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space; and the third is the exponential decay property of the team Q-function, facilitating its
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1. Introduction

Multiagent reinforcement learning (MARL) has achieved substantial successes in a broad range of cooperative
games and their applications, including coordination of robot swarms (Hiittenrauch et al. [30]), self-driving vehicles
(Cabannes et al. [6], Shalev-Shwartz et al. [52]), real-time bidding games (Jin et al. [34]), ride-sharing (Li et al. [39]),
power management (Zhou et al. [70]) and traffic routing (El-Tantawy et al. [17]). One of the challenges for the devel-
opment of MARL is designing efficient learning algorithms for a large system in which each individual agent has
only limited or partial information of the entire system. In such a system, it is necessary to design algorithms to
learn policies of the decentralized type, that is, policies that depend only on the local information of each agent.

In a simulated or laboratory setting, decentralized policies may be learned in a centralized fashion. It is to train a
central controller to dictate the actions of all agents. Such a paradigm of centralized training with decentralized exe-
cution has achieved significant empirical successes, especially with the computational power of deep neural net-
works (Chen et al. [15], Foerster et al. [18], Lowe et al. [43], Rashid et al. [51], Vadori et al. [56], Yang et al. [60]). Such
a training approach, however, suffers from the curse of dimensionality as the computational complexity grows
exponentially with the number of agents (Zhang et al. [64]); it also requires extensive and costly communications
between the central controller and all agents (Rabbat and Nowak [49]). Moreover, policies derived from the central-
ized training stage may not be robust in the execution phase (Zhang et al. [66]). Most importantly, this approach
has not been supported or analyzed theoretically.
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An alternative and promising paradigm is to take into consideration the network structure of the system to train
decentralized policies. Compared with the centralized training approach, exploiting network structures makes the
training procedure more efficient as it allows the algorithm to be updated with parallel computing and reduces
communication cost.

There are two distinct types of network structures. The first is the network of agents, often found in social net-
works, such as Facebook and Twitter, as well as team video games, including StarCraft II. This network describes
interactions and relations among heterogeneous agents. For MARL systems with such a network of agents, Zhang
et al. [67] establishes the asymptotic convergence of decentralized actor—critic algorithms that are scalable in agent
actions. Similar ideas are extended to the continuous space in which a deterministic policy gradient method is used
(Zhang et al. [63]) with finite-sample analysis for such framework established in the batch setting (Zhang et al. [68]).
Qu et al. [48] study a network of agents in which state and action interact in a local manner; by exploiting the net-
work structure and the exponential decay property of the Q-function, it proposes an actor—critic framework scalable
in both actions and states. A similar framework is considered for the linear quadratic case with local policy gradi-
ents conducted with zero order optimization and parallel updating (Li et al. [38]).

The second type of network, the network of states, is frequently used for modeling self-driving vehicles, ride-
sharing, and data and traffic routing. It focuses on the state of agents. Compared with the network of agents, which
is static from an agent’s perspective (Sunehag et al. [54]), the network of states is stochastic: neighboring agents of
any given agent may change dynamically. This type of network has been empirically studied in various applica-
tions, including packet routing (You et al. [62]), traffic routing (Calderone and Sastry [8], Guériau and Dusparic
[27]), resource allocations (Cao et al. [9]), and social economic systems (Zheng et al. [69]). However, there is no exist-
ing theoretical analysis for this type of decentralized MARL. Moreover, the dynamic nature of agents’ relationships
makes it difficult to adopt existing methodology from the static network of agents. The goal of this paper is, there-
fore, to fill the gap.

1.1. Motivating Example

To get the essence of the network of states, let us consider the following ride-hailing dispatch problem, studied
empirically in Li et al. [39] via the MARL approach. In this problem, the rides/demands are exogenous, and
drivers/supplies are distributed at different locations on a (transportation) network, in which the state includes the
location of drivers within the graph and the driver’s status of being idle or occupied. The driver’s action is state-
dependent: the driver can only take a new order when the driver’s status is “idle” and when the pickup location is
reachable within k steps, that is, within the k-hop neighborhood of the driver’s current location on the graph. If the
driver is occupied, the driver’s only allowable action is to continue with the current order until the destination. The
reward function has two main components. The first one is the usual payment the driver receives upon completing
a trip, which is proportional to the distance traveled. In addition to this standard payment, there are rebates that
take into account the supply-demand imbalance in both the origin and the destination of any impending trip: one
rebate for the driver when the driver accepts orders in locations where the demand is higher than the supply and
another rebated for the driver from the supply—demand imbalance in the k-hop neighborhood of the destination.
This last one is known as order destination potential in the literature, and it measures the potential of the origin for
the next ride.

This example highlights a couple of features common in transportation networks: (1) the reward function relies
on the aggregated information of drivers and riders with additional rebates for imbalance between the supply and
the demand, and (2), the network is a hexagon grid system (Qin et al. [47]), shown in Figure 1. This network is
sparse in the sense that drivers travel only to neighboring states within a single time step. These two stylized yet
critical features are the basis of our mathematical formulation in order to develop a scalable and efficient learning
framework.

1.2. Our Work
Motivated by this transportation network, this paper proposes and studies multiagent systems with a network of
states. In this network, homogeneous agents can move from one state to any connecting state and observe only
partial information of the entire system in an aggregated fashion. To analyze this system, we propose a frame-
work of localized training and decentralized execution (LTDE). Localized training means that agents only need
to collect local information in their neighboring states during the training phase; decentralized execution implies
that agents can execute afterward the learned decentralized policies that only require knowledge of agents’ cur-
rent states.

The theoretical analysis consists of three key elements. The first is the regrouping of homogeneous agents accord-
ing to their states and reformulation of the MARL system as a networked Markov decision process (MDP) with
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Figure 1. (Color online) Hexagon grid system.

teams of agents. This part leads to the decomposition of the Q-function and the value function according to the
states, enabling the update of the consequent team Q-function in a localized fashion. The second is the establish-
ment of the Bellman equation for the value function and the appropriate Q-function on the probability measure
space by utilizing the homogeneity of agents. These functions are invariant with respect to the number of agents.
The third is the exploration of the exponential decay property of the team Q-function, enabling its approximation
with a truncated version of a much smaller dimension and yet with a controllable approximation error. This last
piece is inspired by earlier studies of exponential decay in random graphs (e.g., Gamarnik [20], Gamarnik et al.
[21]) and extensive analysis of network among heterogeneous agents (e.g., Lin et al. [40], Qu et al. [48]).

To design an efficient and scalable reinforcement learning algorithm for such a framework, the actor—critic
approach with overparameterized neural networks is adopted. The neural networks, representing decentralized
policies and localized Q-functions, are much smaller compared with the global one. The convergence and sample
complexity of the proposed algorithm are established and shown to be scalable with respect to the size of both
agents and states. The techniques to prove the convergence of the neural actor—critic algorithm are adapted from
the single-agent case in Wang et al. [57] to the multiagent setting.

1.3. Our Contribution

To the best of our knowledge, our work is the first neural network-based MARL algorithm with network structures
and a provable convergence guarantee. In particular, our work contributes to two lines of research: MARL and cen-
tralized training, decentralized execution (CTDE).

First, we build a theoretical framework that incorporates network structures in the MARL framework and pro-
vide computationally efficient algorithms in which each agent only needs local information of neighborhood states
to learn and execute the policy. In contrast, existing works for mean-field control with reinforcement learning
require that each agent have the full information of the population distribution (Carmona et al. [11, 12], Gu et al.
[25], Motte and Pham [45]) although, in most applications, agents only have access to partial or limited information
(Yang et al. [61]).

Second, our work builds the theoretical foundation for the practically popular scheme of CTDE (Lowe et al. [43],
Rashid et al. [51], Vadori et al. [56], Yang et al. [60]). The CTDE framework is first proposed in Lowe et al. [43] to
learn optimal policies in cooperative games with two steps: the first step is to train a global policy for the central
controller, and the second one is to decompose the central policy (i.e., a large Q-table) into individual policies so
that an individual agent can apply the decomposed/decentralized policy after training. Despite the popularity of
CTDE, however, there has been no theoretical study as to when the Q-table can be decomposed and when the trun-
cation error can be controlled except for a heuristic argument by Lowe et al. [43] for large N with local observations.
Our paper analyzes for the first time with a theoretical guarantee that applying our algorithm to this CTDE para-
digm yields a near-optimal sample complexity when there is a network structure among agent states. Moreover,
our algorithm, which is easier to scale up, improves the centralized training step with a localized training. To differ-
entiate our approach from the CTDE scheme, we call it LTDE.
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1.4. Notation

For a set X, denote R = {f : X = R} as the set of all real-valued functions on X. For each f € R*, define Iflleo =
sup, ., |f(x)| as the sup norm of f. In addition, when X is finite, denote | X'| as the size of X and P(X) as the set of all
probability measures on X: P(X) ={p:p(x) >0,) . ,p(x) =1}, which is equivalent to the probability simplex in
R!*!. Denote [N] := {1,2,...,N}.Forany p € P(X) and a subset ) C X, let 11()) denote the restriction of the vector u
on Y and let P()) denote the set {i() : u € P(X)}. For x € R?, d € N, denote ||x]|, as the L>-norm of x and ||x||, as the
L®-norm of x.

2. Mean-Field MARL with Local Dependency

The focus of this paper is to study a cooperative multiagent system with a network of agent states, which consists of
nodes representing states of the agents and edges by which states are connected. In this system, every agent is only
allowed to move from the agent’s present state to its connecting states. Moreover, the agent is assumed to only
observe (realistically) partial information of the system on an aggregated level. Mean-field theory provides efficient
approximations when agents only observe aggregated information and has been applied in stochastic systems with
large homogeneous agents, such as financial markets (Carmona et al. [10], Casgrain and Jaimungal [13], Hu and
Zariphopoulou [29], Lacker and Zariphopoulou [37]), energy markets (Aid et al. [2], Germain et al. [23]), and auc-
tion systems (Guo et al. [28], Iyer et al. [31]).

2.1. Review of MARL
Let us first recall the cooperative MARL in an infinite time horizon, in which there are N agents whose policies are
coordinated by a central controller. We assume that both the state space S and the action space A are finite.
Ateachstept=0,1,..., the state of agenti (=1,2,...,N) is s;' € S and the agent takes an action aﬁ € A. Given the
current state profile s; = (s,...,sN) € SV and the current action profile a; = (a,...,a) € A" of N agents, agent i
receives a reward (s, a;), and the agent’s state changes to s,; according to a transition probability function
Pi(st, a;). A Markovian game further restricts the admissible policy for agent i to be of the form ai ~ 7i(s;). That is,
nil : SN — P(A) maps each state profile s € SN to a randomized action with P(A) the space of all probability mea-
sures on space A.
In this cooperative MARL framework, the central controller is to maximize the expected discounted accumulated
reward averaged over all agents. That is, to find

1N
V(s) = max ; V' (s, m), (2.1)
where
v'(s,m) =F Zy/tri(st, ay)lso = s] (2.2)
=0

is the accumulated reward for agent i given the initial state profile sy = s and policy = = {m:},-, with m; = (n}, e,
7). Here, y € (0, 1) is a discount factor, a! ~ 7ti(s;), and si,; ~ P'(st, at).
The corresponding Bellman equation for the value function (2.1) is

N
V(s) = mag{ﬂ«: [% > rs, a)] +VEo s, [ V(5] } 23)
acA i1

with the population transition kernel P = (P!, ..., PN). The value function can be written as

V(s) =max Q(s,a),
aeAN

in which the Q-function is defined as

Q(s,a) =E

N
%Z (s, “)] +VEs-p(s,a[V(s)], (2.4)
i=1
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consisting of the expected reward from taking action a at state s and then following the optimal policy thereafter.
The Bellman equation for the Q-function, defined from SV x AN to R, is given by

13N
Q(s,a) =ElN;r (s,a)

+ ylEs’~P(s,u) |:;2Ja4)h(, Q(s’, (1'):| . (2.5)

One can, thus, retrieve the optimal (stationary) control 7*(s, a) (if it exists) from Q(s,a) with 7*(s) € arg max,_ v

Q(s, a).

