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People's thinking plans adapt to the problem they're trying to solve 
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A B S T R A C T   

Much of our thinking focuses on deciding what to do in situations where the space of possible options is too large 
to evaluate exhaustively. Previous work has found that people do this by learning the general value of different 
behaviors, and prioritizing thinking about high-value options in new situations. Is this good-action bias always the 
best strategy, or can thinking about low-value options sometimes become more beneficial? Can people adapt 
their thinking accordingly based on the situation? And how do we know what to think about in novel events? 
Here, we developed a block-puzzle paradigm that enabled us to measure people's thinking plans and compare 
them to a computational model of rational thought. We used two distinct response methods to explore what 
people think about—a self-report method, in which we asked people explicitly to report what they thought 
about, and an implicit response time method, in which we used people's decision-making times to reveal what 
they thought about. Our results suggest that people can quickly estimate the apparent value of different options 
and use this to decide what to think about. Critically, we find that people can flexibly prioritize whether to think 
about high-value options (Experiments 1 and 2) or low-value options (Experiments 3, 4, and 5), depending on the 
problem. Through computational modeling, we show that these thinking strategies are broadly rational, enabling 
people to maximize the value of long-term decisions. Our results suggest that thinking plans are flexible: What we 
think about depends on the structure of the problems we are trying to solve.   

1. Introduction 

We often have to make decisions involving a wide array of options: 
actions we can take, things we can say, or people we can interact with. 
Intuitively, much of our thinking involves considering different options 
in anticipation of a decision, as when we think about what we want to 
eat for dinner, or what we want to say before a meeting. But we don't 
have the time and computational resources to consider every option 
before we have to make a choice (see Lieder & Griffiths, 2017, 2020; 
Vul, Goodman, Griffiths, & Tenenbaum, 2014). So we face a complex 
selection problem: Given that we can only think a few thoughts at a time, 
what should we think about? 

A growing body of computational and empirical work suggests that 
people solve this problem through a ‘good-action bias’ (Bear, Bensinger, 
Jara-Ettinger, Knobe, & Cushman, 2020; Icard, Kominsky, & Knobe, 
2017; Mattar & Daw, 2018; Morris, Phillips, Huang, & Cushman, 2021): 
Over time, people learn the values associated with different options or 
behaviors in a broad class of situations. When people face a specific 
situation and can only consider a small number of options about how to 
behave within it, they tend to consider the options that they have 

determined to generally have high value in that broader class of situa-
tions. This process then leads to increasingly more accurate represen-
tations of the high-value options (e.g., Braun, Wimmer, & Shohamy, 
2018; Gelly & Silver, 2011; Icard, Cushman, & Knobe, 2018). 

Despite the power and usefulness of a good-action bias, this strategy 
is only useful in situations where people have already computed and 
stored representations of the values of the different possible options (i.e., 
“model-free”, as opposed to “model-based” values; Gläscher, Daw, 
Dayan, & O’Doherty, 2010). Yet, many important decisions often come 
in the context of novel situations, where relevant past experiences can be 
scarce, or carry little value information for the context that we're in. 
Consider, for instance, when you move to a new country: You might 
have some knowledge of how things generally work, but you might not 
yet have stored values for different options (e.g., of phone plans, res-
taurants, etc.). In these situations, what do people tend to think about? 

1.1. What do we think about? 

There are at least two possibilities for what happens when people 
face new situations. A first possibility is that the good-action bias reflects 
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a thinking strategy that people use across the board. When people 
encounter a new type of situation, they might quickly build an initial 
estimate of value based on superficial cues and focus on the options they 
estimate to have high value. For example, suppose a person is confronted 
with a new problem and different possible options. One strategy might 
be to obtain broad value estimates (possibly based on low-level fea-
tures), and then prioritize thinking about whichever option is more 
likely to be high value. In doing so, she would of course think about both 
the good and bad outcomes that could arise from those options (Ito & 
Cacioppo, 2005; Lieder, Griffiths, & Hsu, 2018; Rozin & Royzman, 2001; 
Tversky & Kahneman, 1991), but she would tend not to devote her 
limited computational resources to thinking at all about the options she 
estimates to be of lower value. 

At the same time, novel situations can be risky when bad choices can 
produce particularly bad unforeseen outcomes. In these cases, it may be 
beneficial to also think about potentially low-value options. This raises a 
second possibility: The good-action bias might be limited in scope, and 
people may be able to generate and use different thinking strategies 
based on the context that they're in. In other words, in the same way we 
can create ad-hoc action plans in a novel physical task (as when we 
figure out which path to take based on the layout of a new room), people 
may also be able to create ad-hoc “thinking plans” in a novel thinking 
task. Thus, people might be able to execute thinking plans that are not 
necessarily aligned with the good-action bias, depending on the problem 
they are attempting to solve. 

The present study aims to explore these possibilities. How do people 
know what to think about in novel situations? Do their strategies reflect 

a generalized form of the good-action bias? Or can people flexibly adapt 
to the right strategy based on the structure of the problem at hand? 

1.2. The present studies 

To answer these questions, we developed an experimental paradigm 
that allows us to determine what people have (and have not) thought 
about when faced with an impending novel situation. Participants saw 
novel incomplete block-puzzles and an array of six different puzzle-piece 
options (Fig. 1a), some of which had potentially high values, while 
others had potentially low values. Puzzle pieces varied in their surface 
features (e.g., their size), which provided information about their 
apparent value. Participants could then solve the puzzle by mentally 
rotating the various puzzle pieces to see which pieces fit and which did 
not, which in turn revealed their value. Participants always first went 
through this thinking phase, where they could freely think about different 
puzzle piece options (via mental rotation; Fig. 1a). 

From here, we used two distinct response methods. First, this para-
digm allowed us to ask people in a self-report method what puzzle pieces 
they thought about. We designed an interactive layout in which par-
ticipants could click different puzzle pieces that they had mentally 
rotated in the thinking phase. Second, to rule out potential task de-
mands, we also used a more implicit measure of what people thought 
about. In a decision phase, participants were explicitly prompted to select 
the best piece from a subset of pieces (Fig. 1b). Because mental rotation 
is a relatively slow cognitive operation (Cooper, 1975; Shepard & Met-
zler, 1971), this paradigm also enabled us to probe whether participants 

Fig. 1. The two-part design of the implicit response time method experiments. Participants first went through a (a) thinking phase where they were allowed to freely 
evaluate how well each of the six pieces fit into the base (bottom piece) (b) Decision phase where participants were asked to choose between two pieces. (c) Points 
were calculated based on the additional squares (colored purple) above the puzzle, when the puzzle piece was slotted in. On the left side, the subject gets 7 points 
corresponding to the 7 squares above the puzzle. On the right side, the subject gets 3 points corresponding to the 3 squares above the puzzle. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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had previously thought about a puzzle piece by measuring their 
response times in a subsequent decision phase (Fig. 1b). A slow response 
time would suggest that the participant is evaluating the puzzle piece (i. 
e., performing a mental rotation and computing its value) only after 
being asked about it, while a fast response time would suggest that the 
participant had already mentally rotated the piece and computed its 
value before being asked. Therefore, participants' response times can 
reveal whether they had already considered and cached the values of the 
pieces before they were presented to them in the decision phase: Par-
ticipants should be faster when deciding between two pieces that they 
had already evaluated, and slower when they had not thought about 
some (or all) of the presented pieces. 

This paradigm enabled us to test what people think about in novel 
situations, as a function of the context that they're in. In Experiments 1 
and 2, we first considered a situation where observable cues contained 
information about the potential value of different pieces, and we tested 
whether these cues influenced what people chose to think about first. 
Participants were told that only puzzle pieces that fit into the main 
structure would give them points, and that the object's final size (see 
Fig. 1c), after attaching the puzzle piece, would determine the number of 
points that they could obtain. Therefore, participants could estimate the 
potential value of a piece based on its size, but had to think about (and 
mentally rotate) it to discover its exact value. 

