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Abstract. One of the challenges for multiagent reinforcement learning (MARL) is designing 
efficient learning algorithms for a large system in which each agent has only limited or par-
tial information of the entire system. Whereas exciting progress has been made to analyze 
decentralized MARL with the network of agents for social networks and team video games, 
little is known theoretically for decentralized MARL with the network of states for modeling 
self-driving vehicles, ride-sharing, and data and traffic routing. This paper proposes a frame-
work of localized training and decentralized execution to study MARL with the network of 
states. Localized training means that agents only need to collect local information in their 
neighboring states during the training phase; decentralized execution implies that agents can 
execute afterward the learned decentralized policies, which depend only on agents’ current 
states. The theoretical analysis consists of three key components: the first is the reformulation 
of the MARL system as a networked Markov decision process with teams of agents, enabling 
updating the associated team Q-function in a localized fashion; the second is the Bellman 
equation for the value function and the appropriate Q-function on the probability measure 
space; and the third is the exponential decay property of the team Q-function, facilitating its 
approximation with efficient sample efficiency and controllable error. The theoretical analy-
sis paves the way for a new algorithm LTDE-NEURAL-AC, in which the actor–critic approach 
with overparameterized neural networks is proposed. The convergence and sample com-
plexity are established and shown to be scalable with respect to the sizes of both agents and 
states. To the best of our knowledge, this is the first neural network–based MARL algorithm 
with network structure and provable convergence guarantee.

Funding: X. Wei is partially supported by NSFC no. 12201343. R. Xu is partially supported by the NSF 
CAREER award DMS-2339240. 

Keywords: multiagent reinforcement learning • mean-field • neural network approximation

1. Introduction
Multiagent reinforcement learning (MARL) has achieved substantial successes in a broad range of cooperative 
games and their applications, including coordination of robot swarms (Hüttenrauch et al. [30]), self-driving vehicles 
(Cabannes et al. [6], Shalev-Shwartz et al. [52]), real-time bidding games (Jin et al. [34]), ride-sharing (Li et al. [39]), 
power management (Zhou et al. [70]) and traffic routing (El-Tantawy et al. [17]). One of the challenges for the devel-
opment of MARL is designing efficient learning algorithms for a large system in which each individual agent has 
only limited or partial information of the entire system. In such a system, it is necessary to design algorithms to 
learn policies of the decentralized type, that is, policies that depend only on the local information of each agent.

In a simulated or laboratory setting, decentralized policies may be learned in a centralized fashion. It is to train a 
central controller to dictate the actions of all agents. Such a paradigm of centralized training with decentralized exe-
cution has achieved significant empirical successes, especially with the computational power of deep neural net-
works (Chen et al. [15], Foerster et al. [18], Lowe et al. [43], Rashid et al. [51], Vadori et al. [56], Yang et al. [60]). Such 
a training approach, however, suffers from the curse of dimensionality as the computational complexity grows 
exponentially with the number of agents (Zhang et al. [64]); it also requires extensive and costly communications 
between the central controller and all agents (Rabbat and Nowak [49]). Moreover, policies derived from the central-
ized training stage may not be robust in the execution phase (Zhang et al. [66]). Most importantly, this approach 
has not been supported or analyzed theoretically.
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An alternative and promising paradigm is to take into consideration the network structure of the system to train 
decentralized policies. Compared with the centralized training approach, exploiting network structures makes the 
training procedure more efficient as it allows the algorithm to be updated with parallel computing and reduces 
communication cost.

There are two distinct types of network structures. The first is the network of agents, often found in social net-
works, such as Facebook and Twitter, as well as team video games, including StarCraft II. This network describes 
interactions and relations among heterogeneous agents. For MARL systems with such a network of agents, Zhang 
et al. [67] establishes the asymptotic convergence of decentralized actor–critic algorithms that are scalable in agent 
actions. Similar ideas are extended to the continuous space in which a deterministic policy gradient method is used 
(Zhang et al. [63]) with finite-sample analysis for such framework established in the batch setting (Zhang et al. [68]). 
Qu et al. [48] study a network of agents in which state and action interact in a local manner; by exploiting the net-
work structure and the exponential decay property of the Q-function, it proposes an actor–critic framework scalable 
in both actions and states. A similar framework is considered for the linear quadratic case with local policy gradi-
ents conducted with zero order optimization and parallel updating (Li et al. [38]).

The second type of network, the network of states, is frequently used for modeling self-driving vehicles, ride- 
sharing, and data and traffic routing. It focuses on the state of agents. Compared with the network of agents, which 
is static from an agent’s perspective (Sunehag et al. [54]), the network of states is stochastic: neighboring agents of 
any given agent may change dynamically. This type of network has been empirically studied in various applica-
tions, including packet routing (You et al. [62]), traffic routing (Calderone and Sastry [8], Guériau and Dusparic 
[27]), resource allocations (Cao et al. [9]), and social economic systems (Zheng et al. [69]). However, there is no exist-
ing theoretical analysis for this type of decentralized MARL. Moreover, the dynamic nature of agents’ relationships 
makes it difficult to adopt existing methodology from the static network of agents. The goal of this paper is, there-
fore, to fill the gap.

1.1. Motivating Example
To get the essence of the network of states, let us consider the following ride-hailing dispatch problem, studied 
empirically in Li et al. [39] via the MARL approach. In this problem, the rides/demands are exogenous, and 
drivers/supplies are distributed at different locations on a (transportation) network, in which the state includes the 
location of drivers within the graph and the driver’s status of being idle or occupied. The driver’s action is state- 
dependent: the driver can only take a new order when the driver’s status is “idle” and when the pickup location is 
reachable within k steps, that is, within the k-hop neighborhood of the driver’s current location on the graph. If the 
driver is occupied, the driver’s only allowable action is to continue with the current order until the destination. The 
reward function has two main components. The first one is the usual payment the driver receives upon completing 
a trip, which is proportional to the distance traveled. In addition to this standard payment, there are rebates that 
take into account the supply–demand imbalance in both the origin and the destination of any impending trip: one 
rebate for the driver when the driver accepts orders in locations where the demand is higher than the supply and 
another rebated for the driver from the supply–demand imbalance in the k-hop neighborhood of the destination. 
This last one is known as order destination potential in the literature, and it measures the potential of the origin for 
the next ride.

This example highlights a couple of features common in transportation networks: (1) the reward function relies 
on the aggregated information of drivers and riders with additional rebates for imbalance between the supply and 
the demand, and (2), the network is a hexagon grid system (Qin et al. [47]), shown in Figure 1. This network is 
sparse in the sense that drivers travel only to neighboring states within a single time step. These two stylized yet 
critical features are the basis of our mathematical formulation in order to develop a scalable and efficient learning 
framework.

1.2. Our Work
Motivated by this transportation network, this paper proposes and studies multiagent systems with a network of 
states. In this network, homogeneous agents can move from one state to any connecting state and observe only 
partial information of the entire system in an aggregated fashion. To analyze this system, we propose a frame-
work of localized training and decentralized execution (LTDE). Localized training means that agents only need 
to collect local information in their neighboring states during the training phase; decentralized execution implies 
that agents can execute afterward the learned decentralized policies that only require knowledge of agents’ cur-
rent states.

The theoretical analysis consists of three key elements. The first is the regrouping of homogeneous agents accord-
ing to their states and reformulation of the MARL system as a networked Markov decision process (MDP) with 
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teams of agents. This part leads to the decomposition of the Q-function and the value function according to the 
states, enabling the update of the consequent team Q-function in a localized fashion. The second is the establish-
ment of the Bellman equation for the value function and the appropriate Q-function on the probability measure 
space by utilizing the homogeneity of agents. These functions are invariant with respect to the number of agents. 
The third is the exploration of the exponential decay property of the team Q-function, enabling its approximation 
with a truncated version of a much smaller dimension and yet with a controllable approximation error. This last 
piece is inspired by earlier studies of exponential decay in random graphs (e.g., Gamarnik [20], Gamarnik et al. 
[21]) and extensive analysis of network among heterogeneous agents (e.g., Lin et al. [40], Qu et al. [48]).

To design an efficient and scalable reinforcement learning algorithm for such a framework, the actor–critic 
approach with overparameterized neural networks is adopted. The neural networks, representing decentralized 
policies and localized Q-functions, are much smaller compared with the global one. The convergence and sample 
complexity of the proposed algorithm are established and shown to be scalable with respect to the size of both 
agents and states. The techniques to prove the convergence of the neural actor–critic algorithm are adapted from 
the single-agent case in Wang et al. [57] to the multiagent setting.

1.3. Our Contribution
To the best of our knowledge, our work is the first neural network–based MARL algorithm with network structures 
and a provable convergence guarantee. In particular, our work contributes to two lines of research: MARL and cen-
tralized training, decentralized execution (CTDE).

First, we build a theoretical framework that incorporates network structures in the MARL framework and pro-
vide computationally efficient algorithms in which each agent only needs local information of neighborhood states 
to learn and execute the policy. In contrast, existing works for mean-field control with reinforcement learning 
require that each agent have the full information of the population distribution (Carmona et al. [11, 12], Gu et al. 
[25], Motte and Pham [45]) although, in most applications, agents only have access to partial or limited information 
(Yang et al. [61]).

Second, our work builds the theoretical foundation for the practically popular scheme of CTDE (Lowe et al. [43], 
Rashid et al. [51], Vadori et al. [56], Yang et al. [60]). The CTDE framework is first proposed in Lowe et al. [43] to 
learn optimal policies in cooperative games with two steps: the first step is to train a global policy for the central 
controller, and the second one is to decompose the central policy (i.e., a large Q-table) into individual policies so 
that an individual agent can apply the decomposed/decentralized policy after training. Despite the popularity of 
CTDE, however, there has been no theoretical study as to when the Q-table can be decomposed and when the trun-
cation error can be controlled except for a heuristic argument by Lowe et al. [43] for large N with local observations. 
Our paper analyzes for the first time with a theoretical guarantee that applying our algorithm to this CTDE para-
digm yields a near-optimal sample complexity when there is a network structure among agent states. Moreover, 
our algorithm, which is easier to scale up, improves the centralized training step with a localized training. To differ-
entiate our approach from the CTDE scheme, we call it LTDE.

Figure 1. (Color online) Hexagon grid system. 
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1.4. Notation
For a set X , denote RX � {f : X → R} as the set of all real-valued functions on X . For each f ∈ RX , define ‖f ‖∞ �
supx∈X | f (x) | as the sup norm of f. In addition, when X is finite, denote |X | as the size of X and P(X ) as the set of all 
probability measures on X : P(X ) � {p : p(x) ≥ 0,

P
x∈X p(x) � 1}, which is equivalent to the probability simplex in 

R |X | . Denote [N] :� {1, 2, : : : , N}. For any µ ∈ P(X ) and a subset Y ⊂ X , let µ(Y) denote the restriction of the vector µ
on Y and let P(Y) denote the set {µ(Y) : µ ∈ P(X )}. For x ∈ Rd, d ∈ N, denote ‖x‖2 as the L2-norm of x and ‖x‖∞ as the 
L∞-norm of x.

2. Mean-Field MARL with Local Dependency
The focus of this paper is to study a cooperative multiagent system with a network of agent states, which consists of 
nodes representing states of the agents and edges by which states are connected. In this system, every agent is only 
allowed to move from the agent’s present state to its connecting states. Moreover, the agent is assumed to only 
observe (realistically) partial information of the system on an aggregated level. Mean-field theory provides efficient 
approximations when agents only observe aggregated information and has been applied in stochastic systems with 
large homogeneous agents, such as financial markets (Carmona et al. [10], Casgrain and Jaimungal [13], Hu and 
Zariphopoulou [29], Lacker and Zariphopoulou [37]), energy markets (Aïd et al. [2], Germain et al. [23]), and auc-
tion systems (Guo et al. [28], Iyer et al. [31]).

2.1. Review of MARL
Let us first recall the cooperative MARL in an infinite time horizon, in which there are N agents whose policies are 
coordinated by a central controller. We assume that both the state space S and the action space A are finite.

At each step t � 0, 1, : : : , the state of agent i (� 1, 2, : : : , N) is si
t ∈ S and the agent takes an action ai

t ∈A. Given the 
current state profile st � (s1

t , : : : , sN
t ) ∈ SN and the current action profile at � (a1

t , : : : , aN
t ) ∈AN of N agents, agent i 

receives a reward ri(st, at), and the agent’s state changes to si
t+1 according to a transition probability function 

Pi(st, at). A Markovian game further restricts the admissible policy for agent i to be of the form ai
t ~ πi

t(st). That is, 
πi

t : S
N→ P(A) maps each state profile s ∈ SN to a randomized action with P(A) the space of all probability mea-

sures on space A.
In this cooperative MARL framework, the central controller is to maximize the expected discounted accumulated 

reward averaged over all agents. That is, to find

V(s) � max
p

1

N

XN

i�1

vi(s, p), (2.1) 

where

vi(s, p) � E
X∞

t�0

γtri(st, at)|s0 � s

" #

(2.2) 

is the accumulated reward for agent i given the initial state profile s0 � s and policy p � {pt}∞t�0 with pt � (π1
t , : : : , 

πN
t ). Here, γ�∈ (0, 1) is a discount factor, ai

t ~ πi
t(st), and si

t+1 ~ Pi(st, at).
The corresponding Bellman equation for the value function (2.1) is

V(s) � max
a∈AN

E
1

N

XN

i�1

ri(s, a)
" #

+ γEs′~P(s, a)[V(s′)]
( )

, (2.3) 

with the population transition kernel P � (P1, : : : , PN). The value function can be written as

V(s) �max
a∈AN

Q(s, a), 

in which the Q-function is defined as

Q(s, a) � E 1

N

XN

i�1

ri(s, a)
" #

+ γEs′~P(s, a)[V(s′)], (2.4) 
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consisting of the expected reward from taking action a at state s and then following the optimal policy thereafter. 
The Bellman equation for the Q-function, defined from SN ×AN to R, is given by

Q(s, a) � E 1

N

XN

i�1

ri(s, a)
" #

+ γEs′~P(s, a) max
a′∈AN

Q(s′, a
′)

� �
: (2.5) 

One can, thus, retrieve the optimal (stationary) control π∗(s, a) (if it exists) from Q(s, a) with π∗(s) ∈ arg max
a∈AN 

Q(s, a).

2.2. Mean-Field MARL with Local Dependency
In this system, there are N agents who share a finite state space S and take actions from a finite action space A. 
Moreover, there is a network on the state space S associated with an underlying undirected graph (S,E), where E ⊂
S × S is the set of edges. The distance between two nodes is defined as the number of edges in a shortest path. For a 
given s ∈ S, N

1
s denotes the nearest neighbor of s, which consists of all nodes connected to s by an edge and includes 

s itself, and N k
s denotes the k-hop neighborhood of s, which consists of all nodes whose distance to s is less than or 

equal to k, including s itself. For simplicity, we use N s :�N
1
s . From agent i’s perspective, agents in agent i’s neigh-

borhood N si
t 
change stochastically over time.

