summary of extended BOFO algorithm. In summary,
the sequential workflow shown in Figure 5 consists of perform-
ing functional PCA on existing creep curves, refitting with Gaus-
sian processes, maximizing the acquisition function on a batch
sequence, and running the MOOSE code in parallel on the four
acquired design points. This BOFO framework is iterated until a
stopping criterion is met and an optimal parameter design 6* is
achieved. The novel extensions of this framework incorporating
batch sequencing and weighted functional output will be applied
to calibrate the microstructural cell model parameters in Table 2 to
the F82H creep curves in Figure 2(b).
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Fig. 5 Workflow of Bayesian calibration of functional
output model.

5 Calibration Results

As mentioned in Section 2, in what follows "creep strain" is
reported as engineering strain representing the volume average of
the unit cell to match with the relative elongation reported in [51].
The creep simulations were performed on a high-performance com-
puting cluster with three nodes having Intel Xeon E5-2687W 3.1
GHz processors with 20 cores and 512 GB memory per node. The
simulations were executed by a scheduler that permitted two jobs
to run on each node, and the MOOSE code was compiled to use
OpenMP shared memory parallelism. The R source code of the
BOFO as well as the MOOSE output data and selected input files
are available at https://doi.org/10.5281/zenodo.14020513.

5.1 Initial MaxPro design samples. Let us demonstrate the
efficiency of the Bayesian optimization method for calibrating the
forward model. An initial design of 100 points was employed,
which is slightly more than the the popular heuristic 10p designs
where p = 9 is the number of calibrated parameters [98]. The
gray circles in Figure 6 are the 100-point initial MaxPro designs
generated using the R package MaxPro [99]. We can see that the
design points are well spread out and cover the calibration region
uniformly. As alluded in Section 4.1, the “space-fillingness” is
crucial for a comprehensive initial exploration phase of the model,
capturing the various input-output characteristics for fitting a good
surrogate model.

Figure 7 shows the post-processed MOOSE simulation outputs
of the 100-point MaxPro designs. The simulation outputs appear to
surround the experimental creep curves, indicating that the chosen
calibration range is appropriate. Notice that some simulations in-
dicate a time to 6% strain of 10 hours while others indicate 40,000
hours; thus, even the somewhat narrow range of parameters in Ta-
ble 2 produces a rather large variation in simulated creep curves.
However, it is important to note that despite its coverage, none of
the initial design samples provide a satisfactory fit to the experi-
mental data. Therefore, we seek to further refine the calibration
via Bayesian optimization.

5.2 Calibration of F82H creep model via Bayesian opti-
mization. Following the workflow in Section 4, the Bayesian opti-
mization is run for 10 iterations with four designs in each iteration,
i.e. a total of additional 40 designs on top of the 100 MaxPro
designs. The R package fda [100] is used for functional principal
component analysis, and in all BO iterations the top 3 principal
components already explained 99.9% of the variation for both 150

MPa and 180 MPa runs. Thereby, the creep curves from MOOSE
(150)

are reduced to a 6 dimensional output corresponding to 8, ;5

crosses in the Figure 6. We can see that some of them are clus-
tered together, indicating regions of high potential, and some are
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Fig. 6 All parameter designs 8 from applying BOFO on
the MOOSE code. Gray circles are the initial MaxPro de-
signs; blue crosses are the BOFO sequential designs;
and red squares are the best design points 6*.

far apart from the other, indicating the exploration of uncertainty.
This demonstrates the balance between exploration and exploita-
tion in the BOFO approach.

Moreover, Figure 8 shows the value of the objective f versus
number of Bayesian optimization iterations, ultimately reaching a
objective value that is only one-third of the best objective value
obtained from the initial 100-point MaxPro designs. This im-
provement in fitness is achieved rather effectively by the Bayesian
optimization approach in less than half the number of executions of
the MOOSE code than in the initial design sampling. The relative
cost of the functional PCA and Gaussian process computations to
generate the batch of four designs (a few minutes) is much less
than that of individual MOOSE simulations (ranging between 100
to 500 adaptive time steps leading to 10 to 25 hours using ten
parallel computing threads).