To see if people don't just default to potentially high-value options, 
we also needed to identify situations where a better strategy would be to 
think of potentially low-value options (therefore acting against a good- 
action bias). (And we will note that there may be some situations in 
everyday life in which it could be helpful to do so, such as in delicate 
social situations — where ultimately the space of possible options can 
change and be significantly reduced based on what another person says, 
and so we need to know not just which options to act on, but also which 
options to avoid so we do not make a situation worse.) 

To explore this possibility, we formalized our block-puzzle paradigm 
in a computational framework and varied different task parameters to 
explore the space of decision problems. This allowed us to identify 
contexts in which the best strategy would be to think about potentially 
low-value options first, which we then tested in Experiments 3 and 4. 

Finally, given the evidence we find that people deploy different 
thinking strategies depending on the problem, Experiment 5 explored 
whether these different strategies emerge at the individual level, testing 
if people adjust their thinking strategy as the problem structure changes. 
Altogether, these experiments allowed us to probe what people would 
think in a range of decision problems, varying across different di-
mensions: a case where there was an equal number of high and low- 
value options versus a case where there were more low-value options; 
a case where there was only one high-value option (needle in the stack) 
versus a case where there was a really low-value option (snake in the 
stack); and a case where the critical low-value option (the “snake”) could 
be more or less difficult to find. 

2. Computational framework 

To formalize the problem of which options would be best to think 
about, we used partially-observable Markov decision processes 
(POMDP; Cassandra, 1998; Sutton, Barto, et al., 1998). POMDPs origi-
nally rose to prominence in robotics and AI to model action-planning in 
complex spatial environments under partial information, but more 
recent work has shown that this framework can be used not only to 
model decisions between different physical actions but also decisions 
between different thought processes (see Callaway et al., 2021; Chen, 
Chang, & Howes, 2021; Griffiths et al., 2019; Lieder & Griffiths, 2020). 
Here we adapted the framework to implement a space of thinking ac-
tions rather than physical actions. Before introducing our model, we will 
begin by briefly introducing POMDPs in the context in which they are 
classically used. 

2.1. Classical uses of POMDPs 

To illustrate the logic of POMDPs, consider a simple situation where 
an agent's goal is to take an object in a house (also see Fig. 2a, b). To 
achieve this, the agent must first find the object and then retrieve it. To 
formalize this problem, POMDPs define a state space S consisting of all 
possible physical states of the world. In a case like this one, the state 
space would include the combination of any position where the agent 
and the object might be at any given time point. Given this state space, 
the agent's goals can be represented as a reward function R that assigns a 
numerical reward to combinations of states and actions. In this example, 
the goal can be encoded as a reward function that returns a high positive 
value in states where the agent is holding the object. 

To obtain these rewards, the agent can take sequential actions (from 
a set of actions A) that change the state of the world. The relationship 
between actions and states is captured by the transition function T, 
where T(s,a,s0) represents the probability that the world will change 
from state s to s0 when the agent takes action a. For instance, an agent 
taking the action ‘walk north’ in a state should assign a high probability 
to the state where the agent is now one spot north of where they used to 
be. 

At their core, POMDPs assume that agents can have partial or 
incomplete knowledge about the world. For instance, the agent may 
know their position in space but not know where the object is located. To 
achieve this, POMDPs introduce belief representations, expressed as 
probability distributions over the state space. To model how the agent's 
beliefs change as they move in space, POMDPs introduce an observation 
function O which determines what information is made available to the 
agent in different states, where O(i,s,a) is the probability that the agent 
receives information i when taking action a in state s. For instance, a 
simple observation function might encode that the agent can see 
whether the object is present or absent in any room as soon as she enters 
it. Formally, this is achieved by defining a space of observations, and 
specifying which observations are associated with each state through an 
observation function (which can include probabilistic components). 

Given the six-tuple defined above—a state space, an action space, an 
observation space, a reward function, a transition function, and an 
observation function—it is possible to compute the series of actions that, 
given an agent's knowledge, maximize the long-term rewards that the 
agent obtains (requiring one additional parameter, λ, that specifies how 
rewards are discounted over time). Computing the exact solution to a 
POMDP is computationally demanding and often intractable in practice, 
particularly in problems with large state spaces. Nonetheless, research in 
the past two decades has led to the development of multiple algorithms 
that provide approximate solutions to POMDPs (such as by not 
computing the actions that would be associated with implausible belief 
states that the agent could have), making them a useful practical 
framework for determining rational action under imperfect information 
(Hsu, Lee, & Rong, 2008; Kurniawati, Hsu, & Lee, 2008; Ng & Jordan, 
2000). 

2.2. Modeling thinking through POMDPs 

Although POMDPs are most typically used to model choices between 
physical actions, they can also be used to model choices between 
different thoughts (see Fig. 2c). For simplicity, we explain this model 
structure in the context of Experiment 1a (a more comprehensive pre-
sentation is available in the Supplemental Materials). Here, participants 
were presented with a puzzle like the one shown in Fig. 1a, and they 
learned that pieces that do not fit into the puzzle have no value, and 
pieces that fit into the puzzle have larger values whenever they increase 
the overall number of blocks in the structure. After being given time to 
think about whichever pieces they liked (i.e., rotating them mentally to 
see if they fit in the puzzle during the thinking phase), participants were 
asked to quickly determine which of two puzzle pieces had a higher 
value (decision phase). Although the full problem is ultimately encoded 
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in a single POMDP, we first explain the components at use during the 
thinking phase, and then turn to the ones used in the decision phase. 

In this context, the potential value of a puzzle piece can be deter-
mined visually: The larger the piece, the more likely it is to be valuable. 
The true value of a piece, however, can only be revealed by thinking 
about it (i.e., mentally rotating it to test if it fits in the puzzle or not). 
Thus, our model represents each piece in terms of its potential value, 
determined by its size, and its true value, which equals the potential 
value when the piece fits into the puzzle, and 0 when it does not. Given 
the two hypotheses about each piece (the true value either equals the 
potential value or 0), we defined the state space as every possible setting 
over which pieces' true value matches the potential value and which do 
not (i.e., in the case with six pieces, the state space consists of 26 = 64 
states). 

To model the thinking phase, we gave our model the ability to 
execute thinking actions, which revealed the true value of whichever 
piece the agent chose to think about (through an observation). While the 
thinking actions do not have any causal impact on the state space, there 
was always a small probability that, at any given point, the state space 
may switch to a decision phase (capturing the idea that the participant 
knew that at any point they might get asked to choose a piece among a 
subset). 

To model the decision phase, we included an additional set of states, 
where each state encoded a forced choice between two possible pieces 
selected from a uniform distribution (as in Fig. 1a). To select a piece, the 
agent could take a ‘selection’ action, obtaining a reward depending on 
which piece they picked. Thinking actions could be performed both 
during the thinking and the decision phases, and were always costly (see 
Supplemental Information for details). 

These specifications enabled us to use the POMDP framework to 
compute what sequence of thinking actions was best suited to the 

decision problem, with the goal of maximizing the agent's expected 
reward in the decision phase. Under this formulation, the model is 
pressured to optimize its thinking plan due to two forces. The first is that 
thinking is costly (which pressures the model to minimize its thinking 
actions when possible), and the second is that rewards are temporally 
discounted (an intrinsic feature of POMDPs) such that, upon entering the 
decision phase, the model prefers responding sooner rather than later. 

3. Experiment 1: a good-action bias in explicit thought reports 

We first sought to test what people think about in a novel situation 
where the potential value of different choices can be estimated based on 
superficial observable cues. Participants saw a display like the one 
shown in Fig. 1a. The value of each piece was given by the final size of 
the completed puzzle, after the piece was attached (and 0 value for 
pieces that did not fit the base puzzle). Thus, each piece's size gave a 
superficial cue about its potential value, but participants needed to 
mentally rotate each piece to test if it indeed fit the puzzle. We first 
describe the model and simulations, confirming that, in a context like 
this one, our model prioritizes thinking about potentially high-value 
pieces. We then validate the model's parameters and its predictions in 
a self-report paradigm, probing how many pieces people can mentally 
simulate in the given period of time, as well as which pieces they 
mentally simulate. 