2.2. Mean-Field MARL with Local Dependency
In this system, there are N agents who share a finite state space S and take actions from a finite action space A.
Moreover, there is a network on the state space S associated with an underlying undirected graph (S, £), where £ C
S x S is the set of edges. The distance between two nodes is defined as the number of edges in a shortest path. For a
givens € S, N denotes the nearest neighbor of s, which consists of all nodes connected to s by an edge and includes
s itself, and NV’ ’; denotes the k-hop neighborhood of s, which consists of all nodes whose distance to s is less than or
equal to k, including s itself. For simplicity, we use N := N/ : From agent i’s perspective, agents in agent i’s neigh-
borhood Vi change stochastically over time.

To facilitate mean-field approximation in this system, assume throughout the paper that the agents are homoge-
neous and indistinguishable. In particular, at each step t=0,1,..., if agent i at state s| € S takes an action a! € A,
then agent i receives a localized stochastic reward, which is uniformly upper bounded by 7,y such that

r(st,a) =15}, 1 (Ng), @) < Tmax, i€ [N]; (2.6)
agent i's state changes to a neighboring state si,; € NV, s according to a localized transition probability such that
S ~ Pl(st,ar) := P( s}, 1, (N, a}), i€[N], 27)

where 11,(-) = SN, 1(si = ) /N e PN(S) := {ueP(S):u(s)€{0,1/N,2/N,...,N—1/N,1} for all s € S} is the empiri-
cal state distribution of N agents at time t with N - 11, (s) the number of agents in state s at time ¢, and y1,(\/;) denotes
the truncation of the 1, vector with indices in \Vy;, thatis, p1, (V) := {u [(S)}se/\/,

Equatlons (2.6) and (2.7) indicate that the reward and the transition probabﬂlty of agent i at time ¢ depend on
both agent i’s individual information (a},s}) and the mean-field of agent i's one-hop neighborhood (A ¢) inan
aggregated yet localized format: aggregated or mean-field meaning that agent i depends on other agents only
through the empirical state distribution and localized meaning that agent i depends on the mean-field information
of agent i’s one-hop neighborhood. Intuitive examples of such a setting include traffic routing, package delivery,
data routing, resource allocations, distributed control of autonomous vehicles, and social economic systems.

2.2.1. Policies with Partial Information. To incorporate the element of partial or limited information into this mean-
field MARL system, consider the following individual-decentralized policies:

4} ~ (s) = (s}, 1 (s1) € P(A), i€ [N], 28)

and denote 1t as the admissible policy set of all such policies.

Note that, for a given mean-field information u;, (-, i,(-)) : S — P(A) maps the agent state to a randomized
action. That is, the policy of each agent is executed in a decentralized manner and assumes that each agent only has
access to the population information in the agent’s own state. This is more realistic than centralized policies that
assume full access to the state information of all agents.

2.2.2. Value Function and Q-Function. The goal for this mean-field MARL is to maximize the expected discounted
accumulated reward averaged over all agents, that is,

00

V(u) := sup V™(u) = sup NZE D st W), )|,

TEU TEN =0

y] ) (MF-MARL)

subject to (2.6)—(2.8) with a discount factor y € (0, 1).
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The mean-field assumption leads to the following definition of the corresponding Q-function for (MF-MARL) on
the measure space:

N

Qu,h) =E lz %r(sg,ywsé),ag)

i=1

So ~ U, ag ~ h(So)]

Expected reward of taking ap=(a}, ..., a})

o0 N
1 . o N
B pC 1, uy), o) lE P AT RRA L ﬂr] / 29)
t=1 i=1

Expected reward of playing optimally thereafter ai~7;

where pi(-) = SN 1(sh = -)/N is the initial empirical state distribution and h(s)(a) = S_N, 1(s) = s, = a) />N, 1(s}) = 5)
is a decentralized policy representing the proportion of agents in state s that take action a. Specifically, given
p € PN(S), s € S,and the N - u(s) agents in state s,

1 N-pu(s)—1
Nu® 7 N-pls)

h(s) € PNHO(A) = {g eP(A):c(a) e {0 } forallae A} cP(A),

where ¢ in PN#®)(A) is an empirical action distribution of N - u(s) agents in state s and ¢(a) is the proportion
of agents taking action a € A among all N - u(s) agents in state s. Furthermore, for a given s € S, denote PN#()(A)
the set of all admissible decentralized policies h(s)(-), and for a given u € PN(S), denote the product of PN*)(A)
over all states by HN(u) := {h : h(s) € PN*®)(A) Vs € S}. Here, H"(u) depends on u and is a subset of H = {: S —
P(A)}.

Remark 2.1. Before further analysis, let us recall some important properties for the value function in (MF-
MARL) and the Q-function in (2.9).
First is the dynamics programming principle for the mean-field Q function. Take an N-player game; the value
function for any s := (s, s, ...,sy) € SV is defined as
> Y ap)|so = s] :
£=0

In the mean-field formulation, agents are assumed to be identical and interchangeable, and the empirical state dis-
tribution p(-) = 32N, 1(s} = -)/N is the sufficient statistic for the dynamic programming principle (DPP) of the cor-
responding value function. Analogously, for the mean-field Q function, it is shown in Gu et al. [25, 26] that the
empirical state distribution u(:) = Zfil 1(sh =-)/N and the empirical action distribution /:S x A — R, h(s)(a) =

V(s):= %E

Zfil 1(sh = s,al = a)/ Zf\il 1(sl) = s) are sufficient statistics to establish the associated DPP for the mean-field Q func-

tion with h(s)(a) representing the proportion of agents in state s who take action a.

Second, Q(u,h) defined in (2.9) is invariant with respect to the order of the elements in sy and ay. More criti-
cally, the input dimension of the Q-function defined in (2.9) is independent of the number of agents N in the sys-
tem, which renders it more scalable in the large population regime. This differs from the Q-function defined in
(2.4), in which the input dimension grows exponentially with respect to the number of agents, the main culprit of
the curse of dimensionality for MARL algorithms. (More detailed analysis of the mean-field Q-function can be
found in Gu et al. [25, 26].)

3. Analysis of MF-MARL with Local Dependency

The theoretical study of this mean-field MARL with local dependency (Section 2.2) consists of three key compo-
nents, which are crucial for subsequent algorithm design and convergence analysis: the first is the reformulation of
the MARL system as a networked Markov decision process with teams of agents. This reformulation leads to the
decomposition of the Q-function and the value function according to states, facilitating updating the consequent
team Q-function in a localized fashion (Section 3.1). The second is the Bellman equation for the value function and
the Q-function on the probability measure space (Section 3.2). The third is the exponential decay property of the
team Q-function, enabling its approximation with a truncated version of a much smaller dimension and yet with a
controllable approximation error (Section 3.3).
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3.1. MDP on Network of States
This section shows that the mean-field MARL (2.6)—(2.8) can be reformulated in an MDP framework by exploiting
the network structure of states. This reformulation leads to the decomposition of the Q-function, facilitating more
computationally efficient updates.

The key idea is to utilize the homogeneity of the agents in the problem setup and to regroup these N agents
according to their states. This regrouping translates (MF-MARL) with N agents into a networked MDP with |S]|
agent teams, indexed by their states.

To see how the policy, the reward function, and the dynamics in this networked Markov decision process are
induced by the regrouping approach, recall that there are N - u(s) agents in state s, and each agent i in state s inde-
pendently chooses action a; ~ 7(s, ti(s)) according to the individual-decentralized policy (s, pi(s)) € P(A) in (2.8).
Therefore, the empirical action distribution of {ay, .. .,ay..)} is a random variable taking values from PNEE)(A), the
set of empirical action distributions with N - ui(s) agents. Moreover, for any h(s) € PN ) A), we have

P(h(s) is the empirical action distribution of {a1, ..., an.ue)}, @i L 7i(s, u(s)))

= P(for each a € A,a appears N - u(s)h(s)(a) times in {ay, ..., an.u)}, i Lid 7i(s, u(s)))

10 A((Zi\ll..:((ss));és)(a)); [ (s, us) @) N+, 3.1)
ae . aed

Here, h(s)(a) denotes the proportion of agents taking action 4 among all agents in state s with last equality derived
from the multinomial distribution with parameters N - u(s) and 7t(s, 1(s)).

Now, clearly, each individual-decentralized policy (s, i(s)) € P(A) in (2.8) induces a team-decentralized policy
of the following form:

ML) = - ey L1 62)
ae TaeA

where h(s) € PNFE)(A). Conversely, given a team-decentralized policy IT;(-|u(s)), one can recover the individual-
decentralized policy 7t(s, 11(s)) by choosing appropriate /(s) € PN*©)(A) and querying the value of ITy(h(s)| u(s)): let
hi(s) = 64, be the Dirac measure with g; € A, which is an action distribution such that 51111 agents in state s take action
a; By (3.2), TL(1:(s) | (s)) = (re(s, 11(5)) (@), implying 72(s, 11(5)) (@) = (TT(i(s) | (s)) 7.

Next, given p € PN(S) and h € HN(u) = {h: h(s) e PN HE)(A), Vs € S}, the set of empirical action distributions on
every state, if we define

(| ) = [ [ Ts(h(s) | u(s)), (33)

seS

then u, the admissible policy set of individual-decentralized policies in the form of (2.8), is now replaced by U, the
set of all team-decentralized policies I induced from 7t € u through (3.2) and (3.3). In addition, denote the set of all

Figure 2. (Color online) Left: MF-MARL problem (2.6)—(2.8). Right: Reformulation of team game (3.2)—(3.6).
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state—action distribution pairs as
Ei=Uepnvg){C = (u,h) : h e HN(u)}, (34)

and moreover, from the team perspective, the transition probability in (2.7) can be viewed as a Markov process of
prand hy € HN(u,) with an induced transition probability PV from (2.7) such that

1~ PN( I[Jtr ht) (35)

It is easy to verify that, for a given state s € S, 1, (s) only depends on (N %), the empirical distribution in the two-
hop neighborhood of s, and 1;(\s). More specifically, each agent can only move from the agent’s current state s to a
neighboring state in AV in each time step. Therefore, the change of population in state s consists of two sources: (1)
the outflow of agents from state s to neighboring states in N; (2) the inflow of agents from states in N to state s.
The outflow of agents depends on the actions of the agents in state s as well as the transition kernel. Because both
the policy and the transition kernel only depend on information p(N), the outflow has a one-hop neighbor depen—
dence. Slrmlarly, the inflow from any state s’ € /s depends on the information /(\y), which is contained in y(J\/ )
because Ny € N~ for any s’ € N. Therefore, the inflow to s has a two-hop neighbor dependence. Consequently, the
transition of y, +1(S) depends only locally on y; and h, through ,(AN2) and 1 (V).

Finally, given u(N) € PN(N), an empirical distribution restricted to the one-hop neighborhood of s, one can
define a localized team reward function for team s from PN*®)(A) to R as

rs(UNo), h(s)) = D 1(s, w(N), a)h(s)(a), (3.6)
acA

which depends on the state s and its one-hop neighborhood, and define the maximal expected discounted accumu-
lative localized team rewards over all teams as

V(u) == sup Vn(y) =sup E ZZ)/ rs(p (Ns), hi(9)) | g

Tlel ITet =0 seS

With all these key elements, one can establish the equivalence between maximizing the reward averaged over all
agents in (MF-MARL) and maximizing the localized team reward summed over all teams in (3.7) and can, thus,
reformulate the (MF-MARL) problem as an equivalent MDP of (3.2)—~(3.7) with |S| teams, the latter denoted as
(MF-DEC-MARL). (The proof is detailed in Appendix A.). See Figure 2 for illustration.