To facilitate mean-field approximation in this system, assume throughout the paper that the agents are homoge-
neous and indistinguishable. In particular, at each step t � 0, 1, : : : , if agent i at state si

t ∈ S takes an action ai
t ∈A, 

then agent i receives a localized stochastic reward, which is uniformly upper bounded by rmax such that

ri(st, at) :� r(si
t, µt(N si

t
), ai

t) ≤ rmax, i ∈ [N]; (2.6) 

agent i’s state changes to a neighboring state si
t+1 ∈N si

t 
according to a localized transition probability such that

si
t+1 ~ Pi(st, at) :� P(· |si

t, µt(N si
t
), ai

t), i ∈ [N], (2.7) 

where µt(·) �
PN

i�1 1(si
t � ·)=N ∈ PN(S) :� {µ ∈ P(S) : µ(s) ∈ {0, 1=N, 2=N, : : : , N � 1=N, 1} for all s ∈ S} is the empiri-

cal state distribution of N agents at time t with N ·µt(s) the number of agents in state s at time t, and µt(N si
t
) denotes 

the truncation of the µt vector with indices in N si
t
, that is, µt(N si

t
) :� {µt(s)}s∈N si

t

.

Equations (2.6) and (2.7) indicate that the reward and the transition probability of agent i at time t depend on 
both agent i’s individual information (ai

t, si
t) and the mean-field of agent i’s one-hop neighborhood µt(N si

t
) in an 

aggregated yet localized format: aggregated or mean-field meaning that agent i depends on other agents only 
through the empirical state distribution and localized meaning that agent i depends on the mean-field information 
of agent i’s one-hop neighborhood. Intuitive examples of such a setting include traffic routing, package delivery, 
data routing, resource allocations, distributed control of autonomous vehicles, and social economic systems.

2.2.1. Policies with Partial Information. To incorporate the element of partial or limited information into this mean- 
field MARL system, consider the following individual-decentralized policies:

ai
t ~ πi(st) :� π(si

t,µt(si
t)) ∈ P(A), i ∈ [N], (2.8) 

and denote u as the admissible policy set of all such policies.
Note that, for a given mean-field information µt, π(·,µt(·)) : S→ P(A) maps the agent state to a randomized 

action. That is, the policy of each agent is executed in a decentralized manner and assumes that each agent only has 
access to the population information in the agent’s own state. This is more realistic than centralized policies that 
assume full access to the state information of all agents.

2.2.2. Value Function and Q-Function. The goal for this mean-field MARL is to maximize the expected discounted 
accumulated reward averaged over all agents, that is,

V(µ) :� sup
π∈u

Vπ(µ) � sup
π∈u

1

N

XN

i�1

E
X∞

t�0

γtr(si
t, µt(N si

t
), ai

t)
�����µ0 � µ

" #

, (MF-MARL) 

subject to (2.6)–(2.8) with a discount factor γ�∈ (0, 1).
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The mean-field assumption leads to the following definition of the corresponding Q-function for (MF-MARL) on 
the measure space:

Q(µ, h) :� E
XN

i�1

1

N
r(si

0,µ(N si
0
), ai

0)
�����s0 ~ µ, a0 ~ h(s0)

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Expected reward of taking a0�(a1

0
, : : : , aN

0
)

+ Esi
1
~P(· | si

0
, µ(N

si
0
), ai

0
)
X∞

t�1

γt
XN

i�1

1

N
r(si

t,µt(N si
t
), ai

t)
�����a

i
t ~ π?t

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Expected reward of playing optimally thereafter ai

t~π
?
t

, (2.9) 

where µ(·) �PN
i�1 1(si

0 � ·)=N is the initial empirical state distribution and h(s)(a) �PN
i�1 1(si

0 � s, ai
0 � a)=PN

i�1 1(si
0 � s)

is a decentralized policy representing the proportion of agents in state s that take action a. Specifically, given 

µ ∈ PN(S), s ∈ S, and the N ·µ(s) agents in state s,

h(s) ∈ PN·µ(s)(A) :� ς ∈ P(A) : ς(a) ∈ 0,
1

N ·µ(s) , : : : ,
N ·µ(s)� 1

N ·µ(s)

� �
for all a ∈A

� �
⊂ P(A), 

where ς in PN·µ(s)(A) is an empirical action distribution of N ·µ(s) agents in state s and ς(a) is the proportion 
of agents taking action a ∈A among all N ·µ(s) agents in state s. Furthermore, for a given s ∈ S, denote PN·µ(s)(A)
the set of all admissible decentralized policies h(s)(·), and for a given µ ∈ PN(S), denote the product of PN·µ(s)(A)
over all states by HN(µ) :� {h : h(s) ∈ PN·µ(s)(A) ∀s ∈ S}. Here, HN(µ) depends on µ and is a subset of H � {h : S→
P(A)}.
Remark 2.1. Before further analysis, let us recall some important properties for the value function in (MF- 
MARL) and the Q-function in (2.9).

First is the dynamics programming principle for the mean-field Q function. Take an N-player game; the value 
function for any s :� (s1, s2, : : : , sN) ∈ SN is defined as

V(s) :� 1

N
E
X∞

t�0

γtr(st, ai
t)
�����s0 � s

" #

:

In the mean-field formulation, agents are assumed to be identical and interchangeable, and the empirical state dis-
tribution µ(·) �PN

i�1 1(si
0 � ·)=N is the sufficient statistic for the dynamic programming principle (DPP) of the cor-

responding value function. Analogously, for the mean-field Q function, it is shown in Gu et al. [25, 26] that the 
empirical state distribution µ(·) �PN

i�1 1(si
0 � ·)=N and the empirical action distribution h : S ×A→ R, h(s)(a) �

PN
i�1 1(si

0 � s, ai
0 � a)=PN

i�1 1(si
0 � s) are sufficient statistics to establish the associated DPP for the mean-field Q func-

tion with h(s)(a) representing the proportion of agents in state s who take action a.

Second, Q(µ, h) defined in (2.9) is invariant with respect to the order of the elements in s0 and a0. More criti-
cally, the input dimension of the Q-function defined in (2.9) is independent of the number of agents N in the sys-
tem, which renders it more scalable in the large population regime. This differs from the Q-function defined in 
(2.4), in which the input dimension grows exponentially with respect to the number of agents, the main culprit of 
the curse of dimensionality for MARL algorithms. (More detailed analysis of the mean-field Q-function can be 
found in Gu et al. [25, 26].)

3. Analysis of MF-MARL with Local Dependency
The theoretical study of this mean-field MARL with local dependency (Section 2.2) consists of three key compo-
nents, which are crucial for subsequent algorithm design and convergence analysis: the first is the reformulation of 
the MARL system as a networked Markov decision process with teams of agents. This reformulation leads to the 
decomposition of the Q-function and the value function according to states, facilitating updating the consequent 
team Q-function in a localized fashion (Section 3.1). The second is the Bellman equation for the value function and 
the Q-function on the probability measure space (Section 3.2). The third is the exponential decay property of the 
team Q-function, enabling its approximation with a truncated version of a much smaller dimension and yet with a 
controllable approximation error (Section 3.3).

Gu et al.: Mean-Field MARL: A Decentralized Network Approach 
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3.1. MDP on Network of States
This section shows that the mean-field MARL (2.6)–(2.8) can be reformulated in an MDP framework by exploiting 
the network structure of states. This reformulation leads to the decomposition of the Q-function, facilitating more 
computationally efficient updates.

The key idea is to utilize the homogeneity of the agents in the problem setup and to regroup these N agents 
according to their states. This regrouping translates (MF-MARL) with N agents into a networked MDP with |S |
agent teams, indexed by their states.

To see how the policy, the reward function, and the dynamics in this networked Markov decision process are 
induced by the regrouping approach, recall that there are N ·µ(s) agents in state s, and each agent i in state s inde-
pendently chooses action ai ~ π(s,µ(s)) according to the individual-decentralized policy π(s,µ(s)) ∈ P(A) in (2.8). 
Therefore, the empirical action distribution of {a1, : : : , aN·µ(s)} is a random variable taking values from PN·µ(s)(A), the 
set of empirical action distributions with N ·µ(s) agents. Moreover, for any h(s) ∈ PN·µ(s)(A), we have

P(h(s) is the empirical action distribution of {a1, : : : , aN·µ(s)}, ai ~
i:i:d
π(s,µ(s)))

� P(for each a ∈A, a appears N ·µ(s)h(s)(a) times in {a1, : : : , aN·µ(s)}, ai ~
i:i:d
π(s,µ(s)))

� (N ·µ(s))!Q
a∈A(N ·µ(s)h(s)(a))!

Y

a∈A
(π(s,µ(s))(a))N·µ(s)h(s)(a): (3.1) 

Here, h(s)(a) denotes the proportion of agents taking action a among all agents in state s with last equality derived 
from the multinomial distribution with parameters N ·µ(s) and π(s,µ(s)).

Now, clearly, each individual-decentralized policy π(s,µ(s)) ∈ P(A) in (2.8) induces a team-decentralized policy 
of the following form:

Πs(h(s) |µ(s)) �
(N ·µ(s))!Q

a∈A(N ·µ(s)h(s)(a))!
Y

a∈A
(π(s,µ(s))(a))N·µ(s)h(s)(a), (3.2) 

where h(s) ∈ PN·µ(s)(A). Conversely, given a team-decentralized policy Πs(· |µ(s)), one can recover the individual- 
decentralized policy π(s,µ(s)) by choosing appropriate h(s) ∈ PN·µ(s)(A) and querying the value of Πs(h(s) |µ(s)): let 
hi(s) � δai 

be the Dirac measure with ai ∈A, which is an action distribution such that all agents in state s take action 
ai. By (3.2), Πs(hi(s) |µ(s)) � (π(s,µ(s))(ai))N·µ(s), implying π(s,µ(s))(ai) � (Π(hi(s) |µ(s))

1
N·µ(s).

Next, given µ ∈ PN(S) and h ∈HN(µ) � {h : h(s) ∈ PN·µ(s)(A), ∀s ∈ S}, the set of empirical action distributions on 
every state, if we define

Π(h |µ) :�
Y

s∈S
Πs(h(s) |µ(s)), (3.3) 

then u, the admissible policy set of individual-decentralized policies in the form of (2.8), is now replaced by U, the 
set of all team-decentralized policies Π�induced from π ∈ u through (3.2) and (3.3). In addition, denote the set of all 

Figure 2. (Color online) Left: MF-MARL problem (2.6)–(2.8). Right: Reformulation of team game (3.2)–(3.6). 
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state–action distribution pairs as

Ξ :� ∪µ∈PN(S){ζ � (µ, h) : h ∈HN(µ)}, (3.4) 

and moreover, from the team perspective, the transition probability in (2.7) can be viewed as a Markov process of 
µt and ht ∈HN(µt)with an induced transition probability PN from (2.7) such that

µt+1 ~ PN(· |µt, ht): (3.5) 

It is easy to verify that, for a given state s ∈ S, µt+1(s) only depends on µt(N
2
s ), the empirical distribution in the two- 

hop neighborhood of s, and ht(N s). More specifically, each agent can only move from the agent’s current state s to a 
neighboring state in N s in each time step. Therefore, the change of population in state s consists of two sources: (1) 
the outflow of agents from state s to neighboring states in N s; (2) the inflow of agents from states in N s to state s. 
The outflow of agents depends on the actions of the agents in state s as well as the transition kernel. Because both 
the policy and the transition kernel only depend on information µ(N s), the outflow has a one-hop neighbor depen-
dence. Similarly, the inflow from any state s′ ∈N s depends on the information µ(N s′), which is contained in µ(N 2

s )
because N s′ ⊂N

2
s for any s′ ∈N s. Therefore, the inflow to s has a two-hop neighbor dependence. Consequently, the 

transition of µt+1(s) depends only locally on µt and ht through µt(N
2
s ) and ht(N s).

Finally, given µ(N s) ∈ PN(N s), an empirical distribution restricted to the one-hop neighborhood of s, one can 
define a localized team reward function for team s from PN·µ(s)(A) to R as

rs(µ(N s), h(s)) �
X

a∈A
r(s,µ(N s), a)h(s)(a), (3.6) 

which depends on the state s and its one-hop neighborhood, and define the maximal expected discounted accumu-
lative localized team rewards over all teams as

Ṽ(µ) :� sup
Π∈U

Ṽ
Π(µ) � sup

Π∈U

E
X∞

t�0

X

s∈S
γt rs(µt(N s), ht(s))

�����µ0 � µ
" #

: (3.7) 

With all these key elements, one can establish the equivalence between maximizing the reward averaged over all 
agents in (MF-MARL) and maximizing the localized team reward summed over all teams in (3.7) and can, thus, 
reformulate the (MF-MARL) problem as an equivalent MDP of (3.2)–(3.7) with |S | teams, the latter denoted as 
(MF-DEC-MARL). (The proof is detailed in Appendix A.). See Figure 2 for illustration.

Lemma 3.1 (Value Function and Q-Function Decomposition).

V(µ) � Ṽ(µ) � sup
Π∈U

X

s∈S
Ṽ
Π

s (µ), (3.8) 

where ht ~Π(· |µt), µt+1 ~ PN(· |µt, ht), and

Ṽ
Π

s (µ) � E
X∞

t�0

γt rs(µt(N s), ht(s))
�����µ0 � µ

" #

(3.9) 

is called the value function under policy Π�for team s. Similarly,

QΠ(µ, h) :� E
X∞

t�0

γt
X

s∈S
rs(µt(N s), ht(s))

�����µ0 � µ, h0 � h

" #

�
X

s∈S
QΠs (µ, h), (3.10) 

where

QΠs (µ, h) � E
X∞

t�0

γtrs(µt(N s), ht(s))
�����µ0 � µ, h0 � h

" #

, (3.11) 

is the Q-function under policy Π�for team s, called the team-decentralized Q-function.
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The decomposition for the Q-function in (3.10) is one of the key elements to allow for approximation of QΠs (µ, h)
by a truncated Q-function defined on a smaller space and updated in a localized fashion; it is useful for designing 
sample-efficient learning algorithms and for parallel computing as is clear in the Section 3.3.

3.2. Bellman Equation for Q-Function
This section builds the second block for reinforcement learning algorithms, the Bellman equation for Q-function. 
Indeed, the Bellman equation for Q(µ, h) can be derived following a similar argument in Gu et al. [26] after estab-
lishing the dynamic programming principle on an appropriate probability measure space.

Lemma 3.2 (Bellman Equation for Q-Function). The Q-function defined in (2.9) satisfies

Q(µ, h) � E
XN

i�1

1

N
r(si

0,µ(N si
0
), ai

0)
�����s0, a0

" #

+ γEsi
1
~P(· | si

0
, µ(N

si
0
), ai

0
) sup

h′∈HN(µ1)
Q(µ1, h′)

2

4

3

5: (3.12) 

Here, µ1(·) �
PN

i�1 1(si
1 � ·)=N is the empirical state distribution at time 1.