3.1. Model simulations and results 

To determine what people should think about in this situation, we 
implemented this puzzle in our computational framework (section 2.2). 
Because people can sometimes make reasoning errors, our model 
included a small probability that a mental rotation would lead to an 

Fig. 2. High-level schematic of how we use POMDPs in our approach. (a) classic POMDP graphical model. States produce observations, which affect an agent's 
beliefs, the agent then chooses subsequent actions based on their beliefs, which causally affect the state of the world and the observations they receive. (b) One 
example of a standard use of POMDPs. The state is the physical location of the agent, the observations are determined by the agent's visual access (e.g., receiving 
information that is in their line of sight). These observations update the agent's beliefs (e.g., seeing a locked door updates their representation of the door), and the 
agent then takes a new physical action (such as walking in a particular direction), which changes the physical location. The link between physical movement and 
visual access is not necessarily critical, as this information is often already encoded in the representation of the physical location. (c) Simplified formulation of our 
approach. Here, the space of physical actions is replaced with a set of thinking decisions. These decisions therefore do not affect the state of the world, but have a 
direct impact on the thinking output. Under this formulation, the observations are the result of thinking, rather than the result of a purely external physical state. 
Note that, in reality, actions affect both states and observations and these are simplified representations to clarify the use of POMDPs for thinking. 
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incorrect conclusion (i.e., believing that a piece fits when it does not, or 
believing that a piece does not fit when it does). To achieve this, we 
included a certainty parameter, which we varied from 50% (i.e., a 50% 
chance of making a reasoning error) to 100% (i.e., full confidence of no 
reasoning error) in intervals chosen to match the empirical error rate 
from our studies (see Supplementary Materials). We set the probability 
of switching to the decision phase as 0.37 (a parameter we validated 
from the explicit self-report experiment we ran below). We used a future 
discount parameter of 0.95. These parameters were all set prior to model 
evaluation. 

After solving each POMDP (i.e., computing the optimal policies), we 
obtained an expected thinking plan by running 100 simulations under 
each certainty parameter with a random set of puzzle pieces (set to al-
ways have two large pieces, two medium pieces, and two small pieces to 
match the experiment). For each of the 100 simulations, model pre-
dictions were computed as the average behavior across all certainty 
values. To ensure that all simulations revealed the full thinking plan, we 
modified the state transition dynamics to ensure that the model would 
not switch to the decision phase until after the model had the chance to 
think of all six pieces. That is, the model's solution reflected the belief 
that the agent might be prompted to decide before having had the op-
portunity to think about all six pieces, but the simulations were modified 
to stay in the thinking phase long enough for us to observe the model's 
full thinking pattern. 

Fig. 3 shows the results from this simulation. As this figure shows, 
our model always uses the first 3–4 time steps to think about the two 
pieces with the highest probability of being valuable. Afterwards, the 
model shifts to thinking about medium-value pieces in steps 5 and 6. 
This reflects the performance of the models that believe reasoning errors 
are likely. In these cases, our model believes it is better to double-check 
potentially high-value pieces to confirm their true value. Finally, the 
model only begins considering the medium and maybe, the lowest-value 

pieces at the very end of the task. 

3.2. Explicit self-report method 

Here, we tested the situation we had set up in the model, where the 
value of pieces was correlated with size: Larger pieces that fit into the 
puzzle were more valuable than smaller pieces that fit into the puzzle. 
However, pieces that did not fit into the puzzle had no value, regardless 
of their size. In this initial experiment, we used a self-report method in 
which participants were explicitly asked which options they had thought 
about, and we used the average number of pieces that participants 
thought about to align the model's expected number of pieces it could 
evaluate. 

3.2.1. Method 
All methods and analyses were pre-registered (https://aspredicted. 

org/sh65h.pdf). Data and code for all experiments reported here are 
available on: https://osf.io/n8em7. 

Participants. 150 participants were recruited on the online Prolific 
platform and completed a 5-min single-trial experiment for monetary 
compensation. The saomple size was determined based on a power 
analysis run on pilot data. 

Apparatus. After agreeing to participate, subjects were redirected to a 
website where stimulus presentation and data collection were controlled 
via custom software written using a combination of HTML, CSS, Java-
Script, PHP, and jsPsych libraries (de Leeuw, Gilbert, Petrov, & Luch-
terhandt, 2023). Subjects completed the experiment in fullscreen mode 
on either a laptop or desktop computer. 

Stimuli. Each trial consisted of a yellow puzzle base and six blue 
puzzle pieces (see Fig. 1a for an example). Each participant was pre-
sented with a randomly generated puzzle base, which was always a 
rectangle with three to four blocks missing at the top. The goal was 
simply to figure out whether the puzzle pieces would fit, such that the 
puzzle piece, when rotated and positioned into the puzzle, would form a 
shape without any holes within the 4 × 5 puzzle. Each of the six puzzle 
pieces options consisted of the three/four blocks that were missing, 
along with additional blocks that determined the value of the piece. For 
example, a piece with a value of 7 points is one that locks into the puzzle 
base after being rotated and has 7 additional blocks that go beyond the 
puzzle's 5 × 4 rectangular shape (e.g., the upper leftmost piece in Fig. 1a; 
the left side of Fig. 1c). Critically, some puzzle pieces did not have the 
correct shape to lock into the puzzle and therefore had value 0 (e.g., the 
lower middle piece in Fig. 1a, which has a potential value of 7, but its 
true value is 0 because it does not fit into the puzzle). The six puzzle 
pieces were randomly generated but always consisted of three pairs of 
potential values: two potentially high-value options (potential value: 7), 
two potentially medium-value options (potential value: 5), and two 
potentially low-value options (potential value: 3). In each pair, one piece 
would always fit (true value equals its potential value), and the other 
would not (true value equals 0). 

Procedure and Design. Participants first read a brief set of task in-
structions where they learned the logic of the task and they were told 
that their goal was to earn as many points as possible. A ‘Total Points’ 
counter was visible on the top-left of the screen throughout the entire 
experiment to give participants the sense of “earning” points across the 
experiment (though the critical test trial only occurred at the very end 
after the instructions and comprehension questions were completed). 
Participants were then shown a sample block-puzzle, and were asked 
questions about these different options to test their understanding of the 
task and the point system. During these comprehension questions, par-
ticipants obtained points for correct answers, which we used as an 
exclusion criterion for people who did not understand the task. To 
ensure that participants would not just look for puzzle pieces whose 
bottom part resembled the structure of the missing section of the puzzle 
base, they were told that the pieces could only be rotated but never 
simply flipped. After these instructions, the critical single trial of the 

Fig. 3. Model predictions about what pieces to think about as a function of time 
step in Experiment 1. The model could think about the potentially high-value 
pieces (green), the medium-value pieces (purple), or the low-value pieces 
(red). Our rational model suggests that the best strategy is to think about the 
high-value pieces. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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experiment began. Participants were shown a new block-puzzle. At the 
start of the thinking phase, participants were told that six pieces would 
now appear above the puzzle, in two rows of 3 pieces each (as in Fig. 1a). 
Participants were told that they did not have to do anything but just look 
and study the pieces, and that they would simply be asked questions 
about the pieces afterwards. To incentivize participants to really think 
about the options during the thinking phase, they were also told that 
they would get bonus points for responding (i.e., “Try to answer as fast 
as you can. You'll get a bonus if you answer fast”), but this was not tied to 
any actual monetary reward. Once the puzzle pieces appeared, partici-
pants were given five seconds to study them, with a countdown timer 
shown above the puzzle. After five seconds, participants were asked to 
click on the pieces that they thought about. When they had clicked on all 
the pieces they had thought about, they pressed a key to complete the 
study. 

3.2.2. Exclusions 
Per the preregistered criteria, we excluded people who reported (in a 

debriefing phase) having an attention level below 70% (n = 10); whose 
total completion time was more than 2 standard deviations from the 
grand population mean (n = 11); and whose performance in the practice 
trials was below chance (n = 49). 

3.2.3. Results 
People reported thinking of an average of 2.66 pieces (as in Fig. 4a). 

Fig. 4b shows that people were more likely to think about a piece if it 
was a potentially high-value option than if it were not a potentially high- 
value option (permutation test over 10,000 permutations, p = .004). 

