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Keywords: Much of our thinking focuses on deciding what to do in situations where the space of possible options is too large
Computational modeling to evaluate exhaustively. Previous work has found that people do this by learning the general value of different
Thinking

behaviors, and prioritizing thinking about high-value options in new situations. Is this good-action bias always the
best strategy, or can thinking about low-value options sometimes become more beneficial? Can people adapt
their thinking accordingly based on the situation? And how do we know what to think about in novel events?
Here, we developed a block-puzzle paradigm that enabled us to measure people's thinking plans and compare
them to a computational model of rational thought. We used two distinct response methods to explore what
people think about—a self-report method, in which we asked people explicitly to report what they thought
about, and an implicit response time method, in which we used people's decision-making times to reveal what
they thought about. Our results suggest that people can quickly estimate the apparent value of different options
and use this to decide what to think about. Critically, we find that people can flexibly prioritize whether to think
about high-value options (Experiments 1 and 2) or low-value options (Experiments 3, 4, and 5), depending on the
problem. Through computational modeling, we show that these thinking strategies are broadly rational, enabling
people to maximize the value of long-term decisions. Our results suggest that thinking plans are flexible: What we
think about depends on the structure of the problems we are trying to solve.

Decision-making

1. Introduction

We often have to make decisions involving a wide array of options:
actions we can take, things we can say, or people we can interact with.
Intuitively, much of our thinking involves considering different options
in anticipation of a decision, as when we think about what we want to
eat for dinner, or what we want to say before a meeting. But we don't
have the time and computational resources to consider every option
before we have to make a choice (see Lieder & Griffiths, 2017, 2020;
Vul, Goodman, Griffiths, & Tenenbaum, 2014). So we face a complex
selection problem: Given that we can only think a few thoughts at a time,
what should we think about?

A growing body of computational and empirical work suggests that
people solve this problem through a ‘good-action bias’ (Bear, Bensinger,
Jara-Ettinger, Knobe, & Cushman, 2020; Icard, Kominsky, & Knobe,
2017; Mattar & Daw, 2018; Morris, Phillips, Huang, & Cushman, 2021):
Over time, people learn the values associated with different options or
behaviors in a broad class of situations. When people face a specific
situation and can only consider a small number of options about how to
behave within it, they tend to consider the options that they have
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determined to generally have high value in that broader class of situa-
tions. This process then leads to increasingly more accurate represen-
tations of the high-value options (e.g., Braun, Wimmer, & Shohamy,
2018; Gelly & Silver, 2011; Icard, Cushman, & Knobe, 2018).

Despite the power and usefulness of a good-action bias, this strategy
is only useful in situations where people have already computed and
stored representations of the values of the different possible options (i.e.,
“model-free”, as opposed to “model-based” values; Glascher, Daw,
Dayan, & O’Doherty, 2010). Yet, many important decisions often come
in the context of novel situations, where relevant past experiences can be
scarce, or carry little value information for the context that we're in.
Consider, for instance, when you move to a new country: You might
have some knowledge of how things generally work, but you might not
yet have stored values for different options (e.g., of phone plans, res-
taurants, etc.). In these situations, what do people tend to think about?

1.1. What do we think about?

There are at least two possibilities for what happens when people
face new situations. A first possibility is that the good-action bias reflects
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a thinking strategy that people use across the board. When people
encounter a new type of situation, they might quickly build an initial
estimate of value based on superficial cues and focus on the options they
estimate to have high value. For example, suppose a person is confronted
with a new problem and different possible options. One strategy might
be to obtain broad value estimates (possibly based on low-level fea-
tures), and then prioritize thinking about whichever option is more
likely to be high value. In doing so, she would of course think about both
the good and bad outcomes that could arise from those options (Ito &
Cacioppo, 2005; Lieder, Griffiths, & Hsu, 2018; Rozin & Royzman, 2001;
Tversky & Kahneman, 1991), but she would tend not to devote her
limited computational resources to thinking at all about the options she
estimates to be of lower value.

At the same time, novel situations can be risky when bad choices can
produce particularly bad unforeseen outcomes. In these cases, it may be
beneficial to also think about potentially low-value options. This raises a
second possibility: The good-action bias might be limited in scope, and
people may be able to generate and use different thinking strategies
based on the context that they're in. In other words, in the same way we
can create ad-hoc action plans in a novel physical task (as when we
figure out which path to take based on the layout of a new room), people
may also be able to create ad-hoc “thinking plans” in a novel thinking
task. Thus, people might be able to execute thinking plans that are not
necessarily aligned with the good-action bias, depending on the problem
they are attempting to solve.

The present study aims to explore these possibilities. How do people
know what to think about in novel situations? Do their strategies reflect

(a) Thinking Phase

Look at the pieces.
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a generalized form of the good-action bias? Or can people flexibly adapt
to the right strategy based on the structure of the problem at hand?

1.2. The present studies

To answer these questions, we developed an experimental paradigm
that allows us to determine what people have (and have not) thought
about when faced with an impending novel situation. Participants saw
novel incomplete block-puzzles and an array of six different puzzle-piece
options (Fig. 1la), some of which had potentially high values, while
others had potentially low values. Puzzle pieces varied in their surface
features (e.g., their size), which provided information about their
apparent value. Participants could then solve the puzzle by mentally
rotating the various puzzle pieces to see which pieces fit and which did
not, which in turn revealed their value. Participants always first went
through this thinking phase, where they could freely think about different
puzzle piece options (via mental rotation; Fig. 1a).

From here, we used two distinct response methods. First, this para-
digm allowed us to ask people in a self-report method what puzzle pieces
they thought about. We designed an interactive layout in which par-
ticipants could click different puzzle pieces that they had mentally
rotated in the thinking phase. Second, to rule out potential task de-
mands, we also used a more implicit measure of what people thought
about. In a decision phase, participants were explicitly prompted to select
the best piece from a subset of pieces (Fig. 1b). Because mental rotation
is a relatively slow cognitive operation (Cooper, 1975; Shepard & Met-
zler, 1971), this paradigm also enabled us to probe whether participants

(b) Decision Phase

Which piece is better?

(c) Points System

Subject gets 7 points.

Subject gets 3 points.

Fig. 1. The two-part design of the implicit response time method experiments. Participants first went through a (a) thinking phase where they were allowed to freely
evaluate how well each of the six pieces fit into the base (bottom piece) (b) Decision phase where participants were asked to choose between two pieces. (c) Points
were calculated based on the additional squares (colored purple) above the puzzle, when the puzzle piece was slotted in. On the left side, the subject gets 7 points
corresponding to the 7 squares above the puzzle. On the right side, the subject gets 3 points corresponding to the 3 squares above the puzzle. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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had previously thought about a puzzle piece by measuring their
response times in a subsequent decision phase (Fig. 1b). A slow response
time would suggest that the participant is evaluating the puzzle piece (i.
e., performing a mental rotation and computing its value) only after
being asked about it, while a fast response time would suggest that the
participant had already mentally rotated the piece and computed its
value before being asked. Therefore, participants' response times can
reveal whether they had already considered and cached the values of the
pieces before they were presented to them in the decision phase: Par-
ticipants should be faster when deciding between two pieces that they
had already evaluated, and slower when they had not thought about
some (or all) of the presented pieces.

This paradigm enabled us to test what people think about in novel
situations, as a function of the context that they're in. In Experiments 1
and 2, we first considered a situation where observable cues contained
information about the potential value of different pieces, and we tested
whether these cues influenced what people chose to think about first.
Participants were told that only puzzle pieces that fit into the main
structure would give them points, and that the object's final size (see
Fig. 1c), after attaching the puzzle piece, would determine the number of
points that they could obtain. Therefore, participants could estimate the
potential value of a piece based on its size, but had to think about (and
mentally rotate) it to discover its exact value.