Lemma 3.1 (Value Function and Q-Function Decomposition).

V() = V() =sup >V (w), (3.8)

el ‘ses

where hy ~ TI(-|1,), py,q ~ PN(' |, hy), and

~TI1 b
Vi (w=E lz Y rs(uy(N), (9)) |1t = M] 3.9)
=0
is called the value function under policy Il for team s. Similarly,
QH(#/ h):=FE lz ytzrs(yt(-/\[s)rht(s)) Ho =, ho = h‘| = Z Q?(‘U,]’l), (3.10)
t=0 s€S s€S
where
QM (u,h) =B > y'ra(p, (W), hu(s)) g = . ho = h] , (3.11)
=0

is the Q-function under policy I1 for team s, called the team-decentralized Q-function.
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The decomposition for the Q-function in (3.10) is one of the key elements to allow for approximation of Q(u, i)
by a truncated Q-function defined on a smaller space and updated in a localized fashion; it is useful for designing
sample-efficient learning algorithms and for parallel computing as is clear in the Section 3.3.

3.2. Bellman Equation for Q-Function

This section builds the second block for reinforcement learning algorithms, the Bellman equation for Q-function.
Indeed, the Bellman equation for Q(u, ) can be derived following a similar argument in Gu et al. [26] after estab-
lishing the dynamic programming principle on an appropriate probability measure space.

Lemma 3.2 (Bellman Equation for Q-Function). The Q-function defined in (2.9) satisfies

Q(p,h) =E

So,ap | + yEs’i~P(~ I 'sh, uN ), ab) [ sup Q(,ull h,)] . (3.12)
0

h'eHN(ul)

; K]r(sé)/ [U(Nsa )/ aé))

Here, 11,(-) = SN 1(s} = -)/N is the empirical state distribution at time 1.

Note that the Bellman equation (3.12) is for the Q-function defined in (2.9) for general mean-field MARL. In order
to enable the localized training, decentralized execution for computational efficiency, one needs to consider the
decomposition of the Q-function (3.10) and the updating rule based on the team-decentralized Q-function (3.11).
The corresponding Bellman equation for the team-decentralized Q-function (3.11) follows.

Lemma 3.3. Given a policy T1 € U, Q' defined in (3.11) is the unique solution to the Bellman equation Q' = T-'Q with
T, the Bellman operator taking the form of

TN ) = By v oy, we-mic | w7 1) + - QW 1)), V() € E. (3.13)
These Bellman equations are the basis for general Q-function-based algorithms in mean-field MARL.

3.3. Exponential Decay of Q-Function

This section shows that the team-decentralized Q-function QI'(y, /1) has an exponential decay property. This is
another key element to enable an approximation to Q!! by a localized Q-function Q?(y(/\f ];), h(N ’;)), and to guaran-
tee the scalability and sample efficiency of subsequent algorithm design.

To establish the exponential decay property of the Q-function (3.11), first recall that N ]; is the set of k-hop neigh-
borhood of state s and define NV F=SIN ’; as the set of states that are outside of the sth k-hop neighborhood. Next,
rewri]Ee any given empirical state distribution u € PN(S) as (u(N ’;), pWN, ")) and, similarly, h € HN(u) as (h(N' ’;),
o))

Definition 3.1. The Q! is said to have a (c,p)-exponential decay property if, for any s€S and any Il€
W, (,h), (w, 1) € E with (V) = ' (V) and RNVF) = 7 (VF)

QU (uNE), N, ), RV TF)) — QI ), 1/ (W), RV, (V)| < ept.

Note that the exponential decay property is defined for the team-decentralized Q-function Q!! instead of the cen-
tralized Q-function Q". The following lemma provides a sufficient condition for the exponential decay property.
Its proof is given in Appendix B.

Lemma 3.4. When the reward r, in (3.6) is uniformly upper bounded by rma >0 for any s€ S, QI satisfies the
(§2, /7 )-exponential decay property.

The exponential decay property implies that, for a given state s € S, the dependence of Q!! on other states decays
quickly with respect to its distance from state s. It motivates and enables the approximation of Q'(u, 1) by a trun-

cated function that only depends on p(N I;) and h(N };), especially when k is large and p is small. Specifically, con-
sider the following class of localized Q-functions:

QMWD N = > [wa(uWN ), BNV, pV), VD)
BN, BV

Q) N ), RV, RV,
(Local Q-function)
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where w; (N 5, h(N N 5 (N ];), h(N; ")) are any nonnegative weights of

ST 0w RW ) VRN E) =1
pV), V)

for any u(N) and h(NY).

Then, direct computation yields the following proposition.

Proposition 3.1. Let Q? be any localized Q-function in the form of (Local Q-function). Assume the (c, p)-exponential
decay property in Definition 3.1 holds. Then, for any u € PN(S) and h € HN(u),

| QM (W), RVE) — QM (1) < cpF*. (3.14)

Moreover, (3.14) holds independent of the weights in (Local Q-function).

Note that, given a team-decentralized Q-function Q' its localized version Q? only takes p(N° ’;),h(/\/' f) as inputs,
and Q"(u(WN I;), h(N I;)) is defined as a weighted average of Q! over all (y, h)-pairs that agree with (p(N° ]5(), h(N ];)) in
the k-hop neighborhood of s. Although the localized Q-function (:)? may vary according to different choices of the

weights, by the exponential decay property, every @? approximates Q! with uniform error and requires a smaller
dimension of input.

Remark 3.1 (Exponential Decay Property). In a discounted reward setting (2.1), the exponential decay property fol-
lows directly from the fact that the discount factor y € (0,1) and the local dependency structure in (3.2)—(3.7). For
problems of finite-time or infinite horizons with ergodic reward functions, this property can be established by
imposing an additional Lipschitz condition on the transition kernel. (See Qu et al. [48, theorem 1] for a network
of heterogeneous agents and y =1).

4. Algorithm Design

The three key analytical components for problem (MF-DEC-MARL) in previous sections pave the way for design-
ing efficient learning algorithms. In this section, we propose and analyze a decentralized neural actor—critic algo-
rithm called LTDE-NEURAL-AC. R

Our focus is the localized Q-function QM (N ’;),h(J\f f)), the approximation to Q!! with a smaller input dimen-
sion. First, this localized Q-function Q' and the team-decentralized policy T1, are parameterized by two-layer
neural networks with parameters w; and 0, respectively (Section 4.2). Next, these neural network parameters
0 = {0s}ses and w = {ws},cs are updated via an actor—critic algorithm in a localized fashion (Section 4.3): the
critic aims to find a proper estimate for the localized Q-function under a fixed policy (parameterized by 0),
whereas the actor computes the policy gradient based on the localized Q-function and updates 0 by a gradient
step.

These networks are updated locally, requiring only information of the neighborhood states during the training
phase; afterward, agents in the system execute these learned decentralized policies, which requires only informa-
tion of the agent’s current state. This localized training and decentralized execution enables efficient parallel com-
puting especially for a large shared state space.

Moreover, overparameterization of neural networks avoids issues of nonconvexity and divergence associ-
ated with the neural network approach and ensures the global convergence of our proposed LTDE-NEURAL-AC
algorithm.

4.1. Basic Setup

4.1.1. Policy Parameterization. To start, let us assume that, at state s, the team-decentralized policy 1% is parame-
terized by 0, € ©,. Further denote 0 :={6;},cs, © := [[,.s®s, 117 := [1.esI1%, and IT:= {119 : © € ©} as the class of
admissible policies parameterized by the parameter space {0 : 6 € ®}.

4.1.2. Initialization. Let us also assume that the initial state distribution 1y of N agents is sampled from a given dis-
tribution Py over PN(S), that is, i, ~ Py, and define the expected total reward function J(6) under policy IT% by

1(0) = By [V ()] 1)
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4.1.3. Visitation Measure. Denote vg as the stationary distribution on E of the Markov process (3.5) induced
by IT°.

Similar to the single-agent reinforcement learning problem (Agarwal et al. [1], Fu et al. [19]), each admissible pol-
icy IT? induces a visitation measure (g, 1) on E describing the frequency that policy I visits (i, 1) with

Go(p ) = (1 — )+ 3y B(g, = by = BT, “2)
t=0

where , ~ Po, by ~TT1°(:| ), and g, ~ PN(:- |, Te).

4.1.4. Policy Gradient Theorem. In order to find the optimal parameterized policy 1% that maximizes the expected
total reward function J(6), the policy optimization step searches for 6 € © along the gradient direction VJ(6). Note
that computing the gradient VJ(0) depends on both the action selection, which is directly determined by I1%, and
the visitation measure g in (4.2), which is indirectly determined by IT°.

A simple and elegant result called the policy gradient theorem (Lemma 4.1) proposed in Sutton et al. [55], refor-
mulates the gradient VJ(6) in terms of Q" in (3.10) and V log I (| u) under the visitation measure o¢. This result
simplifies the gradient computation significantly and is fundamental for actor—critic algorithms.

Lemma 4.1 (Sutton et al. [55]). VJ(0) = ﬁEge[QHG (, )V log TTO(h| )]

Now, direct implementation of the actor—critic algorithm with the centralized policy gradient theorem in Lemma
4.1 suffers from high sample complexity because of the dimension of the Q-function. Instead, we show that the
exponential decay property of the Q-function allows efficient approximation of the policy gradient via localization
and hence a scalable algorithm to solve (MF-MARL).

4.2. Neural Policy and Neural Q-Function _

We now turn to the localized Q-function Q' (u(N ];),h(/\f ];)) (i.e., the approximation of Q) and the team-
decentralized policy Il; and their parameterization by two-layer neural networks. We emphasize that the
parameterization framework in this section can be extended to any neural-based single-agent algorithms with
a convergence guarantee.

4.2.1. Two-Layer Neural Network. For any input space X' C R% with dimension d, € N, a two-layer neural network
f(x; W, b) with input x € X and width M € N takes the form of

M
\/LMZ by -ReLU(x - [W],,) (4.3)
m=1

Here, the scaling factor 1/ VM called the Xavier initialization (Glorot and Bengio [24]) ensures the same input variance
and the same gradient variance for all layers; the activation function ReLU : R — R, defined as ReLU(u) = 1{u > 0} - u;
b={bu} ey, and W = ((Wl{...., [W]i,)" € RM*% in (4.3) are parameters of the neural network.