Note that the Bellman equation (3.12) is for the Q-function defined in (2.9) for general mean-field MARL. In order 
to enable the localized training, decentralized execution for computational efficiency, one needs to consider the 
decomposition of the Q-function (3.10) and the updating rule based on the team-decentralized Q-function (3.11). 
The corresponding Bellman equation for the team-decentralized Q-function (3.11) follows.

Lemma 3.3. Given a policy Π ∈ U, QΠs defined in (3.11) is the unique solution to the Bellman equation QΠs � T Πs QΠs with 
T Πs , the Bellman operator taking the form of

T Πs QΠs (µ, h) � Eµ′~PN(· | µ, h), h′~Π(· | µ)[rs(µ, h) + γ ·QΠs (µ′, h′)], ∀(µ, h) ∈ Ξ: (3.13) 

These Bellman equations are the basis for general Q-function–based algorithms in mean-field MARL.

3.3. Exponential Decay of Q-Function
This section shows that the team-decentralized Q-function QΠs (µ, h) has an exponential decay property. This is 
another key element to enable an approximation to QΠs by a localized Q-function bQΠs (µ(N

k
s), h(N k

s)), and to guaran-
tee the scalability and sample efficiency of subsequent algorithm design.

To establish the exponential decay property of the Q-function (3.11), first recall that N k
s is the set of k-hop neigh-

borhood of state s and define N�k
s � S=N

k
s as the set of states that are outside of the sth k-hop neighborhood. Next, 

rewrite any given empirical state distribution µ ∈ PN(S) as (µ(N k
s),µ(N

�k
s )) and, similarly, h ∈HN(µ) as (h(N k

s), 
h(N�k

s )).
Definition 3.1. The QΠ�is said to have a (c,ρ)-exponential decay property if, for any s ∈ S and any Π ∈
U, (µ, h), (µ′, h′) ∈ Ξ�with µ(N k

s) � µ′(N
k
s) and h(N k

s) � h′(N k
s)

���QΠs (µ(N
k
s),µ(N

�k
s ), h(N k

s), h(N�k
s ))�QΠs (µ(N

k
s),µ′(N

�k
s ), h(N k

s), h′(N�k
s ))

��� ≤ cρk+1:

Note that the exponential decay property is defined for the team-decentralized Q-function QΠs instead of the cen-
tralized Q-function QΠ. The following lemma provides a sufficient condition for the exponential decay property. 
Its proof is given in Appendix B.

Lemma 3.4. When the reward rs in (3.6) is uniformly upper bounded by rmax > 0 for any s ∈ S, QΠs satisfies the �
rmax

1�γ ,
ffiffiffi
γ
√ �

-exponential decay property.

The exponential decay property implies that, for a given state s ∈ S, the dependence of QΠs on other states decays 
quickly with respect to its distance from state s. It motivates and enables the approximation of QΠs (µ, h) by a trun-
cated function that only depends on µ(N k

s) and h(N k
s), especially when k is large and ρ�is small. Specifically, con-

sider the following class of localized Q-functions:

bQΠs (µ(N
k
s), h(N k

s)) �
X

µ(N�k
s ),h(N�k

s )

[ws(µ(N�k
s ), h(N�k

s );µ(N
k
s), h(N k

s))

·QΠs (µ(N
k
s),µ(N

�k
s ), h(N k

s), h(N�k
s ))], 

(Local Q-function)

Gu et al.: Mean-Field MARL: A Decentralized Network Approach 
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where ws(µ(N�k
s ), h(N�k

s );µ(N
k
s), h(N�k

s )) are any nonnegative weights of

X

µ(N�k
s ),h(N�k

s )

ws(µ(N �k
s ), h(N�k

s );µ(N
k
s), h(N k

s)) � 1 

for any µ(N k
s) and h(N k

s).
Then, direct computation yields the following proposition.

Proposition 3.1. Let bQΠs be any localized Q-function in the form of (Local Q-function). Assume the (c,ρ)-exponential 
decay property in Definition 3.1 holds. Then, for any µ ∈ PN(S) and h ∈HN(µ),

| bQΠs (µ(N
k
s), h(N k

s))�QΠs (µ, h) | ≤ cρk+1: (3.14) 

Moreover, (3.14) holds independent of the weights in (Local Q-function).

Note that, given a team-decentralized Q-function QΠs , its localized version bQΠs only takes µ(N k
s), h(N k

s) as inputs, 

and bQΠs (µ(N
k
s), h(N k

s)) is defined as a weighted average of QΠs over all (µ, h)-pairs that agree with (µ(N k
s), h(N k

s)) in 

the k-hop neighborhood of s. Although the localized Q-function bQΠs may vary according to different choices of the 

weights, by the exponential decay property, every bQΠs approximates QΠs with uniform error and requires a smaller 
dimension of input.

Remark 3.1 (Exponential Decay Property). In a discounted reward setting (2.1), the exponential decay property fol-
lows directly from the fact that the discount factor γ ∈ (0, 1) and the local dependency structure in (3.2)–(3.7). For 
problems of finite-time or infinite horizons with ergodic reward functions, this property can be established by 
imposing an additional Lipschitz condition on the transition kernel. (See Qu et al. [48, theorem 1] for a network 
of heterogeneous agents and γ�1).

4. Algorithm Design
The three key analytical components for problem (MF-DEC-MARL) in previous sections pave the way for design-
ing efficient learning algorithms. In this section, we propose and analyze a decentralized neural actor–critic algo-
rithm called LTDE-NEURAL-AC.

Our focus is the localized Q-function bQΠs (µ(N
k
s), h(N k

s)), the approximation to QΠs with a smaller input dimen-
sion. First, this localized Q-function bQΠs and the team-decentralized policy Πs are parameterized by two-layer 
neural networks with parameters ωs and θs respectively (Section 4.2). Next, these neural network parameters 
θ � {θs}s∈S and ω � {ωs}s∈S are updated via an actor–critic algorithm in a localized fashion (Section 4.3): the 
critic aims to find a proper estimate for the localized Q-function under a fixed policy (parameterized by θ), 
whereas the actor computes the policy gradient based on the localized Q-function and updates θ�by a gradient 
step.

These networks are updated locally, requiring only information of the neighborhood states during the training 
phase; afterward, agents in the system execute these learned decentralized policies, which requires only informa-
tion of the agent’s current state. This localized training and decentralized execution enables efficient parallel com-
puting especially for a large shared state space.

Moreover, overparameterization of neural networks avoids issues of nonconvexity and divergence associ-
ated with the neural network approach and ensures the global convergence of our proposed LTDE-NEURAL-AC 
algorithm.

4.1. Basic Setup
4.1.1. Policy Parameterization. To start, let us assume that, at state s, the team-decentralized policy Πθs

s is parame-
terized by θs ∈Θs. Further denote θ :� {θs}s∈S , Θ :�Qs∈SΘs, Π

θ :�Qs∈SΠ
θs
s

, and P :� {Πθ : θ ∈Θ} as the class of 
admissible policies parameterized by the parameter space {θ : θ ∈Θ}.

4.1.2. Initialization. Let us also assume that the initial state distribution µ0 of N agents is sampled from a given dis-

tribution P0 over PN(S), that is, µ0 ~ P0, and define the expected total reward function J(θ) under policy Πθ�by

J(θ) � Eµ0~P0[Ṽ
Π
θ

(µ0)]: (4.1) 

Gu et al.: Mean-Field MARL: A Decentralized Network Approach 
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4.1.3. Visitation Measure. Denote νθ�as the stationary distribution on Ξ�of the Markov process (3.5) induced 
by Πθ.

Similar to the single-agent reinforcement learning problem (Agarwal et al. [1], Fu et al. [19]), each admissible pol-
icy Πθ�induces a visitation measure σθ(µ, h) on Ξ�describing the frequency that policy Πθ�visits (µ, h)with

σθ(µ, h) :� (1� γ) ·
X∞

t�0

γt ·P(µt � µ, ht � h |Πθ), (4.2) 

where µ0 ~ P0, ht ~Π
θ(· |µt), and µt+1 ~ PN(· |µt, ht).

4.1.4. Policy Gradient Theorem. In order to find the optimal parameterized policy Πθ�that maximizes the expected 
total reward function J(θ), the policy optimization step searches for θ ∈Θ�along the gradient direction ∇J(θ). Note 
that computing the gradient ∇J(θ) depends on both the action selection, which is directly determined by Πθ, and 
the visitation measure σθ�in (4.2), which is indirectly determined by Πθ.

A simple and elegant result called the policy gradient theorem (Lemma 4.1) proposed in Sutton et al. [55], refor-
mulates the gradient ∇J(θ) in terms of QΠθ�in (3.10) and ∇ log Πθ(h |µ) under the visitation measure σθ. This result 
simplifies the gradient computation significantly and is fundamental for actor–critic algorithms.

Lemma 4.1 (Sutton et al. [55]). ∇J(θ) � 1
1�γEσθ[QΠ

θ(µ, h)∇ log Πθ(h |µ)]:
Now, direct implementation of the actor–critic algorithm with the centralized policy gradient theorem in Lemma 

4.1 suffers from high sample complexity because of the dimension of the Q-function. Instead, we show that the 
exponential decay property of the Q-function allows efficient approximation of the policy gradient via localization 
and hence a scalable algorithm to solve (MF-MARL).

4.2. Neural Policy and Neural Q-Function
We now turn to the localized Q-function bQΠs (µ(N

k
s), h(N k

s)) (i.e., the approximation of QΠs ) and the team- 
decentralized policy Πs and their parameterization by two-layer neural networks. We emphasize that the 
parameterization framework in this section can be extended to any neural-based single-agent algorithms with 
a convergence guarantee.

4.2.1. Two-Layer Neural Network. For any input space X ⊂ Rdx with dimension dx ∈ N, a two-layer neural network 
f̃ (x;W, b)with input x ∈ X and width M ∈ N takes the form of

f̃ (x;W, b) � 1ffiffiffiffiffi
M
√

XM

m�1

bm ·ReLU(x · [W]m): (4.3) 

Here, the scaling factor 1=
ffiffiffiffiffi
M
√

called the Xavier initialization (Glorot and Bengio [24]) ensures the same input variance 
and the same gradient variance for all layers; the activation function ReLU : R→ R, defined as ReLU(u) � 1{u > 0} · u; 
b�{bm}m∈[M], and W � ([W]⊤1 , : : : , [W]⊤M)

⊤ ∈ RM×dx in (4.3) are parameters of the neural network.
Taking advantage of the homogeneity of ReLU (i.e., ReLU(c · u) � c ·ReLU(u) for all c>0 and u ∈ R), we adopt the 

usual trick (Allen-Zhu et al. [4], Cai et al. [7], Wang et al. [57]) to fix b throughout the training and only to update W 
in the sequel. Consequently, denote f̃ (x;W, b) as f (x;W)when bm�1 is fixed. [W]m is initialized according to a multi-
variate normal distribution N(0, Idx

=dx), where Idx 
is the identity matrix of size dx.

4.2.2. Neural Policy. For each s ∈ S, denote the tuple ζs � (µ(s), h(s)) ∈ Rdζs for notational simplicity, where dζs
:�

1+ |A | is the dimension of ζs. Given the input ζs � (µ(s), h(s)) and parameter W � θs in the two-layer neural net-
work f (·;θs) in (4.3), the team-decentralized policy Πθs

s , called the actor, is parameterized in the form of an energy- 
based policy,

Π
θs
s (h(s) |µ(s)) �

exp[τ · f ((µ(s), h(s));θs)]P
h′(s)∈PN·µ(s)(A)exp[τ · f ((µ(s), h′(s));θs)]

, (4.4) 

where τ�is the temperature parameter and f is the energy function.
To study the policy gradient for (4.4), let us first define a class of feature mappings that is consistent with the 

representation of two-layer neural networks. This connection between the gradient of a two-layer ReLU neural 
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network and the feature mapping defined in (4.6) is crucial in the convergence analysis of Theorems 5.1 and 5.2. 
Specifically, rewrite the two-layer neural network in (4.3) as

f (ζs;θs) �
1ffiffiffiffiffi
M
√

XM

m�1

ReLU(ζ⊤s [θs]m) �
1ffiffiffiffiffi
M
√

XM

m�1

1{ζ⊤s [θs]m > 0} · ζ⊤s [θs]m: :� φθs
(ζs)⊤θs: (4.5) 

Then, the feature mapping φθs
� ([φθs

]⊤1 , : : : , [φθs
]⊤M)
⊤
: Rdζs → RM×dζs may take the following form:

[φθs
]m(ζs) �

1ffiffiffiffiffi
M
√ ·1{ζ⊤s [θs]m > 0} · ζs: (4.6) 

That is, the two-layer neural network f (ζs;θs)may be viewed as the inner product between the feature φθs
(ζs) and 

the neural network parameters θs. Because f (ζs;θs) is almost everywhere differentiable with respect to θs, we see 
∇θs

f (ζs;θs) � φθs
(ζs). It is worth noting that the neural feature setting considered in our framework (4.6) is different 

from the linear feature literature (Geramifard et al. [22], Jin et al. [33]). This is because the feature mapping φθs 
in 

(4.6) depends on θs in a nonlinear fashion through the indicator function, whereas the linear feature mapping does 
not depend on the parameter θ.

Furthermore, define a centered version of the feature φθs 
such that

Φ(θ, s,µ, h) :� φθs
(µ(s), h(s))�Eh(s)′~Πθs

s (· |µ(s))[φθs
(µ(s), h′(s))]: (4.7) 

Note that, when policy Πθ�takes the energy-based form (4.4), Φ � 1
τ∇θ log Πθ.

Lemma 4.2. For any θ ∈Θ, s ∈ S, µ ∈ PN(S) and h ∈HN(µ), ‖Φ(θ, s,µ, h)‖2 ≤ 2, and

∇θs
J(θ) � τ

1� γ
·Eσθ[QΠ

θ(µ, h) ·Φ(θ, s,µ, h)]: (4.8) 

Moreover, for each s ∈ S, define the following localized policy gradient:

gs(θ) �
τ

1� γ
Eσθ

X

y∈N k
s

bQΠ
θ

y (µ(N
k
y), h(N k

y)

2

4

3

5 ·Φ(θ, s,µ, h)

2

4

3

5, (4.9) 

with bQΠ
θ

s in (Local Q-function) satisfying the (c,ρ)-exponential decay property. Then, there exists a universal constant c0 >

0 such that

‖gs(θ)�∇θs
J(θ)‖ ≤ c0τ |S |

1� γ
ρk+1: (4.10) 

4.2.3. Neural Q-Function. Note that bQΠ
θ

s in (Local Q-function) is unknown a priori. To obtain the localized policy 
gradient (4.9), the neural network (4.3) to parameterize bQΠ

θ

s is taken as

Qs(µ(N k
s), h(N k

s);ωs) � f ((µ(N k
s), h(N k

s));ωs):

This Qs is called the critic. For simplicity, denote ζk
s � (µ(N

k
s), h(N k

s)), with dζk
s 

the dimension of ζk
s .

