
Integrating Multimodal Affective Signals for Stress Detection
from Audio-Visual Data

Debasmita Ghose∗
Yale University

debasmita.ghose@yale.edu

Oz Gitelson∗
Yale University

oz.gitelson@yale.edu

Brian Scassellati
Yale University

brian.scassellati@yale.edu

Facial Stress 

Vocal Stress Sentiment Stress 

a) Stress 
Transcript: <crying> I am <crying>so so sorry Transcript: <crying> I am <crying>so so sorry 

Facial Stress Fidgeting 

Transcript: Absolutely! Absolutely! <laughing> I got recruited from LinkedIn twice 

b) No Stress 

Figure 1: Key frames from our sample video clips from our MultiAffectStress (MAS) dataset with a) video labeled as "Stress"
containing instances of Facial Stress, Fidgeting, Vocal Stress and Sentiment Stress and, b) video labeled as "No Stress"

ABSTRACT
Stress detection in real-world settings presents significant chal-
lenges due to the complexity of human emotional expression in-
fluenced by biological, psychological, and social factors. While
traditional methods like EEG, ECG, and EDA sensors provide di-
rect measures of physiological responses, they are unsuitable for
everyday environments due to their intrusive nature. Therefore,
using non-contact, commonly available sensors like cameras and
microphones to detect stress would be helpful. In this work, we use
stress indicators from four key affective modalities extracted from
audio-visual data: facial expressions, vocal prosody, textual senti-
ment, and physical fidgeting. To achieve this, we first labeled 353
video clips featuring individuals in monologue scenarios discussing
personal experiences, indicating whether or not the individual is
stressed based on our four modalities. Then, to effectively integrate
signals from the four modalities, we extract stress signals from
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our audio-visual data using unimodal classifiers. Finally, to explore
how the different modalities would interact to predict if a person
is stressed, we compare the performance of three multimodal fu-
sion methods: intermediate fusion, voting-based late fusion, and
learning-based late fusion. Results indicate that combining mul-
tiple modes of information can effectively leverage the strengths
of different modalities and achieve an F1 score of 0.85 for binary
stress detection. Moreover, an ablation study shows that the more
modalities are integrated, the higher the F1 score for detecting
stress across all fusion techniques, demonstrating that our selected
modalities possess complementary stress indicators.
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1 INTRODUCTION
Humans express stress in various ways, influenced by biological,
psychological, and social factors. Stress significantly impacts hu-
man decision-making and affects how people experience the world
around them [59]. In this regard, it is crucial to develop systems to
detect stress. However, this is a challenging problem to solve, as
even humans can struggle to accurately determine whether some-
one is stressed [56].

Researchers have used different strategies to identify stress. Typ-
ically, physiological data extracted from EEG, EDA, and Near In-
frared Spectroscopy sensors are used to detect stress and have
shown promising results in predicting emotional state or mental
health conditions [46]. However, these systems rely on complex
sensors that require physical contact with the person at all times
to monitor their stress levels, making them impractical to deploy
in uncontrolled environments.

An alternative stress detection method would be using non-
contact sensors, such as cameras and microphones. Audio-visual
data from these sensors could potentially be used to extract stress-
related indicators. Some more apparent coarse-level indicators
could be extracted from analyzing people’s facial expressions, physi-
cal gestures, vocal prosody, and speech sentiment [18, 35, 54]. Some
other subtle fine-grained stress-related indicators could be obtained
from reasoning about people’s shifts in eye gaze [32], speech rate
variations [35], speech pauses [29], vocal tremors [79], and breath-
ing patterns [52]. However, much of the research on stress detection
from audio-visual sensors has only considered systems that use a
single coarse-level indicator like facial expressions [6, 23, 90] voice
[13], sentiment [28, 57, 65], and gestures [25, 47] to detect stress.
More recently, efforts have been made to explore the interplay of
vocal prosody with gesture [43] and facial expressions [2] for stress
detection. However, these methods often overlook the complemen-
tary stress-related cues that can be obtained from jointly reasoning
over more stress indicators. To address this gap, this paper proposes
a multimodal fusion approach to stress detection that combines four
coarse-level modalities: facial expressions, vocal prosody, physical
gestures, and a person’s speech sentiment. We chose to exclude
the more fine-grained indicators in this work as determining if
a person is stressed by analyzing those subtle features would re-
quire careful individual-level calibration between the times when
they are stressed and when they are not, as these indicators might
considerably vary between individuals.