To see if people don't just default to potentially high-value options,
we also needed to identify situations where a better strategy would be to
think of potentially low-value options (therefore acting against a good-
action bias). (And we will note that there may be some situations in
everyday life in which it could be helpful to do so, such as in delicate
social situations — where ultimately the space of possible options can
change and be significantly reduced based on what another person says,
and so we need to know not just which options to act on, but also which
options to avoid so we do not make a situation worse.)

To explore this possibility, we formalized our block-puzzle paradigm
in a computational framework and varied different task parameters to
explore the space of decision problems. This allowed us to identify
contexts in which the best strategy would be to think about potentially
low-value options first, which we then tested in Experiments 3 and 4.

Finally, given the evidence we find that people deploy different
thinking strategies depending on the problem, Experiment 5 explored
whether these different strategies emerge at the individual level, testing
if people adjust their thinking strategy as the problem structure changes.
Altogether, these experiments allowed us to probe what people would
think in a range of decision problems, varying across different di-
mensions: a case where there was an equal number of high and low-
value options versus a case where there were more low-value options;
a case where there was only one high-value option (needle in the stack)
versus a case where there was a really low-value option (snake in the
stack); and a case where the critical low-value option (the “snake™) could
be more or less difficult to find.

2. Computational framework

To formalize the problem of which options would be best to think
about, we wused partially-observable Markov decision processes
(POMDP; Cassandra, 1998; Sutton, Barto, et al., 1998). POMDPs origi-
nally rose to prominence in robotics and Al to model action-planning in
complex spatial environments under partial information, but more
recent work has shown that this framework can be used not only to
model decisions between different physical actions but also decisions
between different thought processes (see Callaway et al., 2021; Chen,
Chang, & Howes, 2021; Griffiths et al., 2019; Lieder & Griffiths, 2020).
Here we adapted the framework to implement a space of thinking ac-
tions rather than physical actions. Before introducing our model, we will
begin by briefly introducing POMDPs in the context in which they are
classically used.
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2.1. Classical uses of POMDPs

To illustrate the logic of POMDPs, consider a simple situation where
an agent's goal is to take an object in a house (also see Fig. 2a, b). To
achieve this, the agent must first find the object and then retrieve it. To
formalize this problem, POMDPs define a state space S consisting of all
possible physical states of the world. In a case like this one, the state
space would include the combination of any position where the agent
and the object might be at any given time point. Given this state space,
the agent's goals can be represented as a reward function R that assigns a
numerical reward to combinations of states and actions. In this example,
the goal can be encoded as a reward function that returns a high positive
value in states where the agent is holding the object.

To obtain these rewards, the agent can take sequential actions (from
a set of actions A) that change the state of the world. The relationship
between actions and states is captured by the transition function T,
where T(s,a,s°) represents the probability that the world will change
from state s to s when the agent takes action a. For instance, an agent
taking the action ‘walk north’ in a state should assign a high probability
to the state where the agent is now one spot north of where they used to
be.

At their core, POMDPs assume that agents can have partial or
incomplete knowledge about the world. For instance, the agent may
know their position in space but not know where the object is located. To
achieve this, POMDPs introduce belief representations, expressed as
probability distributions over the state space. To model how the agent's
beliefs change as they move in space, POMDPs introduce an observation
function O which determines what information is made available to the
agent in different states, where O(i,s,a) is the probability that the agent
receives information i when taking action a in state s. For instance, a
simple observation function might encode that the agent can see
whether the object is present or absent in any room as soon as she enters
it. Formally, this is achieved by defining a space of observations, and
specifying which observations are associated with each state through an
observation function (which can include probabilistic components).

Given the six-tuple defined above—a state space, an action space, an
observation space, a reward function, a transition function, and an
observation function—it is possible to compute the series of actions that,
given an agent's knowledge, maximize the long-term rewards that the
agent obtains (requiring one additional parameter, 4, that specifies how
rewards are discounted over time). Computing the exact solution to a
POMDP is computationally demanding and often intractable in practice,
particularly in problems with large state spaces. Nonetheless, research in
the past two decades has led to the development of multiple algorithms
that provide approximate solutions to POMDPs (such as by not
computing the actions that would be associated with implausible belief
states that the agent could have), making them a useful practical
framework for determining rational action under imperfect information
(Hsu, Lee, & Rong, 2008; Kurniawati, Hsu, & Lee, 2008; Ng & Jordan,
2000).

2.2. Modeling thinking through POMDPs

Although POMDPs are most typically used to model choices between
physical actions, they can also be used to model choices between
different thoughts (see Fig. 2c). For simplicity, we explain this model
structure in the context of Experiment 1a (a more comprehensive pre-
sentation is available in the Supplemental Materials). Here, participants
were presented with a puzzle like the one shown in Fig. 1a, and they
learned that pieces that do not fit into the puzzle have no value, and
pieces that fit into the puzzle have larger values whenever they increase
the overall number of blocks in the structure. After being given time to
think about whichever pieces they liked (i.e., rotating them mentally to
see if they fit in the puzzle during the thinking phase), participants were
asked to quickly determine which of two puzzle pieces had a higher
value (decision phase). Although the full problem is ultimately encoded
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(a) General POMDP Framework
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Fig. 2. High-level schematic of how we use POMDPs in our approach. (a) classic POMDP graphical model. States produce observations, which affect an agent's
beliefs, the agent then chooses subsequent actions based on their beliefs, which causally affect the state of the world and the observations they receive. (b) One
example of a standard use of POMDPs. The state is the physical location of the agent, the observations are determined by the agent's visual access (e.g., receiving
information that is in their line of sight). These observations update the agent's beliefs (e.g., seeing a locked door updates their representation of the door), and the
agent then takes a new physical action (such as walking in a particular direction), which changes the physical location. The link between physical movement and
visual access is not necessarily critical, as this information is often already encoded in the representation of the physical location. (c) Simplified formulation of our
approach. Here, the space of physical actions is replaced with a set of thinking decisions. These decisions therefore do not affect the state of the world, but have a
direct impact on the thinking output. Under this formulation, the observations are the result of thinking, rather than the result of a purely external physical state.
Note that, in reality, actions affect both states and observations and these are simplified representations to clarify the use of POMDPs for thinking.

in a single POMDP, we first explain the components at use during the
thinking phase, and then turn to the ones used in the decision phase.

In this context, the potential value of a puzzle piece can be deter-
mined visually: The larger the piece, the more likely it is to be valuable.
The true value of a piece, however, can only be revealed by thinking
about it (i.e., mentally rotating it to test if it fits in the puzzle or not).
Thus, our model represents each piece in terms of its potential value,
determined by its size, and its true value, which equals the potential
value when the piece fits into the puzzle, and 0 when it does not. Given
the two hypotheses about each piece (the true value either equals the
potential value or 0), we defined the state space as every possible setting
over which pieces' true value matches the potential value and which do
not (i.e., in the case with six pieces, the state space consists of 2° = 64
states).

To model the thinking phase, we gave our model the ability to
execute thinking actions, which revealed the true value of whichever
piece the agent chose to think about (through an observation). While the
thinking actions do not have any causal impact on the state space, there
was always a small probability that, at any given point, the state space
may switch to a decision phase (capturing the idea that the participant
knew that at any point they might get asked to choose a piece among a
subset).

To model the decision phase, we included an additional set of states,
where each state encoded a forced choice between two possible pieces
selected from a uniform distribution (as in Fig. 1a). To select a piece, the
agent could take a ‘selection’ action, obtaining a reward depending on
which piece they picked. Thinking actions could be performed both
during the thinking and the decision phases, and were always costly (see
Supplemental Information for details).