4.3. Actor–Critic
4.3.1. Critic Update. For a fixed policy Πθ, it is to estimate bQΠ

θ

s of (Local Q-function) by a two-layer neural network 
Qs(· ;ωs), where bQΠ

θ

s serves as an approximation to the team-decentralized Q-function QΠ
θ

s .

To design the update rule for bQΠ
θ

s , note that the Bellman equation (3.13) is for QΠ
θ

s instead of bQΠ
θ

s . Indeed, QΠ
θ

s 

takes (µ, h) as the input, whereas bQΠ
θ

s takes the partial information (µ(N k
s), h(N k

s)) as the input.
In order to update parameter ωs, we substitute (µ(N k

s), h(N k
s)) for the state-action pair in the Bellman equation 

(3.13). It is, therefore, necessary to study the error of using (µ(N k
s), h(N k

s)) as the input. Specifically, given a tuple 
(µt, ht, rs(µt(N s), ht(s)),µt+1, ht+1) sampled from the stationary distribution νθ�of adopting policy Πθ, the parameter 
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ωs is updated to minimize the error:

(δs, t)2 � [Qs(µt(N
k
s), ht(N k

s);ωs)� rs(µt(N s), ht(s))� γ ·Qs(µt+1(N
k
s), ht+1(N k

s);ωs)]2:
Estimating δs, t depends only on µt(N

k
s), ht(N k

s) and can be collected locally. (See Theorem 5.1.)
The neural critic update takes the iterative forms of

ωs(t + 1=2) ← ωs(t)� ηcritic · δs, t · ∇ωs
Qs(µt(N

k
s), ht(N k

s);ωs), (4.11) 

ωs(t + 1) ← arg min
ω∈Bcritic

s

‖ω� ωs(t + 1=2)‖2, (4.12) 

ω̄s ← (t + 1)=(t + 2) · ω̄s + 1=(t + 2) · ωs(t + 1), (4.13) 

in which ηcritic is the learning rate. Here, (4.11) is the stochastic semigradient step, (4.12) is a projection to the param-

eter space Bcritic
s :� {ωs ∈ R

M×d
ζks : ‖ωs �ωs(0)‖∞ ≤ R=

ffiffiffiffiffi
M
√
} for some R>0, and (4.13) is the averaging step. This critic 

update is summarized in Algorithm 1.

Algorithm 1 (Localized Training, Decentralized Execution Neural Temporal Difference) 

1: Input: Width of the neural network M, radius of the constraint set R, number of iterations Tcritic, policy Πθ �
{Πθs

s }s∈S , learning rate ηcritic, localization parameter k.

2: Initialize: For all m ∈ [M] and s ∈ S, sample bm ~ Unif({�1, 1}), [ωs(0)]m ~ N(0, Id
ζks

=dζk
s
), ω̄s � ωs(0).

3: for t� 0 to Tcritic � 2 do
4: Sample (µt, ht, {rs(µt(N s), ht(s))}s∈S ,µ′t, h′t) from the stationary distribution νθ�of Πθ.
5: for s ∈ S do
6: Denote ζk

s, t � (µt(N
k
s), ht(N k

s)), ζk′

s, t � (µ′t(N
k
s), h′t(N

k
s)).

7: Residual calculation: δs, t←Qs(ζk
s, t;ωs(t))� rs(µt(N s), ht(s))� γ ·Qs(ζk′

s, t;ωs(t)):
8: Temporal difference update:

9: ωs(t+ 1=2) ← ωs(t)� ηcritic · δs, t · ∇ωs
Qs(ζk

s, t;ωs(t)).
10: Projection onto the parameter space: ωs(t+ 1) ← arg minω∈Bcritic

s
‖ω�ωs(t+ 1=2) | |2.

11: Averaging the output: ω̄s← t+1
t+2 · ω̄s + 1

t+2 ·ωs(t+ 1).
12: end for
13: end for
14: Output: Qs(· ; ω̄s), ∀s ∈ S.

4.3.2. Actor Update. At the iteration step t, a neural network estimation Qs(· ; ω̄s) is given for the localized 

Q-function bQΠ
θ(t)

s under the current policy Πθ(t). Let {(µl, hl)}l∈[B] be samples from the state–action visitation measure 

σθ(t) of (4.2) and define an estimator bΦ(θ, s,µl, hl) of Φ(θ, s,µl, hl) in (4.7):

bΦ(θ, s,µl, hl) � φθs
(µl(s), hl(s))�EΠθs

s
[φθs
(µl(s), h′(s))]:

By Lemma 4.2, one can compute the following estimator of gs(θ(t)) defined in (4.9):

bgs(θ(t)) �
τ

(1�γ)B
X

l∈[B]

X

y∈N k
s

Qy

�
µl(N

k
y), hl(N k

y); ω̄y

�
2

4

3

5 · bΦ(θ(t), s,µl, hl)

2

4

3

5: (4.14) 

This estimator bgs in (4.14) only depends locally on {(µl, hl)}l∈[B]. Hence, bg and bΦ�can be computed in a localized fash-
ion after the samples are collected. Similar to the critic update, θs(t) is updated by performing a gradient step with 
bgs and then projected onto the parameter space Bactor

s :� {θs ∈ RM×dζs : ‖θs �θs(0)‖∞ ≤ R=
ffiffiffiffiffi
M
√
}.

This actor update is summarized in Algorithm 2.

4.3.3. Sampling from nu and the Visitation Measure su. In Algorithms 1 and 2, it is assumed that one can sample 
independently from the stationary distribution νθ�and the visitation measure σθ, respectively. Such an assumption 
of sampling from νθ�can be relaxed by either sampling from a rapidly mixing Markov chain with a weakly 
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dependent sequence of samples (Bhandari et al. [5]) or by randomly picking samples from replay buffers consisting 
of long trajectories with reduced correlation between samples.

To sample from the visitation measure σθ�and computing the unbiased policy gradient estimator, Konda and 
Tsitsiklis [36] suggest introducing a new MDP such that the next state is sampled from the transition probability 
with probability γ�and from the initial distribution with probability 1� γ. Then, the stationary distribution of this 
new MDP is exactly the visitation measure. Alternatively, Liu et al. [42] propose an importance sampling–based 
algorithm that enables off-policy evaluation with low variance.

Algorithm 2 (Localized Training, Decentralized Execution Neural Actor–Critic) 
1: Input: Width of the neural network M, radius of the constraint set R, number of iterations Tactor and Tcritic, 

learning rate ηactor and ηcritic, temperature parameter τ, batch size B, localization parameter k.

2: Initialize: For all m ∈ [M] and s ∈ S, sample bm ~ Unif({�1, 1}), [θs(0)]m ~ N(0, Idζs
=dζs
).

3: for t� 1 to Tactor do
4: Define the decentralized policy Πθs

s for each state s ∈ S,

Π
θs
s (h(s) |µ(s)) �

exp[τ · f ((µ(s), h(s));θs)]P
h′(s)∈HN exp[τ · f ((µ(s), h′(s));θs)]

:

5: Output Qs(· ; ω̄s) using Algorithm 1 with the inputs policy Πθ � {Πθs
s }s∈S , width of the neural network 

M, radius of the constraint set R, number of iterations Tcritic, learning rate ηcritic and localization param-

eter k.

6: Sample {µl, hl}l∈[B] from the state–action visitation measure σθ�(4.2) of Πθ.

7: for s ∈ S do
8: Compute the local gradient estimator bgs(θ(t)) using (4.14).
9: Policy update: θs(t+ 1=2) ← θs(t) + ηactor · bgs(θ(t))

10: Projection onto the parameter space: θs(t+ 1) ← arg minθ∈Bactor
s
‖θ�θs(t+ 1=2) | | 2.

11: end for
12: end for
13: Output: {Πθ(t)}t∈[Tactor].

5. Convergence of the Critic and Actor Updates
We now establish the global convergence for LTDE-NEURAL-AC proposed in Section 4. Our analysis of conver-
gence relies on the use of an overparameterization technique, which involves a two-layer neural network with 
a large width M. This technique is critical to our analysis as it allows us to address the nonconvexity issue in 
neural network optimization and to prove the convergence result. Indeed, some commonly used loss functions, 
such as the mean-square error and the cross-entropy loss, are often neither convex nor concave with respect to 
neural network parameters. In addition, a gradient-based method or other first order algorithms may be 
trapped at some undesired stationary points because of the nonconvex optimization landscape. Meanwhile, it 
is shown that the training problem in the overparameterization regime is almost equivalent to a regression 
problem in a reproducing kernel Hilbert space (RKHS) (Allen-Zhu et al. [3, 4], Cayci et al. [14], Zou and Gu 
[71]). In addition, the optimization landscape can also be improved by overparameterization in the sense that 
all stationary points are nearly optimal. These key properties of the overparameterized neural network facili-
tate our convergence analysis.

5.1. Convergence of the Critic Update
The convergence of the decentralized neural critic update in Algorithm 1 relies on the following assumptions.

Assumption 5.1 (Action-Value Function Class). For each s ∈ S, k ∈ N, define

F s, k
R,∞ � f (ζk

s) �Qs(ζk
s ;ωs(0)) +

Z
1{v⊤ζk

s > 0} · (ζk
s)
⊤ι(v)dµ(v) : ‖ι(v)‖∞ ≤ R

� �
, (5.1) 

with µ : Rd
ζks → R the density function of Gaussian distribution N(0, Id

ζks

=dζk
s
) and Qs(ζk

s ;ωs(0)) the two-layer neural network 
under the initial parameter ωs(0). We assume that bQΠ

θ

s ∈ F
s, k
R,∞.
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Assumption 5.2 (Regularity of νθ�and σθ). There exists a universal constant c0 > 0 such that, for any policy Πθ, any 
α ≥ 0, and any v ∈ Rdζ�with ‖v‖2 � 1, the stationary distribution νθ�and the state visitation measure σθ�satisfy

Pζ~νθ( |v⊤ζ | ≤ α) ≤ c0 · α, Pζ~σθ( |v⊤ζ | ≤ α) ≤ c0 ·α:

Remark 5.1. Both Assumptions 5.1 and 5.2 are similar to the standard assumptions in the analysis of single-agent 
neural actor–critic algorithms (Cai et al. [7], Cayci et al. [14], Liu et al. [41], Wang et al. [57]).

In particular, Assumption 5.1 is a regularity condition for bQΠ
θ

s in (Local Q-function). Here, F s, k
R,∞ is a subset of 

the RKHS induced by the random feature 1{v⊤ζk
s > 0} · (ζk

s) with v ~ N(0, Id
ζks

=dζk
s
) up to the shift of Qs(ζk

s ;ωs(0))
(Rahimi and Recht [50]). This RKHS is dense in the space of continuous functions on any compact set (Ji et al. 
[32], Micchelli et al. [44]). (See also Section D.1.1 for details of the connection between F s, k

R,∞ and the linearizations 
of two-layer neural networks (D.4)).

Assumption 5.2 holds when σθ�and νθ�have uniformly upper bounded probability densities (Cai et al. [7]).

Theorem 5.1 (Convergence of Critic Update). Assume Assumptions 5.1 and 5.2. Set Tcritic �Ω(M) and ηcritic �min{(1� γ)
=8, (Tcritic)�1=2} in Algorithm 1. Then, Qs(· ; ω̄s) generated by Algorithm 1 satisfies

Einit[‖Qs(· ; ω̄s)�QΠ
θ

s (·)‖2L2(νθ)] ≤ O
R3d

3=2

ζk
s

M1=2
+

R5=2d
5=4

ζk
s

M1=4
+ r2

maxγ
k+1

(1� γ)2

0

@

1

A, (5.2) 

where ‖f ‖L2(νθ) :� (Eζ~νθ[f (ζ)
2])1=2, and the expectation (5.2) is taken with respect to the random initialization.

Theorem 5.1 indicates the trade-off between the approximation–optimization error and the localization error. 
The first two terms in (5.2) correspond to the neural network approximation–optimization error, similar to the 
single-agent case (Cai et al. [7], Cayci et al. [14]). This approximation–optimization error decreases when the width 
of the hidden layer M increases. Meanwhile, the last term in (5.2) represents the additional error from using 
the localized information in (4.11), unique for the mean-field MARL case. This localization error and γk decrease as 
the number of truncated neighborhoods k increases with more information from a larger neighborhood used in the 
update. However, the input dimension dζk

s 
and the approximation–optimization error increase if the dimension of 

the problem increases.
In particular, for a relatively sparse network on S, one can choose k≪ |S | ; hence, dζk

s
≪ dζ, and Theorem 5.1 indi-

cates the superior performance of the localized training scheme in efficiency over directly approximating the cen-
tralized Q-function.

Proof of Theorem 5.1 is presented in Section D.1.

5.2. Convergence of the Actor Update
This section establishes the global convergence of the actor update. The convergence analysis consists of two steps. 
The first step proves the convergence to a stationary point θ̃; the second step controls the gap between the station-
ary point θ̃�and the optimality θ∗ in the overparameterization regime. The convergence is built under the following 
assumptions and definition.

Assumption 5.3 (Variance Upper Bound). For every t ∈ [Tactor] and s ∈ S, denote ξs(t) � bgs(θ(t))�E[bgs(θ(t))] with 
bgs(θ(t)) defined in (4.14). Assume there exists Σ > 0 such that E[‖ξs(t)‖22] ≤ τ2Σ

2=B. Here, the expectations are taken over 
σθ(t) given {ω̄s}s∈S .

Assumption 5.4 (Regularity of dσθ=dνθ). There exists an absolute constant D > 0 such that, for every Πθ, the stationary 
distribution νθ�and the state–action visitation measure σθ�satisfy

{Eνθ[(dσθ=dνθ(µ, h))2]} ≤ D2, 

where dσθ=dνθ�is the Radon–Nikodym derivative of σθ�with respect to νθ.

Assumption 5.5 (Lipschitz-Continuous Policy Gradient). There exists an absolute constant L > 0 such that ∇θJ(θ) is 
L-Lipschitz continuous with respect to θ; that is, for all θ1, θ2,

‖∇θJ(θ1)�∇θJ(θ2)‖2 ≤ L · ‖θ1 �θ2‖2:

Definition 5.1. θ̃ ∈ Bactor is called a stationary point of J(θ) if, for all θ ∈ Bactor,

∇θJ(θ̃)⊤(θ� θ̃) ≤ 0: (5.3) 
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Meanwhile, θ∗ ∈ Bactor is called an optimal point of J(θ) if

θ∗ ∈ arg max
θ∈Bactor

J(θ): (5.4) 

Assumption 5.6 (Policy Function Class). Define a function class

FR,∞ �
(

f (ζ) �
X

s∈S
φθs(0)(ζs)⊤θs(0) +

Z
1{v⊤ζs > 0} · (ζs)⊤ι(v) dµ(v)

� �
: ‖ι(v)‖∞ ≤ R

)

, 

where µ : Rdζs → R is the density function of the Gaussian distribution N(0, Idζs
=dζs
) and θ(0) is the initial parameter. For any 

stationary point θ̃, define the function

uθ̃ (µ, h) :� dσθ∗

dσθ̃
(ζ)� dσ̄θ∗

dσ̄θ̃
(µ) +

X

s∈S
φθ̃s
(ζs)⊤θ̃s, 

with σ̄θ�the state visitation measure under policy Πθ, and dσθ∗=dσθ̃ , dσ̄θ∗=dσ̄θ̃�the Radon–Nikodym derivatives between cor-

responding measures. We assume that uθ̃ ∈ FR,∞ for any stationary point θ̃.