Detecting stress accurately is inherently challenging due to mul-
tiple factors that influence an individual’s expression of stress, com-
pounded by the fact that stress is inherently multimodal. Simpler
approaches that focus on a single modality often do not capture the
full complexity of a person’s stress responses. Moreover, the devel-
opment of multimodal stress recognition is hampered by the lack of
datasets specifically labeled for stress detection. Most stress recogni-
tion research has focused on emotion recognition rather than stress
detection. This is because the datasets used to train stress detection
models, such as SEWA [40], Aff-Wild2 [39], OMG-Emotion [8], and
MUSE [30], are emotion recognition datasets. Hence, stress detec-
tion models have been trained using emotion recognition labels as
a proxy for stress levels, which makes stress detection less accurate
[89]. Moreover, these datasets do not contain labels for the four

modalities our work focuses on. Therefore, we sample short video
clips from YouTube and label them as stress or no stress. For clips
with indicators of stress we label sentiment stress, vocal prosodic
intonation stress, facial stress, and fidgeting. We call this dataset
the MultiAffectStress (MAS) dataset.

To develop a multimodal stress detection model trained on our
MultiAffectStress dataset, we used four individual classifiers to
extract signals from each modality that we had labeled. We then
combined the outputs of these classifiers using three different mul-
timodal fusion techniques: intermediate fusion, voting-based late
fusion, and learning-based late fusion. Our models were trained,
validated, and evaluated on the MAS dataset. The best results were
achieved by using all four modalities, and we obtained a maximum
F1 score of 0.85. Finally, we conducted an ablation study to deter-
mine the contribution of each modality to our models’ performance.
Results showed that as each modality was added, the F1 scores of
stress detection models increased for all three fusion techniques.
This demonstrates that the modalities are complementary when
performing stress detection from audio-visual data.

2 RELATEDWORK
2.1 Stress Detection
Traditional stress detection methods have primarily relied on con-
tact sensors, such as electroencephalograms (EEG) [34, 46, 81],
functional near-infrared spectroscopy (fNIRS) [4, 33, 77], electro-
cardiograms (ECG) [36, 38, 66], and electrodermal activity (EDA)
[14, 34, 74] sensors. However, these methods pose practical chal-
lenges for stress monitoring in everyday, non-clinical environments
due to their intrusive nature and the requirement for physical con-
tact with the individual [12, 58].

An emerging body of research has explored the potential of
non-contact sensors, including thermal cameras [11, 41, 61, 88],
ultrawideband radars [45, 76], and mobile phone sensors like ac-
celerometers and gyroscopes [49, 75, 84] to detect physiological
changes associated with stress without the need for direct contact
with the human body. However, the deployment of such sensors in
everyday situations remains limited by their accessibility, cost, and
the complexity of their operation in uncontrolled environments.
Therefore, using non-invasive audio and visual data to assess stress
indicators is becoming increasingly popular [27].

Prior studies in the area of stress detection from audio-visual data
have often focused on singular modalities, such as sentiment analy-
sis [28, 57, 65], facial expression recognition [6, 23, 90], prosodic in-
tonation in people’s voice [13] or gesture analysis [16, 47, 50, 73, 86].
More recently, efforts have been made to explore the interplay of
vocal prosody with gesture [43] and facial expressions [2] for stress
detection. However, such studies are frequently focused in the con-
text of acted or simulated stress [7, 13, 15, 20, 42, 48, 83], which
may not accurately reflect genuine stress responses to real-world
situations [31].

Inspired by the success of multimodal fusion techniques for
extracting insights from multiple complementary data sources
[24, 60, 87], we propose to leverage the multimodal nature of stress
indicators to perform stress detection. We use monologue-style real-
world human conversational videos and integrate signals extracted
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from people’s facial expressions, vocal intonation, sentiment analy-
sis, and physical gestures like fidgeting to demonstrate the use of
different multimodal fusion strategies [22] like intermediate fusion
and late fusion. We show that our multimodal fusion model with all
four stress signals outperforms models trained with fewer modali-
ties, demonstrating that these modalities complement each other
in building a robust stress detector that can be used for continuous,
non-invasive stress monitoring outside clinical settings.

2.2 Audio-Visual Stress Detection Datasets
Recent years have seen the publication of several audio-visual
emotion recognition datasets. However, these existing emotion
recognition datasets often lack direct stress-related labels. Many
well-established datasets such as SEWA [40], Aff-Wild2 [39], OMG-
Emotion [8], and MUSE [30] contain either arousal/valence mea-
sures or categorical emotions like happiness, sadness, anger, disgust,
fear and surprise. While these labels may be useful for emotional
recognition, they only act as a derived proxy for stress [89], which
may limit the accuracy of stress detection systems trained on them.