Taking advantage of the homogeneity of ReLU (i.e., ReLU(c - 1) = ¢ - ReLU(u) for all c >0 and u € R), we adopt the
usual trick (Allen-Zhu et al. [4], Cai et al. [7], Wang et al. [57]) to fix b throughout the training and only to update W
in the sequel. Consequently, denote f (x; W, b) as f(x; W) when b,, = 1 is fixed. [W],, is initialized according to a multi-
variate normal distribution N (0,1, /d,), where I, is the identity matrix of size d..

f;W,b) =

4.2.2. Neural Policy. For each s € S, denote the tuple (s = (u(s), h(s)) € R for notational simplicity, where d¢, :=
1+ | Al is the dimension of C,. Given the input C; = (u(s), h(s)) and parameter W = 6; in the two-layer neural net-
work f(-; 65) in (4.3), the team-decentralized policy HfS, called the actor, is parameterized in the form of an energy-
based policy,

exp[t - f((1(s), h(s)); 05)]
D weepvioexplT - f((u(s), 1'(s)); 05)]

1% ((s) | u(s)) = 4.4)

where 7 is the temperature parameter and fis the energy function.
To study the policy gradient for (4.4), let us first define a class of feature mappings that is consistent with the
representation of two-layer neural networks. This connection between the gradient of a two-layer ReLU neural
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network and the feature mapping defined in (4.6) is crucial in the convergence analysis of Theorems 5.1 and 5.2.
Specifically, rewrite the two-layer neural network in (4.3) as

f(Cs;05) = — ZReLU(cT 1) Zn{@ m > 0} Tl 0s] 1= g (C) 0. (45)

\/_

Then, the feature mapping ¢, = ([¢ 11, ... [ 13) " : R% — RY*% may take the following form:

[$g,1n(Cs) = —=T{L][0c],, > 0} - C. (4.6)

\/—
That is, the two-layer neural network f(C;; 05) may be viewed as the inner product between the feature ¢, (C;) and
the neural network parameters 0,. Because f(C;; 0;) is almost everywhere differentiable with respect to 0,, we see
Vo f(Cs; 05) = ¢y (Co). It is worth noting that the neural feature setting considered in our framework (4.6) is different
from the linear feature literature (Geramifard et al. [22], Jin et al. [33]). This is because the feature mapping ¢, in
(4.6) depends on 6; in a nonlinear fashion through the indicator function, whereas the linear feature mapping does

not depend on the parameter 6.
Furthermore, define a centered version of the feature ¢,_such that

PO, 1,1) = g (1105),15)) — By o [0, (1) H )] 47)

Note that, when policy I1” takes the energy-based form (4.4), ® = 1V log I1°.
Lemma 4.2. Forany 0 € ©,s€ S, p € PN(S) and h € H™ (), |D(0,s,u, W), < 2, and

Vo J(0) =1 Bua[Q 1) @0, ,1) 48)

Moreover, for each s € S, define the following localized policy gradient:

g:(0) = ﬁnz [ LZ QM (uWh), hE)

yeN*

-®(6,s, u,h)} , (4.9)

with @Pe in (Local Q-function) satisfying the (c, p)-exponential decay property. Then, there exists a universal constant cy >
0 such that
COT |S| QTS| e,

lIgs(0) = Vo, JO)I < (4.10)

4.2.3. Neural Q-Function. Note that Q in (Local Q- functlon) is unknown a priori. To obtain the localized policy
gradient (4.9), the neural network (4.3) to parameterize QH is taken as

Qu(uNE), RN @5) = F((WNE), HND)); w5).

This Q, is called the critic. For simplicity, denote C& = (u(N¥), H(NY)), with d o+ the dimension of k.

4.3. Actor-Critic
4.3.1. Critic Update For a fixed policy T1?, it is to estimate Q " of (Local Q-function) by a two—layer neural network
Qs(+; ws), where Q serves as an approx1mat10n to the team-decentralized Q-function Ql_I

To design the update rule for Q% note that the Bellman equation (3.13) is for QH instead of Ql_I Indeed, QH6
takes (u, 1) as the input, whereas Q. takes the partial 1nformat10n (W k) h(N k)) as the input.

In order to update parameter w,, we substitute (;1(/\/ ), h(/\/ )) for the state-action pair in the Bellman equation
(3.13). It is, therefore, necessary to study the error of using (p(/\/ ), h(N )) as the input. Specificall ey given a tuple
(e he, 75 (U (Ns), 1 (s)), 4,41, hes1) sampled from the stationary distribution ve of adopting policy IT”, the parameter
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w; is updated to minimize the error:

(051 = [Qs(ut, (WS), B (W) 05) = 15, (W), Te(8)) — 7 Qs (WE), s (N5 )1

Estimating 0, ; depends only on 1, (N ), i (N¥) and can be collected locally. (See Theorem 5.1.)
The neural critic update takes the iterative forms of

Ws(t+1/2) = s(t) = Moo - 05,1 * Ve Qs (1, (ND), (V) ), (4.11)

ws(t +1) < arg min || — ws(t +1/2)|l,, (4.12)
weBgritic

s — (t+1)/(t+2)-w0s +1/(t+2) - ws(t+1), (4.13)

in which ... is the learning rate. Here, (4.11) is the stochastic semigradient step, (4.12) is a projection to the param-

eter space B = {w, € R™% llws — ws(0)]les < R/VM} for some R>0, and (4.13) is the averaging step. This critic
update is summarized in Algorithm 1.

Algorithm 1 (Localized Training, Decentralized Execution Neural Temporal Difference)

1: Input: Width of the neural network M, radius of the constraint set R, number of iterations T itic, policy I =
{I1%},.s, learning rate 1., localization parameter k.

2: Initialize: For all m € [M] and s € S, sample b,, ~ Unif({—1,1}), [ws(0)],, ~ N(O,Idck /dcf)' @s = ws(0).
3: fort=0t0 Teitic — 2 do K

Sample (u1,, e, {rs(1,(Ns), he(s)) }ses, i, 1) from the stationary distribution vg of I1°.

5:  forseSdo

6:  Denote C}, = (,(N), WD), &, = (W), H(ND).

7:  Residual calculation: 8 «— Qs(CL ; ws(t) — ro(u,(Ns), he(s)) — 7 - Qs(CE s s (1)).

8.

9

Temporal difference update:
Ws(t+1/2) — s(t) = Noe Ot * Var Qs (CE 1 s(1)).

10: Projection onto the parameter space: w(t + 1) «— arg min,genc||w — ws(t +1/2) | 2.
11: Averaging the output: @, « 21 @ + 5 - ws(t +1).

12:  end for

13: end for

14: Output: Qs(-;@s), Vs € S.

4.3.2. Actor Update. At the iteration step t, a neural network estimation Qs(-;@;) is given for the localized
Q-function QSHH(” under the current policy 1. Let {(y, 1)} ie(p) be samples from the state-action visitation measure
gy of (4.2) and define an estimator ®(0, s, u;, ;) of D(0, s, u;, hy) in (4.7):

D(0,5, 1) = by (1,(8), 1u(s)) — By [, (1 (5), 1 ()],

By Lemma 4.2, one can compute the following estimator of ¢;(6(¢)) defined in (4.9):

~ T k ky. - o~
8:(0(t) = =B 2 [LZ Qy (N Ny ) ~d>(9(t),s,yl,hl)] : (4.14)

ENk

This estimator g in (4.14) only depends locally on {(u,, /1;)},¢(5)- Hence, g and ® can be computed in a localized fash-
ion after the samples are collected. Similar to the critic update, 6,(t) is updated by performing a gradient step with

g, and then projected onto the parameter space B2 := {0, € RM*% . ||9, — 0,(0)||c < R/VM]}.
This actor update is summarized in Algorithm 2.

4.3.3. Sampling from vy and the Visitation Measure o. In Algorithms 1 and 2, it is assumed that one can sample
independently from the stationary distribution vg and the visitation measure og, respectively. Such an assumption
of sampling from vy can be relaxed by either sampling from a rapidly mixing Markov chain with a weakly
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dependent sequence of samples (Bhandari et al. [5]) or by randomly picking samples from replay buffers consisting
of long trajectories with reduced correlation between samples.

To sample from the visitation measure oy and computing the unbiased policy gradient estimator, Konda and
Tsitsiklis [36] suggest introducing a new MDP such that the next state is sampled from the transition probability
with probability y and from the initial distribution with probability 1 —y. Then, the stationary distribution of this
new MDP is exactly the visitation measure. Alternatively, Liu et al. [42] propose an importance sampling-based
algorithm that enables off-policy evaluation with low variance.

Algorithm 2 (Localized Training, Decentralized Execution Neural Actor—Critic)
1: Input: Width of the neural network M, radius of the constraint set R, number of iterations Tactor and Tesitic,
learning rate ), . and 1., temperature parameter 7, batch size B, localization parameter k.
2: Initialize: For all m € [M] and s € S, sample b,, ~ Unif({—1,1}), [05(0)],, ~ N(0, 14 /dc,).
3: fort=11t0 Tactor do .
4:  Define the decentralized policy I for each state s € S,

exp[7-f ((#(S) h(s)); 0s)]

05 —
I (h(s)| p(s)) = > wseny Pl f((u(s), 1 (s)); 05)]°

5. Output Qs(-;@s) using Algorithm 1 with the inputs policy IT° = {T1%},.s, width of the neural network
M, radius of the constraint set R, number of iterations Teitic, learning rate 1, and localization param-
eter k.

6:  Sample {1 }iep) from the state-action visitation measure o (4.2) of I1°.

7. forseSdo

8 Compute the local gradient estimator g (6(t)) using (4.14).

Policy update: ,(t +1/2) « 04(t) + 1,40, - $-(O(1))
10: Projection onto the parameter space: 0s(f + 1) «— arg ming g ||6 — O5(t +1/2)| 2.
11:  end for )
12: end for

13: Output {He(t)}fe [Tactor]*

5. Convergence of the Critic and Actor Updates

We now establish the global convergence for LTDE-NEURAL-AC proposed in Section 4. Our analysis of conver-
gence relies on the use of an overparameterization technique, which involves a two-layer neural network with
a large width M. This technique is critical to our analysis as it allows us to address the nonconvexity issue in
neural network optimization and to prove the convergence result. Indeed, some commonly used loss functions,
such as the mean-square error and the cross-entropy loss, are often neither convex nor concave with respect to
neural network parameters. In addition, a gradient-based method or other first order algorithms may be
trapped at some undesired stationary points because of the nonconvex optimization landscape. Meanwhile, it
is shown that the training problem in the overparameterization regime is almost equivalent to a regression
problem in a reproducing kernel Hilbert space (RKHS) (Allen-Zhu et al. [3, 4], Cayci et al. [14], Zou and Gu
[71]). In addition, the optimization landscape can also be improved by overparameterization in the sense that
all stationary points are nearly optimal. These key properties of the overparameterized neural network facili-
tate our convergence analysis.

5.1. Convergence of the Critic Update

The convergence of the decentralized neural critic update in Algorithm 1 relies on the following assumptions.

Assumption 5.1 (Action-Value Function Class). For each s € S, k € N, define
Filw= {f(C';)=Qs(C’§;ws(0))+/ 1{o7CE > 0} (CH) ") du(o) : 1)l < } (5.1)

with i : R R the density function of Gaussian dzstrzbutzon N(O,I; p / dck) and QS(C ; ws(0)) the two-layer neural network
under the initial parameter ws(0). We assume that Q eF ;koo
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Assumption 5.2 (Regularity of vo and og). There exists a universal constant co > 0 such that, for any policy T1°, any
a >0, and any v € R with |[v||, = 1, the stationary distribution vg and the state visitation measure o¢ satisfy

Pe, (070l < @) < cora, Prg,([07C] < a) < co-a.

Remark 5.1. Both Assumptions 5.1 and 5.2 are similar to the standard assumptions in the analysis of single-agent
neural actor—critic algorithms (Cai et al. [7], Cayci et al. [14], Liu et al. [41], Wang et al. [57]).

In particular, Assumption 5.1 is a regularity condition for Q' in (Local Q-function). Here, F %km is a subset of
the RKHS induced by the random feature ]l{vTC}s( >0} - (C’;) with v ~N(0,1; , /d.«) up to the shift of QS(C]; ;ws(0))
(Rahimi and Recht [50]). This RKHS is dense in the space of continuous functions on any compact set (Ji et al.
[32], Micchelli et al. [44]). (See also Section D.1.1 for details of the connection between F ‘;{koo and the linearizations
of two-layer neural networks (D.4)).

Assumption 5.2 holds when oy and vy have uniformly upper bounded probability densities (Cai et al. [7]).

Theorem 5.1 (Convergence of Critic Update). Assume Assumptions 5.1 and 5.2. Set Terige = QM) and 1. = min{(1 — )
/8, (Tergc) /?} in Algorithm 1. Then, Qs(-; @) generated by Algorithm 1 satisfies

2 k+1

3/2 5/4
R R
s , (52)

.- 1Y 2 s
Einit[”Qs('/ws) - QS (.)“LZ(VU)] < O Ml/z + M1/4 (1 —‘)/)2

where [|f||2(,) := B¢y, [f(C)z])l/ 2, and the expectation (5.2) is taken with respect to the random initialization.