These specifications enabled us to use the POMDP framework to
compute what sequence of thinking actions was best suited to the

decision problem, with the goal of maximizing the agent's expected
reward in the decision phase. Under this formulation, the model is
pressured to optimize its thinking plan due to two forces. The first is that
thinking is costly (which pressures the model to minimize its thinking
actions when possible), and the second is that rewards are temporally
discounted (an intrinsic feature of POMDPs) such that, upon entering the
decision phase, the model prefers responding sooner rather than later.

3. Experiment 1: a good-action bias in explicit thought reports

We first sought to test what people think about in a novel situation
where the potential value of different choices can be estimated based on
superficial observable cues. Participants saw a display like the one
shown in Fig. 1a. The value of each piece was given by the final size of
the completed puzzle, after the piece was attached (and O value for
pieces that did not fit the base puzzle). Thus, each piece's size gave a
superficial cue about its potential value, but participants needed to
mentally rotate each piece to test if it indeed fit the puzzle. We first
describe the model and simulations, confirming that, in a context like
this one, our model prioritizes thinking about potentially high-value
pieces. We then validate the model's parameters and its predictions in
a self-report paradigm, probing how many pieces people can mentally
simulate in the given period of time, as well as which pieces they
mentally simulate.

3.1. Model simulations and results

To determine what people should think about in this situation, we
implemented this puzzle in our computational framework (section 2.2).
Because people can sometimes make reasoning errors, our model
included a small probability that a mental rotation would lead to an
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incorrect conclusion (i.e., believing that a piece fits when it does not, or
believing that a piece does not fit when it does). To achieve this, we
included a certainty parameter, which we varied from 50% (i.e., a 50%
chance of making a reasoning error) to 100% (i.e., full confidence of no
reasoning error) in intervals chosen to match the empirical error rate
from our studies (see Supplementary Materials). We set the probability
of switching to the decision phase as 0.37 (a parameter we validated
from the explicit self-report experiment we ran below). We used a future
discount parameter of 0.95. These parameters were all set prior to model
evaluation.

After solving each POMDP (i.e., computing the optimal policies), we
obtained an expected thinking plan by running 100 simulations under
each certainty parameter with a random set of puzzle pieces (set to al-
ways have two large pieces, two medium pieces, and two small pieces to
match the experiment). For each of the 100 simulations, model pre-
dictions were computed as the average behavior across all certainty
values. To ensure that all simulations revealed the full thinking plan, we
modified the state transition dynamics to ensure that the model would
not switch to the decision phase until after the model had the chance to
think of all six pieces. That is, the model's solution reflected the belief
that the agent might be prompted to decide before having had the op-
portunity to think about all six pieces, but the simulations were modified
to stay in the thinking phase long enough for us to observe the model's
full thinking pattern.

Fig. 3 shows the results from this simulation. As this figure shows,
our model always uses the first 3-4 time steps to think about the two
pieces with the highest probability of being valuable. Afterwards, the
model shifts to thinking about medium-value pieces in steps 5 and 6.
This reflects the performance of the models that believe reasoning errors
are likely. In these cases, our model believes it is better to double-check
potentially high-value pieces to confirm their true value. Finally, the
model only begins considering the medium and maybe, the lowest-value

“Good-Action Bias” Simulation
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Fig. 3. Model predictions about what pieces to think about as a function of time
step in Experiment 1. The model could think about the potentially high-value
pieces (green), the medium-value pieces (purple), or the low-value pieces
(red). Our rational model suggests that the best strategy is to think about the
high-value pieces. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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pieces at the very end of the task.
3.2. Explicit self-report method

Here, we tested the situation we had set up in the model, where the
value of pieces was correlated with size: Larger pieces that fit into the
puzzle were more valuable than smaller pieces that fit into the puzzle.
However, pieces that did not fit into the puzzle had no value, regardless
of their size. In this initial experiment, we used a self-report method in
which participants were explicitly asked which options they had thought
about, and we used the average number of pieces that participants
thought about to align the model's expected number of pieces it could
evaluate.

3.2.1. Method

All methods and analyses were pre-registered (https://aspredicted.
org/sh65h.pdf). Data and code for all experiments reported here are
available on: https://osf.io/n8em?7.

Participants. 150 participants were recruited on the online Prolific
platform and completed a 5-min single-trial experiment for monetary
compensation. The saomple size was determined based on a power
analysis run on pilot data.

Apparatus. After agreeing to participate, subjects were redirected to a
website where stimulus presentation and data collection were controlled
via custom software written using a combination of HTML, CSS, Java-
Script, PHP, and jsPsych libraries (de Leeuw, Gilbert, Petrov, & Luch-
terhandt, 2023). Subjects completed the experiment in fullscreen mode
on either a laptop or desktop computer.

Stimuli. Each trial consisted of a yellow puzzle base and six blue
puzzle pieces (see Fig. 1a for an example). Each participant was pre-
sented with a randomly generated puzzle base, which was always a
rectangle with three to four blocks missing at the top. The goal was
simply to figure out whether the puzzle pieces would fit, such that the
puzzle piece, when rotated and positioned into the puzzle, would form a
shape without any holes within the 4 x 5 puzzle. Each of the six puzzle
pieces options consisted of the three/four blocks that were missing,
along with additional blocks that determined the value of the piece. For
example, a piece with a value of 7 points is one that locks into the puzzle
base after being rotated and has 7 additional blocks that go beyond the
puzzle's 5 x 4 rectangular shape (e.g., the upper leftmost piece in Fig. 1a;
the left side of Fig. 1c). Critically, some puzzle pieces did not have the
correct shape to lock into the puzzle and therefore had value 0 (e.g., the
lower middle piece in Fig. 1a, which has a potential value of 7, but its
true value is 0 because it does not fit into the puzzle). The six puzzle
pieces were randomly generated but always consisted of three pairs of
potential values: two potentially high-value options (potential value: 7),
two potentially medium-value options (potential value: 5), and two
potentially low-value options (potential value: 3). In each pair, one piece
would always fit (true value equals its potential value), and the other
would not (true value equals 0).

Procedure and Design. Participants first read a brief set of task in-
structions where they learned the logic of the task and they were told
that their goal was to earn as many points as possible. A ‘Total Points’
counter was visible on the top-left of the screen throughout the entire
experiment to give participants the sense of “earning” points across the
experiment (though the critical test trial only occurred at the very end
after the instructions and comprehension questions were completed).
Participants were then shown a sample block-puzzle, and were asked
questions about these different options to test their understanding of the
task and the point system. During these comprehension questions, par-
ticipants obtained points for correct answers, which we used as an
exclusion criterion for people who did not understand the task. To
ensure that participants would not just look for puzzle pieces whose
bottom part resembled the structure of the missing section of the puzzle
base, they were told that the pieces could only be rotated but never
simply flipped. After these instructions, the critical single trial of the
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experiment began. Participants were shown a new block-puzzle. At the
start of the thinking phase, participants were told that six pieces would
now appear above the puzzle, in two rows of 3 pieces each (as in Fig. 1a).
Participants were told that they did not have to do anything but just look
and study the pieces, and that they would simply be asked questions
about the pieces afterwards. To incentivize participants to really think
about the options during the thinking phase, they were also told that
they would get bonus points for responding (i.e., “Try to answer as fast
as you can. You'll get a bonus if you answer fast™), but this was not tied to
any actual monetary reward. Once the puzzle pieces appeared, partici-
pants were given five seconds to study them, with a countdown timer
shown above the puzzle. After five seconds, participants were asked to
click on the pieces that they thought about. When they had clicked on all
the pieces they had thought about, they pressed a key to complete the
study.

3.2.2. Exclusions

Per the preregistered criteria, we excluded people who reported (in a
debriefing phase) having an attention level below 70% (n = 10); whose
total completion time was more than 2 standard deviations from the
grand population mean (n = 11); and whose performance in the practice
trials was below chance (n = 49).