5.3 Evaluation of calibrated parameters and cost of opti-
mization. The values of the parameters 6 for F§2H steel produc-
ing the best design are listed in Table 3 alongside the previous
parameter values for Grade 91 steel. Note that other parameters
that were not optimized also differ between the two alloys and are
listed in Table 2. Also, each of these parameter sets were cali-
brated to 600 °C creep tests. Overall, the nine parameters appear
very similar for Grade 91 and F82H steel, with the largest differ-
ences observed in the power-law exponent  and the slip hardening
constant . Returning to the experimental data of the two alloys
in Figure 2(b), the F82H steel examined in [51] exhibits slightly
greater creep resistance at 160 MPa compared to the data in [66].
The calibrated parameters mirror this trend. Namely, the total slip
resistance 1( + Tgq 1S greater, the diffusion coefficient D is lower,
the initial cavity half spacing b is greater, and the traction nor-
malization parameter for cavity nucleation X is greater for F§2H
than for Grade 91, respectively. Each of these parametric varia-
tions has previously been found in [76] to result in longer time to
6% strain (higher creep resistance) from the underlying FM steel
microstructural model.

Due to the computational cost of the microstructural cell model
simulations with MOOSE, alternative calibration approaches were
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Fig.7 Simulated F82H engineering strain vs time curves
from initial MaxPro designs.

not performed during this study. However, previous studies on
calibration in the literature can place the cost of this Bayesian op-
timization for functional output (BOFO) in context. Firstly, Huang
et al. [1] compared BOFO against other Bayesian optimization ap-
proaches for a time dependent partial different equation, and BOFO
reduced the root mean square error of the target object by a fac-
tor of three with fewer samples than required by other approaches.
The amount of reduction in our objective for F82H steel is also a
factor of three in Figure 8, and the objective value versus iteration
number decays with a similar trend as in [1]. Additionally, three
recent Bayesian optimization studies [35-37] have been performed
on different crystal plasticity models and loading scenarios. Al-
though the individual runtime of simulations varies between these
physical problems and our F82H creep model, the number of for-
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Fig. 8 Best objective value across all current designs
versus batch iteration of the Bayesian optimization.

Table 3 The best set of material parameters 6* for F82H
steel compared with the previously calibrated Grade 91
parameters.

Parameter Grade 91 F82H Units
r 12 15 Unitless
0 40 37.44 MPa
Tsat 12 17.99 MPa
6o 66.67 999.2 MPa
bo 0.06 0.07465 mm
D 1.0x1071%  797x1071% MPa~! h~! mm?3
o0 200 256 MPa
Fn /Np 2.00x10%  2.17x10% Unitless
ns 1.00 x 106 1.40 x 106 MPa - h/mm

ward model evaluations is a typical metric for quantifying the cost
of an optimization approach. These models contained between 3
and 5 material parameters, and the total of forward model evalua-
tions (training and testing) was between 100 and 200 to achieve an
acceptable fit to experimental data. Meanwhile, the present BOFO
approach on the 9-parameter creep model employed 100 initial de-
sign points and 10 batches of four evaluations each to achieve an
acceptable objective function value. Hence, the present approach
exhibited a similar overall cost as the approaches in [35-37] for a
problem with more parameters. The batch sequencing extension
of BOFO has the added benefit of overlapping runs of the expen-
sive MOOSE code without much hindrance to the decrease of the
objective function.

5.4 Validation of calibrated parameters. Finally, Figure 9
compares the experimental data with the simulation results for the
best design found through Bayesian optimization. The creep curves
at 150 MPa and 180 MPa from this best design appear to capture
the trend of the experimental curves quite well. Even on the linear
time versus strain plot in Figure 9(a), the simulated curves have
portions both above and below the experimental curves. Hence,
the weighted objective function (10) has provided a balanced fit to
both creep curves.

Subsequently for validation, the best design parameters in Ta-
ble 3 were applied to a FE creep simulation at the 160 MPa load
level. The resulting simulated creep curve also appears closely
aligned to the 160 MPa experimental curve in Figure 9(b). Mean-
while, on the linear time versus strain plot Figure 9(a), we observe
that the simulation lies slightly below the experimental curve and
consequently under-predicts the time to 6% strain. The overall
closely aligned 160 MPa validation case demonstrates the general-
ization capability of the learned design, indicating that it performs
well across different experimental conditions, not just the ones it
was optimized for. Although not tested, this performance of the
underlying physics-based model for F82H steel and the BOFO ap-
proach provide confidence that similar results would be reached if
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Fig. 9 Calibration and validation of F82H creep model
parameters across the 150, 160, and 180 MPa load levels.

either the 150 or 180 MPa load levels were reserved for validation.
In summary, with only 140 runs of the forward model, we are able
to find a good design that yields simulation output that aligns with
the experimental data well.