Theorem 5.1 indicates the trade-off between the approximation—optimization error and the localization error.
The first two terms in (5.2) correspond to the neural network approximation—optimization error, similar to the
single-agent case (Cai et al. [7], Cayci et al. [14]). This approximation—optimization error decreases when the width
of the hidden layer M increases. Meanwhile, the last term in (5.2) represents the additional error from using
the localized information in (4.11), unique for the mean-field MARL case. This localization error and ¥ decrease as
the number of truncated neighborhoods k increases with more information from a larger neighborhood used in the
update. However, the input dimension d .« and the approximation-optimization error increase if the dimension of
the problem increases. ‘

In particular, for a relatively sparse network on S, one can choose k < |S|; hence, 4 o < d¢, and Theorem 5.1 indi-
cates the superior performance of the localized training scheme in efficiency over directly approximating the cen-
tralized Q-function.

Proof of Theorem 5.1 is presented in Section D.1.

5.2. Convergence of the Actor Update

This section establishes the global convergence of the actor update. The convergence analysis consists of two steps.
The first step proves the convergence to a stationary point 0; the second step controls the gap between the station-
ary point 0 and the optimality 0" in the overparameterization regime. The convergence is built under the following
assumptions and definition.

Assumption 5.3 (Variance Upper Bound). For every t € [Tacor] and s € S, denote &(t) =3,(0(t)) — E[g,(6(F))] with
2.(0(t)) defined in (4.14). Assume there exists ¥.> 0 such that E[llés(t)lﬁ] < 12X /B. Here, the expectations are taken over

Oo(t) given {CDS}SES‘

Assumption 5.4 (Regularity of dog/dvg). There exists an absolute constant D > 0 such that, for every 119, the stationary
distribution v and the state—action visitation measure o¢ satisfy

{E,,[(dog/dve(uh))]} < D?,
where dog/dvg is the Radon—Nikodym derivative of o¢ with respect to vg.

Assumption 5.5 (Lipschitz-Continuous Policy Gradient). There exists an absolute constant L > 0 such that Vg](0) is
L-Lipschitz continuous with respect to 0; that is, for all 64, 0,,

Vo] (61) — Vo] (02)Il, < L- |61 — Oal,.

Definition 5.1. O € B°" is called a stationary point of J(6) if, for all 0 € B>,
VoJ(0)T(6-0) < 0. (5.3)
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Meanwhile, 0" € B*“*" is called an optimal point of J(0) if

6" € arg max J(0). (5.4)
HEBaclor

Assumption 5.6 (Policy Function Class). Define a function class

Frye = {f(C) =3 [%sm)(csfes(m " / 1{o7C > 0} - (C) (o) du(v)} @)l < R},
seS

where i : R% — R is the density function of the Gaussian distribution N(0, 14, /dc,) and 6(0) is the initial parameter. For any

stationary point 0, define the function

dGg

O ——=—(W+>_¢5.(C)" 0,

daé seS

do o
ug (u,h) ::;:T?
]

with G ¢ the state visitation measure under policy 11°, and dog /doy, dG ¢ /dG 5 the Radon—Nikodym derivatives between cor-
responding measures. We assume that uy € F g, o for any stationary point 0.

A few remarks are in place for these Assumption 5.3-5.6.

Remark 5.2. All these assumptions are counterparts of standard assumption in the analysis of the single-agent
policy gradient method (Pirotta et al. [46], Wang et al. [57], Xu et al. [58, 59], Zhang et al. [65]).

In particular, Assumptions 5.3 and 5.4 hold if the Markov chain (3.5) mixes sufficiently fast, and the critic
Qs(-;ws) has an upper bounded second moment under oy (Wang et al. [57]). Note that different from
Assumption 5.2, in which regularity conditions are imposed separately on vg and o, Assumption 5.4 imposes
the regularity condition directly on the Radon-Nikodym derivative of o¢ with respect to v¢. This allows the
change of measures in the analysis of Theorem 5.2. In general, Assumption 5.2 does not necessarily imply
Assumption 5.4.

We also emphasize that Assumption 5.3 holds under mild conditions and can be justified by certain properties
of the estimator g, in (4.14). More specifically, when the estimator g in (4.14) can be viewed as an average of B
independent and identically distributed (i.i.d.) samples

LZ Q (W Ny ) | - B0, 1,1), 1€ [B],
eN*

and Assumption 5.3 holds naturally if each sample has uniformly bounded variance over all parameters w and 6. A
sufficient condition to guarantee the uniformly bounded variance is when the neural Q-function Q,(;@,) is uni-
formly bounded over all parameters. Indeed, when Q,(-;@,) is a two-layer neural network with bounded para-
meters @, and bounded input, a uniform bound on Q,(-;@,) is guaranteed. Therefore, when the parameters of the
critic networks are uniformly bounded, Assumption 5.3 holds, and the dependency on the algorithm trajectory
becomes less concerning.

Assumption 5.5 holds when the transition probability and the reward function are both Lipschitz continuous
with respect to their inputs (Pirotta et al. [46]) or when the reward is uniformly bounded and the score function
VeI1? is uniformly bounded and Lipschitz continuous with respect to 6 (Zhang et al. [65]).

As for Assumption 5.6, we first emphasize that u;(u, 1) is a key element in the proof of Theorem 5.2. More spe-
cifically, this assumption is motivated by the well-known performance difference lemma (Kakade and Langford
[35]) in order to characterize the optimality gap of a stationary point 6. In particular, it guarantees that u; can be
decomposed into a sum of local functions depending on (s and that each local function lies in a rich RKHS (see
the discussion after Assumption 5.1). Appendix E provides a concrete network example that satisfies all Assump-
tions 5.1-5.6 (or their mild relaxations).

With all these assumptions, we now establish the rate of convergence for Algorithm 2.

Theorem 5.2. Assume Assumptions 5.1-5.6. Set Teitic = Q(M), 1. = min{(1 —)/8, (Tcriﬁc)fl/ 2}, Nactor = (Tactor)fl/ z
R=1=1, M=Q((f(k)|A])’(Tacor)®), y < (Tactor)” >/ with f(k) := maxses | N f| the size of the largest k-neighborhood in
the graph (S, £). Then, the output {0(t) }e(r,,1 of Algorithm 2 satisfies

actor

min_ E[J(6%) — J(0(1))] < O(IS|Y?B712 + |S[|AIY*GF8 + (Tactor) *). (5.5)

te [Tactor]
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Note that the error O(y*/#|S||.A|'/*) in Theorem 5.2, coming from the localized training, decays exponentially
quickly as k increases and is negligible with a careful choice of k. According to Theorem 5.2, Algorithm 2 converges
atrate Tactér with sufficiently large width M and batch size B.

Indeed, Theorem 5.2 manages to incorporate the neural network optimization error, which is analyzed in Cai
et al. [7] and Wang et al. [57] with the errors arising from the decentralized and parallel updates of {0s(f)}..s and
from the truncated Q-functions. It is established by generalizing the techniques for the single-agent setting studied

by Cai et al. [7] and Wang et al. [57]. A detailed proof of Theorem 5.2 is provided in Section D.2.

Remark 5.3 (Convergence to Optimal Decentralized Neural Policy). By Definition 5.1, the policy IT is the optimal
decentralized policy within the policy class parameterized by two-layer neural networks, which is a policy class
subject to the specific parameterization defined in (4.4) and a subset of all possible decentralized policies. The
convergence in Theorem 5.2 relies on the neural network parameterization and may not necessarily imply the
convergence under a different policy class.

Remark 5.4 (Choice of k). The particular form y < (Tactor )_2/ ¥ in Theorem 5.2 is not essential and is mainly chosen
to highlight the error bound in (5.5): if k is chosen to be small, the error from estimating the truncated Q-function
may become the dominant term in the error bound, and hence, the leading order of the bound may change
accordingly. The detailed error bound without such an inequality can be found in the proof of Theorem 5.2 (see
(D.42) in Appendix D.2).

Remark 5.5 (Total Sample Complexity). The sample complexity Tyctor is of the order O(e™*), which, in turn, leads
to the width of the neural network and the sample complexity for the critic Teritic being of the order O(e32).
As a result, the total sample complexity becomes Titic X Tactor = O(e7%). Note that this sample complexity
O(e~%) is of the same order as that in Wang et al. [57, theorem 4.7] for single-agent reinforcement learning. In fact,
the key reason for such complexity is because of the adoption of the overparameterization technique. Even in
supervised learning settings, large network width is often needed for achieving desirable generalization error
guarantees (Allen-Zhu et al. [3, 4], Zou and Gu [71]), resulting in large sample complexities similar to our result.
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Appendix A. Proof of Lemma 3.1

The goal is to show that V(i) = V(1) with the former the value function of (MF-MARL) subject to the transition probability P
defined in (2.7) under a given individual policy 7 € u and the latter the value function of (3.7) subject to the joint transition proba-
bility PN defined in (3.5) under the policy IT € 1I. The proof consists of two steps. Step 1 shows that V(i) can be reformulated as a
measure-valued Markov decision problem. Step 2 shows that the measure-valued Markov decision problem from step 1 is

equivalent to V() in (3.7).
Step 1: Recall that 1, :=; L A ogi, with s! 1 sub]ect to (2.7). First, one can show that Uy is a measure—valued Markov deci-
sion process under 7. To see this, denofe F$=0(s},...,sN) as the o-algebra generated by s}, ..., sN. Then, it suffices to show

Bl lo(1) V F3) = Bl o), B~ as.. (A1)
Following similar arguments for Dawson [16, lemma 2.3.1 and proposition 2.3.3], (A.1) holds because of the exchangeability of

the individual transition dynamlcs (2.7) under n. Equation (A.1) implies that there exists a joint transition probability induced
from (2.7) under 7, denoted as P" such that

ey ~ P Gl 7). (A2)

Meanwhile, rewrite V7*(u) in (ME-MARL) by regrouping the agents according to their states

Zytz i’(St, .ut(Nc‘) at) :|

=ED Y 1603 (s, 1, W), a)m(s, 1,(5))(@) | g

t=0 se§ aeA

Vi(u):=E

= ,u} . (A.3)

We see that (2.7) and (MF-MARL) is reformulated in an equivalent form of (A.2) and (A.3).
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Step 2: It suffices to show that (A.2) under 7 is the same as (3.5) under IT and that V™ in (A.3) equals to 7in (3.7). To see
this, denote (g, ) = > ..sg(s)u(s) for any measurable bounded function g : S — R, and then

E[(g, tt41) lo(u,)]

N .
= LE| S RIg(s] ) o) V F]
i=1

—ZZZg(s )P(s' |5}, 1, (N (s1)), @)7(s}, 1, (s})) (@)

seSz 1 acA

N S 16t = 93 P st 1y VD), @)l () @)

seS seS i=1 aeA

=D 8D 1(8)Y P Is, 1, (N (5)), )7e(s, 1,(5)) (@)

s’eS seS acA

=3O ) Y Tl e) S P Is, 1N (), a)h(s)a), (Ad)

s’eS s€S hePNH ) (A4) acA

where in the last step, the expectation of random variable /(s)(a) with respect to distribution I'(%|u) is 7(s, i,(s)). And from the
last equality, clearly u,,, evolves according to transition dynamics PN(-|u,, ) under I1(h|y,). This implies the equivalence of
(A.2) and (3.5). As a byproduct, when taking g(s”) = 1(s” = s°) for any fixed s° € S, (A.4) becomes

Elpty(M)o(p)l = > pyls) Z T1(h| u,(5))Y  P(s°[s, 11, (N (s)), @)h(s) @),

seN(s°) hePNH O (A) acA

where the local structure (2.7) is used. This suggests that y,_ ;(s°) only depends on g, (N’ f(,) and hy(N«) because N (s) = N(s°) for
s e N(s°).
Now, we show that V" (u) in (A.3) and f/n( ) in (3.7) are equal. Take 7" defined in 3.7),

.