A few remarks are in place for these Assumption 5.3–5.6.

Remark 5.2. All these assumptions are counterparts of standard assumption in the analysis of the single-agent 
policy gradient method (Pirotta et al. [46], Wang et al. [57], Xu et al. [58, 59], Zhang et al. [65]).

In particular, Assumptions 5.3 and 5.4 hold if the Markov chain (3.5) mixes sufficiently fast, and the critic 
Qs(· ;ωs) has an upper bounded second moment under σθ(t) (Wang et al. [57]). Note that different from 
Assumption 5.2, in which regularity conditions are imposed separately on νθ�and σθ, Assumption 5.4 imposes 
the regularity condition directly on the Radon–Nikodym derivative of σθ�with respect to νθ. This allows the 
change of measures in the analysis of Theorem 5.2. In general, Assumption 5.2 does not necessarily imply 
Assumption 5.4.

We also emphasize that Assumption 5.3 holds under mild conditions and can be justified by certain properties 
of the estimator bgs in (4.14). More specifically, when the estimator bgs in (4.14) can be viewed as an average of B 
independent and identically distributed (i.i.d.) samples

X

y∈N k
s

Qy

�
µl(N

k
y), hl(N k

y); ω̄y

�
2

4

3

5 · bΦ(θ(t), s,µl, hl), l ∈ [B], 

and Assumption 5.3 holds naturally if each sample has uniformly bounded variance over all parameters ω�and θ. A 
sufficient condition to guarantee the uniformly bounded variance is when the neural Q-function Qy(·; ω̄y) is uni-
formly bounded over all parameters. Indeed, when Qy(·; ω̄y) is a two-layer neural network with bounded para-
meters ω̄y and bounded input, a uniform bound on Qy(·; ω̄y) is guaranteed. Therefore, when the parameters of the 
critic networks are uniformly bounded, Assumption 5.3 holds, and the dependency on the algorithm trajectory 
becomes less concerning.

Assumption 5.5 holds when the transition probability and the reward function are both Lipschitz continuous 
with respect to their inputs (Pirotta et al. [46]) or when the reward is uniformly bounded and the score function 
∇θΠθ�is uniformly bounded and Lipschitz continuous with respect to θ�(Zhang et al. [65]).

As for Assumption 5.6, we first emphasize that uθ̃(µ, h) is a key element in the proof of Theorem 5.2. More spe-
cifically, this assumption is motivated by the well-known performance difference lemma (Kakade and Langford 
[35]) in order to characterize the optimality gap of a stationary point θ̃. In particular, it guarantees that uθ̃�can be 
decomposed into a sum of local functions depending on ζs and that each local function lies in a rich RKHS (see 
the discussion after Assumption 5.1). Appendix E provides a concrete network example that satisfies all Assump-
tions 5.1–5.6 (or their mild relaxations).

With all these assumptions, we now establish the rate of convergence for Algorithm 2.

Theorem 5.2. Assume Assumptions 5.1–5.6. Set Tcritic �Ω(M), ηcritic �min{(1� γ)=8, (Tcritic)�1=2}, ηactor � (Tactor)�1=2, 

R � τ � 1, M �Ω((f (k) |A | )5(Tactor)8), γ ≤ (Tactor)�2=k with f (k) :�maxs∈S |N k
s | the size of the largest k-neighborhood in 

the graph (S,E). Then, the output {θ(t)}t∈[Tactor] of Algorithm 2 satisfies

min
t∈[Tactor]

E[J(θ∗)� J(θ(t))] ≤ O( |S | 1=2B�1=2 + |S | |A | 1=4(γk=8 + (Tactor)�1=4)): (5.5) 
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Note that the error O(γk=8 |S | |A |1=4) in Theorem 5.2, coming from the localized training, decays exponentially 
quickly as k increases and is negligible with a careful choice of k. According to Theorem 5.2, Algorithm 2 converges 
at rate T

�1=4
actor with sufficiently large width M and batch size B.

Indeed, Theorem 5.2 manages to incorporate the neural network optimization error, which is analyzed in Cai 
et al. [7] and Wang et al. [57] with the errors arising from the decentralized and parallel updates of {θs(t)}s∈S and 
from the truncated Q-functions. It is established by generalizing the techniques for the single-agent setting studied 
by Cai et al. [7] and Wang et al. [57]. A detailed proof of Theorem 5.2 is provided in Section D.2.

Remark 5.3 (Convergence to Optimal Decentralized Neural Policy). By Definition 5.1, the policy Πθ
∗

is the optimal 
decentralized policy within the policy class parameterized by two-layer neural networks, which is a policy class 
subject to the specific parameterization defined in (4.4) and a subset of all possible decentralized policies. The 
convergence in Theorem 5.2 relies on the neural network parameterization and may not necessarily imply the 
convergence under a different policy class.

Remark 5.4 (Choice of k). The particular form γ < (Tactor )�2=k in Theorem 5.2 is not essential and is mainly chosen 
to highlight the error bound in (5.5): if k is chosen to be small, the error from estimating the truncated Q-function 
may become the dominant term in the error bound, and hence, the leading order of the bound may change 
accordingly. The detailed error bound without such an inequality can be found in the proof of Theorem 5.2 (see 
(D.42) in Appendix D.2).

Remark 5.5 (Total Sample Complexity). The sample complexity Tactor is of the order O(ɛ�4), which, in turn, leads 
to the width of the neural network and the sample complexity for the critic Tcritic being of the order O(ɛ�32). 
As a result, the total sample complexity becomes Tcritic × Tactor �O(ɛ�36). Note that this sample complexity 
O(ɛ�36) is of the same order as that in Wang et al. [57, theorem 4.7] for single-agent reinforcement learning. In fact, 
the key reason for such complexity is because of the adoption of the overparameterization technique. Even in 
supervised learning settings, large network width is often needed for achieving desirable generalization error 
guarantees (Allen-Zhu et al. [3, 4], Zou and Gu [71]), resulting in large sample complexities similar to our result.

Acknowledgment
The authors express their gratitude to the area editor, the associate editor, and three anonymous reviewers for their 
insightful comments, which significantly contributed to the improvement of our paper.

Appendix A. Proof of Lemma 3.1

The goal is to show that V(µ) � Ṽ(µ) with the former the value function of (MF-MARL) subject to the transition probability P 

defined in (2.7) under a given individual policy π ∈ u and the latter the value function of (3.7) subject to the joint transition proba-

bility PN defined in (3.5) under the policy Π ∈ U. The proof consists of two steps. Step 1 shows that V(µ) can be reformulated as a 

measure-valued Markov decision problem. Step 2 shows that the measure-valued Markov decision problem from step 1 is 

equivalent to Ṽ(µ) in (3.7). 
Step 1: Recall that µt+1 :� 1

N

PN
i�1 δsi

t+1 
with si

t+1 subject to (2.7). First, one can show that µt is a measure-valued Markov deci-
sion process under π. To see this, denote F s

t � σ(s1
t , : : : , sN

t ) as the σ-algebra generated by s1
t , : : : , sN

t . Then, it suffices to show

P(µt+1 |σ(µt)∨F s
t) � P(µt+1 |σ(µt)), P� a:s:: (A.1) 

Following similar arguments for Dawson [16, lemma 2.3.1 and proposition 2.3.3], (A.1) holds because of the exchangeability of 
the individual transition dynamics (2.7) under π. Equation (A.1) implies that there exists a joint transition probability induced 
from (2.7) under π, denoted as P̃

N 
such that

µt+1 ~ P̃
N(· |µt,π): (A.2) 

Meanwhile, rewrite Vπ(µ) in (MF-MARL) by regrouping the agents according to their states

Vπ(µ) :� E
X∞

t�0

γt
XN

i�1

1

N
r(si

t,µt(N si
t
), ai

t)
�����µ0 � µ

" #

,

� E
X∞

t�0

γt
X

s∈S
µt(s)

X

a∈A
r(s,µt(N s), a)π(s,µt(s))(a)

�����µ0 � µ
" #

: (A.3) 

We see that (2.7) and (MF-MARL) is reformulated in an equivalent form of (A.2) and (A.3).
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Step 2: It suffices to show that (A.2) under π�is the same as (3.5) under Π�and that Vπ�in (A.3) equals to Ṽ
Π�

in (3.7). To see 
this, denote 〈g,µ〉 �Ps∈Sg(s)µ(s) for any measurable bounded function g : S→ R, and then

E[〈g,µt+1〉 |σ(µt)]

� 1

N
E
XN

i�1

E[g(sj
t+1) |σ(µt)∨F s

t]
" #

� 1

N

X

s′∈S

XN

i�1

X

a∈A
g(s′)P(s′ |si

t,µt(N (si
t)), a)π(si

t,µt(si
t))(a)

� 1

N

X

s′∈S
g(s′)

X

s∈S

XN

i�1

1(si
t � s)

X

a∈A
P(s′ |si

t,µt(N (si
t)), a)π(si

t,µt(si
t))(a)

�
X

s′∈S
g(s′)

X

s∈S
µt(s)

X

a∈A
P(s′ |s,µt(N (s)), a)π(s,µt(s))(a)

�
X

s′∈S
g(s′)

X

s∈S
µt(s)

X

h∈PN·µt (s)(A)
Π(h |µt(s))

X

a∈A
P(s′ |s,µt(N (s)), a)h(s)(a), (A.4) 

where in the last step, the expectation of random variable h(s)(a) with respect to distribution Π(h |µ) is π(s,µt(s)). And from the 

last equality, clearly µt+1 evolves according to transition dynamics PN(· |µt, ht) under Π(ht |µt). This implies the equivalence of 

(A.2) and (3.5). As a byproduct, when taking g(s′) � 1(s′ � so) for any fixed so ∈ S, (A.4) becomes

E[µt+1(so) |σ(µt)] �
X

s∈N (so)
µt(s)

X

h∈PN·µt (s)(A)
Π(h |µt(s))

X

a∈A
P(so |s,µt(N (s)), a)h(s)(a), 

where the local structure (2.7) is used. This suggests that µt+1(so) only depends on µt(N
2
so ) and ht(N so ) because N (s) �N

2(so) for 

s ∈N (so).
Now, we show that Vπ(µ) in (A.3) and Ṽ

Π(µ) in (3.7) are equal. Take Ṽ
Π�

defined in (3.7),

Ṽ
Π(µ) :� Eht~Π(· | µt), µt+1~PN(· | µt , ht)

X∞

t�0

X

s∈S
γt rs(µt(N s), ht)

�����µ0 � µ
" #

� Eµt+1~PN(· | µt , ht)
X∞

t�0

γt
X

s∈S
Eht~Π(· | µt)[rs(µt(N s), ht) |µt]

�����µ0 � µ
" #

� Eµt+1~PN(· | µt , ht)
X∞

t�0

γt
X

s∈S

X

ht∈PN·µt (s)(A)
rs(µt(N s), ht(s))Π(h;π)

�����µ0 � µ

2

4

3

5

� Eµt+1~PN(· | µt , ht)
X∞

t�0

γt
X

s∈S
µt(s)

X

ht∈PN·µt (s)(A)
Π(ht |µt)

X

a∈A
r(s,µt(N s), a)h(a)

�����µ0 � µ

2

4

3

5

� E
µt+1~P̃

N(· | µt ,π)

X∞

t�0

γt
X

s∈S
µt(s)

X

a∈A
r(s,µt(N s), a)πt(s,µt(s))(a)

�����µ0 � µ
" #

� Vπ(µ), 

where in the last second step, PN under π�is equivalent to P̃
N 

under Π, and the expectation of ht(s)(a)with distribution Π(ht |µt)
is π(s,µt(s))(a) such that

X

h∈PN·µt (s)(A)
Π(ht |µt)

X

a∈A
r(s,µt(N s), a)h(a) � Eh~Π(· |µt)

X

a∈A
r(s,µt(N s, a)h(a)

" #

�
X

a∈A
r(s,µt(N s), a)πt(s,µt(s))(a):

Finally, the decomposition of Ṽ(µ) and Ṽ(µ) according to the states is straightforward. Q.E.D.
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Appendix B. Proof of Lemma 3.4

Let Pt, s and P′t, s be, respectively, distribution of (µt(N s), ht(s)) and (µ′t(N s), h′t(s)) under policy Πθ. By the localized transition 

kernel (2.7), it is easy to see that, for any given s ∈ S, µt+1(s) only depends on µt(N
2
s ) and ht(N s). Then, by the local dependency, 

(3.5) can be rewritten as

µt+1(s) ~ PN
s (· |µt(N

2
s ), ht(N s)): (B.1) 

Because of the local structure of dynamics (B.1) and local dependence of Πθ, the distribution Pt, s, t ≤ ⌊k2⌋ only depends on the ini-

tial value (µ(N k
s), h(N k

s)). Therefore, Pt, s �P′t, s, t ≤ ⌊k2⌋,
�����Q
Π
θ

s (µ(N
k
s),µ(N

�k
s ), h(N k

s), h(N�k
s ))�QΠ

θ

s (µ(N
k
s),µ′(N

�k
s ), h(N k

s), h′(N�k
s ))

�����

�
X∞

t�⌊k2⌋+1

E(µt(N s), ht(s))~Pt, s
[rs(µt(N s), ht(s))]�E(µ′t (N s), h′t(s))~P

′
t, s
[rs(µ′t(N s), h′t(s))]

≤
X∞

t�⌊k2⌋+1

γtrmaxTV(Pt, s, P′t, s) ≤
rmax

1� γ
γ⌊

k
2⌋+1, 

where TV(Pt, s, P′t, s) is total variation between Pt, s and P′t, s that is upper bounded by one. Q.E.D.

Appendix C. Proof of Lemma 4.2

For any θ ∈Θ, s ∈ S, µ ∈ PN(S) and h ∈HN(µ), it is easy to verify that ‖Φ(θ, s,µ, h)‖2 ≤ ‖ζs‖2 ≤ 2, by the definitions of the feature 
mapping φ�in (4.6) and the center feature mapping Φ�in (4.7).