6 Discussion

6.1 Uncertainty of the calibrated parameters. One draw-
back of Bayesian optimization is that it can only find deterministic
estimates for the calibrated parameters. Yet in many real world
applications, understanding the uncertainty of the calibrated pa-
rameters is also very important, and Bayesian calibration [102] is
widely used to address this. For example, [103,104] have suc-
cessfully applied Bayesian calibration on CP models, and [105]
have applied it on a continuum damage mechanics (CMD) model.
However, for a precise estimation of the uncertainty, at least a few
thousand samples are required, which is computationally expensive
for a CP model that is costly to evaluate. Oftentimes, a surrogate
model is generated and the sampling is done using the surrogate
model [102,106], but constructing a good surrogate model for a
complex microstructural cell model is not easy. Recently, Siirer et
al. [107] proposed a new sequential framework to adaptively se-
lect the design for building a good surrogate model that can achieve
better calibration efficiency.

6.2 Adjusting for missing physics in the F§82H creep model.
As we can see from Figure 9, even for the best design some parts
of the simulated creep curves do not fully capture the shape of
the experimental data of F82H steel. This discrepancy indicates
there is still some physics about the experimental data that is not
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Fig. 10 Plot of the time to 6% strain versus the time to
rupture for the available creep data, along with a power-
law, Leyda-Rowe model. The Leyda-Rowe model accu-
rately correlates the data for a classical, linear (n = 1),
relation, meaning we can accurately predict rupture time
based on the time to 6% strain.

captured by our microstructural cell model. One approach to ac-
count for this missing physics in the calibration process is to apply
a statistical adjustment, e.g., using a flexible Gaussian process to
account for this discrepancy [102,108]. While this provides en-
hanced predictability without modifying the underlying PAG and
PAGB models, such Gaussian process approaches are a black-box
that cannot reveal the structure of the missing physics. Recently,
symbolic regression has gained its popularity for discovering physi-
cal laws from data [30,109]. Hence, symbolic regression is another
promising direction if one is interested in identifying the missing
physics in our microstructural modeling based approach for creep
in F82H steel.

6.3 Extension for predicting time to rupture. One particular
feature in which the simulations deviate from the experimental
creep curves is that they underpredict the sharp up-trend in the
tertiary creep regime. Prediction of the rupture time, the end of
the tertiary regime, is a primary quantity of interest from creep
modeling. Three physical factors contribute to tertiary creep:

(1) True softening caused by grain boundary cavitation.

(2) Uniform reduction in cross-sectional area of the specimen
under the dead load, leading to an increase in the true stress
over time.

(3) Localized deformation leading to necking and a much larger
increase in the true stress in the neck.

Of these three factors our model can only capture the first two.
The periodic boundary conditions applied in the microstructural
unit cell model prevent any localization, meaning we cannot cap-
ture necking. For creep ductile materials, like RAFM steels, the
large tertiary creep strains occur mostly in the necked region of the
specimen. This means our simulations will end — via the devel-
opment of a smeared crack, represented by the Sham-Needleman
model, across an entire plane in the cell model — at strains much
lower than those observed experimentally in creep tests. To truly
capture the physics of this necking process, some type of multi-
scale modeling including the overall component or specimen level
response is likely required.

However, our simulations remain physically accurate up to and
somewhat beyond the onset of tertiary creep at the minimum creep
rate. Predicting the time to the onset of tertiary creep (or time to
a fixed strain greater than the strain at the minimum creep rate) is
often sufficient to predict the remaining life of the material [110].
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More specifically, Figure 10 plots a quasi-Leyda-Rowe relation
between the time to 6% strain, our stopping criteria for the simula-
tions, and the time to rupture. The correlation includes data from
both the three tests at 600 °C as well as an additional set of tests
at 650 °C. The figure demonstrates a clear power law relation be-
tween the time to 6% strain and the time to rupture, specifically a
classical Leyda-Rowe correlation with a power law exponent nearly
equal to 1. By extending the model predictions from the limited
strains achievable in the periodic cell domain to the time to rup-
ture through this correlation, our model can reasonably provide a
surrogate for the rupture life and strength of the material.