Many datasets used for training stress detection systems are not
multimodal or connect only two modalities. Some datasets provide
a sequence of images from videos without providing any audio
data, leaving out important stress-related indicators that can be
potentially captured through audio, and instead rely on physio-
logical data or performance on a game [17, 44, 92]. Other datasets
may include audio but do not provide enough video information
[9, 19, 37]. A dataset by Ringeval et al. [64] includes video with
audio, but only from the shoulders up, which prevents analysis of
important signals related to pose and fidgeting.

Another common problem with a lot of related datasets is poor
Inter-Rater Reliability (IRR) scores [78, 80, 83], as it is sometimes dif-
ficult even for humans to assess the ground-truth emotions shown
by a person in a video [56]. Moreover, some stress-detection datasets
have an imbalanced number of data points between stressed and
non-stressed categories [10, 70]. These issues make it challenging
to train reliable models on such datasets.

Our work proposes the MultiAffectStress (MAS) dataset that
contains monologue-style real-world human conversational videos
curated from two YouTube channels where people discuss stressful
life experiences. Our dataset contains audio-visual data, and for
each video clips, our labels contain direct labels for stress with a
high Inter-Rater Reliability score (Cohen’s Kappa = 0.85). For each
video, we label no stress or one or more stress indicators - facial
stress, vocal stress, sentiment stress, or fidgeting. Closest to our
work, Lefter et al. [43] have published a dataset that contains videos
with audio and has stress labeled on a five-point scale based on
just gestures and voice. However, the videos in their dataset are
composed of clips of actors enacting stressful scenarios, which may
not accurately convey real-world emotions [31].

3 MULTI-AFFECT-STRESS (MAS) DATASET
In this work, we curated a collection of 353 video clips. These
clips were sourced from two YouTube channels - "Keep it 100"
playlists created by the channel The Cut 1 and videos from Soft

1https://www.youtube.com/@cut

White Underbelly (SWU) 2. We selected these channels because
they feature monologues of people recalling their stressful life
experiences against a neutral background in a well-lit room while
sitting on an interview stool, as seen in Fig. 1. We chose to use
processed videos with proper lighting and simple backgrounds to
minimize environmental factors that could interfere with stress
detection models. Also, the use of stable cameras for our dataset
helps maintain a consistent framing and focus on the subjects. Each
video on the SWU channel features an interview with one person
for the entire duration, while each video on the Cut channel features
interviews with 100 people, one person at a time. We extracted clips
from 12 videos (containing 112 clips) from The Cut and 121 videos
(containing 241 clips) from SWU. In each video, only the upper body
of a person is visible. Then, we used a two-step data annotation
process:

(1) Clip Selection: Two researcherS with a background in Computer
Science selected videos from two YouTube channels in reverse
chronological order of publication. Then, for each video selected
from the two channels, short video clips were selected using the La-
bel Studio [82] video annotation tool. For the SWU channel, a video
was deemed useful if it showed at least one instance with no stress
signs and another that displayed one or more of the following stress
indicators: facial stress, sentiment stress, vocal stress, or fidgeting.
Facial stress was recognized when a person appeared angry, scared
or was seen crying. If a person talked about a sad or frustrating inci-
dent or seemed angry, the clip was labeled as containing sentiment
stress. Vocal stress was identified if a person’s voice was shaking or
heavy during a conversation. If a person displayed self-comforting
gestures like touching their face repeatedly, the clip was consid-
ered to contain fidgeting. Since The Cut channel’s videos consisted
of interviews with 100 people in a single video, the researchers
only included each person’s video clip once in the entire dataset
if it contained any of the above indicators of stress. We selected
videos that showed clear differences in individuals’ presentations
or discussions under stressful and non-stressful conditions. Videos
without discernible variations in expressions, tone, or behavior dur-
ing stressful versus non-stressful situations were eliminated. The
duration of the video clips ranged between 2.9 and 25.5 seconds,
with an average of 9.8 ± 3.5 seconds. Since one of our modalities
for stress detection is the contents of a person’s speech, it was
important to include their complete statements without truncating
their sentences to limit our dataset to videos of fixed lengths.
(2) Stress Indicator Annotation: After the clips were selected, the
same two researchers used the Label Studio [82] tool to annotate
each video clip with one or more indicators of stress (sentiment
stress, vocal stress, fidgeting or facial stress) or no stress. Each
video clip was annotated with either stress or no stress labels as
shown in Fig. 1. If a video was annotated with the label stress, it
was additionally annotated with one of the four stress indicators.
The Inter-Rater Reliability (IRR) score calculated using Cohen’s
Kappa method for labeling speech sentiment stress was 0.85, facial
stress was 0.7, fidgeting was 0.56, and vocal prosodic stress was
0.42 between the two researchers. Overall, the IRR for stressed or
non-stressed states was 0.85 indicating an excellent agreement.