To prove (4.8), note that, by Lemma 4.1 and the definition of energy-based policy Πθs
s (4.4),

∇θs
log Πθs

s (h(s) |µ(s)) � τ · ∇θs
f ((µ(s), h(s));θs)� τ ·Eh(s)′~Πθs (· |µ(s))[∇θs

f (µ(s), h′(s))]

� τ ·φθs
(µ(s), h(s))� τ ·Eh(s)′~Πθs (· |µ(s))[φθs

(µ(s), h(s))]

� τ ·Φ(θ, s,µ, h):

The second equality follows from the fact that ∇θs
f ((µ(s), h(s));θs) � φθs

(µ(s), h(s)). Therefore,

∇θs
J(θ) � τ

1� γ
Eσθ [QΠ

θ (µ, h) ·Φ(θ, s,µ, h)] � τ

1� γ
Eσθ

X

y∈S
QΠ

θ

y (µ, h) ·Φ(θ, s,µ, h)

2

4

3

5, 

where the second equality is by the decomposition of the Q-function in Lemma 3.1.
The proof of (4.9) is based on the exponential decay property in Definition 3.1. Notice that

gs(θ) �
1

1 � γ
Eσθ

X

y∈N k
s

bQΠ
θ

y (µ(N
k
y), h(N k

y)

2

4

3

5∇θs
log Πθs (h(s) |µ(s))

2

4

3

5

� 1

1 � γ
Eσθ

X

y∈S

bQΠ
θ

y (µ(N
k
y), h(N k

y)

2

4

3

5∇θs
log Πθs (h(s) |µ(s))

2

4

3

5: (C.1) 

This is because, for all y ∉N
k
s , bQΠ

θ

y (µ(N
k
y), h(N k

y) is independent of s. Consequently,

Eσθ
X

y∉N k
s

bQΠ
θ

y (µ(N
k
y), h(N k

y)

2

4

3

5∇θs
log Πθs (h(s) |µ(s))

2

4

3

5 � 0:
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Given Lemma 4.1 and (C.1), we have the following bound:

‖gs(θ)� ∇θs
J(θ)‖2

≤ 1

1 � γ

X

y∈S
sup

µ∈PN(S),
h∈HN(µ)

| bQΠθy (µ(N
k
y), h(N k

y))� QΠ
θ

y (µ, h) | · ‖∇θs
log Πθs (h(s) |µ(s))‖2

h i

≤ c0τ |S |
1 � γ

ρk+1:

The last inequality follows from (3.14) and ‖log Πθs (h(s) |µ(s))‖2 � ‖Φ(θ, s,µ, h)‖2 ≤ 2 for any µ ∈ PN(S), h ∈HN(µ). Q.E.D.

Appendix D. Proof of Theorems 5.1 and 5.2

D.1. Proof of Theorem 5.1: Convergence of Critic Update

This section presents the proof of convergence of the decentralized neural critic update. It consists of several steps. Section D.1.1
introduces necessary notations and definitions. Section D.1.2 proves that the critic update minimizes the projected mean-square 
Bellman error given a two-layer neural network. Section D.1.3 shows that the global minimizer of the projected mean-square 
Bellman error converges to the true team-decentralized Q-function as the width of hidden layer M→∞.

D.1.1. Notations. Recall that the set of all state–action (distribution) pairs is denoted as Ξ :� ∪µ∈PN(S){ζ � (µ, h) : h ∈HN(µ)}. 
For any ζ � (µ, h) ∈ Ξ, denote the localized state–action (distribution) pair as ζk

s � (µ(N
k
s), h(N k

s)). Meanwhile, denote Ξk
s � {ζk

s :

ζ ∈ Ξ} as the set of all possible localized state–action (distribution) pairs. Without loss of generality, assume ‖ζk
s‖2 ≤ 1 for 

any ζk
s ∈ Ξk

s .
Let dζ�denote the dimension of the space Ξ. Because PN(S) has dimension ( |S | � 1) and HN(µ) has dimension |S | ( |A | � 1) for 

any µ ∈ PN(S), the product space Ξ�has dimension dζ � |S‖A | � 1. Similarly, one can see that the dimension of the space Ξk
s , 

denoted by dζk
s
, is at most f (k) |A | , where f (k) :�maxs∈X |N k

s | is the size of the largest k-neighborhood in the graph (S,E).
Let RΞ�and RΞ

k
s be the sets of real-valued square-integrable functions (with respect to νθ) on Ξ�and Ξk

s , respectively. Define the 

norm ‖ · ‖L2(νθ) on RΞ�by

‖f ‖L2(νθ) :� (Eζ~νθ [f (ζ)
2])1=2, ∀f ∈ RΞ: (D.1) 

Note that, for any function f ∈ RΞk
s , a function f̃ ∈ RΞ�is called a natural extension of f if f̃ (ζ) � f (ζk

s) for all ζ ∈ Ξ. Because the natu-

ral extension is an injective mapping from RΞ
k
s to RΞ, one can view RΞ

k
s as a subset of RΞ. In addition, for a function f ∈ RΞk

s , we 
use the same notation f ∈ RΞ�to denote the natural extension of f.

For any closed and convex function class F ⊂ RΞ, define the project operator ProjF from RΞ�onto F by

ProjF (g) :� arg min
f∈F

‖f � g‖L2(νθ): (D.2) 

This projection operator ProjF is nonexpansive in the sense that

‖ProjF (f )�ProjF (g)‖L2(νθ) ≤ ‖f � g‖L2(νθ): (D.3) 

Recall that, for each state s ∈ S, the critic parameter ωs is updated in a localized fashion using information from the k-hop neigh-
borhood of s. Without loss of generality, let us omit the subscript s of ωs in the following presentation, and the result holds for all 
s ∈ S simultaneously.

Given an initialization ω(0) ∈ RM×d
ζks , define the following function class:

FR, M � Q0(ζk
s ;ω) :�

1ffiffiffiffiffi
M
√

XM

m�1

1{[ω(0)]⊤mζk
s > 0}ω⊤mζk

s : ω ∈ R
M×d

ζks , ‖ω�ω(0)‖∞ ≤ R=
ffiffiffiffiffi
M
√

( )
: (D.4) 

Q0(· ;ω) locally linearizes the neural network Q(· ;ω) (with respect to ω) at ω(0). Any function Q0(· ;ω) ∈ FR, M can be viewed as 
an inner product between the feature mapping φω(0)(·) defined in (4.6) and the parameter ω, that is, Q0(· ;ω) � φω(0)(·)

⊤ω. In addi-
tion, it holds that ∇ωQ0(· ;ω) � φω(0)(·). All functions in FR, M share the same feature mapping φω(0)(·), which only depends on 
the initialization ω(0).

Recall the Bellman operator T θs : RΞ→ RΞ�defined in (3.13),

T θs QΠ
θ

s (µ, h) � E
µ′~PN(· | µ, h), h′~Πθ(· | µ)[rs(µ, h) + γ ·QΠθs (µ′, h′)], ∀(µ, h) ∈ Ξ:

The team-decentralized Q-function QΠ
θ

s in (3.10) is the unique fixed point of T θs : QΠ
θ

s � T θs QΠ
θ

s . Now, given a general parameter-
ized function class F , we aim to learn a Qs(· ;ω) ∈ F to approximate QΠ

θ

s by minimizing the following projected mean-squared 
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Bellman error (PMSBE):

min
ω

PMSBE(ω) � Eζ~νθ [(Qs(ζk
s ;ω)�ProjF T θs Qs(ζk

s ;ω))
2]: (D.5) 

In the first step of the convergence analysis, we take F � FR, M (the locally linearized two-layer neural network defined in (D.4)) 
and consider the following PMSBE:

min
ω

Eζ~νθ [(Q0(ζk
s ;ω)�ProjFR,M

T θs Q0(ζk
s ;ω))

2]: (D.6) 

We show in Section D.1.2 that the output of Algorithm 1 converges to the global minimizer of (D.6).

D.1.2. Convergence to the Global Minimizer in F R,M. The following lemma guarantees the existence and the uniqueness 
of the global minimizer of MSPBE that corresponds to the projection onto FR, M in (D.6).

Lemma D.1 (Existence and Uniqueness of the Global Minimizer in FR, M). For any b ∈ RM and ω(0) ∈ RM×d
ζks , there exists a ω∗

such that Q0(·;ω∗) ∈ FR, M is unique almost everywhere in FR, M and is the global minimizer of MSPBE that corresponds to the projection 
onto FR, M in (D.6).

Proof of Lemma D.1. We first show that the operator T θs : RΞ→ RΞ�(3.13) is a γ-contraction in the L2(νθ)-norm:

‖T θs Q1 � T θs Q2‖2L2(νθ) � Eζ~νθ [(T
θ
s Q1(ζ)� T θs Q2(ζ))2]

�γ2Eζ~νθ [(E[Q1(ζ′)�Q2(ζ′) |ζ′ � (µ′ , h′),µ′ ~ PN(· |ζ), h′ ~Πθ(· |µ′)])2]

≤ γ2Eζ~νθ [E[(Q1(ζ′)�Q2(ζ′))2 |ζ′ � (µ′, h′),µ′ ~ PN(· |ζ), h′ ~Πθ(· |µ′)]]

�γ2Eζ′~νθ [(Q1(ζ′)�Q2(ζ′))2] � γ2‖Q1 �Q2‖2L2(νθ), 

where the first inequality follows from Hölder’s inequality for the conditional expectation and the third equality stems from the 
fact that ζ′ and ζ�have the same stationary distribution νθ.

Meanwhile, the projection operator ProjFR,M
: RΞ→ FR, M is nonexpansive. Therefore, the operator ProjFR,M

T θs : FR, M→ FR, M 

is a γ-contraction in the L2(νθ)-norm. Hence, ProjFR,M 
admits a unique fixed point Q0(·;ω∗) ∈ FR, M. By definition, Q0(·;ω∗) is the 

global minimizer of MSPBE that corresponds to the projection onto FR, M in (D.6). Q.E.D.
We show that the function class FR, M approximately becomes F s, k

R,∞ (defined in Assumption 5.1) as M→∞, where F s, k
R,∞ is a 

rich RKHS. Consequently, Q0(·;ω∗) becomes the global minimum of the MSPBE (D.6) on F s, k
R,∞ given Lemma D.1. Moreover, by 

using similar argument and technique developed in Cai et al. [7, theorem 4.6], we can establish the convergence of Algorithm 1
to Q0(·;ω∗) as the following.

Theorem D.1 (Convergence to Q0(·;ω∗)). Set ηcritic �min{(1� γ)=8, 1=
ffiffiffiffiffiffiffiffiffiffiffi
Tcritic

√
} in Algorithm 1. Then, the output Qs(· ; ω̄) of Algo-

rithm 1 satisfies

Einit[‖Qs(· ; ω̄)�Q0(·;ω∗)‖2L2(νθ)] ≤ O
R3d

3=2

ζk
sffiffiffiffiffi

M
√ +

R5=2d
5=4

ζk
sffiffiffiffiffi

M4
√ +

R2dζk
sffiffiffiffiffiffiffiffiffiffiffi

Tcritic

√

0

@

1

A, 

where the expectation is taken with respect to the random initialization.

The proof of Theorem D.1 is straightforward from Cai et al. [7, theorem 4.6] and, hence, omitted.

D.1.3. Convergence to QP
u

s . Next, we analyze the error between the global minimizer of (D.6) and the team-decentralized 

Q-function QΠ
θ

s (defined in (3.10)) to complete the convergence analysis. Different from the single-agent case as in Cai et al. [7], 
we have to bound an additional error from using the localized information in the critic update in addition to the neural network 
approximation–optimization error.

Proof of Theorem 5.1. First, recall that, by Lemma 3.4, QΠ
θ

s satisfies the (c,ρ)-exponential decay property in Definition 3.1 with 

c � rmax

1�γ , ρ � ffiffiffi
γ
√

. Now, let bQΠ
θ

s be any localized Q-function in (Local Q-function), and then,

|QΠθs (ζ)� bQΠ
θ

s (ζk
s) | ≤ cρk+1, ∀ζ ∈ Ξ: (D.7) 

By the triangle inequality and (a+ b)2 ≤ 2(a2 + b2),

‖Qs(· ; ω̄)�QΠ
θ

s (·)‖2L2(νθ) ≤ (‖Qs(· ; ω̄)�Q0(·;ω∗)‖L2(νθ) + ‖QΠ
θ

s (·)�Q0(·;ω∗)‖L2(νθ))
2

≤ 2(‖Qs(· ; ω̄)�Q0(·;ω∗)‖2L2(νθ) + ‖Q
Π
θ

s (·)�Q0(·;ω∗)‖2L2(νθ)): (D.8) 
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The first term in (D.8) is studied in Theorem D.1, and it suffices to bound the second term. By interpolating two intermediate 

terms bQΠ
θ

s and ProjFR,M

bQΠ
θ

s , we have

‖QΠθs (·)�Q0(·;ω∗)‖L2(νθ) ≤ ‖QΠ
θ

s (·)� bQΠ
θ

s (·)‖L2(νθ)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
(I)

+‖bQΠθs (·)�ProjFR,M

bQΠ
θ

s (·)‖L2(νθ)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
(II)

+ ‖Q0(·;ω∗)�ProjFR,M

bQΠ
θ

s (·)‖L2(νθ)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
(III)

: (D.9) 

First, we have (I) ≤ cρk+1 according to (D.7). To bound (III), we have

(III) � ‖Proj
FR,M

T θs Q0(·;ω∗)�Proj
FR,M

bQΠ
θ

s (·)‖L2(νθ)

≤ ‖Proj
FR,M

T θs Q0(·;ω∗)�Proj
FR,M

T θs QΠ
θ

s (·)‖L2(νθ) + ‖Proj
FR,M

T θs QΠ
θ

s (·)�Proj
FR,M

bQΠ
θ

s (·)‖L2(νθ)

≤ γ‖Q0(·;ω∗)�QΠ
θ

s (·)‖L2(νθ) + ‖T
θ
s QΠ

θ

s (·)� bQΠ
θ

s (·)‖L2(νθ)

� γ‖Q0(·;ω∗)�QΠ
θ

s (·)‖L2(νθ) + ‖Q
Π
θ

s (·)� bQΠ
θ

s (·)‖L2(νθ)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
(I)

≤ γ‖Q0(·;ω∗)�QΠ
θ

s (·)‖L2(νθ) + cρk+1: (D.10) 

The first line in (D.10) is because Q0(·;ω∗) is the unique fixed point of the operator ProjFR,M
T θs (as proved in Lemma D.1); the 

third line in (D.10) is because the operator Proj
FR,M

T θs is a γ-contraction in the L2(νθ) norm, and Proj
FR,M 

is nonexpansive; the 
fourth line in (D.10) uses the fact that QΠ

θ

s is the unique fixed point of T θs ; and the last line comes from the fact that (I) ≤ cρk+1. 
Therefore, combining the self-bounding inequality (D.10) with (D.9) and the bound on (I) gives us

‖QΠθs (·)�Q0(·;ω∗)‖L2(νθ) ≤
1

1� γ
2cρk+1 + ‖bQΠθs (·)�ProjFR,M

bQΠ
θ

s (·)‖L2(νθ)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
(II)

0

BB@

1

CCA, 

and consequently,

‖QΠθs (·)�Q0(·;ω∗)‖2L2(νθ) ≤
1

(1� γ)2
8c2ρ2k+2 + 2 ‖bQΠθs (·)�ProjFR,M

bQΠ
θ

s (·)‖2L2(νθ)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
(II)

0

BB@

1

CCA: (D.11) 

Plugging (D.11) into (D.8) yields

Einit[‖Qs(· ; ω̄)� QΠ
θ

s (·)‖2L2(νθ)]

≤ 2
�
Einit[‖Qs(· ; ω̄)� Q0(·;ω∗)‖2L2(νθ)] + Einit[‖QΠ

θ

s (·)� Q0(·;ω∗)‖2L2(νθ)]
�

≤ O
R3d

3=2

ζk
sffiffiffiffiffi

M
√ +

R5=2d
5=4

ζk
sffiffiffiffiffi

M4
√ +

R2dζk
sffiffiffi

T
√ + c2ρ2k+2

0

@

1

A + 4

(1 � γ)2
Einit ‖bQΠ

θ

s (·)� ProjFR, M

bQΠ
θ

s (·)‖2L2(νθ)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
(II)

2

664

3

775: (D.12) 

Term (II) measures the distance between bQΠ
θ

s and the class FR, M. As discussed in Section D.1.1, the function class FR, M con-
verges to F s, k

R,∞ (defined in Assumption 5.1) as M→∞. Consequently, term (II) decreases as the neural network gets wider. To 
quantitatively characterize the approximation error between FR, M and F s, k

R,∞, one needs the following lemma from Rahimi and 
Recht [50] and Cai et al. [7, proposition 4.3]:

Lemma D.2. Assume Assumption 5.1, and we have

Einit ‖bQΠ
θ

s (·)� Proj
FR, M

bQΠ
θ

s (·)‖2L2(νθ)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
(II)

2

664

3

775 ≤ O
R2dζk

s

M

 !
: (D.13) 
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With this lemma, Theorem 5.1 follows immediately by plugging (D.13) into (D.12), and setting c � rmax

1�γ , ρ � ffiffiffi
γ
√

, Tcritic �Ω(M) in 

(D.12). Q.E.D.