6.4 Impact to the field. The microscale model that is im-
plemented within the MOOSE framework captures the collective
deformation of prior austenite grains that is influenced by both dis-
location motion and point defect diffusion, and the occurrence of
void formation, growth, and coalescence along grain boundaries
within the F82H steel. The crystal plasticity parameters within the
grains and smeared cavity parameters within the grain boundaries
of this model were calibrated and validated at a fusion reactor rel-
evant temperature. The model was found to be provide correct
creep strain curves for F82H steel at different stress levels and
high temperature. This model provides the capability to predict
creep material data such as the minimum or steady state creep rate,
minimum stress to cause a 1% creep strain, and minimum stress
for onset of tertiary creep at different temperatures and times. It
was shown that Leyda-Rowe correlation could help predict the
minimum stress corresponding to average creep rupture at various
times based on the data generated from this model. These creep
material data are important and are needed for determination of
the time dependent allowable stress intensities that are required by
the structural design criteria for in-vessel components of a fusion
reactor. These data that are presently unavailable for F§2H steel
could be accurately generated from the microscale model that is
improved, calibrated and validated in this work. With this contri-
bution, the material database for fusion relevant materials would be
enriched and the fusion energy community will be more equipped
to determine the structural integrity of the high temperature fusion
reactor in-vessel components from the beginning to end of life.

7 Conclusion

This work enhances and applies a recent Bayesian optimiza-
tion for functional output (BOFO) approach to calibrate the mate-
rial parameters of a microstructural cell model for creep in F§2H
steel. This microstructural cell model is based on crystal plastic-
ity and smeared cavity growth models that suitably describe the
mechanisms of ferritic-martensitic steels such as Grade 91 and
F82H. The implementation of these constitutive models within the
MOOSE FE code has been utilized due to its enhanced stability
properties for nonlinear problems [72]. Using available creep data
for F82H at 600 °C, the calibration problem is posed as minimizing
the discrepancy in the squared norm between the experimental and
simulated creep curves at 150 and 180 MPa load levels. The ranges
for the nine undetermined material parameters in these constitutive
models were established utilizing preliminary simulations as well
as domain knowledge from studies on Grade 91 [8].

Capitalizing on the form of the weighted squared norm objec-
tive function, the BOFO approach of [1] provides advancements
over typical Bayesian optimization schemes by constructing a sur-
rogate model directly between material parameters and the creep
curves from the MOOSE code, rather than between material pa-
rameters and the objective function. This surrogate modeling is
made tractable by reducing the dimensionality of the tabulated
creep curves into a handful of principal component scores using
functional principal component analysis. Launching from the ini-
tial design points in the parameter space, the BOFO approach it-
eratively improves the best-fit material parameters by maximizing
the Expected Improvement acquisition function, which balances
between exploration and exploitation of the parameter space. The
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BOFO approach was specialized herein by introducing a batch se-
quencing based on the constant liar heuristic [97] to generate four
design points of material parameters prior to simulation by the
MOOSE code. This batch sequencing accounts for the discrete
nature of one material parameter » while also enabling concurrent
runs of the MOOSE code due to the large computational cost of
the creep simulations (100 to 250 CPU hours).

Following the evaluation of the 100-point initial MaxPro designs
that cover the parameter space, ten batched iterations of the BOFO
approach were performed using the MOOSE code with four runs
per iteration and both 150 and 180 MPa load levels in each run. The
outcome of the best-fit parameter design for F82H steel in Table 3
was a three-fold reduction in the objective function value from the
initial design points. These best-fit parameters were validated by
simulating the 160 MPa load level, and the three resulting creep
curves showed a strong overall fit to the F82H experimental curves
in Figure 9. Thus, 140 total evaluations of the MOOSE code at
150 and 180 MPa load levels were required to calibrate the mi-
crostructural cell model for creep in F82H steel, which is a similar
number of evaluates exhibited in the calibration of crystal plastic-
ity models using Bayesian optimization [35-37]. A distinguishing
feature of the present study is that a relatively larger number of
material parameters for both volumetric and interfacial governing
partial differential equations were calibrated simultaneously.