3.2.4. Discussion 
The results of this initial experiment are critical in two ways. First, 

participants' responses matched what the model predicts: participants 
were significantly more inclined to think of the potentially high-value 
pieces than medium or low-value pieces. This serves as at least some 
initial evidence in support of a good-action bias in play. 

Second, we can use the average number of pieces people selected to 
set the model's probability of switching. Given that people could think of 
approximately 2.68 pieces within the 5-s period, we can compute a 
likelihood that the model will switch to a decision phase. This problem is 
mathematically equivalent to considering the expected number of 
consecutive heads on a biased coin until getting tails, with heads rep-
resenting another ‘thinking chance’ and tails representing the switch to 
the decision phase. In this formulation, the expected number of flips is n 
= 1/p, where p is the probability of getting tails. In our case, we 

therefore used p = 1/n with n set to 2.68, resulting in p = .37. This 
ensured that the model's policy reflects the rational thinking plan under 
the thinking constraints that participants faced. 

Though the results suggest that participants prioritized thinking 
about potentially high-value options during the thinking phase, at the 
same time, participant responses were noisy, and a substantial propor-
tion of people reported thinking about the medium or low-value pieces. 
Of course, some part of this may be a function of the self-report measure 
itself, such that some people may mistakenly report thinking about the 
other pieces as well, or may have misinterpreted the task (which we 
address later in Experiment 2). But a different possibility is that the noise 
in people's responses could reflect something about people's thinking 
process itself. Given the six puzzle pieces that are readily available (and 
presented visually and simultaneously together), the process of thinking 
about the optimal pieces, and not just considering each of the pieces 
with equal likelihood, may require the exertion of cognitive control (see 
e.g., Icard, 2018). This process of balancing the value of thinking of the 
potentially good pieces versus exerting control to not think about the 
other pieces may also contribute to the noisier responses that we see 
here. 

4. Experiment 2: a good-action bias in implicit decision-making 
times 

We validated our model with a task in which we asked people 
explicitly which pieces they had thought about, but it is possible that 
these self-reports were not completely accurate. For example, it might be 
that people did not know which options they were actually thinking of 
and simply responded by listing the options that they thought they 
should have been thinking about. To verify the results from Experiment 
1, Experiment 2 used an implicit method of measuring what people 
thought about when there wasn't any decision to be made yet. After the 
thinking phase—where participants could freely focus on different 
pieces to check if they'd fit into the puzzle—participants were asked to 
select the best option among either two large pieces or two small pieces. 
We predicted that, if participants prioritize thinking about potentially 
high-value options, their response time should be significantly faster 
when asked to select which is better of two large pieces relative to when 
asked to select which is better of two small pieces. 

4.1. Experiment 2a 

4.1.1. Methods 
This experiment was identical to Experiment 1, except as noted. Sixty 

Fig. 4. Results from Experiment 1. (a) Histogram of how many pieces people selected. The x-axis depicts the total number of pieces per participant, with the 
maximum number of pieces being 6. (b) The average number of pieces people selected of a particular value, either: high, medium, or low. There were two possible 
pieces for each value. Error bars reflect 95% confidence intervals. 
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participants from the broader community participated in a single-trial 
experiment (conducted in the university library with participants who 
participated voluntarily for candy). The sample size was determined 
based on a power analysis run on pilot data (see Supplemental Materials 
for details). Stimuli were presented using custom software written in 
Python with the PsychoPy libraries (Peirce et al., 2019) and were dis-
played on a monitor with a 60 Hz refresh rate. Participants completed 
the study on a 13-in. MacBook Air with a 1440 × 900 resolution. This 
time, instead of having participants click on the pieces that they had 
mentally rotated, they instead switched to a decision phase, after the 
countdown timer for the thinking phase reached 0. Then, two of the six 
pieces turned green (as in Fig. 1b) and participants were asked “Which 
piece is better?” Critically, half of our participants were tasked with 
identifying which was better of the two potentially high-value options, 
and the other half were tasked with identifying which was better of the 
two potentially low-value options. Three participants were excluded 
because their mean performance in the comprehension questions was 2 
standard deviations below the mean. These participants were replaced, 
until a total of 60 participants was reached. All methods and analyses 
were pre-registered (https://aspredicted.org/wd5it.pdf). 

4.1.2. Results and discussion 
Response accuracy and response times for the single trial were 

recorded for each participant. Only response times where participants 
responded correctly were included in the analysis. Participants who 
chose between the potentially high-value options responded faster in the 
decision phase (M = 2.56 s, SD = 1.77 s) than participants who chose 
between the potentially low-value options (M = 5.20 s, SD = 3.82 s), as 
depicted in Fig. 5a (t(43.37) = 3.65, p < .001, d = 1.06 over the loga-
rithm of the response time). Including the incorrect answers did not 
yield any different results, t(55.41) = 3.51, p < .001, d = 0.91. There 
was no significant difference between the percentage of people who 
responded accurately when choosing between potentially high-value 
options vs. potentially low-value options (86.67% vs. 66.67%, Fisher's 
exact: p = .125). Thus, even after switching over from a self-report 
method to this implicit response time method, we still get the same 
basic effect: Participants' decision-making times suggest that during the 
thinking period, they prioritized and refined their representations of the 
potentially high-value options. 

4.2. Experiment 2b 

In Experiment 2a, potentially high-value options always had more 
blocks, while potentially low-value options always had fewer blocks. 
Might people simply have been attracted to larger pieces, independent of 

their value? To ensure that our results were not just a matter of the 
number of blocks, Experiment 2b flipped the size-value relationship: 
Smaller puzzle pieces were now more valuable than larger puzzle pieces. 

4.2.1. Method 
This experiment was identical to Experiment 2a, except as noted. 

Seventy new participants from the broader community participated. The 
sample size was determined before data collection began based on a 
power analysis run on pilot data (see Supplemental Materials for de-
tails). Participants first read a brief set of task instructions that explained 
the logic of the task. In contrast to Experiment 2a, participants learned 
that the number of additional blocks in a piece that fits now reflected the 
number of points that would be deducted. For instance, if a piece fit into 
the puzzle base and had 7 additional blocks, then 7 points would be 
deducted. If the piece did not fit, then 10 points would be deducted. In 
this case, the potentially high-value pieces were the ones with fewer 
blocks, and the potentially low-value pieces were the ones with more 
blocks (and thus, the difference in the number of points lost for getting a 
choice between the smaller piece options wrong versus the number of 
points earned for getting it right is higher than for choices between 
larger piece options). Participants began with a score of 50 points and 
the thinking and decision phase proceeded in the same way as Experi-
ment 2a. Two participants were excluded because their mean perfor-
mance in the comprehension questions was 2 standard deviations below 
the mean. These participants were replaced, until a total of 70 partici-
pants was reached. All methods and analyses were pre-registered (https: 
//aspredicted.org/25ux2.pdf). 

4.2.2. Results and discussion 
Response accuracy and response times for the single trial were 

recorded for each participant. Only response times where participants 
responded correctly were included in the analysis. Participants who 
chose between the potentially high-value options responded faster in the 
decision phase (M = 2.37 s, SD = 1.73 s) than participants who chose 
between the potentially low-value options (M = 3.99 s, SD = 2.23 s), as 
shown in Fig. 5b (t(40.37) = 3.88, p < .001, d = 1.08 over the logarithm 
of the response time). Including the incorrect answers did not yield any 
different results (t(65.24) = 4.14, p < .001, d = 0.99). While we found a 
marginal difference between the percentage of people who responded 
accurately when choosing between potentially high-value options vs. 
potentially low-value options (71.43% vs. 91.43%, Fisher's exact: p =
.062), accuracy was nonetheless high in both conditions. And this 
marginally higher when choosing between low-value options may 
reflect participants' determination to not make a wrong choice. Thus, 
our results suggest that people are not just attracted to thinking about 

Fig. 5. (a) Results from Experiment 2a. Diamonds reflect means. (b) Results from Experiment 2b. (c) Results from Experiment 2c.  

J.D.K. Ongchoco et al.                                                                                                                                                                                                                         

https://aspredicted.org/wd5it.pdf
https://aspredicted.org/25ux2.pdf
https://aspredicted.org/25ux2.pdf
https://aspredicted.org/25ux2.pdf


Cognition 243 (2024) 105669

8

visually larger puzzle pieces, and they instead think about particular 
puzzle pieces based on the pieces' underlying values. 