D.2. Proof of Theorem 5.2: Convergence of Actor Update

The proof of Theorem 5.2 consists of two steps: the first step in Section D.2.1 shows that the actor update converges to a station-
ary point of J (4.1), and the second step in Section D.2.2 bridges the gap between the stationary point and the optimality.

For the rest of this section, we use η�to denote ηactor and Bs to denote Bactor
s :� {θs ∈ RM×dζs : ‖θs �θs(0)‖∞ ≤ R=

ffiffiffiffiffi
M
√
} for ease of 

notation. Meanwhile, define B �Qs∈SBs, the product space of Bss, which is a convex set in RM×dζ .

D.2.1. Convergence to Stationary Point. Definition D.1. A point θ̃ ∈ B is called a stationary point of J(·) if it holds that

∇θJ(θ̃)⊤(θ� θ̃) ≤ 0, ∀θ ∈ B: (D.14) 

Define the following mapping G from RM×dζ�to itself:

G(θ) :� η�1 · [ProjB

�
θ+ η · ∇θJ(θ)

�
�θ]: (D.15) 

It is well-known that (D.14) holds if and only if G(θ̃) � 0 (Sra et al. [53]). Now, denote ρ(t) :� G(θ(t)), where θ(t) � {θs(t)}s∈S is 
the actor parameter updated in Algorithm 2 in iteration t.

To show that Algorithm 2 converges to a stationary point, we focus on analyzing ‖ρ(t)‖2.

Theorem D.2. Assume Assumptions 5.3–5.5. Set η � (Tactor)�1=2 and assume 1� Lη ≥ 1=2, where L is the Lipschitz constant in Assump-
tion 5.5. Then, the output {θ(t)}t∈[Tactor] of Algorithm 2 satisfies

min
t∈[Tactor]

E[‖ρ(t)‖22] ≤
8τ2Σ

2 |S |
B

+ 4ffiffiffiffiffiffiffiffiffiffiffi
Tactor

√ E[J(θ(Tactor + 1))� J(θ(1))] + ɛQ(Tactor): (D.16) 

Here, ɛQ measures the error accumulated from the critic steps, which is defined as

ɛQ(Tactor) �
32τDRd

1=2
ζs
|S |

(1 � γ)ηTactor
·
XTactor

t�1

X

s∈S
E[‖Qs(· ; ω̄s , t)� QΠ

θ(t)

s (·)‖L2(νθ(t))]

+ 16τ2D2 |S |2

(1 � γ)2Tactor

·
XTactor

t�1

X

s∈S
E[‖Qs(· ; ω̄s, t)� QΠ

θ(t)

s (·)‖2L2(νθ(t))], (D.17) 

where {Qs(· ; ω̄s , t)}s∈S is the output of the critic update at step t in Algorithm 2. All expectations in (D.16) and (D.17) are taken 
over all randomness in Algorithms 1 and 2.

Proof of Theorem D.2. Let t ∈ [Tactor]. We first lower bound the difference between the expected total rewards of Πθ(t+1) and 

Π
θ(t). By Assumption 5.5, ∇θJ(θ) is L-Lipschitz continuous. Hence, by Taylor’s expansion,

J(θ(t+ 1))� J(θ(t)) ≥ η · ∇θJ(θ(t))⊤δ(t)� L=2 · ‖θ(t+ 1)�θ(t)‖22, (D.18) 

where δ(t) � (θ(t+ 1)�θ(t))=η. Meanwhile denote ξs(t) � bgs(θ(t))�E[bgs(θ(t))], where bgs(θ(t)) is defined in (4.14) and the expec-

tation is taken over σθ(t) given {ω̄s}s∈S . Then,

∇θJ(θ(t))⊤δ(t) �
X

s∈S
∇θs

J(θ(t))⊤δs(t)

�
X

s∈S
[(∇θs

J(θ(t))�E[bgs(θ(t))])
⊤δs(t)� ξs(t)⊤δs(t) + bgs(θ(t))

⊤δs(t)], (D.19) 

where δs(t) :� (θs(t+ 1)�θs(t))=η. The first term in (D.19) represents the error of estimating ∇θs
J(θ(t)) using

E[bgs(θ(t))] �
1

1� γ
Eσθ(t)

X

y∈N k
s

Qy(µ(N k
y), h(N k

y); ω̄y, t)

2

4

3

5∇θs
log Πθs (h(s) |µ(s))

2

4

3

5:

To bound the first term, first notice that

E[bgs(θ(t))] �
1

1 � γ
Eσθ(t)

X

y∈S
Qy(µ(N k

y), h(N k
y); ω̄y, t)

2

4

3

5∇θs
log Πθs (h(s) |µ(s))

2

4

3

5:

Gu et al.: Mean-Field MARL: A Decentralized Network Approach 
Mathematics of Operations Research, Articles in Advance, pp. 1–31, © 2024 INFORMS 23 

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
3
2
.1

7
4
.2

4
9
.1

6
6
] 

o
n
 2

0
 J

an
u
ar

y
 2

0
2
5
, 
at

 2
0
:4

1
 .
 F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

, 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



This is because, for all y ∉N
k
s , Qy(µ(N k

y), h(N k
y); ω̄y) is independent of s, and consequently, we can verify that

Eσθ(t)
X

y∉N k
s

Qy(µ(N k(y)), h(N k(y)); ω̄y, t)

2

4

3

5∇θs
log Πθs (h(s) |µ(s))

2

4

3

5 � 0:

Therefore, following the similar computation in Cai et al. [7, lemma D.2], we have

| (∇θs
J(θ(t))� E[bgs(θ(t))])

⊤δs(t) | ≤
4τDRd

1=2
ζs

(1 � γ)η
X

s∈S
‖Qs(· ; ω̄s , t)� Qθ(t)s (·)‖L2(νθ(t)): (D.20) 

To bound the second term in (D.19), we simply have

ξs(t)⊤δs(t) ≤ ‖ξs(t)‖22 + ‖δs(t)‖22: (D.21) 

To handle the last term in (D.19), we have

bgs(θ(t))
⊤δs(t)� ‖δs(t)‖22 � η�1 · (ηbgs(θ(t))� (θs(t + 1)� θs(t)))⊤δs

�η�1 · (θs(t + 1=2)� ProjBs
(θs(t + 1=2)))⊤δs(t)

�η�2 · (θs(t + 1=2)� ProjBs
(θs(t + 1=2)))⊤(ProjBs

(θs(t + 1=2))� θs(t)) ≥ 0 : (D.22) 

Here, we write θs(t) + ηbgs(θ(t)) as θs(t+ 1=2) to simplify the notation. The last inequality comes from the property of the projec-

tion onto a convex set.
Therefore, combining (D.19)–(D.22) suggests

∇θs
J(θ(t))⊤δs(t) ≥ �

4τDRd
1=2
ζs

(1 � γ)η
X

s∈S
[‖Qs(· ; ω̄s , t)� Qθ(t)s (·)‖L2(νθ(t))] +

1

2
(‖δs(t)‖22 � ‖ξs(t)‖22):

Consequently,

∇θJ(θ(t))⊤δ(t) ≥ �

4τDRd
1=2
ζs

(1 � γ)η |S |
X

s∈S
[‖Qs(· ; ω̄s , t)� QΠ

θ(t)

s (·)‖L2(νθ(t))] +
1

2
(‖δ(t)‖22 � ‖ξ(t)‖22): (D.23) 

Thus, by plugging (D.23) into (D.18) and by Assumption 5.3, we have

1 � L · η
2

E[‖δ(t)‖22] ≤ η�1 · E[J(θ(t + 1))� J(θ(t))] + τ
2Σ

2 |S |
2B

+
4τDRd

1=2
ζs
|S |

(1 � γ)η
X

s∈S
‖Qs(· ; ω̄s , t)� QΠ

θ(t)

s (·)‖L2(νθ(t)): (D.24) 

Here, the expectation is taken over σθ(t) given {ω̄s}s∈S .

Now, in order to bridge the gap between ‖δ(t)‖2 in (D.24) and ‖ρ(t)‖2 � ‖G(θ(t))‖2 in (D.15), we next bound the difference 

‖δ(t)� ρ(t)‖2. We start with defining a local gradient mapping Gs from RM×dζ�to RM×dζs :

Gs(θ) :� η�1 · [Proj
Bs
(θs + η · ∇θs

J(θ))�θs]: (D.25) 

Because Bs is an l∞-ball around the initialization, it is easy to verify that Gs(θ) � (G(θ))s. Therefore, we can further define 
ρs(t) � Gs(θ(t)), and the following decomposition holds:

‖δ(t)� ρ(t)‖22 �
X

s∈S
‖δs(t)� ρs(t)‖

2
2:

From the definitions of δs(t) and ρs(t),

‖δs(t)� ρs(t)‖2 � η�1 · ‖Proj
Bs
(θs + η · ∇θs

J(θ))�θs �Proj
Bs
(θs + η · bgs(θ)) +θs‖2

� η�1 · ‖ProjBs
(θs + η · ∇θs

J(θ))�ProjBs
(θs + η · bgs(θ))‖2

≤ η�1 · ‖θs + η · ∇θs
J(θ)�θs + η · bgs(θ)‖2 � ‖∇θs

J(θ)� bgs(θ)‖2:
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Following similar calculations in Cai et al. [7, lemma D.3],

E[‖∇θs
J(θ)� bgs(θ)‖

2
2] ≤

2τ2
Σ

2

B
+ 8τ2D2

(1 � γ)2
X

s∈S
‖Qs(· ; ω̄s, t)� QΠ

θ(t)

s (·)‖L2(νθ(t))

 !2

≤ 2τ2Σ
2

B
+ 8τ2D2 |S |
(1 � γ)2

X

s∈S
‖Qs(· ; ω̄s , t)� QΠ

θ(t)

s (·)‖2L2(νθ(t))

 !

: (D.26) 

The expectation is taken over σθ(t) given {ω̄s}s∈S . Consequently,

E[‖δ(t)� ρ(t)‖22] ≤
2τ2
Σ

2 |S |
B

+ 8τ2D2 |S |2

(1� γ)2
X

s∈S
‖Qs(· ; ω̄s, t)�QΠ

θ(t)

s (·)‖2L2(νθ(t))

 !

: (D.27) 

Set η � 1=
ffiffiffiffiffiffiffiffiffiffiffi
Tactor

√
and take (D.24) and (D.27). We obtain (D.16) from the following estimations:

min
t∈[Tactor]

E[‖ρ(t)‖22] ≤
1

Tactor
·
XTactor

t�1

‖ρ(t)‖22 ≤
2

Tactor
·
XTactor

t�1

(E[‖δ(t)� ρ(t)‖22] +E[‖δ(t)‖22])

≤ 2

Tactor
·
XTactor

t�1

(E[‖δ(t)� ρ(t)‖22] + 2(1� L · η)E[‖δ(t)‖22])

≤ 8τ2
Σ

2 |S |
B

+ 4ffiffiffiffiffiffiffiffiffiffiffi
Tactor

√ E[J(θ(Tactor + 1))� J(θ(1))] + ɛQ(Tactor), 

where ɛQ measures the error accumulated from the critic steps, which are defined in (D.17), that is,

ɛQ(Tactor) �
32τDRd

1=2
ζs
|S |

(1� γ)ηTactor
·
XTactor

t�1

X

s∈S
E[‖Qs(· ; ω̄s)�QΠ

θ(t)

s (·)‖L2(νθ(t))]

+ 16τ2D2 |S |2

(1� γ)2Tactor

·
XTactor

t�1

X

s∈S
E[‖Qs(· ; ω̄s)�QΠ

θ(t)

s (·)‖2L2(νθ(t))]:

Here, the expectations in (D.16) and (D.17) are taken over all randomness in Algorithms 1 and 2. Q.E.D.

D.2.2. Bridging the Gap Between Stationarity and Optimality. Recall that σθ�in (4.2) denotes the state–action visitation 

measure under policy Πθ. Denote σ̄θ�as the state visitation measure under policy Πθ. Consequently,

σ̄θ(µ)Πθ(h |µ) � σθ(µ, h):
Following similar steps in the proof of Cai et al. [7, theorem 4.8], one can characterize the global optimality of the obtained sta-

tionary point θ̃ ∈ B as the following.

Lemma D.3. Let θ̃ ∈ B be a stationary point of J(·) satisfying Condition (D.14) and let θ∗ ∈ B be the global maximum point of J(·) in B. 
Then, the following inequality holds:

(1� γ)(J(θ∗)� J(θ̃)) ≤ 2rmax

1� γ
inf
θ∈B

�����

�����uθ̃ (µ, h)�
X

s∈S
φθ̃s
(µ(s), h(s))⊤θs

�����

�����
L2(σθ̃ )

, (D.28) 

where uθ̃ (µ, h) :� dσθ∗=dσθ̃ (µ, h)� dσ̄θ∗=dσ̄θ̃ (µ) +
P

s∈Sφθ̃s
(µ(s), h(s))⊤θ̃s, and dσθ∗=dσθ̃ , dσ̄θ∗=dσ̄θ̃�are the Radon–Nikodym deriva-

tives between the corresponding measures.