=B, 5l | D2V D Bt s (e Vo), ) L g =

L t=0 seS

~ 11 ad
V) 3= Byt ), 2 | 2DV TN ) g

t=0 seS

= ENMNPN( | 1) ZV Z Z rs(p (Ns), ()T 70) |y =

t: SES p,ePNH ) (4)

=E, _pv|um) EV Sows) D Tl rls, u(Ws),a)h(a)|py =

t=0 seS hePN1O) (A4) acA

=SB, o | D0 S O 11,V )5, 1, (5)) (@), =

t=0  seS acA

= V),

where in the last second step, PN under 7t is equivalent to p" under I, and the expectation of /(s)(a) with distribution I(k|u,)
is (s, u,(s))(a) such that

Z H(ht | .ut)z T(S, #t(Ns)/ a)h(a) = ]Eh~l_[(- [y |:Z V(S, [.lt(Ns,ﬂ)h(ﬂ):|

hePN1 O (4) acA aeA

= 15, 1, (N), a)m(s, 1, (5))(@).

acA

Finally, the decomposition of V(i) and V() according to the states is straightforward. Q.E.D.
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Appendix B. Proof of Lemma 3.4
Let 9, ; and B] | be, respectively, distribution of (u,(N5),h(s)) and (u;(N), Hj(s)) under policy I1%. By the localized transition

kernel (2.7), it is easy to see that, for any givens € S, u,,,(s) only depends on (N %) and h:(\5). Then, by the local dependency,
(3.5) can be rewritten as

Uy (8) ~ PN, (N2), (V). (B.1)

Because of the local structure of dynamics (B.1) and local dependence of T, the distribution %, ,, t < |4] only depends on the ini-
tial value (‘u(./\/i),h(./\/ﬁ)). Therefore, P, ; = P; , t < 141,

Q™ (), wN T, HVE), RV TF)) — QT (), w (V) V), I (W)

= > By i), [ Vo), ()] = By, oy s (V) By (5)]

t=|5]+1
= ’ max k
< Z VtrmaxTV(i‘Bt,S/ SBt,s) < 17?/ éHl/
k -y
t=[5]+1
where TV(%, ;, B} ;) is total variation between B, ; and P ; that is upper bounded by one. Q.E.D.
Appendix C. Proof of Lemma 4.2
Forany 0 €©,s€ S, ue PN(S) and h € HN(u), it is easy to verify that [|®(0,s, i h)|l, < ||C|l, < 2, by the definitions of the feature

mapping ¢ in (4.6) and the center feature mapping @ in (4.7).
To prove (4.8), note that, by Lemma 4.1 and the definition of energy-based policy 1'[56‘ (4.4),

Vo, log T12 (h(s)| () = T Vo f(u(5), h(5)); 05) — T+ By _ppos usn[Vof (u(s), 7' (s))]
= - G ((5), (5)) = T By gy oy [, (1(5), H3))]
=7-D(0,s,u,h).

The second equality follows from the fact that Vo f ((1i(s), 1(s)); 65) = ¢ (4(5), h(s)). Therefore,

Vo.J(0) = ﬁE [Q™ () - (0,5, 1, h)] = ﬁﬁ [Z Q' () (0,5, M,h)} ,
yes

where the second equality is by the decomposition of the Q-function in Lemma 3.1.
The proof of (4.9) is based on the exponential decay property in Definition 3.1. Notice that

8:(0) = ﬁE > éy“*’wwjxhw’;)] Ve, log 1% (h(S)Iu(S))]
Lyent

=5 | |2 Qy““(uw;),hw’;)} Ve, log 11" (h(s)w(s))} : (C1)

yes

This is because, for all y ¢ N/ ];, Q?H (W ;), h(WNV };) is independent of s. Consequently,

Eoy { LZ QM (' ’;),h(/vﬁ)} Vo, log IT% (h(s)| y(s))} =0.
e\
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Given Lemma 4.1 and (C.1), we have the following bound:

lIgs(0) — Vo J(O)ll2

1 170 0
<3 sup (1O OV, BV — QG )1 - IV, log TP (&)l el,
TV uerNs),
heH ()
< cot|S| k+l
Sl —
The last inequality follows from (3.14) and |[log T1% (i(s) | u(s))ll, = |®(O,5, i h)|l, < 2 for any u € PN(S),h € HN(1). Q.E.D.

Appendix D. Proof of Theorems 5.1 and 5.2

D.1. Proof of Theorem 5.1: Convergence of Critic Update

This section presents the proof of convergence of the decentralized neural critic update. It consists of several steps. Section D.1.1
introduces necessary notations and definitions. Section D.1.2 proves that the critic update minimizes the projected mean-square
Bellman error given a two-layer neural network. Section D.1.3 shows that the global minimizer of the projected mean-square
Bellman error converges to the true team-decentralized Q-function as the width of hidden layer M — co.

D.1.1. Notations. Recall that the set of all state—action (distribution) pairs is denoted as Z:= U uerN{C=(uh) :he HN ()}

For any C = (u,h) € E, denote the localized state-action (distribution) pair as C§ = (U }S(),h(/\/' IS()). Meanwhile, denote EIS‘ = {C§ :

Ce E} as the set of all possible localized state—action (distribution) pairs. Without loss of generality, assume ||C§||2 <1 for
k o ok

any C € &,.

Let d: denote the dimension of the space E. Because P (S) has dimension (|S| — 1) and H" () has dimension |S|(].A| — 1) for
any p € PN(S), the product space E has dimension d; = |S||A| — 1. Similarly, one can see that the dimension of the space ZF,
denoted by d, is at most (k) | A|, where f (k) := maxex | N ls‘ | is the size of the largest k-neighborhood in the graph (S, £).

S k

57

Let RZ and R be the sets of real-valued square-integrable functions (with respect to vg) on E and E, respectively. Define the

norm || - |2, onR® by

IFlli20) = (B [FQPDY?, Vf €RE. (D.1)

Note that, for any function f € R¥,a function f € RZ is called a natural extension of fif f(C) = f(¥) for all L € E. Because the natu-
ral extension is an injective mapping from RE: to RZ, one can view RE as a subset of RZ. In addition, for a function fe RE»E, we
use the same notation f € R* to denote the natural extension of f.

For any closed and convex function class 7 c R¥, define the project operator Proj - from R* onto F by

Proj(g) := arg min ||f —gll;2(,)- (D.2)
feF

This projection operator Proj + is nonexpansive in the sense that

IP0j = (f) — Proj £ (@)lli2y) < IIf — &llr2(w)- (D.3)

Recall that, for each state s € S, the critic parameter w; is updated in a localized fashion using information from the k-hop neigh-
borhood of s. Without loss of generality, let us omit the subscript s of w; in the following presentation, and the result holds for all
s € S simultaneously.

Given an initialization w(0) € ]RMXdif , define the following function class:
k 1 & Tk Tk Mxd
From =13 Qo((5w) = \/—MZIL{[a)(O)]mCS >0lor FweRTY, |lw — w(0)|| < R/VM §. (D.4)
m=1

Qo(-;w) locally linearizes the neural network Q(-; w) (with respect to w) at w(0). Any function Qo(-;w) € Fr m can be viewed as
an inner product between the feature mapping (Pw(())(') defined in (4.6) and the parameter w, thatis, Qu(-; w) = c{)w(o)()T(u. In addi-
tion, it holds that V,Qo(-;w) = ¢ (.;(0)(')~ All functions in Fg y share the same feature mapping ¢ m(())(')/ which only depends on
the initialization w(0).

Recall the Bellman operator Tf : R — RE defined in (3.13),

TOQM (1, 1) = B _p( iy oo | w70 +7 - QF (' )], V(. ) € E.

The team-decentralized Q-function QPB in (3.10) is the unique fixed point of 7 anf’ =79 Q?e. Now, given a general parameter-
ized function class F, we aim to learn a Q;(; w) € F to approximate QPH by minimizing the following projected mean-squared
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Bellman error (PMSBE):
min PMSBE(«) = B¢, [(Qs(C{; @) — Proj; T{Qu(C{; w))’]- (D.5)

In the first step of the convergence analysis, we take F = F u (the locally linearized two-layer neural network defined in (D.4))
and consider the following PMSBE:

min Ecy,[(Qu(C{;@) — Projz, , TQu(C@))’]- (D-6)
We show in Section D.1.2 that the output of Algorithm 1 converges to the global minimizer of (D.6).
D.1.2. Convergence to the Global Minimizer in ¥ g y. The following lemma guarantees the existence and the uniqueness

of the global minimizer of MSPBE that corresponds to the projection onto Fg s in (D.6).

Lemma D.1 (Existence and Uniqueness of the Global Minimizer in Fg y). For any b € RM and w(0) € R there exists a *

such that Qo(-; ") € Fr,m is unique almost everywhere in Fr n and is the global minimizer of MSPBE that corresponds to the projection
onto Fr,m in (D.6).

Proof of Lemma D.1. We first show that the operator 7" 59 :R® — R= (3.13) is a y-contraction in the L?(vg)-norm:

IT9Q1 — T¢Qallf,,) = Beovo [(TEQ1(Q) — TEQa(0))*]
=V B [(BIQIT) = Qa(@)IT = (u' 1), 1" ~ PNCIO W ~ T u)])?]
< Y Ee [E[(Q1(C) = Qa(T) T = (', W), 1’ ~ PNC1O), W ~TI0( | )]
=9?E¢ -, [(Q1(C) = Qa())] = 121Q1 — QallFagy,

where the first inequality follows from Holder’s inequality for the conditional expectation and the third equality stems from the
fact that ¢’ and C have the same stationary distribution vg.

Meanwhile, the projection operator Proj Fo RE > F r,M is nonexpansive. Therefore, the operator Proj Fr ’Tf Frm— FrM
is a y-contraction in the L2(vg)-norm. Hence, Proj r, admits a unique fixed point Qy(-; w*) € Fg m. By definition, Qo(-; w*) is the

global minimizer of MSPBE that corresponds to the pr0]ect10n onto F RM in(D.6). Q.E.D.

We show that the function class F y approximately becomes F3*  (defined in Assumptlon 5.1) as M — oo, where F* Reolsa
rich RKHS. Consequently, Qo (-; w*) becomes the global minimum of the MSPBE (D.6) on ]—' " given Lemma D.1. Moreover, by
using similar argument and technique developed in Cai et al. [7, theorem 4.6], we can estabhsh the convergence of Algorithm 1
to Qo(-; ") as the following.

Theorem D.1 (Convergence to Qo(-;@")). Set N = Min{(1 —¥)/8,1/VTwisc} in Algorithm 1. Then, the output Q,(-; @) of Algo-
rithm 1 satisfies

R3d3/2 R5/2d5/4 de
+
\[‘ \/_‘ V critic

Einit[[|Qs(-; @) — QO('}C‘)*)“iZ(W,)] <0 (

where the expectation is taken with respect to the random initialization.

The proof of Theorem D.1 is straightforward from Cai et al. [7, theorem 4.6] and, hence, omitted.

D.1.3. Convergence to QH Next, we analyze the error between the global minimizer of (D.6) and the team-decentralized
Q-function QH (defined in (3.10)) to complete the convergence analysis. Different from the single-agent case as in Cai et al. [7],
we have to bound an additional error from using the localized information in the critic update in addition to the neural network
approximation—optimization error.