3.2.3. Results

People reported thinking of an average of 2.66 pieces (as in Fig. 4a).
Fig. 4b shows that people were more likely to think about a piece if it
was a potentially high-value option than if it were not a potentially high-
value option (permutation test over 10,000 permutations, p = .004).

3.2.4. Discussion

The results of this initial experiment are critical in two ways. First,
participants' responses matched what the model predicts: participants
were significantly more inclined to think of the potentially high-value
pieces than medium or low-value pieces. This serves as at least some
initial evidence in support of a good-action bias in play.

Second, we can use the average number of pieces people selected to
set the model's probability of switching. Given that people could think of
approximately 2.68 pieces within the 5-s period, we can compute a
likelihood that the model will switch to a decision phase. This problem is
mathematically equivalent to considering the expected number of
consecutive heads on a biased coin until getting tails, with heads rep-
resenting another ‘thinking chance’ and tails representing the switch to
the decision phase. In this formulation, the expected number of flips is n
= 1/p, where p is the probability of getting tails. In our case, we

(a) Number of Pieces
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therefore used p = 1/n with n set to 2.68, resulting in p = .37. This
ensured that the model's policy reflects the rational thinking plan under
the thinking constraints that participants faced.

Though the results suggest that participants prioritized thinking
about potentially high-value options during the thinking phase, at the
same time, participant responses were noisy, and a substantial propor-
tion of people reported thinking about the medium or low-value pieces.
Of course, some part of this may be a function of the self-report measure
itself, such that some people may mistakenly report thinking about the
other pieces as well, or may have misinterpreted the task (which we
address later in Experiment 2). But a different possibility is that the noise
in people's responses could reflect something about people's thinking
process itself. Given the six puzzle pieces that are readily available (and
presented visually and simultaneously together), the process of thinking
about the optimal pieces, and not just considering each of the pieces
with equal likelihood, may require the exertion of cognitive control (see
e.g., [card, 2018). This process of balancing the value of thinking of the
potentially good pieces versus exerting control to not think about the
other pieces may also contribute to the noisier responses that we see
here.

4. Experiment 2: a good-action bias in implicit decision-making
times

We validated our model with a task in which we asked people
explicitly which pieces they had thought about, but it is possible that
these self-reports were not completely accurate. For example, it might be
that people did not know which options they were actually thinking of
and simply responded by listing the options that they thought they
should have been thinking about. To verify the results from Experiment
1, Experiment 2 used an implicit method of measuring what people
thought about when there wasn't any decision to be made yet. After the
thinking phase—where participants could freely focus on different
pieces to check if they'd fit into the puzzle—participants were asked to
select the best option among either two large pieces or two small pieces.
We predicted that, if participants prioritize thinking about potentially
high-value options, their response time should be significantly faster
when asked to select which is better of two large pieces relative to when
asked to select which is better of two small pieces.

4.1. Experiment 2a

4.1.1. Methods
This experiment was identical to Experiment 1, except as noted. Sixty
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Fig. 4. Results from Experiment 1. (a) Histogram of how many pieces people selected. The x-axis depicts the total number of pieces per participant, with the
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pieces for each value. Error bars reflect 95% confidence intervals.
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participants from the broader community participated in a single-trial
experiment (conducted in the university library with participants who
participated voluntarily for candy). The sample size was determined
based on a power analysis run on pilot data (see Supplemental Materials
for details). Stimuli were presented using custom software written in
Python with the PsychoPy libraries (Peirce et al., 2019) and were dis-
played on a monitor with a 60 Hz refresh rate. Participants completed
the study on a 13-in. MacBook Air with a 1440 x 900 resolution. This
time, instead of having participants click on the pieces that they had
mentally rotated, they instead switched to a decision phase, after the
countdown timer for the thinking phase reached 0. Then, two of the six
pieces turned green (as in Fig. 1b) and participants were asked “Which
piece is better?” Critically, half of our participants were tasked with
identifying which was better of the two potentially high-value options,
and the other half were tasked with identifying which was better of the
two potentially low-value options. Three participants were excluded
because their mean performance in the comprehension questions was 2
standard deviations below the mean. These participants were replaced,
until a total of 60 participants was reached. All methods and analyses
were pre-registered (https://aspredicted.org/wd5it.pdf).

4.1.2. Results and discussion

Response accuracy and response times for the single trial were
recorded for each participant. Only response times where participants
responded correctly were included in the analysis. Participants who
chose between the potentially high-value options responded faster in the
decision phase (M = 2.56 s, SD = 1.77 s) than participants who chose
between the potentially low-value options (M = 5.20 s, SD = 3.82 5), as
depicted in Fig. 5a (t(43.37) = 3.65, p < .001, d = 1.06 over the loga-
rithm of the response time). Including the incorrect answers did not
yield any different results, t(55.41) = 3.51, p < .001, d = 0.91. There
was no significant difference between the percentage of people who
responded accurately when choosing between potentially high-value
options vs. potentially low-value options (86.67% vs. 66.67%, Fisher's
exact: p = .125). Thus, even after switching over from a self-report
method to this implicit response time method, we still get the same
basic effect: Participants' decision-making times suggest that during the
thinking period, they prioritized and refined their representations of the
potentially high-value options.

4.2. Experiment 2b
In Experiment 2a, potentially high-value options always had more

blocks, while potentially low-value options always had fewer blocks.
Might people simply have been attracted to larger pieces, independent of
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their value? To ensure that our results were not just a matter of the
number of blocks, Experiment 2b flipped the size-value relationship:
Smaller puzzle pieces were now more valuable than larger puzzle pieces.

4.2.1. Method

This experiment was identical to Experiment 2a, except as noted.
Seventy new participants from the broader community participated. The
sample size was determined before data collection began based on a
power analysis run on pilot data (see Supplemental Materials for de-
tails). Participants first read a brief set of task instructions that explained
the logic of the task. In contrast to Experiment 2a, participants learned
that the number of additional blocks in a piece that fits now reflected the
number of points that would be deducted. For instance, if a piece fit into
the puzzle base and had 7 additional blocks, then 7 points would be
deducted. If the piece did not fit, then 10 points would be deducted. In
this case, the potentially high-value pieces were the ones with fewer
blocks, and the potentially low-value pieces were the ones with more
blocks (and thus, the difference in the number of points lost for getting a
choice between the smaller piece options wrong versus the number of
points earned for getting it right is higher than for choices between
larger piece options). Participants began with a score of 50 points and
the thinking and decision phase proceeded in the same way as Experi-
ment 2a. Two participants were excluded because their mean perfor-
mance in the comprehension questions was 2 standard deviations below
the mean. These participants were replaced, until a total of 70 partici-
pants was reached. All methods and analyses were pre-registered (https:
//aspredicted.org/25ux2.pdf).

4.2.2. Results and discussion

Response accuracy and response times for the single trial were
recorded for each participant. Only response times where participants
responded correctly were included in the analysis. Participants who
chose between the potentially high-value options responded faster in the
decision phase (M = 2.37 s, SD = 1.73 s) than participants who chose
between the potentially low-value options (M = 3.99 s, SD = 2.23 s), as
shown in Fig. 5b (t(40.37) = 3.88,p < .001, d = 1.08 over the logarithm
of the response time). Including the incorrect answers did not yield any
different results (t(65.24) = 4.14, p < .001, d = 0.99). While we found a
marginal difference between the percentage of people who responded
accurately when choosing between potentially high-value options vs.
potentially low-value options (71.43% vs. 91.43%, Fisher's exact: p =
.062), accuracy was nonetheless high in both conditions. And this
marginally higher when choosing between low-value options may
reflect participants' determination to not make a wrong choice. Thus,
our results suggest that people are not just attracted to thinking about

(c) Expt. 2c Results

Low-value
(Novel)

High-value
(Smaller)

High-value
(Novel)

Fig. 5. (a) Results from Experiment 2a. Diamonds reflect means. (b) Results from Experiment 2b. (c) Results from Experiment 2c.


https://aspredicted.org/wd5it.pdf
https://aspredicted.org/25ux2.pdf
https://aspredicted.org/25ux2.pdf
https://aspredicted.org/25ux2.pdf

J.D.K. Ongchoco et al.

visually larger puzzle pieces, and they instead think about particular
puzzle pieces based on the pieces' underlying values.