The success of this calibration study increases the confidence
in the model form developed in [25,72] for describing creep in
ferritic-martensitic steels such as Grade 91 and F82H. Although
the creep simulations are only performed to recover the time to 6%
creep strain, a prediction of the remaining lifetime of the material
from these simulations was motivated using a Leyda-Rowe model
[110] performed on the limited experimental dataset for F82H at
600 °C and 650 °C [S1]. Thus, the batch sequenced BOFO ap-
proach was able to produce a validated material parameter set in a
reasonable number of forward model evaluations for the challeng-
ing calibration problem of the microstructural cell model. This
validated creep model for F82H steel has high relevance of the
structural design of high temperature fusion reactors by providing
a supplement to the presently limited data for creep life of F§2H
steel.
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Appendix A: Prior austenite grain model form

In our microstructural evolution cell model for Grade 91 steel
adapted for F82H, the PAG are represented by groups of solid
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Table 4 Grain material parameters for Grade 91 at 600

°C

Sym.  Description Value Units

E Young’s modulus 150 x 103 MPa

v Poisson’s ratio 0.285 Unitless
Voce hardening exponent 12 Unitless

T0 Initial slip resistance 40 MPa

Tsat Saturation slip resistance 12 MPa

6o Slip hardening constant 66.67 MPa

Y0 Prefactor 9.55x 1078 7!

A Diffusional creep constant 1.2 x 1077 MPa~! h~!

elements with initially identical Euler angles specifying the ori-
entation of the body-centered cubic (BCC) crystal structure. The
crystal plasticity formulation employs finite strain kinematics and
an additive decomposition of the strain rates for each mechanism
by assuming the elastic stretch and rate of elastic stretch remain
small. The mechanisms of dislocation creep and diffusional creep
are postulated to operate concurrently via the movement of distinct
defect types (dislocations and atoms/vacancies). Consequently, the
strain rates resulting from each mechanism are aggregated into the
total rotated inelastic strain rate d():

d® =g 4 d(d), (A1)

where d(P) is the crystal plasticity strain rate and and d@ js the
diffusional strain rate.

Within the temperature and applied stress regime of interest, FM
steels primarily exhibit a mechanism involving alternating climb
and glide of dislocations over various barriers along preferred crys-
tallographic planes and directions. Power-law dependence between
the steady state stress and strain rate in creep tests are characteristic
of this glide-climb mechanism, with a larger exponent to account
for prevalence of precipitates. Also, experimental creep curves
for both Grade 91 [64] and F82H [51] reveal a prolonged period
of primary creep attributed to the large dislocation densities and
local residual stress variations arising during normalization [25].
Thus, an isotropic Voce hardening model is incorporated within
the crystal plasticity constitutive equations for d(P) that follow.

Nslip
aw = Z )’/(S)sym(lh(s) ® ﬁ(S)) (A2)
s=1
) | (s)
(S) _ T T A
Y Yo 0+ Tw T0 + Tw ( 3)
z gl
= 0o (1 - ) [ (A4)
Tsat =

Here, 7(5) is the slip rate and m®) and i®®) are the slip direction
and slip plane normal unit vectors for system (s) within the set
of 12 primary {110}(111) BCC slip systems. The slip rate is
mediated by the resolved shear stress 7 (5 ), the initial drag stress
79, the strengthening resistance 7, the reference strain rate y,
and the exponent r. The strengthening resistance evolves from
zero up to a saturation stress Tsyy with an initial flow modulus
0p. The pre-calibrated values of these parameters for Grade 91
[25] are provided in Table 4. In particular, the disparate values of
hardening arising from anisotropic dislocation creep in grains of
different orientation help induce stress concentrations along grain
boundaries that increase the spatial variation of cavity growth in
comparison to an isotropic plasticity model [76].

Journal of Computing and
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Next, the diffusional creep term is used to account for the lin-
ear relationship between the steady-state creep rate and applied
stress observed at lower loads. The deviatoric stress serves as
a measure of the cell-averaged deformation rate resulting from
atomic/vacancy diffusion along various pathways within the com-
plex microstructure of Grade 91. Hence, d(@) is taken to be di-
rectly proportional to the deviatoric stress s through a self-diffusion
coeflicient A:

d@D = 4s. (A5)