4.3. Experiment 2c 

So far, the results from Experiments 2a-2b suggest that people pri-
oritize thinking about potentially high-value options, even in novel sit-
uations. This strategy produced a response time benefit when people had 
to decide between two potentially high-value options, relative to when 
they had to decide between two potentially low-value options. To 
further demonstrate that this response time benefit is specific to puzzle 
pieces that participants mentally rotated during the thinking phase 
(recalling their value during the decision phase), we tested people on 
pieces that were not available during the thinking phase. This experi-
ment would provide a baseline of how long people would take to decide 
between two pieces if they did not have the time to think about these 
pieces in an earlier thinking phase. 

4.3.1. Method 
This experiment was identical to Experiment 2a, except as noted. 

Sixty new participants from the broader community participated. The 
sample size was determined before data collection began based on a 
power analysis run on pilot data (see Supplemental Materials for de-
tails). During the decision phase, a new pair of high-value or low-value 
options were generated and presented to the participants. One partici-
pant was excluded because their mean performance in the comprehen-
sion questions was 2 standard deviations below the mean. This 
participant was replaced, until a total of 60 participants was reached. All 
methods and analyses were pre-registered (https://aspredicted.org/ 
8mk78.pdf). 

4.3.2. Results and discussion 
Response accuracy and response times for the single trial were 

recorded for each participant. Only response times where participants 
responded correctly were included in the analysis. This time, partici-
pants who chose between potentially high-value options were in fact 
slower (M = 4.54 s, SD = 2.51 s) than participants who chose between 
potentially low-value options (M = 2.52 s, SD = 1.12 s), as depicted in 
Fig. 5c (t(41.76) = 4.10, p < .001, d = 1.21 over the logarithmic 
transformations of the distributions)—perhaps because the stakes were 
higher, such that participants would earn more by making the right 
choice between the potentially high-value options. Including the 
incorrect answers again did not yield any different results (t(55.15) =
2.77, p = .007, d = 0.72). There was no significant difference between 
the percentage of people who responded accurately when choosing be-
tween potentially high-value options vs. potentially low-value options 
(76.67% vs. 76.67%, Fisher's exact: p = 1). To compare these results 
with those of Experiment 1a, we ran a 2 choice types (old vs. novel) x 2 
choice values (potentially high-value options vs. potentially low-value 
options) ANOVA. There was no main effect of choice type, F(1,88) =
0.12, p = .728, η2 = 0.002, or of choice value, F(1,88) = 0.33, p = .570, 
η2 = 0.004. Crucially, there was a significant interaction, F(1,88) =
20.99, p < .001, η2 = 0.193. These results suggest that participants in 
Experiments 2a-2b had a response time benefit for potentially high- 
value pieces because they learned their specific value during the 
thinking phase, and not because they developed a general strategy for 
thinking about those pieces more quickly during the decision phase. 

5. Experiment 3: a “Snake-in-the-stack” effect in explicit 
thought reports 

Experiments 1 and 2 showed that, in novel situations, people can 
preferentially think about options that are likely to be of high value, and 
that the process of developing this thinking plan is fast and does not 
depend on longer-term cached values. This behavior was consistent with 
our computational model, which predicted that a rational thinking 

strategy should prioritize thinking about options with a higher expected 
value. At the same time, this experiment only considered situations 
where thinking about the good was the best strategy. We therefore do 
not know if people have a good-action bias in all situations, or if they can 
revise this strategy when necessary. 

To test this possibility, we used our computational framework to 
search for problems where the best strategy would be to think about low- 
value options first, and tested if participants can adjust their thinking 
strategy accordingly. As we show below, this search led to a task 
structure that we call “snake in the stack.” This task is structurally 
similar to the tasks that we used in Experiments 1 and 2, with the dif-
ference that we introduced a “snake”, or a piece that comes with a 
relatively large cost for participants. In this type of situation, our model 
predicts that the best strategy is to first find the snake (i.e., think about 
potentially low-value pieces) and then switch to thinking about poten-
tially good options. 

This “snake in the stack” decision problem may be reminiscent of 
real-world situations in which a broad space of possible options can 
become significantly constrained at decision time, such that you will 
have to select from a smaller set of options, which may not always have 
the best possible options. For instance, consider delicate social situa-
tions, in which one might want to think first about what one shouldn't 
say to not make the situation worse. In this context, one can plan ahead 
about what the best or worst things to say might be, but ultimately the 
space of possible things to say can also change and be significantly 
reduced based on how the other person might respond, such that you 
might not be able to say any of the best possible options, and need to 
instead know which options to avoid or not say. 

The strategy derived from our model implies that the amount of time 
used to think about good pieces depends on how quickly one finds the 
bad piece. For instance, if a participant was lucky and happened to 
identify the bad piece on their first try, this would give them enough 
time to also evaluate high-value pieces and show the same traces of the 
good-action bias from Experiments 1 and 2. However, if a participant is 
unlucky and slow to find the bad piece, this would come at the cost of 
not having the opportunity to evaluate the high-value pieces, and the 
traces of the good-action bias from Experiments 1 and 2 should 
disappear. 

To test this effect experimentally, participants in the next experi-
ments were told that large pieces had higher expected values, but that 
one of the small pieces would lead to a very high cost. Half of the par-
ticipants were then shown a puzzle where all the small puzzle pieces 
were snakes (Easy-Snake condition). Participants searching for the snake 
in this condition would always find one on the first try (perhaps 
believing they got lucky), and thus should switch to thinking about the 
high-value options. The other half of participants were shown a puzzle 
where none of the small pieces were snakes (Impossible-Snake condi-
tion). Participants searching for the snake in this condition would never 
be able to find it, and thus might fixate on the low-value options 
(perhaps believing they made a rotation error). 

5.1. Model simulation and results 

To search for problem structures where the good-action bias no 
longer applies, we modified the decision problem along two dimensions: 
(1) the number of options an agent could choose between in the decision 
phase (set to either 2, 3, 4, 5 and 6 out of 6), and (2) the number of low- 
value options in the puzzle among which the snake could be hidden (set 
to 2, 3, 4, or 5). For instance, the problem where the number of choices 
= 3 and the number of apparent snakes = 4 corresponds to a puzzle with 
two large (i.e., potentially high-value) pieces and four small (i.e., 
potentially low-value) pieces, one of which is believed to be the snake. 
At the decision phase, the model would be allowed to select one of three 
randomly selected pieces to win (or lose) points. 

We solved POMDPs for all 20 problems in the 5 × 4 parameter space 
(see Supplemental Methods for full implementation details). We then 
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began by testing whether any region in this space led to strategies that 
prioritized thinking about bad options. Fig. 6 shows the results from this 
analysis, coding the first thinking action chosen by the model. When the 
agent can choose among all, or nearly all, the options during the decision 
phase (rightmost columns), the model begins by searching for high- 
value options. This makes sense: When an agent can choose from all 
options, knowing the option with the highest value should suffice. 
However, when the agent will have to select the best piece from a 
limited subset (e.g., two options; leftmost column), the model no longer 
prioritizes the potentially high-value options. Instead, it allocates time 
depending on the number of apparent snakes. The higher the number of 
apparent low-value options, the more the agent thinks about them 
(indicated by how the green squares turn red as we increase the number 
of low-value options along the y-axis in Fig. 6). This again makes sense: 
The more low-value options, the more likely that one of them will be 
part of the decision phase, in which case knowing whether the piece is 
the snake or not is critical. 

Of the space of 20 models, we chose a setting with four low-value 
options where a decision phase with two pieces (third row from the 
bottom, leftmost column). We chose this setting because it was one of 
the closest to Experiment 1 (critically involving only two choices at the 
decision phase), but was where our analysis suggested that people might 
prioritize thinking about bad options. Within this setting, the time an 
agent devotes to evaluating potentially high-value options depends on 
whether an agent finds the snake immediately or not. As we discussed 
above, if the agent finds the snake on the first try, then it can switch to 
thinking about the two high-value pieces. But if it never finds the snake, 
it will keep thinking about the apparent snakes until time runs out (or at 
least realizes or determines that it's futile to search for the snake). To 
probe this intuition, we tested our model in two modified situations. In 
one condition, we gave the POMDP policy a puzzle where all low-value 
options were snakes (Easy-Snake condition). In the other condition, we 
gave the POMDP policy a puzzle where none of the low-value options 
were snakes (Impossible-Snake condition). 