4.3. Experiment 2c

So far, the results from Experiments 2a-2b suggest that people pri-
oritize thinking about potentially high-value options, even in novel sit-
uations. This strategy produced a response time benefit when people had
to decide between two potentially high-value options, relative to when
they had to decide between two potentially low-value options. To
further demonstrate that this response time benefit is specific to puzzle
pieces that participants mentally rotated during the thinking phase
(recalling their value during the decision phase), we tested people on
pieces that were not available during the thinking phase. This experi-
ment would provide a baseline of how long people would take to decide
between two pieces if they did not have the time to think about these
pieces in an earlier thinking phase.

4.3.1. Method

This experiment was identical to Experiment 2a, except as noted.
Sixty new participants from the broader community participated. The
sample size was determined before data collection began based on a
power analysis run on pilot data (see Supplemental Materials for de-
tails). During the decision phase, a new pair of high-value or low-value
options were generated and presented to the participants. One partici-
pant was excluded because their mean performance in the comprehen-
sion questions was 2 standard deviations below the mean. This
participant was replaced, until a total of 60 participants was reached. All
methods and analyses were pre-registered (https://aspredicted.org/
8mk?78.pdf).

4.3.2. Results and discussion

Response accuracy and response times for the single trial were
recorded for each participant. Only response times where participants
responded correctly were included in the analysis. This time, partici-
pants who chose between potentially high-value options were in fact
slower (M = 4.54 s, SD = 2.51 s) than participants who chose between
potentially low-value options (M = 2.52 s, SD = 1.12 ), as depicted in
Fig. 5c (t(41.76) = 4.10, p < .001, d = 1.21 over the logarithmic
transformations of the distributions)—perhaps because the stakes were
higher, such that participants would earn more by making the right
choice between the potentially high-value options. Including the
incorrect answers again did not yield any different results (t(55.15) =
2.77,p = .007, d = 0.72). There was no significant difference between
the percentage of people who responded accurately when choosing be-
tween potentially high-value options vs. potentially low-value options
(76.67% vs. 76.67%, Fisher's exact: p = 1). To compare these results
with those of Experiment 1a, we ran a 2 choice types (old vs. novel) x 2
choice values (potentially high-value options vs. potentially low-value
options) ANOVA. There was no main effect of choice type, F(1,88) =
0.12,p =.728, 112 = 0.002, or of choice value, F(1,88) = 0.33, p =.570,
#? = 0.004. Crucially, there was a significant interaction, F(1,88) =
20.99, p < .001, 42 = 0.193. These results suggest that participants in
Experiments 2a-2b had a response time benefit for potentially high-
value pieces because they learned their specific value during the
thinking phase, and not because they developed a general strategy for
thinking about those pieces more quickly during the decision phase.

5. Experiment 3: a “Snake-in-the-stack” effect in explicit
thought reports

Experiments 1 and 2 showed that, in novel situations, people can
preferentially think about options that are likely to be of high value, and
that the process of developing this thinking plan is fast and does not
depend on longer-term cached values. This behavior was consistent with
our computational model, which predicted that a rational thinking
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strategy should prioritize thinking about options with a higher expected
value. At the same time, this experiment only considered situations
where thinking about the good was the best strategy. We therefore do
not know if people have a good-action bias in all situations, or if they can
revise this strategy when necessary.

To test this possibility, we used our computational framework to
search for problems where the best strategy would be to think about low-
value options first, and tested if participants can adjust their thinking
strategy accordingly. As we show below, this search led to a task
structure that we call “snake in the stack.” This task is structurally
similar to the tasks that we used in Experiments 1 and 2, with the dif-
ference that we introduced a “snake”, or a piece that comes with a
relatively large cost for participants. In this type of situation, our model
predicts that the best strategy is to first find the snake (i.e., think about
potentially low-value pieces) and then switch to thinking about poten-
tially good options.

This “snake in the stack” decision problem may be reminiscent of
real-world situations in which a broad space of possible options can
become significantly constrained at decision time, such that you will
have to select from a smaller set of options, which may not always have
the best possible options. For instance, consider delicate social situa-
tions, in which one might want to think first about what one shouldn't
say to not make the situation worse. In this context, one can plan ahead
about what the best or worst things to say might be, but ultimately the
space of possible things to say can also change and be significantly
reduced based on how the other person might respond, such that you
might not be able to say any of the best possible options, and need to
instead know which options to avoid or not say.

The strategy derived from our model implies that the amount of time
used to think about good pieces depends on how quickly one finds the
bad piece. For instance, if a participant was lucky and happened to
identify the bad piece on their first try, this would give them enough
time to also evaluate high-value pieces and show the same traces of the
good-action bias from Experiments 1 and 2. However, if a participant is
unlucky and slow to find the bad piece, this would come at the cost of
not having the opportunity to evaluate the high-value pieces, and the
traces of the good-action bias from Experiments 1 and 2 should
disappear.

To test this effect experimentally, participants in the next experi-
ments were told that large pieces had higher expected values, but that
one of the small pieces would lead to a very high cost. Half of the par-
ticipants were then shown a puzzle where all the small puzzle pieces
were snakes (Easy-Snake condition). Participants searching for the snake
in this condition would always find one on the first try (perhaps
believing they got lucky), and thus should switch to thinking about the
high-value options. The other half of participants were shown a puzzle
where none of the small pieces were snakes (Impossible-Snake condi-
tion). Participants searching for the snake in this condition would never
be able to find it, and thus might fixate on the low-value options
(perhaps believing they made a rotation error).

5.1. Model simulation and results

To search for problem structures where the good-action bias no
longer applies, we modified the decision problem along two dimensions:
(1) the number of options an agent could choose between in the decision
phase (set to either 2, 3, 4, 5 and 6 out of 6), and (2) the number of low-
value options in the puzzle among which the snake could be hidden (set
to 2, 3, 4, or 5). For instance, the problem where the number of choices
= 3 and the number of apparent snakes = 4 corresponds to a puzzle with
two large (i.e., potentially high-value) pieces and four small (i.e.,
potentially low-value) pieces, one of which is believed to be the snake.
At the decision phase, the model would be allowed to select one of three
randomly selected pieces to win (or lose) points.

We solved POMDPs for all 20 problems in the 5 x 4 parameter space
(see Supplemental Methods for full implementation details). We then
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began by testing whether any region in this space led to strategies that
prioritized thinking about bad options. Fig. 6 shows the results from this
analysis, coding the first thinking action chosen by the model. When the
agent can choose among all, or nearly all, the options during the decision
phase (rightmost columns), the model begins by searching for high-
value options. This makes sense: When an agent can choose from all
options, knowing the option with the highest value should suffice.
However, when the agent will have to select the best piece from a
limited subset (e.g., two options; leftmost column), the model no longer
prioritizes the potentially high-value options. Instead, it allocates time
depending on the number of apparent snakes. The higher the number of
apparent low-value options, the more the agent thinks about them
(indicated by how the green squares turn red as we increase the number
of low-value options along the y-axis in Fig. 6). This again makes sense:
The more low-value options, the more likely that one of them will be
part of the decision phase, in which case knowing whether the piece is
the snake or not is critical.