Appendix B: Prior austenite grain boundary model
form

The second major source of creep deformation in FM steels is
the relative motion of PAGBs, composed of both in-plane sliding
and out-of-plane opening mechanisms. A smeared representation
of the formation, growth, and coalescence of a population of cav-
ities is captured in the microstructural model using zero-thickness
two-dimensional (2D) interface elements along the boundaries of
three-dimensional PAGs. These elements are depicted in Figure 1
and are associated with a traction-separation (cohesive) model.
This grain boundary cavitation model is rooted in research by Sham
and Needleman [23] on stress triaxiality effects on void growth that
was later extended by Van der Giessen and coworkers [24], to ac-
count for higher triaxiality values as well as cavity nucleation. Our
prior work [25] augmented these cavity growth mechanisms with
contributions arising from grain boundary sliding, taking inspira-
tion from studies by Ashby and colleagues [111]. More recently,
[46,72] extended this cohesive model from a purely viscous form
to a visco-elastic form and improved the numerical stability of the
model for nearly-fully-cavitated grain boundaries.

The grain boundary cavitation model is cast into a Maxwell
model form consisting of five primary variables: the average cavity
half-radius a, the number of cavities per unit area r, the normal
traction Tpy, and the two shear tractions T, and T, . The number of
cavities per unit area is geometrically related to the average cavity
half-spacing b by b = 1/VxN, and the damaged area fraction of the
grain boundary is quantified through the porosity as (a/b)? < 1.
The rate equations describing the evolution of each primary state
variable are as follows:

4

i=———  F = ({Tn}/20)P(FN/ND), Bl
a D)2 b= {TN}Y /Z0)” (FN/Nr) (B1)
. t.
b= { —(b3/b(2))Fbegl after Fl_} IO |equ|dT >1 . (B2
0 otherwise

) ) v
TNZCN (|[u]]N+—2), (B3)

b

) Ts
TS]yz = CS ([[u]]Sm + i) ) (B4)

nsfs

where B, n, ag, by, D, ¥, X9, Fn /Ny, and Npax/Nj are model
parameters that are named within Table 5. The cavity volume rate
V influences both a and Ty, and it is described after the other
terms below. The cavity nucleation model is driven by the opening

traction T and local creep deformation rate éecq = ./%d(i) 2d@

once sufficient plasticity has accumulated in the neighboring grains.

Both the interface normal elastic stiffness Cpy and the interface

transverse elastic stiffness Cg as well as the degradation function

fs for the grain boundary viscosity are reduced as the porosity
increases according to the following relations:

a\ EgpP([u]n)

cn=(1-%) , BS

N A W (B5)
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co-(1-%) %2
1 if &
5= 2(-g+1) irg>o05 ®7)

where Egp, Ggp, and W are the grain boundary elastic proper-
ties and initial thickness that are also listed within Table 5. An
additional interpenetration penalty factor P([[u]x) is provided to
reduce the amount of interpenetration on grain boundaries expe-
riencing compressive traction. Both step-wise discontinuous and
quadratic penalty functions were evaluated within [46,72], and the
quadratic form provided better numerical stability while still suf-
ficiently reducing the interpenetration for contact along the grain
boundaries. This quadratic relation listed below amplifies the nor-
mal elastic under compression with a relative amplitude controlled
by P -W-

1 if¢>0

1+ (Pow - D(E/W)2 ife<0 (B8)

P(§) = {

Finally, the cavity volume rate V is composed of two mecha-
nisms. Firstly, void diffusion is accounted for via V2 in terms of
the opening traction and the grain boundary diffusivity. Secondly,
the stress triaxiality effect is represented by V/"*4% and is driven
by the hydrostatic stress o, the von Mises stress oy s, and the
creep rate éecq in the material adjacent to the grain boundary.

N
v =P yyiriax - grp N yoriax (BY)
q(f)

sorian _ | Faem {on ||+ atm)" i |7l 20

| Faclan+Ba(m)yr 2 if | 2] <1
(B10)

az az
f—max(m,ﬁ), m—SgIl(O'H) (Bll)
1/3
L= D‘T# , Fae = 2e5,a%xh(y) (B12)
€ey
q(f)==2Inf-(1-£)3-f) (B13)
_ 1 _cosy 1

hy) = 1+cosy 2 sin i (B14)
@ =3/(2n), Ba(m)=(n-1)[n+gm)]/n*  (BIS)
g(1)=0.4319, g(0)=0, g(-1)=0.4031 (B16)

The parameters from the cavity volume rate equations and the other
preceding parameters of the grain boundary cavitation model are
collected in Table 5 along with their calibrated values for Grade
91.
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