Proof of Theorem 5.1. First recall that, by Lemma 3.4, QHQ satisfies the (c, p)-exponential decay property in Definition 3.1 with
c==,p=4/y.Now, let Q " be any localized Q-function in (Local Q-function), and then,

v’

QM@ - Q@] < ™!, VieE. (D7)
By the triangle inequality and (a + b)* < 2(a? + b?),

A

1055 @) — QM Oy < (1Q5(5@) — Qo0 NIz + QM () — Qo5 @0)l2(uy)
< 2(1Qs(;®) — Qo0 B2y + 1M () = Qo0 Moy (D.8)

A
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The first term in (D.8) is studied in Theorem D.1, and it suffices to bound the second term. By interpolating two intermediate
terms Q?e and Proj,_ an‘?/ we have
0 . 0 1710 170 . ~170
Q" () = Qo5 @2y < IO () = Qs Mgy +1QS" () = Proj, Qi (llizgey)
M ()

+11Qo(;@") = Projz, Q™ (Mlizey) - (D.9)

(1mm)

First, we have (I) < cp**! according to (D.7). To bound (IIT), we have
() = |[Proj-, , T9Qo(;") —Projy, Q™ (Mlgz(uy
IProj-, . T2Qo(50") = Projz,  TOQM (llizg, + IProj, , TOQM () = Projz, . Q™ (Ml
YIQoC5 @) = QM (Mlizy) + IT2QM () = QI O)llizg)
= Y1105 @) = Q™ Ollizrpy + QM () = QI Mlzzgey)
)

< YIQo(; ") — QM Ollpay) + e (D.10)

The first line in (D.10) is because Qo(-; @) is the umque fixed point of the operator Proj £, ’T (as proved in Lemma D.1); the
third line in (D.10) is because the operator Proj F, T is a y-contraction in the L*(vg) norm and Proj,_ . is nonexpansive; the
fourth line in (D.10) uses the fact that Ql_I is the umque fixed point of 7 9, and the last line comes from the fact that (I) < cpk*l.
Therefore, combining the self-bounding inequality (D.10) with (D.9) and the bound on (I) gives us

IA

IA

0 " 1 ~ 110 . ~110
10" () = Qo0 llzqug) < -y 2001 +11Q:" () = Projz, , Qi Oz |/
(m

and consequently,

~ 10 ~ 176
3 | 8% 220101 () — Proj, | O Oz |- (D.11)

’ . 1
IO () = Qo 0"lfEz(yyy < T

(1T
Plugging (D.11) into (D.8) yields
Einie[1Q:(; @) — Q™ ()]
< 2(Bunl1Q:(3 @) — Qo5 @)1 + EuelIQT ) = Qol 0N 1)

VTR

Radz/z R5/2d5/4 de 2 2k+2 4 A’ : A (12
S+ |+ s B | IQI70) — Proje, OF Ol | (D-12)

(1n

Term (II) measures the distance between Q and the class Fr m. As discussed in Section D.1.1, the function class Fr p con-
verges to }' » (defined in Assumption 5.1) as M — oco. Consequently, term (IT) decreases as the neural network gets wider. To
quan‘atatlvely characterize the approximation error between Fg y and F* # oo ONE Needs the following lemma from Rahimi and
Recht [50] and Cai et al. [7, proposition 4.3]:

Lemma D.2. Assume Assumption 5.1, and we have

~ 10 6 R%d
Einie ||Q£[ () *PI'O]';K,M Q? (')”iZ(V@) < O( MC5>~ (D.13)

(1
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With this lemma, Theorem 5.1 follows immediately by plugging (D.13) into (D.12), and setting ¢ = ;‘i“;, 0 =Y, Taitic = QM) in
(D.12). QE.D.

D.2. Proof of Theorem 5.2: Convergence of Actor Update
The proof of Theorem 5.2 consists of two steps: the first step in Section D.2.1 shows that the actor update converges to a station-
ary point of ] (4.1), and the second step in Section D.2.2 bridges the gap between the stationary point and the optimality.

For the rest of this section, we use 1) to denote 17, .., and B; to denote B2 := {0, € RM*% . ||9, — 05(0)||., < R/VM]} for ease of
notation. Meanwhile, define B = [[,_Bs, the product space of B;s, which is a convex set in RMxdc

D.2.1. Convergence to Stationary Point. Definition D.1. A point 6 € Bis called a stationary point of J() if it holds that
VoJ(0)'(0—-0) <0, VOeB. (D.14)
Define the following mapping G from RM* to itself:
G(6) := " - [Proj (9 +1-Vo ](6)) —0). (D.15)

It is well-known that (D.14) holds if and only if G(8) = 0 (Sra et al. [53]). Now, denote p(t) := G(6(t)), where O(t) = {0s()}.cs is
the actor parameter updated in Algorithm 2 in iteration ¢.
To show that Algorithm 2 converges to a stationary point, we focus on analyzing ||p(t)||.

Theorem D.2. Assume Assumptions 5.3-5.5. Set = (Tactor) /% and assume 1 — Ln >1/2, where Lis the Lipschitz constant in Assump-

tion 5.5. Then, the output {0(t)},¢(r,..,1 of Algorithm 2 satisfies
. ,.  8T2X2|S| 4
Jnin Elllp®llp] < ——F—+ mEU(Q(Tactor +1)) = J(6(1)] + €Q(Tactor)- (D.16)

Here, e measures the error accumulated from the critic steps, which is defined as

32tDRAY?|S| Ty
— G - 100
€Q(Tactor) = A=) Tocor ;; EMlQs(-;@s.t) = Qs Ollz2 (v

1672D2%| S |2 Tactor B o
(1_)/)2’|Tc|to ! ;Zg E[|Qs(-; s, t) — Q? (')”%2(1/9([))]' (D.17)
actor =1 se

where {Q;(-; @s,1)}es is the output of the critic update at step ¢ in Algorithm 2. All expectations in (D.16) and (D.17) are taken
over all randomness in Algorithms 1 and 2.

Proof of Theorem D.2. Let f € [Tyor]- We first lower bound the difference between the expected total rewards of 1%+Y and
1199, By Assumption 5.5, VyJ(6) is L-Lipschitz continuous. Hence, by Taylor’s expansion,

J(Ot+1) = J(6(8) 2 - VoI (O(1) T6(H) — L/2- 16t +1) — (K], (D.18)

where 6(t) = (6(t + 1) — 6(t))/n. Meanwhile denote &,(t) = g,(0(t)) — E[,(0(1))], where g (6(t)) is defined in (4.14) and the expec-
tation is taken over o) given {@;}¢s. Then,

Vol (0(£)T6(t) = > Ve J(O(1) " 64(t)

seS

= [(Ve.J(6(1) — E[Z,(B(D)])6:(5) — (D) 04(t) +8,(6(1) T65(1)], (D.19)

seS

where 6,(t) := (65(t + 1) — 65(t))/n. The first term in (D.19) represents the error of estimating Vg, J(6(f)) using

E[Z,(6(1)] = %E [ LZ Qu(u(NY), KNy ); @y, 1) | Vo, log T (h(s)lu(s))] :
eNt

To bound the first term, first notice that

B[3.(6()] = %E [ [Z Q) HE); @y, )| Vi, log T (h(s)m(s))} .

yes
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This is because, for all y ¢ N/ ];, Qy(uW ;),h(]\/ };); @) is independent of 5, and consequently, we can verify that

Eﬂe(n |: LZ Qy(H(Nk(y))rh(Nk(y));d)yr t):| VUS log HS‘; (h(s)“'l(s)):l =

yeN*

Therefore, following the similar computation in Cai et al. [7, lemma D.2], we have

1/2

47DR
(Vo J(6(1)) — EIZ,(00)) 58] < (Tl i Q88— QO Ol (D20)
seS
To bound the second term in (D.19), we simply have
E(0)04(1) < &I + s (1) (D21)

To handle the last term in (D.19), we have
2.0(6)T05(1) = 16,1l = 17" - (12, (6(1) — (Os(t +1) — 05(£))) "0
=" (Os(t +1/2) — Proj; (0s(t +1/2))) " 6(¢)
=17 (0s(t + 1/2) — Proj (05(t +1/2))) " (Projg (65(t +1/2)) — 04() = 0. (D.22)

Here, we write 0;(t) + 113, (0(t)) as O,(t +1/2) to simplify the notation. The last inequality comes from the property of the projec-
tion onto a convex set.
Therefore, combining (D.19)-(D.22) suggests

1/2
Vo J(O(D)"6s(t) > — WZ[IIQS( ;@s, t)_Qe(t)()||L2(19(”)]+ (16512 = IES(DIR)-
s€S
Consequently,
. 1/2 "
Vo (O0)60) 2 181D 3@ = QM Ol + 5 S UBIE ~ IEOIR). (D:23)
seS

Thus, by plugging (D.23) into (D.18) and by Assumption 5.3, we have

2
2L TR{Is®IR] < 0" - EOE +1) - J(O®)] + LBLS'
4tDRdY*|S ot
DRI | |Z”QS(';Q_)s:t) —-Ql )(.)”LZ(VH(”)‘ (D.24)

+ - =
(1 - 7/)77 €S

Here, the expectation is taken over g given {@s},cs.

Now, in order to bridge the gap between |[6(t)|l, in (D.24) and ||p(t)ll, = [G(O(1))|l, in (D.15), we next bound the difference
[16(t) — p(t)ll,. We start with defining a local gradient mapping G, from RM*dc o RM>dc; .
Gs(0) := " - [Proj (65 +1- Vo, J(0)) — Os]. (D.25)

Because B; is an [-ball around the initialization, it is easy to verify that Gs(6) = (G(6)),. Therefore, we can further define
p,(t) = G5(0(t)), and the following decomposition holds:

156) — P01 = S_I18x(6) — p. (DI

seS
From the definitions of 0,(f) and p,(t),

1165(8) = py(Oll, = 17" - [IProjis (0 + 1 Vo, J(0)) — 05 — Proj (6< +1-,(0)) + Odll,
="+ [IProj, (0s + 1 Vo J(0)) — Proj (0 +1-3,(0))ll
<7106+ Vo J(0) — 05+ 1 Z.(O)]l, = V6, J(6) — 2, (O,
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Following similar calculations in Cai et al. [7, lemma D.3],

252 2712
ElIV6,J(0) - 5.(0)I] < 222 + 57D (

2
S IQ s @et) — QES‘“(~)||LZ<W>

B (1 - V)z seS
21252 812D?|S _ :
< 2 I (S 10,5006 - O Ol ) (D26)
(1- V) =

The expectation is taken over og() given {@;}ss. Consequently,

2
E[I6() — p(t)IE] < 2

¥2|S| 8t2D?|S|?
+

B (1—y) DM ds ) — Q?@“’(-)||iz<w,>>) ' (D27)

seS

Set 1 = 1/ Tactor and take (D.24) and (D.27). We obtain (D.16) from the following estimations:

1 Tactor 2 Tactor
min Ellp®IE] < ——- 3 lp®IE < —>—- 3 (ElIo() - p(oIE] + Bl
t€] Tactor ] Tactor =1 Tactor =1
2 Taay

<

D ELI5E) — p1)I3]+2(1 = L-mE[IS®)3])
t=1

actor

812x2|S| 4
< +

B B \Y% Ta ctor

where €, measures the error accumulated from the critic steps, which are defined in (D.17), that is,

EU(G(Tactor + 1)) - ](6(1))] + GQ(Tactor)/

32tDRAY?|S| Tuer
_ & ' LN AT
€Q(Tactor) = (1 — )7 Tactor ;:1 SEES E[IQs(-;@s) = Qs ( )||L2(V9(”)]

167°D?[S|? o 12
— E[IQs(;@5) = Q" OllE2(yy -

(1 - y)ZTactor ;; ’ ’ (o)
Here, the expectations in (D.16) and (D.17) are taken over all randomness in Algorithms 1 and 2. Q.E.D.
D.2.2. Bridging the Gap Between Stationarity and Optimality. Recall that oy in (4.2) denotes the state—action visitation
measure under policy IT?. Denote & as the state visitation measure under policy I1%. Consequently,

Go(I°(h|w) = ap(u, h).

Following similar steps in the proof of Cai et al. [7, theorem 4.8], one can characterize the global optimality of the obtained sta-

tionary point 6 € B as the following.