Critically, the POMDP was always solved under the assumption that 
one (and only one) of the small puzzle pieces would be a snake. Testing 
the POMDP on these new problems therefore created situations where 
the POMDP would be led to believe it had found the unique snake on its 
first try in the Easy-Snake condition, and that it had failed to find the 
snake in the Impossible-Snake condition. Fig. 7a-b show our model's 
thinking strategies across both conditions. In the Easy-Snake the model 
first searches for the snake (considering low-value options) and imme-
diately switches to evaluate high-value options on the second action, 
having believed that it found the snake. In contrast, in the Impossible- 
Snake condition, the model devotes more time to searching for the 
snake, at the cost of being unable to spend as much time evaluating the 
potentially high-value pieces. Given these thinking strategies, we then 
asked what people will do in these situations. 

5.2. Explicit self-report method 

As in Experiment 1, we began by using a self-report method to see 
which options people would report thinking about. 

5.2.1. Method 
This experiment is identical to Experiment 1 except where noted. 300 

participants were recruited on the online Prolific platform (150 for each 
of the two conditions below) for monetary compensation. The sample 
size was determined based on a power analysis run on pilot data. Par-
ticipants first read a brief set of task instructions that explained the logic 
of the task. Here, participants were told that the six puzzle pieces con-
sisted of two potentially high-value options (where one fit and the other 
did not) and four potentially low-value options (where three pieces fit 
and only one did not [the snake]). Participants were told that choosing 
the small piece that did not fit would lead to a decrease in their score of 
10 points. As in Experiment 1, participants were told to simply study the 
pieces, and that they would be asked questions about them afterwards (i. 
e., participants were not told which options they would have to choose 
between). In the Easy-Snake condition, all the low-value options did not 
fit—in which case any option people think of should be the snake. In the 
Impossible-Snake condition, none of the low-value options did not 
fit—in which case people would never actually be able to find a snake. 
Participants began the task with a score of 0. After five seconds, par-
ticipants were asked to click on the pieces that they thought about. 
When they had clicked on all the pieces they had thought about, they 
pressed a key to complete the study. All methods and analyses were pre- 
registered (https://aspredicted.org/zp4tv.pdf). 

5.2.2. Results and discussion 
People reported thinking of an average of 2.86 pieces (as in Fig. 8a). 

Fig. 8b shows that the proportion of potential snake pieces that people 
thought about was greater in the Impossible-Snake condition than in the 
Easy-Snake condition (permutation test over 10,000 permutations, p =
.001). These initial self-report results suggest that people do not just 
default to thinking about potentially high-value options—they do switch 
thinking plans based on the structure of the problem. 

6. Experiment 4: a “Snake-in-the-stack” effect in implicit 
decision-making times 

We employed the same implicit measure in Experiment 2 to confirm 
our results from Experiment 3. At the end of the thinking phase, all 
participants were prompted to select which is better of two high-value 
pieces. If participants simply prioritize thinking about good pieces (as 
in Experiments 1 and 2), our manipulation should have no effect on 
participants, as they would not take more or less time searching for the 
snake. However, if participants switch their thinking strategy by first 
searching for the snake before thinking about good options, then par-
ticipants in the Easy-Snake condition should be faster in the decision 
phase relative to participants in the Impossible-Snake condition 

Fig. 6. First actions of each model systematically varying the number of 
apparent low-value options (among which one was is a “snake” that provides 
negative cost), as well as the number of choices the agent is during the deci-
sion phase. 
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(because only participants in the Easy-Snake condition had the time to 
evaluate the high-value pieces). 

6.1. Method 

This experiment was identical to Experiment 2a, except as noted. 
Seventy new participants participated. The sample size was determined 
before data collection began based on a power analysis run on pilot data 
(see Supplemental Materials for details). As in Experiment 1, partici-
pants were told to simply study the pieces, and that they would be asked 
questions about them afterwards (i.e., participants were not told which 
options they would have to choose between). In the Easy-Snake condi-
tion, all the low-value options did not fit—in which case any option 
people think of should be the snake. In the Impossible-Snake condition, 
none of the low-value options did not fit—in which case people would 
never actually be able to find a snake. Participants began the task with a 
score of 0. In the decision phase, participants were always asked to 
decide between the two potentially high-value options. Three partici-
pants were excluded because their mean performance in the compre-
hension questions was 2 standard deviations below the grand population 
mean. These participants were replaced, until a total of 70 participants 
was reached. All methods and analyses were pre-registered (https:// 
aspredicted.org/67gf7.pdf). 

6.2. Results and discussion 

Response accuracy and response times for the single trial were 
recorded for each observer. Only response times where participants 
responded correctly were included in our analysis. Participants in the 
Easy-Snake condition responded faster to the potentially high-value 
options (M = 2.11 s, SD = 1.67 s) 690 than participants in the 
Impossible-Snake condition (M = 2.89 s, SD = 1.33 s; t(46.36) = 2.60, p 
= .013, d = 0.70 over the logarithm of the distributions; see Fig. 8c). 
Including the incorrect answers did not yield any different results, t 
(57.25) = 2.85, p = .006, d = 0.68). There was no significant difference 
in accuracy across the Easy-Snake and Impossible-Snake conditions 
(62.86% vs. 80.00%, Fisher's exact: p = .185). This pattern of results 
suggests that people in the Impossible-Snake condition might have 
fixated more on the apparent snakes, giving them less time to think 
about the potentially high-value options. Moreover, while we did not 
observe differences in people's explicit reports of whether they thought 
about high-value options, these response time results support the idea 
that high-value options were nonetheless treated differently across 
conditions, at least to the extent that people were faster at deciding 
between them in the Easy-Snake condition than in the Impossible-Snake 
condition. Implicit in this is that people must have started thinking 
about the potentially low-value options first—ultimately suggesting that 
they flexibly switched their thinking strategy to think about the worst 
options instead of the best options. 

Fig. 7. Model predictions about what pieces to think about as a function of time step in Experiment 3. The model behaves differently depending on whether the 
potential snakes are easy or difficult to find. In either case, our rational model suggests that the best strategy is to think about the low-value pieces. 

Fig. 8. Results from Experiment 3 and 4. (a) Histogram of how many pieces people selected. The x-axis depicts the total number of pieces per participant, with the 
maximum number of pieces being 6. (b) The average number of pieces people selected of a particular value, either: high, medium, or low. There were two possible 
high-value pieces and four possible low-value pieces. Error bars reflect 95% confidence intervals. (c) Results from Experiment 4. Diamonds reflect means. 
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7. Experiment 5: thought flexibility within-subjects 

So far, all experiments have been run as between-subjects experi-
ments, but we can also probe flexibility within a single individual. In a 
case where a participant first encounters a situation in which they 
should think about high-value options and then subsequently encoun-
ters a situation in which they should think about low-value options, will 
they be able to flexibly switch thinking plans? Here, we ran an experi-
ment in which each participant first encountered the decision problem 
from Experiments 1 and 2 (where the best strategy is to think about high- 
value options) and then the decision problem from Experiments 3 and 4 
(where the best strategy is to think about low-value options). The key 
question was whether participants would be able to flexibly change 
strategy when they switched to a different decision problem. 

7.1. Method 

This experiment combines Experiments 1 and 3. Three hundred 
participants were recruited on the online Prolific platform (150 for each 
of the two conditions described below). All participants first encoun-
tered the exact decision problem from Experiment 1 (the “No-Snake” 
phase)—after which they were told that they would be presented with a 
different puzzle, where now there could be potential “snakes” in the set. 
They were then presented with the exact decision problem from 
Experiment 3 (the “Potential-Snake” phase), where half of participants 
were assigned to the Easy-Snake condition and the other half, to the 
Impossible-Snake condition. All methods and analyses were pre- 
registered (https://aspredicted.org/gd5ng.pdf). 