Of the space of 20 models, we chose a setting with four low-value
options where a decision phase with two pieces (third row from the
bottom, leftmost column). We chose this setting because it was one of
the closest to Experiment 1 (critically involving only two choices at the
decision phase), but was where our analysis suggested that people might
prioritize thinking about bad options. Within this setting, the time an
agent devotes to evaluating potentially high-value options depends on
whether an agent finds the snake immediately or not. As we discussed
above, if the agent finds the snake on the first try, then it can switch to
thinking about the two high-value pieces. But if it never finds the snake,
it will keep thinking about the apparent snakes until time runs out (or at
least realizes or determines that it's futile to search for the snake). To
probe this intuition, we tested our model in two modified situations. In
one condition, we gave the POMDP policy a puzzle where all low-value
options were snakes (Easy-Snake condition). In the other condition, we
gave the POMDP policy a puzzle where none of the low-value options
were snakes (Impossible-Snake condition).
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Fig. 6. First actions of each model systematically varying the number of
apparent low-value options (among which one was is a “snake” that provides
negative cost), as well as the number of choices the agent is during the deci-
sion phase.
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Critically, the POMDP was always solved under the assumption that
one (and only one) of the small puzzle pieces would be a snake. Testing
the POMDP on these new problems therefore created situations where
the POMDP would be led to believe it had found the unique snake on its
first try in the Easy-Snake condition, and that it had failed to find the
snake in the Impossible-Snake condition. Fig. 7a-b show our model's
thinking strategies across both conditions. In the Easy-Snake the model
first searches for the snake (considering low-value options) and imme-
diately switches to evaluate high-value options on the second action,
having believed that it found the snake. In contrast, in the Impossible-
Snake condition, the model devotes more time to searching for the
snake, at the cost of being unable to spend as much time evaluating the
potentially high-value pieces. Given these thinking strategies, we then
asked what people will do in these situations.

5.2. Explicit self-report method

As in Experiment 1, we began by using a self-report method to see
which options people would report thinking about.

5.2.1. Method

This experiment is identical to Experiment 1 except where noted. 300
participants were recruited on the online Prolific platform (150 for each
of the two conditions below) for monetary compensation. The sample
size was determined based on a power analysis run on pilot data. Par-
ticipants first read a brief set of task instructions that explained the logic
of the task. Here, participants were told that the six puzzle pieces con-
sisted of two potentially high-value options (where one fit and the other
did not) and four potentially low-value options (where three pieces fit
and only one did not [the snake]). Participants were told that choosing
the small piece that did not fit would lead to a decrease in their score of
10 points. As in Experiment 1, participants were told to simply study the
pieces, and that they would be asked questions about them afterwards (i.
e., participants were not told which options they would have to choose
between). In the Easy-Snake condition, all the low-value options did not
fit—in which case any option people think of should be the snake. In the
Impossible-Snake condition, none of the low-value options did not
fit—in which case people would never actually be able to find a snake.
Participants began the task with a score of 0. After five seconds, par-
ticipants were asked to click on the pieces that they thought about.
When they had clicked on all the pieces they had thought about, they
pressed a key to complete the study. All methods and analyses were pre-
registered (https://aspredicted.org/zp4tv.pdf).

5.2.2. Results and discussion

People reported thinking of an average of 2.86 pieces (as in Fig. 8a).
Fig. 8b shows that the proportion of potential snake pieces that people
thought about was greater in the Impossible-Snake condition than in the
Easy-Snake condition (permutation test over 10,000 permutations, p =
.001). These initial self-report results suggest that people do not just
default to thinking about potentially high-value options—they do switch
thinking plans based on the structure of the problem.

6. Experiment 4: a “Snake-in-the-stack” effect in implicit
decision-making times

We employed the same implicit measure in Experiment 2 to confirm
our results from Experiment 3. At the end of the thinking phase, all
participants were prompted to select which is better of two high-value
pieces. If participants simply prioritize thinking about good pieces (as
in Experiments 1 and 2), our manipulation should have no effect on
participants, as they would not take more or less time searching for the
snake. However, if participants switch their thinking strategy by first
searching for the snake before thinking about good options, then par-
ticipants in the Easy-Snake condition should be faster in the decision
phase relative to participants in the Impossible-Snake condition


https://aspredicted.org/zp4tv.pdf
https://aspredicted.org/zp4tv.pdf

J.D.K. Ongchoco et al.

=@ High-value

(a) “Easy Snake” Simulation

- 100
2
B
3]
<
(=) 75
£
=
£
=
® 50
"]
[]
£
(&)
° 25
T
[
=
X o0

01 02 03 04 06

Time

05

Cognition 243 (2024) 105669

=@ Low-value

(b) “Impossible Snake” Simulation

100
75
50
25
0
01 02 03 04 05 06
Time
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(because only participants in the Easy-Snake condition had the time to
evaluate the high-value pieces).

6.1. Method

This experiment was identical to Experiment 2a, except as noted.
Seventy new participants participated. The sample size was determined
before data collection began based on a power analysis run on pilot data
(see Supplemental Materials for details). As in Experiment 1, partici-
pants were told to simply study the pieces, and that they would be asked
questions about them afterwards (i.e., participants were not told which
options they would have to choose between). In the Easy-Snake condi-
tion, all the low-value options did not fit—in which case any option
people think of should be the snake. In the Impossible-Snake condition,
none of the low-value options did not fit—in which case people would
never actually be able to find a snake. Participants began the task with a
score of 0. In the decision phase, participants were always asked to
decide between the two potentially high-value options. Three partici-
pants were excluded because their mean performance in the compre-
hension questions was 2 standard deviations below the grand population
mean. These participants were replaced, until a total of 70 participants
was reached. All methods and analyses were pre-registered (https://
aspredicted.org/67gf7.pdf).

10

6.2. Results and discussion

Response accuracy and response times for the single trial were
recorded for each observer. Only response times where participants
responded correctly were included in our analysis. Participants in the
Easy-Snake condition responded faster to the potentially high-value
options (M = 2.11 s, SD = 1.67 s) 690 than participants in the
Impossible-Snake condition (M = 2.89 s, SD = 1.33 5; t(46.36) = 2.60, p
=.013, d = 0.70 over the logarithm of the distributions; see Fig. 8c).
Including the incorrect answers did not yield any different results, t
(57.25) = 2.85, p =.006, d = 0.68). There was no significant difference
in accuracy across the Easy-Snake and Impossible-Snake conditions
(62.86% vs. 80.00%, Fisher's exact: p = .185). This pattern of results
suggests that people in the Impossible-Snake condition might have
fixated more on the apparent snakes, giving them less time to think
about the potentially high-value options. Moreover, while we did not
observe differences in people's explicit reports of whether they thought
about high-value options, these response time results support the idea
that high-value options were nonetheless treated differently across
conditions, at least to the extent that people were faster at deciding
between them in the Easy-Snake condition than in the Impossible-Snake
condition. Implicit in this is that people must have started thinking
about the potentially low-value options first—ultimately suggesting that
they flexibly switched their thinking strategy to think about the worst
options instead of the best options.
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7. Experiment 5: thought flexibility within-subjects

So far, all experiments have been run as between-subjects experi-
ments, but we can also probe flexibility within a single individual. In a
case where a participant first encounters a situation in which they
should think about high-value options and then subsequently encoun-
ters a situation in which they should think about low-value options, will
they be able to flexibly switch thinking plans? Here, we ran an experi-
ment in which each participant first encountered the decision problem
from Experiments 1 and 2 (where the best strategy is to think about high-
value options) and then the decision problem from Experiments 3 and 4
(where the best strategy is to think about low-value options). The key
question was whether participants would be able to flexibly change
strategy when they switched to a different decision problem.

7.1. Method

This experiment combines Experiments 1 and 3. Three hundred
participants were recruited on the online Prolific platform (150 for each
of the two conditions described below). All participants first encoun-
tered the exact decision problem from Experiment 1 (the “No-Snake”
phase)—after which they were told that they would be presented with a
different puzzle, where now there could be potential “snakes” in the set.
They were then presented with the exact decision problem from
Experiment 3 (the “Potential-Snake” phase), where half of participants
were assigned to the Easy-Snake condition and the other half, to the
Impossible-Snake condition. All methods and analyses were pre-
registered (https://aspredicted.org/gd5ng.pdf).