Lemma D.3. Let O € B be a stationary point of ](-) satisfying Condition (D.14) and let 0" € B be the global maximum point of ](-) in B.
Then, the following inequality holds:

, (D.28)
L2(0)

where 1y (u,h) := dog /dog(u,h) — dG o /dG () + Esesd)é‘(#(s)/h(s)fés' and dog/doy, dG g /dGy are the Radon-Nikodym deriva-
tives between the corresponding measures. ’

(=)0 () = T it lugu) — 3, (1) 1)) 0,

seS

Proof of Lemma D.3. First, recall that, by (4.8), for any 0 € B,

V 0) (0 —0)= \% 0)" sfh‘s :4’{ EU~ e ,h.®~,,,hT 57~5’
0J(0) (6-0) ; 0.J(0) (65 — 05) 17}/; o [Q7 (1) - (0,5, 1.h) (65 — 0)]
in which CDEQ,S, wh) = P, (1(s), h(s)) — B sy 1105 (1 uts)) [, (u(s), 1’ (5))] is defined in (4.7).
Because 6 € Bis a stationary point of J(-),
S By, [Q™ (u,h) - ©(B,5,1.1)7 (6, — 6,)] <0, VOeB. (D.29)
seS
Denote A" (u, h):= Qné (‘Lg,h)—VHi(‘u) as the advantage function under policy . It holds from the definition that

E, o (-|y)[AHH ()] = 72 () — v (1) = 0. Meanwhile, SUP(,, jyez |AT (wh)] < 2sup,cpns)l yir (W] < ZLL;,X
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GiventhatE, (] ‘u)[AHé (u,m)]=0and E, (| w[®(8,s,u,h)] =0, we have, forany s € S,

E,, [V (u)-®(@,s,1,1)] =0,  and (D.30)
Bay LA™ (0,1 By 1o [95.(5), 1 (5)]] = 0. (D:31)

Combining (D.29) with (D.30) and (D.31),
XSjE [A™ (1, 1) - 5 (u(s), 1(s))T (6, — B)] <0, VO e€B. (D.32)

Moreover, by the performance difference lemma (Kakade and Langford [35]),
(1 =) ((6) ~ J(O) = Es, LA™ (1, ), 11 (-|2) — T (| )], (D.33)
Combining (D.33) with (D.32), it holds that, for any 0 € B,
(1-9)-7JO) - J©O)
< Egp [A™ (1,0, 117 (1) = T2 ()] = 37 B [A™ () . (L) (65 — 6]

seS
=K, | A" (u,h)- (doa (u ) — d"e a5, W= > dp.(uls).h(s)" (6, — 6 ))} (D.34)
seS
Therefore,
1) () - J(©O))
2rmax . da@ dO'g
< T a0, B0~ g5, 1)~ 2 95, O KOO —9)LZM
frm‘“ inf |y (1) — 3 ¢ (). HE)TO (D.35)
seS L2(05)

where ug (1, h) := dog /dog (u,h) —dG o /da (1) + D scsPp (1(3), h(s))" 05, and dog- /doy, dGg-/dd; are the Radon-Nikodym deri-
vatives between corresponding measures. Q.E.D.

To further bound the right-hand side of (D.28) in Lemma D.3, define the following function class:

M
Frou = {fo(c; 0):=3" [VLMZ 1{[6:01}C, > 0}[(95];&5} :
m=1

seS

)

6 € RV |16 — 6,0l < R/‘/J\—/I}, (D.36)

given an initialization 6,(0) € RM*d se Sand be RM. F r,m (D.36) is a local linearization of the actor neural network. More spe-
cifically, term (x) in (D.36) locally linearizes the decentralized actor neural network f(Cs; ;) (4.4) with respect to 0s. Any fo(C; 0) €
Fr um is asum of | S| inner products between feature mapping Po, (0)( ) (4.6) and parameter Os: fo(C; 6) = > sPp, © (CS) 0s. As the
width of the neural network M — oo, Fg y converges to Fg e (defmed in Assumption 5.6). The approximation error between
F r,m and Fr, « is bounded in the following lemma.

Lemma D.4. For any function f(C) € Fg o defined in Assumption 5.6, we have
. |S|Rd?
Einit[llf () = Projz, , fOlli2,) 1 < O W . (D.37)

Lemma D.4 follows from Rahimi and Recht [50] and Cai et al. [7, proposition 4.3]. The factor |S| stems from the fact that Fr o
can be decomposed into |S| independent reproducing kernel Hilbert spaces. With Lemma D.4, we are ready to establish an
upper bound for the right-hand side of (D.28) in the following proposition.

Proposition D.1. Under Assumption 5.6, let 0 € B be a stationary point of ](-) and let 0" € B be the global maximum point of J(-) in B.
Then, the following inequality holds:

(D.38)

|$|R3/2d2/4
M4 .

1=»)0(0) = J(0)) < O(
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Proof of Proposition D.1. First, by the triangle inequality,

mf

up(©) = > 5. (C) 70

ses

< lug(Q) = Projz,  ug(Ollizy)
LZ(O'(:,)

+inf , (D.39)

L2(03)

Projz  15(0) = Y §5.(C)"6s

SeS

where Fg u is defined in (D.36). We denote Projz, uo(C) D ee sPo. 0)((:5) O, F r,M for some 0 € B. Therefore, by Lemma
D 4, the first term on the right-hand side of (D.39) is bounded by (D.37):

|S|Rd}?
L2(0p)

The following Lemma D.5 is a direct application of Wang et al. [57, lemma E.2], which is used to bound the second term on the
right-hand side of (D.39).

Lemma D.5. It holds for any 05, 0, € Bs = {as € RM*% : ||ag — 0,(0)||o, < R/VMY} that

ué(c) - Z (PQS(())(CS) ' /Q\s
seS

3/2d3/4
Einitlllg, (C) " 07 = P, 0)(C5) " Ollli2(ay)] < O( MA ) (D.40)

where the expectation is taken over random initialization.
Taking 0 = 0 and 0’ = 0 in Lemma D.5 gives us

_ . |S|R324%/4
> l196,0)(C)- B = 5, () Bullizy < O( S

seS

Therefore, by Lemma D.1,

(1= = J(0) < infllus(0) =D ¢5,(C) "0

seS m! /"

| SR
<O[l———=|. QED.
L%(0p)

Now, we are ready to establish Theorem 5.2.

Proof of Theorem 5.2. Following similar calculations as in Wang et al. [57, section H.3], we obtain that, at iteration ¢ € [Tactor],

Vol(O(8) (0 — e(t)><2(1<+” ‘““) ol VOB, (DA1)

The right-hand side of (D.41) quantifies the deviation of O(f) from a stationary point 0. Having (D.41) and following similar
arguments for Lemma D.3 and Proposition D.1, we can show that

1 apje) - jon) < o SR 45 (g4 1t t D.42
— < . .
(1) min EJ(@) - J(00)] i) +2(Re) - i Bllo() (D42)
Here, the last term miny(r,,.] E[llp(t)ll,] is bounded by (D.16) in Theorem D.2, whereas the term (T ctor) in (D.17) can be upper
bounded by Theorem 5.1. Finally, with the parameters stated in Theorem 5.2, the following statement holds by straightforward
calculation:

Jnin | E[J(07) = JOM)] < O(ISI"*B712 +|SIIAIMA M + (Taaor) "), QED.
Appendix E. A Network Example Satisfying Technical Assumptions

In this section, we provide a concrete network example that satisfies all Assumptions 5.1-5.6 (or their mild relaxations). The
structure of this network is shown in Figure E.1, which consists of five states. Within each time step, an agent can travel from
state i to j only if there is a directed link from state i to j. We consider a mean-field MARL problem with 10 agents on this five-
state network. For an agent at a given state 7, the admissible action is to travel to a neighboring state at the next time step. Once
the agent selects a neighboring state as its action, it transits to that state with probability one in the next time step. The discount
parameter of the problem is set to be yy = 0.95. The team decentralized policy is parameterized in the form of (4.4).

E.1. Assumption 5.1.

In general, it may be difficult to verify whether Q in (Local Q- functlong belongs to F ; koc in (5.1) by direct computation. How-
ever, it can be argued that any continuous function (including any Q' in (Local Q- functlon)) satisfies Assumption 5.1 with
some controllable approximation error. More specifically, as pointed out in Remark 5.1, }' » in (5.1) is a subset of an RKHS,
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Figure E.1. Five-state network.

which is dense in the space of continuous functions. In this case, any continuous anﬁ can be approximated by some function in
F ;km up to some approximation error, and the subsequent convergence analysis can also be modified to reflect such error. In
short, Assumption 5.1 is satisfied by the example in Figure E.1 up to some approximation error.

E.2. Assumption 5.2.

As mentioned in Remark 5.1, Assumption 5.2 is satisfied when the stationary distribution vy and the visitation measure og are
both uniformly upper bounded over all policies. It is indeed difficult to verify such assumption by direct computation. Alterna-
tively, we conduct a numerical experiment to show that the upper boundedness of vg and o¢ is a reasonable assumption for the
example in Figure E.1.

Given a neural policy I1%, the stationary distribution v and the visitation measure ¢4 are computed by numerical simulations
of the system’s trajectories. We generate 800 random neural policies {He" ?2(1), and for each 0;, the maximum value of vy, and oy,
is recorded. The results are shown in Figure E.2. It is observed from the histogram that most of the randomly chosen 6’s lead to a
maximum value smaller than 0.02, whereas the overall upper bound is smaller than 0.03. Therefore, Assumption 5.2 holds
numerically under this example.

E.3. Assumption 5.3.
Assumption 5.3 also holds under mild conditions. More specifically, when the estimator g, in (4.14) can be viewed as an average
of Bii.d.samples,

> QW) (N @,) | - (O(E), 5,1, h), 1€[B],
N

Figure E.2. (Color online) Upper bound of 69 and v¢ over 800 random policies.
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Figure E.3. (Color online) L, norm of Radon-Nikodym derivative between o¢ and vg over 800 random policies.
Histogram, L2 norm of Radon-Nikodym Derivative
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Assumption 5.3 holds naturally if each sample has uniformly bounded variance over all parameters @ and 0. A sufficient condi-
tion to guarantee the uniformly bounded variance is when the neural Q-function Q,(;@,) is uniformly bounded over all para-
meters. Indeed, when Q,(;;@,) is a two-layer neural network with bounded parameters @, and bounded input, a uniform
bound on Q,(;&,) is guaranteed. Hence, Assumption 5.3 holds when the parameters of the critic networks are uni-
formly bounded.

E.4. Assumption 5.4.

Similar to Assumption 5.2, because of the difficulty in directly computing v¢ and o9, Assumption 5.4 is verified numerically
under the example in Figure E.1. Again, 800 random neural policies {TT%}%® are generated, and E,,[(dog/dve(u,1))*], the L,
norm of the Radon-Nikodym derivative between o¢ and vy, is computed for each 0. The results are shown in Figure E.3. It is
observed from the histogram that most of the randomly chosen 6’s lead to a bounded L, norm smaller than 30, whereas the over-
all upper bound is smaller than 45. Therefore, Assumption 5.4 holds numerically under this example.

E.5. Assumption 5.5.

In general, Assumption 5.5 holds when the transition probability and the reward function are both Lipschitz continuous with
respect to their inputs (Pirotta et al. [46]), or when the reward is uniformly bounded and the score function Vg log 1% is uni-
formly bounded and Lipschitz continuous with respect to 0 (Zhang et al. [65]. Under the particular example in Figure E.1, one
can set the reward function to be constant so that the Lipschitz condition in Assumption 5.5 holds immediately.

E.6. Assumption 5.6.
Assumption 5.6 is similar to Assumption 5.1, and such assumption is satisfied by any continuous function up to an approxi-
mation error.

Overall, we have shown that Assumptions 5.1-5.6 in the paper (or their mild relaxations) are satisfied by the particular exam-
ple in Figure E.1.
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