7.2. Results and discussion 

Fig. 9 shows the proportion of high-value options selected of the 
pieces that participants selected, across the No-Snake and Potential- 
Snake phases. First, participants were more inclined to think of high- 
value options in the No-Snake phase than in the Impossible-Snake 

condition of the Potential-Snake phase (permutation test over 10,000 
permutations, p = .005). Second, within the Potential-Snake phase, they 
reported thinking about more high-value options in the Easy-Snake 
condition than in the Impossible-Snake condition (permutation test 
over 10,000 permutations, p = .041). These results suggest that partic-
ipants were able to switch from thinking about high-value options to 
thinking about low-value options when the decision problem had 
changed. 

We then asked whether participants who thought of more high-value 
pieces in the No-Snake phase would tend also to think of more high- 
value pieces in the Potential-Snake phase. Fig. 9 shows the association 
between the proportion of high-value options selected in the No-Snake 
phase versus the Potential-Snake phase (Fig. 9a: Easy-Snake, and 
Fig. 9b: Impossible-Snake). There was a positive correlation between 
responses in the two phases both in the Easy-Snake condition (r = 0.31, 
p < .001) and in the Impossible-Snake condition (r = 0.27, p < .001). In 
short, although participants were able to change their strategies be-
tween the two phases, there was still a significant correlation between 
responses in the first phase and responses in the second. Future work can 
explore whether such correlations reflect a robust individual difference 
trait. 

8. General discussion 

People often think about possible actions they can perform even 
before they are faced with an actual decision. A question arises about 
which specific actions people tend to consider when they are engaged in 
this type of cognition. To address this question, we used computational 
methods to determine which actions would be best to consider in various 
settings and conducted a series of experiments to determine which ac-
tions people do tend to consider. 

Computationally, we formalized this class of problems as a partially 
observable Markov decision process (POMDP), with thinking itself 
treated as a type of action. We then found the best thinking plans for 
different specific decision problems. The results indicated that there are 
certain decision problems for which the best strategy is to think about 
the potentially high-value options and others for which the best strategy 
is to think about the potentially low-value options. 

The modeling results revealed an interaction between (a) the number 
of options the agent can choose between at decision time and (b) the 
proportion of options that are potential “snakes”. When the number of 
options the agent can choose between at decision time is high, it is al-
ways best to consider the potentially high-value options. By contrast, 
when the number of options the agent can choose between at decision 
time is low, the best strategy depends on the proportion of options that 
are potential snakes (i.e., if some of these options are extremely bad, as 
in the snake in the stack). When that proportion is small, the best 
strategy is to consider the potentially high-value options, whereas when 
that proportion is large, the best strategy is to consider the potentially 
low-value options. 

Empirically, we used two approaches—a self-report method and an 
implicit response time method that helped us tap into what people were 
thinking about before they had to make a decision. In the thinking phase, 
participants were given different options and had the opportunity to 
think about whichever options they wanted to. Participants could be 
explicitly asked what they thought about, or in a decision phase, par-
ticipants were confronted with just two of these options and asked to 
choose between them. Response times in the decision phase thereby 
provided evidence about which options participants were considering in 
the thinking phase. Specifically, the shorter a participant's response time 
in response to a pair of options in the decision phase, the more reason we 
have to conclude that the participant already considered those options in 
the thinking phase. 

Using these methods, Experiments 1–2 looked at decision problems 
for which the formal model indicated that the best strategy would be to 
think about the high-value options. In those experiments, the results 

Fig. 9. Results from Experiment 5. The average proportion of high-value op-
tions from participants' selected pieces. Error bars reflect 95% confi-
dence intervals. 
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indicated that participants did tend to think about the high-value op-
tions, even in a novel context. These results clarify whether the good- 
action bias operates over model-based vs. model-free values, in that 
insofar as people can quickly learn and use arbitrary value functions, 
this suggests that the underlying mechanism may be more model-based 
than model-free. Experiments 3–4 then turned to decision problems for 
which the model indicated that the best strategy would be to think about 
the low-value options. In those experiments, the results indicated that 
people did tend to think about the low-value options. These results 
suggest that people do not just default to the high-value options, but 
rather utilize a more flexible mechanism of thought-planning. Finally, 
Experiment 5 showed that, in a within-subjects design, people were able 
to flexibly adapt thinking plans as the problem structure changed. Taken 
together, the studies therefore suggest that people can respond flexibly, 
thinking about either high-value options or low-value options depend-
ing on which strategy is best for the specific decision problem they face. 

8.1. Selecting thoughts vs. selecting actions 

In certain respects, the problem of choosing which options to 
consider can be seen as closely analogous to the problem of choosing 
which actions to perform. Indeed, the formal tools we have used to 
model the former problem are borrowed directly from research on the 
latter. Yet, although the problems are similar in their formal structure, 
many of the cognitive processes people use when choosing among 
possible actions to perform simply would not make sense when they are 
choosing among possible options to consider. 

In particular, when people are choosing among different possible 
actions, they often proceed by carefully considering the pros and cons of 
certain possibilities. However, this same approach would almost never 
make sense when choosing between different possible options to 
consider. After all, in the time a person spent considering the pros and 
cons of considering an option, they could always instead have been 
actually considering the pros and cons of the option itself. For example, 
in the task we used in our experiment, participants would be unlikely to 
spend much time carefully considering the pros and cons of mentally 
rotating a specific shape, because they could always instead have used 
that time to actually mentally rotate the shape itself. 

Given this, existing research has suggested that people might choose 
among possible options to consider using a relatively simple heuristic. 
One of the most promising such suggestions is that people employ what 
we have called the “good-action bias,” i.e., that they show a very general 
tendency to think more about actions they regard as having high value 
than about actions they regard as having low value (Bear et al., 2020; 
Icard et al., 2017; Mattar & Daw, 2018; Morris et al., 2021). Of course, 
this simple heuristic will not always enable people to allocate their 
thinking in a way that maximizes expected utility, but given the 
computational constraints people face, it might sometimes turn out that 
this algorithm is the best of all the algorithms it would be feasible for 
them to use. 

Work in adjacent fields may also provide possible dimensions that 
could be imported when considering what we think about—such as how 
consumers know which products to consider first (Weitzman, 1978), or 
which brands to deliberate between more carefully (Hauser & Werner-
felt, 1990). Here, consumers similarly use surface-level features to select 
products (e.g., a box of cereal) that they then think about further (e.g., 
look at the labels) to realize their true values. But of course, there remain 
crucial differences between selecting products versus selecting thoughts, 
and it could be interesting to consider whether there may be more 
general principles that operate across different types of cognitive “se-
lection” tasks. 

In the present studies, we find evidence that the options people 
consider are not simply determined by the good-action bias and that the 
criteria people use are more complex. Nonetheless, the broader point 
clearly stands. Whatever cognitive process people are using to select 
options to consider, it is almost certainly not a process that involves 

carefully considering the pros and cons of considering each option. 

8.2. Exploring the underlying process 

Future work should continue to explore people's ability to show this 
sort of flexibility in determining which options to think about. Such 
work will require a mixture of computational and empirical research. At 
an empirical level, our experiments used an explicit self-report method 
after the thinking phase, and an indirect measure of response times 
during decision-making to tap into what people thought about offline, 
before actually having to make any decision. Future work can employ 
more direct measures (such as eye-tracking; Callaway, van Opheusden, 
et al., 2021, Callaway, Rangel, & Griffiths, 2021) during the actual 
thinking phase to obtain more detailed traces of people's thinking plans. 

At a computational level, we face further questions about the con-
ditions under which it is best to think about potentially good options vs. 
potentially bad options. In the present paper, we looked at two specific 
dimensions along which decision problems could vary, but future 
research could continue this investigation by looking at other di-
mensions. Such research would presumably uncover other dimensions 
that affect what thinking plan people should deploy, which could then 
be tested experimentally. In particular, our work did not explore two 
important dimensions. First, we did not manipulate how varying degrees 
of time pressure might affect thinking plans and flexibility. It is possible 
that, under extreme time pressure, people might always default to a 
simpler good-action bias. Conversely, under no time pressure, people 
might have less of a need to develop an efficient thinking strategy, as 
they might have the luxury to consider all options. Second, we did not 
consider problems of a sequential nature. That is, in many situations, we 
do not have immediate access to a set of things to think about. Instead, 
we must generate them sequentially and decide when to stop generating 
new possibilities. Our work leaves open the question of what thinking 
strategies are best in these situations, and whether people should show 
flexibility accordingly. 