7.2. Results and discussion

Fig. 9 shows the proportion of high-value options selected of the
pieces that participants selected, across the No-Snake and Potential-
Snake phases. First, participants were more inclined to think of high-
value options in the No-Snake phase than in the Impossible-Snake
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condition of the Potential-Snake phase (permutation test over 10,000
permutations, p =.005). Second, within the Potential-Snake phase, they
reported thinking about more high-value options in the Easy-Snake
condition than in the Impossible-Snake condition (permutation test
over 10,000 permutations, p = .041). These results suggest that partic-
ipants were able to switch from thinking about high-value options to
thinking about low-value options when the decision problem had
changed.

We then asked whether participants who thought of more high-value
pieces in the No-Snake phase would tend also to think of more high-
value pieces in the Potential-Snake phase. Fig. 9 shows the association
between the proportion of high-value options selected in the No-Snake
phase versus the Potential-Snake phase (Fig. 9a: Easy-Snake, and
Fig. 9b: Impossible-Snake). There was a positive correlation between
responses in the two phases both in the Easy-Snake condition (r = 0.31,
p < .001) and in the Impossible-Snake condition (r = 0.27,p < .001). In
short, although participants were able to change their strategies be-
tween the two phases, there was still a significant correlation between
responses in the first phase and responses in the second. Future work can
explore whether such correlations reflect a robust individual difference
trait.

8. General discussion

People often think about possible actions they can perform even
before they are faced with an actual decision. A question arises about
which specific actions people tend to consider when they are engaged in
this type of cognition. To address this question, we used computational
methods to determine which actions would be best to consider in various
settings and conducted a series of experiments to determine which ac-
tions people do tend to consider.

Computationally, we formalized this class of problems as a partially
observable Markov decision process (POMDP), with thinking itself
treated as a type of action. We then found the best thinking plans for
different specific decision problems. The results indicated that there are
certain decision problems for which the best strategy is to think about
the potentially high-value options and others for which the best strategy
is to think about the potentially low-value options.

The modeling results revealed an interaction between (a) the number
of options the agent can choose between at decision time and (b) the
proportion of options that are potential “snakes”. When the number of
options the agent can choose between at decision time is high, it is al-
ways best to consider the potentially high-value options. By contrast,
when the number of options the agent can choose between at decision
time is low, the best strategy depends on the proportion of options that
are potential snakes (i.e., if some of these options are extremely bad, as
in the snake in the stack). When that proportion is small, the best
strategy is to consider the potentially high-value options, whereas when
that proportion is large, the best strategy is to consider the potentially
low-value options.

Empirically, we used two approaches—a self-report method and an
implicit response time method that helped us tap into what people were
thinking about before they had to make a decision. In the thinking phase,
participants were given different options and had the opportunity to
think about whichever options they wanted to. Participants could be
explicitly asked what they thought about, or in a decision phase, par-
ticipants were confronted with just two of these options and asked to
choose between them. Response times in the decision phase thereby
provided evidence about which options participants were considering in
the thinking phase. Specifically, the shorter a participant's response time
in response to a pair of options in the decision phase, the more reason we
have to conclude that the participant already considered those options in
the thinking phase.

Using these methods, Experiments 1-2 looked at decision problems
for which the formal model indicated that the best strategy would be to
think about the high-value options. In those experiments, the results
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indicated that participants did tend to think about the high-value op-
tions, even in a novel context. These results clarify whether the good-
action bias operates over model-based vs. model-free values, in that
insofar as people can quickly learn and use arbitrary value functions,
this suggests that the underlying mechanism may be more model-based
than model-free. Experiments 3-4 then turned to decision problems for
which the model indicated that the best strategy would be to think about
the low-value options. In those experiments, the results indicated that
people did tend to think about the low-value options. These results
suggest that people do not just default to the high-value options, but
rather utilize a more flexible mechanism of thought-planning. Finally,
Experiment 5 showed that, in a within-subjects design, people were able
to flexibly adapt thinking plans as the problem structure changed. Taken
together, the studies therefore suggest that people can respond flexibly,
thinking about either high-value options or low-value options depend-
ing on which strategy is best for the specific decision problem they face.

8.1. Selecting thoughts vs. selecting actions

In certain respects, the problem of choosing which options to
consider can be seen as closely analogous to the problem of choosing
which actions to perform. Indeed, the formal tools we have used to
model the former problem are borrowed directly from research on the
latter. Yet, although the problems are similar in their formal structure,
many of the cognitive processes people use when choosing among
possible actions to perform simply would not make sense when they are
choosing among possible options to consider.

In particular, when people are choosing among different possible
actions, they often proceed by carefully considering the pros and cons of
certain possibilities. However, this same approach would almost never
make sense when choosing between different possible options to
consider. After all, in the time a person spent considering the pros and
cons of considering an option, they could always instead have been
actually considering the pros and cons of the option itself. For example,
in the task we used in our experiment, participants would be unlikely to
spend much time carefully considering the pros and cons of mentally
rotating a specific shape, because they could always instead have used
that time to actually mentally rotate the shape itself.

Given this, existing research has suggested that people might choose
among possible options to consider using a relatively simple heuristic.
One of the most promising such suggestions is that people employ what
we have called the “good-action bias,” i.e., that they show a very general
tendency to think more about actions they regard as having high value
than about actions they regard as having low value (Bear et al., 2020;
Icard et al., 2017; Mattar & Daw, 2018; Morris et al., 2021). Of course,
this simple heuristic will not always enable people to allocate their
thinking in a way that maximizes expected utility, but given the
computational constraints people face, it might sometimes turn out that
this algorithm is the best of all the algorithms it would be feasible for
them to use.

Work in adjacent fields may also provide possible dimensions that
could be imported when considering what we think about—such as how
consumers know which products to consider first (Weitzman, 1978), or
which brands to deliberate between more carefully (Hauser & Werner-
felt, 1990). Here, consumers similarly use surface-level features to select
products (e.g., a box of cereal) that they then think about further (e.g.,
look at the labels) to realize their true values. But of course, there remain
crucial differences between selecting products versus selecting thoughts,
and it could be interesting to consider whether there may be more
general principles that operate across different types of cognitive “se-
lection” tasks.

In the present studies, we find evidence that the options people
consider are not simply determined by the good-action bias and that the
criteria people use are more complex. Nonetheless, the broader point
clearly stands. Whatever cognitive process people are using to select
options to consider, it is almost certainly not a process that involves
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carefully considering the pros and cons of considering each option.
8.2. Exploring the underlying process

Future work should continue to explore people's ability to show this
sort of flexibility in determining which options to think about. Such
work will require a mixture of computational and empirical research. At
an empirical level, our experiments used an explicit self-report method
after the thinking phase, and an indirect measure of response times
during decision-making to tap into what people thought about offline,
before actually having to make any decision. Future work can employ
more direct measures (such as eye-tracking; Callaway, van Opheusden,
et al.,, 2021, Callaway, Rangel, & Griffiths, 2021) during the actual
thinking phase to obtain more detailed traces of people's thinking plans.

At a computational level, we face further questions about the con-
ditions under which it is best to think about potentially good options vs.
potentially bad options. In the present paper, we looked at two specific
dimensions along which decision problems could vary, but future
research could continue this investigation by looking at other di-
mensions. Such research would presumably uncover other dimensions
that affect what thinking plan people should deploy, which could then
be tested experimentally. In particular, our work did not explore two
important dimensions. First, we did not manipulate how varying degrees
of time pressure might affect thinking plans and flexibility. It is possible
that, under extreme time pressure, people might always default to a
simpler good-action bias. Conversely, under no time pressure, people
might have less of a need to develop an efficient thinking strategy, as
they might have the luxury to consider all options. Second, we did not
consider problems of a sequential nature. That is, in many situations, we
do not have immediate access to a set of things to think about. Instead,
we must generate them sequentially and decide when to stop generating
new possibilities. Our work leaves open the question of what thinking
strategies are best in these situations, and whether people should show
flexibility accordingly.