Proof of Lemma D.3. First, recall that, by (4.8), for any θ ∈ B,

∇θJ(θ̃)⊤(θ� θ̃) �
X

s∈S
∇θs

J(θ̃)⊤(θs � θ̃s) �
τ

1� γ

X

s∈S
Eσθ̃ [Q

Π
θ̃ (µ, h) ·Φ(θ̃ , s,µ, h)⊤(θs � θ̃s)], 

in which Φ(θ, s,µ, h) :� φθs
(µ(s), h(s))�Eh(s)′~Πθs

s (· |µ(s))[φθs
(µ(s), h′(s))] is defined in (4.7).

Because θ̃ ∈ B is a stationary point of J(·),
X

s∈S
Eσθ̃ [Q

Π
θ̃ (µ, h) ·Φ(θ̃ , s,µ, h)⊤(θs � θ̃s)] ≤ 0, ∀θ ∈ B: (D.29) 

Denote AΠ
θ̃ (µ, h) :�QΠ

θ̃ (µ, h)�VΠ
θ̃ (µ) as the advantage function under policy Πθ̃ . It holds from the definition that 

E
h~Π

θ̃ (· |µ)[AΠ
θ̃ (µ, h)] � VΠ

θ̃ (µ)�VΠ
θ̃ (µ) � 0. Meanwhile, sup(µ, h)∈Ξ |AΠ

θ̃ (µ, h) | ≤ 2 sup
µ∈PN(S) |VΠ

θ̃ (µ) | ≤ 2rmax

1�γ .
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Given that E
h~Π

θ̃ (· |µ)[AΠ
θ̃ (µ, h)] � 0 and E

h~Π
θ̃ (· |µ)[Φ(θ̃, s,µ, h)] � 0, we have, for any s ∈ S,

Eσθ̃ [V
Π
θ̃ (µ) ·Φ(θ̃, s,µ, h)] � 0, and (D.30) 

Eσθ̃ [A
Π
θ̃ (µ, h) ·E

h(s)′~Πθ̃s
s (· |µ(s))

[φθ̃s
(µ(s), h′(s))]] � 0: (D.31) 

Combining (D.29) with (D.30) and (D.31),
X

s∈S
Eσθ̃ [A

Π
θ̃ (µ, h) · φθ̃s

(µ(s), h(s))⊤(θs � θ̃s)] ≤ 0, ∀θ ∈ B: (D.32) 

Moreover, by the performance difference lemma (Kakade and Langford [35]),

(1 � γ) · (J(θ∗)� J(bθ)) � Eσ̄θ∗ [〈AΠ
θ̃ (µ, ·),Πθ∗ (· |µ)�Πθ̃ (· |µ)〉]: (D.33) 

Combining (D.33) with (D.32), it holds that, for any θ ∈ B,

(1� γ) · (J(θ∗)� J(bθ))

≤ Eσ̄θ∗ [〈AΠ
θ̃ (µ, ·),Πθ∗ (· |µ)�Πθ̃ (· |µ)〉]�

X

s∈S
Eσθ̃ [A

Π
θ̃ (ζ) ·φθ̃s

(ζs)⊤(θs � θ̃s)]

�Eσθ̃ AΠ
θ̃ (µ, h) · dσθ∗

dσθ̃
(µ, h)�dσ̄θ∗

dσ̄θ̃
(µ)�

X

s∈S
φθ̃s
(µ(s), h(s))⊤(θs � θ̃s)

 !" #

: (D.34) 

Therefore,

(1 � γ) · (J(θ∗)� J(bθ))

≤ 2rmax

1 � γ
inf
θ∈B

�����

�����
dσθ∗

dσθ̃
(µ, h)� dσ̄θ∗

dσ̄θ̃
(µ)�

X

s∈S
φθ̃s
(µ(s), h(s))⊤(θs � θ̃s)

�����

�����
L2(σθ̃ )

� 2rmax

1 � γ
inf
θ∈B

�����

�����uθ̃ (µ, h)�
X

s∈S
φθ̃s
(µ(s), h(s))⊤θs

�����

�����
L2(σθ̃ )

, (D.35) 

where uθ̃ (µ, h) :� dσθ∗=dσθ̃ (µ, h)� dσ̄θ∗=dσ̄θ̃ (µ) +
P

s∈Sφθ̃s
(µ(s), h(s))⊤θ̃s, and dσθ∗=dσθ̃ , dσ̄θ∗=dσ̄θ̃�are the Radon–Nikodym deri-

vatives between corresponding measures. Q.E.D.

To further bound the right-hand side of (D.28) in Lemma D.3, define the following function class:

F̃ R, M �
(

f0(ζ;θ) :�
X

s∈S

1ffiffiffiffiffi
M
√

XM

m�1

1{[θs(0)]⊤mζs > 0}[θs]⊤mζs

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
(?)

:

θs ∈ RM×dζs , ‖θs � θs(0)‖∞ ≤ R=
ffiffiffiffiffi
M
√

)
, (D.36) 

given an initialization θs(0) ∈ RM×dζs , s ∈ S and b ∈ RM. F̃ R, M (D.36) is a local linearization of the actor neural network. More spe-
cifically, term (?) in (D.36) locally linearizes the decentralized actor neural network f (ζs;θs) (4.4) with respect to θs. Any f0(ζ;θ) ∈
F̃ R, M is a sum of |S | inner products between feature mapping φθs(0)(·) (4.6) and parameter θs: f0(ζ;θ) �

P
s∈Sφθs(0)(ζs) ·θs. As the 

width of the neural network M→∞, F̃ R, M converges to FR,∞ (defined in Assumption 5.6). The approximation error between 
F̃ R, M and FR,∞ is bounded in the following lemma.

Lemma D.4. For any function f (ζ) ∈ FR,∞ defined in Assumption 5.6, we have

Einit[‖f (·)�ProjF̃ R,M
f (·)‖L2(σθ̃ ) ] ≤ O

|S |Rd
1=2
ζs

M1=2

 !

: (D.37) 

Lemma D.4 follows from Rahimi and Recht [50] and Cai et al. [7, proposition 4.3]. The factor |S | stems from the fact that FR,∞
can be decomposed into |S | independent reproducing kernel Hilbert spaces. With Lemma D.4, we are ready to establish an 
upper bound for the right-hand side of (D.28) in the following proposition.

Proposition D.1. Under Assumption 5.6, let θ̃ ∈ B be a stationary point of J(·) and let θ∗ ∈ B be the global maximum point of J(·) in B. 
Then, the following inequality holds:

(1� γ)(J(θ∗)� J(θ̃)) ≤ O
|S |R3=2d

3=4
ζs

M1=4

 !
: (D.38) 
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Proof of Proposition D.1. First, by the triangle inequality,

inf
θ∈B

�����

�����uθ̃ (ζ)�
X

s∈S
φθ̃s
(ζs)⊤θs

�����

�����
L2(σθ̃ )

≤ ‖uθ̃ (ζ)� Proj
F̃ R, M

uθ̃ (ζ)‖L2(σθ̃ )

+ inf
θ∈B

�����

�����Proj
F̃ R, M

uθ̃ (ζ)�
X

s∈S
φθ̃s
(ζs)⊤θs

�����

�����
L2(σθ̃ )

, (D.39) 

where F̃ R, M is defined in (D.36). We denote ProjF̃ R,M
uθ̃ (ζ) �

P
s∈Sφθs(0)(ζs) · bθs ∈ F̃ R, M for some bθ ∈ B. Therefore, by Lemma 

D.4, the first term on the right-hand side of (D.39) is bounded by (D.37):
�����

�����uθ̃ (ζ)�
X

s∈S
φθs(0)(ζs) · bθs

�����

�����
L2(σθ̃ )

≤ O
|S |Rd

1=2
ζs

M1=2

 !

:

The following Lemma D.5 is a direct application of Wang et al. [57, lemma E.2], which is used to bound the second term on the 
right-hand side of (D.39).

Lemma D.5. It holds for any θs,θ
′
s ∈ Bs � {αs ∈ RM×dζs : ‖αs �θs(0)‖∞ ≤ R=

ffiffiffiffiffi
M
√
} that

Einit[‖φθs
(ζs)⊤θ′s �φθs(0)(ζs)⊤θ′s‖L2(σθ)] ≤ O

R3=2d
3=4
ζs

M1=4

 !

, (D.40) 

where the expectation is taken over random initialization.

Taking θ � θ̃�and θ′ � bθ�in Lemma D.5 gives us

X

s∈S
‖φθs(0)(ζs) · bθs �φθ̃s

(ζs)⊤bθs‖L2(σθ̃ ) ≤ O
|S |R3=2d

3=4
ζs

M1=4

 !

:

Therefore, by Lemma D.1,

(1 � γ)(J(θ∗)� J(θ̃)) ≤ inf
θ∈B

�����

�����uθ̃ (ζ)�
X

s∈S
φθ̃s
(ζs)⊤θs

�����

�����
L2(σθ̃ )

≤ O
|S |R3=2d

3=4
ζs

M1=4

 !

: Q:E:D:

Now, we are ready to establish Theorem 5.2.

Proof of Theorem 5.2. Following similar calculations as in Wang et al. [57, section H.3], we obtain that, at iteration t ∈ [Tactor],

∇θJ(θ(t))⊤(θ�θ(t)) ≤ 2 R+ η · rmax

1� γ

� �
· ‖ρ(t)‖2, ∀θ ∈ B: (D.41) 

The right-hand side of (D.41) quantifies the deviation of θ(t) from a stationary point θ̃. Having (D.41) and following similar 
arguments for Lemma D.3 and Proposition D.1, we can show that

(1� γ) min
t∈[Tactor]

E[J(θ∗)� J(θ(t))] ≤ O
|S |R3=2d

3=4
ζs

M1=4

 !

+ 2 R+ η · rmax

1� γ

� �
· min

t∈[Tactor]
E[‖ρ(t)‖2]: (D.42) 

Here, the last term mint∈[Tactor] E[‖ρ(t)‖2] is bounded by (D.16) in Theorem D.2, whereas the term ɛQ(Tactor) in (D.17) can be upper 
bounded by Theorem 5.1. Finally, with the parameters stated in Theorem 5.2, the following statement holds by straightforward 
calculation:

min
t∈[Tactor]

E[J(θ∗)� J(θ(t))] ≤ O( |S |1=2B�1=2 + |S | |A |1=4(γk=8 + (Tactor)�1=4)): Q:E:D:

Appendix E. A Network Example Satisfying Technical Assumptions
In this section, we provide a concrete network example that satisfies all Assumptions 5.1–5.6 (or their mild relaxations). The 
structure of this network is shown in Figure E.1, which consists of five states. Within each time step, an agent can travel from 
state i to j only if there is a directed link from state i to j. We consider a mean-field MARL problem with 10 agents on this five- 
state network. For an agent at a given state i, the admissible action is to travel to a neighboring state at the next time step. Once 
the agent selects a neighboring state as its action, it transits to that state with probability one in the next time step. The discount 
parameter of the problem is set to be γ � 0:95. The team decentralized policy is parameterized in the form of (4.4).

E.1. Assumption 5.1.

In general, it may be difficult to verify whether bQΠ
θ

s in (Local Q-function) belongs to F s, k
R,∞ in (5.1) by direct computation. How-

ever, it can be argued that any continuous function (including any bQΠ
θ

s in (Local Q-function)) satisfies Assumption 5.1 with 
some controllable approximation error. More specifically, as pointed out in Remark 5.1, F s, k

R,∞ in (5.1) is a subset of an RKHS, 
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which is dense in the space of continuous functions. In this case, any continuous bQΠ
θ

s can be approximated by some function in 
F

s, k
R,∞ up to some approximation error, and the subsequent convergence analysis can also be modified to reflect such error. In 

short, Assumption 5.1 is satisfied by the example in Figure E.1 up to some approximation error.

E.2. Assumption 5.2.

As mentioned in Remark 5.1, Assumption 5.2 is satisfied when the stationary distribution νθ�and the visitation measure σθ�are 
both uniformly upper bounded over all policies. It is indeed difficult to verify such assumption by direct computation. Alterna-
tively, we conduct a numerical experiment to show that the upper boundedness of νθ�and σθ�is a reasonable assumption for the 
example in Figure E.1.

Given a neural policy Πθ, the stationary distribution νθ�and the visitation measure σθ�are computed by numerical simulations 
of the system’s trajectories. We generate 800 random neural policies {Πθi}800

i�1 , and for each θi, the maximum value of νθi 
and σθi 

is recorded. The results are shown in Figure E.2. It is observed from the histogram that most of the randomly chosen θ’s lead to a 
maximum value smaller than 0.02, whereas the overall upper bound is smaller than 0.03. Therefore, Assumption 5.2 holds 
numerically under this example.

E.3. Assumption 5.3.

Assumption 5.3 also holds under mild conditions. More specifically, when the estimator bgs in (4.14) can be viewed as an average 
of B i.i.d. samples,

X

y∈N k
s

Qy(µl(N
k
y), hl(N k

y); ω̄y)

2

4

3

5 · bΦ(θ(t), s,µl, hl), l ∈ [B], 

Figure E.1. Five-state network. 

Figure E.2. (Color online) Upper bound of σθ�and νθ�over 800 random policies. 
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Assumption 5.3 holds naturally if each sample has uniformly bounded variance over all parameters ω�and θ. A sufficient condi-
tion to guarantee the uniformly bounded variance is when the neural Q-function Qy(·; ω̄y) is uniformly bounded over all para-
meters. Indeed, when Qy(·; ω̄y) is a two-layer neural network with bounded parameters ω̄y and bounded input, a uniform 
bound on Qy(·; ω̄y) is guaranteed. Hence, Assumption 5.3 holds when the parameters of the critic networks are uni-
formly bounded.

E.4. Assumption 5.4.

Similar to Assumption 5.2, because of the difficulty in directly computing νθ�and σθ, Assumption 5.4 is verified numerically 
under the example in Figure E.1. Again, 800 random neural policies {Πθi}800

i�1 are generated, and Eνθ [(dσθ=dνθ(µ, h))2], the L2 

norm of the Radon–Nikodym derivative between σθ�and νθ, is computed for each θ. The results are shown in Figure E.3. It is 
observed from the histogram that most of the randomly chosen θ’s lead to a bounded L2 norm smaller than 30, whereas the over-
all upper bound is smaller than 45. Therefore, Assumption 5.4 holds numerically under this example.

E.5. Assumption 5.5.

In general, Assumption 5.5 holds when the transition probability and the reward function are both Lipschitz continuous with 
respect to their inputs (Pirotta et al. [46]), or when the reward is uniformly bounded and the score function ∇θ log Πθ�is uni-
formly bounded and Lipschitz continuous with respect to θ�(Zhang et al. [65]. Under the particular example in Figure E.1, one 
can set the reward function to be constant so that the Lipschitz condition in Assumption 5.5 holds immediately.

E.6. Assumption 5.6.

Assumption 5.6 is similar to Assumption 5.1, and such assumption is satisfied by any continuous function up to an approxi-
mation error.

Overall, we have shown that Assumptions 5.1–5.6 in the paper (or their mild relaxations) are satisfied by the particular exam-
ple in Figure E.1.
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