Work in this area might eventually lead to the development of more 
general theories that specify the conditions under which the best strat-
egy is to think about potentially high-value vs. potentially low-value 
options. Such theories would not be limited just to one setting but 
would provide more general insights about when each strategy is best. 
For example, it might turn out that all possible decision problems that 
have certain features will be problems for which the best strategy is to 
think about potentially low-value options—which has been alluded to 
by previous work as well (Hamrick & Griffiths, 2014; Lieder et al., 
2018). 

To the extent that we can develop such an account, we open up the 
possibility of a new explanation of the effects observed in the present 
studies. It might be that people are not determining which options to 
consider by using a process that is even remotely like solving a POMDP. 
Instead, it might be that people are simply checking for certain features 
that serve as reliable cues to whether it is better to think of potentially 
high-value or potentially low-value options. If we do find that people are 
responding to certain characteristics that are reliable indicators of which 
options are best to consider, we would face a further question as to how 
people come to be able to identify these in the first place. One possible 
answer would be that people never need to learn them. Instead, the use 
of these features could simply be built into people's decision-making 
mechanisms. A second possibility would be that people are actually 
learning the use of these features over the course of numerous episodes 
of decision-making. 

If people are indeed learning to use the relevant features, a question 
would arise as to how this learning takes place. One possible answer 
would be that people are making use of familiar mechanisms of model- 
free learning (e.g., Gläscher, Daw, Dayan, & O’Doherty, 2010). On this 
view, people would have to be capable of model-free learning at an 
extremely abstract level. For example, over the course of numerous 
episodes of playing chess, people would have to be learning not only 
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about the game of chess in particular but also about very abstract pat-
terns regarding which options tend to be most worth thinking about. The 
development of algorithms for such learning is an important problem for 
future research—which some researchers have in fact already begun to 
address (He, Jain, & Lieder, 2021; He & Lieder, 2022; Jain, Callaway, & 
Lieder, 2019). 

8.3. Flexibility and inflexibility 

Overall, we find evidence that seems to point to striking flexibility in 
people's thinking plans—but there is also some important evidence that 
seems to point to inflexibility. A key task for future research will be to 
further explore the evidence on each of these sides. 

First, in Experiment 5, we obtain different results that might initially 
seem to point in different directions. In that study, participants went 
through an experiment that had two distinct phases. In the first phase, 
they faced a decision problem in which the best strategy was to begin by 
thinking about the potentially high-value pieces, while in the second 
phase, they faced a decision problem in which the best strategy was to 
begin by thinking about the potentially low-value pieces. On one hand, 
we found that people were successfully able to shift their thinking 
strategies between the two phases. Thus, when participants were in a 
condition in the second phase that required shifting to thinking about 
the bad pieces, there was a significant effect such that participants did 
indeed shift to thinking more about the bad pieces. This is clear evidence 
of flexibility. But on the other hand, there was also a significant corre-
lation between what participants reported thinking about in the two 
phases. That is, participants who thought more about good pieces in the 
first phase tended also to think more about good pieces in the second 
phase. A question now arises as to how to explain this latter result. 

One plausible explanation would be that people are showing both a 
certain amount of flexibility and a certain amount of inflexibility. On 
this explanation, when the decision problem changes, people do indeed 
show a capacity to change their thinking plans, but this flexibility is not 
complete. There is at least a certain degree to which the thinking plans 
people form in the first phase are “sticky” and do not change when the 
decision problem changes. 

However, the results could also be interpreted in other ways. To 
begin with, as Fig. 10 shows, there are participants in all four quadrants, 
with some participants thinking about the good pieces in the first phase 
and then shifting over completely to thinking about the bad pieces in the 
second phase. It is therefore possible that there are individual differ-
ences, such that some participants are more flexible than others. Alter-
natively, it might be that the correlation we observe here does not show 
any degree of stickiness in people's thinking plans. For example, it could 

be that the correlation arises because of an individual difference such 
that some participants have a general tendency to think more about the 
good options, which then influences their thinking in both phases. 
Future research could delve further into these different possibilities. 

Second, our results are striking in light of previous research that 
suggests that the mechanisms people use to figure out which options to 
consider are highly inflexible. Specifically, a number of studies suggest 
that people show an inflexible tendency to think of options that are 
generally good and statistically frequent (Bear et al., 2020; Morris et al., 
2021; Phillips, Morris, & Cushman, 2019). For many decision problems, 
it will be helpful to think about options that are statistically frequent and 
generally good, but these studies seem to suggest that people tend to 
think about those options even when the decision problem is structured 
in such a way that it is obviously not helpful to think about those 
options. 

For example, in one study, participants were asked to name the food 
they would least want for dinner (Morris et al., 2021). Clearly, in 
answering this question, it is helpful to think about foods that are 
generally bad, but the results indicated that participants actually 
showed a tendency to think first of foods that are generally good. Results 
like this one seem to suggest that there is an inflexible cognitive 
mechanism that generates options for people to consider when planning. 

One way in which the present studies depart from previous work, 
however, is in the type of decision problems participants were presented 
with. In previous studies, people were typically asked about decision 
problems for which they already may have model-free values (e.g., how 
many hours of TV to watch a day). In such cases, it may be that the pre- 
existing value assignment gives rise to the inflexible mode of thought 
that previous studies have observed. In contrast, the present studies look 
at the options people think about in novel situations, where they have 
not already assigned model-free values to the various options. The 
absence of model-free values may have allowed for the flexibility 
observed in our experiments. 

Another important distinction between the present studies and pre-
vious work is that previous work looked at the conditions under which 
an option “comes to mind,” while the present studies look at the con-
ditions under which people actually simulate forward what would 
happen if they chose an option. Within existing research on which op-
tions come to mind, there is some evidence that the options that come to 
mind are determined by an inflexible mechanism. Yet, despite this, it 
might be that people make use of a more sophisticated and flexible 
mechanism to determine which simulations to run. Thus, in the present 
studies, it might turn out that the options with potentially high values 
are the first that come to mind in all conditions, but then it might be that 
people make use of a different psychological mechanism to determine 

Fig. 10. The average proportion of high-value options from participants' selected pieces across the two sections of the Experiment. Plots show positive correlations 
between the proportion of high-value options selected in the first section vs. the proportion of high-value options selected in the second section. 
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which simulations to run, and that this mechanism sometimes selects the 
options with potentially low values. 

To the extent that this latter answer turns out to be correct, a further 
question arises as to how far the flexibility extends. The present studies 
explore people's thinking in a context in which they are aiming to ach-
ieve a specific goal, but much of our thinking is not goal-directed—as in 
mind-wandering, in which people are not trying to address any partic-
ular decision problem (e.g., Irving & Thompson, 2018; Mooneyham & 
Schooler, 2013). When people's minds are wandering, do they also show 
the sort of flexibility observed in the present studies? For example, does 
the degree to which they think about potentially high-value vs. poten-
tially low-value options depend in part on the number of options they 
expect to be choosing between at decision time? Regardless of what the 
answer to this question turns out to be, such research promises to give us 
a real insight into the scope or boundary conditions of the phenomena 
we have been exploring here. 

8.4. Conclusion 

When people face a choice from a set of options, they often face a 
difficult problem. They find themselves faced with so many different 
options that it would not be possible to consider them all, and they 
therefore need to have some way of picking out certain specific options 
that are especially worthy of consideration. 

In a series of studies, we looked at the options people tend to consider 
and found that people appear to be selecting options using remarkably 
sophisticated criteria. People don't simply show a general tendency to 
consider the potentially high-value options. Instead, they consider the 
high-value options for certain decision problems and the low-value op-
tions for others. A key task now will be to explain how people are able to 
show this flexibility and how to reconcile the flexibility they show on the 
sort of problems in this current study with inflexibility they show on 
other, seemingly related problems. 
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