Work in this area might eventually lead to the development of more
general theories that specify the conditions under which the best strat-
egy is to think about potentially high-value vs. potentially low-value
options. Such theories would not be limited just to one setting but
would provide more general insights about when each strategy is best.
For example, it might turn out that all possible decision problems that
have certain features will be problems for which the best strategy is to
think about potentially low-value options—which has been alluded to
by previous work as well (Hamrick & Griffiths, 2014; Lieder et al.,
2018).

To the extent that we can develop such an account, we open up the
possibility of a new explanation of the effects observed in the present
studies. It might be that people are not determining which options to
consider by using a process that is even remotely like solving a POMDP.
Instead, it might be that people are simply checking for certain features
that serve as reliable cues to whether it is better to think of potentially
high-value or potentially low-value options. If we do find that people are
responding to certain characteristics that are reliable indicators of which
options are best to consider, we would face a further question as to how
people come to be able to identify these in the first place. One possible
answer would be that people never need to learn them. Instead, the use
of these features could simply be built into people's decision-making
mechanisms. A second possibility would be that people are actually
learning the use of these features over the course of numerous episodes
of decision-making.

If people are indeed learning to use the relevant features, a question
would arise as to how this learning takes place. One possible answer
would be that people are making use of familiar mechanisms of model-
free learning (e.g., Glascher, Daw, Dayan, & O’Doherty, 2010). On this
view, people would have to be capable of model-free learning at an
extremely abstract level. For example, over the course of numerous
episodes of playing chess, people would have to be learning not only
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about the game of chess in particular but also about very abstract pat-
terns regarding which options tend to be most worth thinking about. The
development of algorithms for such learning is an important problem for
future research—which some researchers have in fact already begun to
address (He, Jain, & Lieder, 2021; He & Lieder, 2022; Jain, Callaway, &
Lieder, 2019).

8.3. Flexibility and inflexibility

Overall, we find evidence that seems to point to striking flexibility in
people's thinking plans—but there is also some important evidence that
seems to point to inflexibility. A key task for future research will be to
further explore the evidence on each of these sides.

First, in Experiment 5, we obtain different results that might initially
seem to point in different directions. In that study, participants went
through an experiment that had two distinct phases. In the first phase,
they faced a decision problem in which the best strategy was to begin by
thinking about the potentially high-value pieces, while in the second
phase, they faced a decision problem in which the best strategy was to
begin by thinking about the potentially low-value pieces. On one hand,
we found that people were successfully able to shift their thinking
strategies between the two phases. Thus, when participants were in a
condition in the second phase that required shifting to thinking about
the bad pieces, there was a significant effect such that participants did
indeed shift to thinking more about the bad pieces. This is clear evidence
of flexibility. But on the other hand, there was also a significant corre-
lation between what participants reported thinking about in the two
phases. That is, participants who thought more about good pieces in the
first phase tended also to think more about good pieces in the second
phase. A question now arises as to how to explain this latter result.

One plausible explanation would be that people are showing both a
certain amount of flexibility and a certain amount of inflexibility. On
this explanation, when the decision problem changes, people do indeed
show a capacity to change their thinking plans, but this flexibility is not
complete. There is at least a certain degree to which the thinking plans
people form in the first phase are “sticky” and do not change when the
decision problem changes.

However, the results could also be interpreted in other ways. To
begin with, as Fig. 10 shows, there are participants in all four quadrants,
with some participants thinking about the good pieces in the first phase
and then shifting over completely to thinking about the bad pieces in the
second phase. It is therefore possible that there are individual differ-
ences, such that some participants are more flexible than others. Alter-
natively, it might be that the correlation we observe here does not show
any degree of stickiness in people's thinking plans. For example, it could
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be that the correlation arises because of an individual difference such
that some participants have a general tendency to think more about the
good options, which then influences their thinking in both phases.
Future research could delve further into these different possibilities.

Second, our results are striking in light of previous research that
suggests that the mechanisms people use to figure out which options to
consider are highly inflexible. Specifically, a number of studies suggest
that people show an inflexible tendency to think of options that are
generally good and statistically frequent (Bear et al., 2020; Morris et al.,
2021; Phillips, Morris, & Cushman, 2019). For many decision problems,
it will be helpful to think about options that are statistically frequent and
generally good, but these studies seem to suggest that people tend to
think about those options even when the decision problem is structured
in such a way that it is obviously not helpful to think about those
options.

For example, in one study, participants were asked to name the food
they would least want for dinner (Morris et al., 2021). Clearly, in
answering this question, it is helpful to think about foods that are
generally bad, but the results indicated that participants actually
showed a tendency to think first of foods that are generally good. Results
like this one seem to suggest that there is an inflexible cognitive
mechanism that generates options for people to consider when planning.

One way in which the present studies depart from previous work,
however, is in the type of decision problems participants were presented
with. In previous studies, people were typically asked about decision
problems for which they already may have model-free values (e.g., how
many hours of TV to watch a day). In such cases, it may be that the pre-
existing value assignment gives rise to the inflexible mode of thought
that previous studies have observed. In contrast, the present studies look
at the options people think about in novel situations, where they have
not already assigned model-free values to the various options. The
absence of model-free values may have allowed for the flexibility
observed in our experiments.

Another important distinction between the present studies and pre-
vious work is that previous work looked at the conditions under which
an option “comes to mind,” while the present studies look at the con-
ditions under which people actually simulate forward what would
happen if they chose an option. Within existing research on which op-
tions come to mind, there is some evidence that the options that come to
mind are determined by an inflexible mechanism. Yet, despite this, it
might be that people make use of a more sophisticated and flexible
mechanism to determine which simulations to run. Thus, in the present
studies, it might turn out that the options with potentially high values
are the first that come to mind in all conditions, but then it might be that
people make use of a different psychological mechanism to determine
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Fig. 10. The average proportion of high-value options from participants' selected pieces across the two sections of the Experiment. Plots show positive correlations
between the proportion of high-value options selected in the first section vs. the proportion of high-value options selected in the second section.
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which simulations to run, and that this mechanism sometimes selects the
options with potentially low values.

To the extent that this latter answer turns out to be correct, a further
question arises as to how far the flexibility extends. The present studies
explore people's thinking in a context in which they are aiming to ach-
ieve a specific goal, but much of our thinking is not goal-directed—as in
mind-wandering, in which people are not trying to address any partic-
ular decision problem (e.g., [rving & Thompson, 2018; Mooneyham &
Schooler, 2013). When people's minds are wandering, do they also show
the sort of flexibility observed in the present studies? For example, does
the degree to which they think about potentially high-value vs. poten-
tially low-value options depend in part on the number of options they
expect to be choosing between at decision time? Regardless of what the
answer to this question turns out to be, such research promises to give us
a real insight into the scope or boundary conditions of the phenomena
we have been exploring here.

8.4. Conclusion

When people face a choice from a set of options, they often face a
difficult problem. They find themselves faced with so many different
options that it would not be possible to consider them all, and they
therefore need to have some way of picking out certain specific options
that are especially worthy of consideration.

In a series of studies, we looked at the options people tend to consider
and found that people appear to be selecting options using remarkably
sophisticated criteria. People don't simply show a general tendency to
consider the potentially high-value options. Instead, they consider the
high-value options for certain decision problems and the low-value op-
tions for others. A key task now will be to explain how people are able to
show this flexibility and how to reconcile the flexibility they show on the
sort of problems in this current study with inflexibility they show on
other, seemingly related problems.
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