2https://www.youtube.com/@SoftWhiteUnderbelly
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Figure 2: Dataset video clip statistics. a) Distribution of "Stress" and "No Stress" classes in the train, validation, and test splits of
our MAS dataset. b) Distribution of each unimodal stress indicator in our MAS dataset’s train, validation, and test split. Note
that a given video can contain more than one stress indicator. c) Mean and standard deviation of the length of videos in the
train, validation, and test split of our MAS dataset.

For benchmarking stress detection models, the dataset was split
into three parts: 60% of the data for training, 20% for validation,
and 20% for testing. The 353 clips in the dataset were distributed
randomly across these splits based on their labels to maintain an
even distribution of label variations and mean length of the video
clips across each split. This distribution is shown in Figure 2. To
prevent data leakage across the three splits, we ensured that only
one stressed and one non-stressed clip from each video in the SWU
channel and that no individual from a video in The Cut channel
appeared in more than one clip across the splits. This dataset has
been made publicly available 3 4 .

4 MULTIMODAL STRESS DETECTION SYSTEM
In this section, we show howwe predict stress indicators by leverag-
ing insights from multiple modalities, as shown in Figure 3. Specifi-
cally, we analyze a short video clip of a person speaking about a
topic on camera and determine if the person is stressed by exam-
ining the following four factors: 1) their facial expressions, 2) the
prosodic intonation in their voice, 3) the sentiment conveyed in
the content of their speech, and 4) any upper body fidgeting. To
achieve this, we extract stress signals from each of these modali-
ties using unimodal classifiers and then employ three methods for
fusing the predictions of the unimodal classifiers to make a final
binary prediction about whether the person is stressed.

4.1 Unimodal Prediction of Stress Indicators
This section discusses how the following individual modalities are
used to extract stress indicators from a short video clip with no
preprocessing as summarized by Table 1.

4.1.1 Facial Emotion Recognition. This module uses a person’s fa-
cial expressions to determine stress indicators in a video. To achieve
this, we first predict the bounding box containing a person’s face
for each frame of the video using the MTCNN network [91], which

3https://sites.google.com/view/stress-detection-icmi-24/home
4To be compliant with YouTube’s copyright policy, we will provide links to the videos
sampled along with time stamps of clips, labels for each clip and a script to download
the video clips from YouTube automatically

is pre-trained on the FaceNet [72] dataset 5. The detected bounding
boxes are then cropped, and for each crop, we use a Convolutional
Neural Network using publicly available weights pre-trained on the
Facial Emotion Recognition [26] dataset to predict the probability
of expressions - anger, disgust, fear, happiness, sadness, surprise,
and neutrality, given a cropped image containing a person’s face,
which we average across all frames of the clip.

4.1.2 Voice Emotion Recognition. This module aims to identify
signs of prosodic stress by analyzing the speaker’s voice. To achieve
this, we first extract the audio component of each video and pass it
through a publicly availableWav2Vec 2.0 model [5], which has been
pre-trained on the IEMOCAP dataset [13] using the SpeechBrain
toolkit [63] 6. The model analyzes the prosodic intonation in the
person’s voice for the entire clip and predicts the probability of
them being happy, sad, angry, or neutral.

4.1.3 Sentiment Analysis. In this module, we aim to analyze the
sentiment conveyed by the content of the person’s speech to infer
signs of stress. To do that, we first extract the transcript of the
person’s speech from the audio component of the video using the
Whisper API [62]. We then run inference on a publicly available
DistilBERT [68] model pre-trained on the Twitter Sentiment Analy-
sis dataset [69] 7. The model predicts the probability of the person’s
sentiment being sadness, joy, love, anger, fear, or surprise from the
transcript for the entire clip.

4.1.4 Fidget Detection. Fidgeting is defined as a dynamic self-
comforting behavior, as opposed to a static self-comforting behavior
[51, 55]. A static self-comforting behavior is a self-comforting be-
havior where the body parts are not moving, such as a person
grabbing their arm with their hand. A dynamic self-comforting
behavior is a self-comforting behavior where one of the body parts
is moving relative to the other, such as a person rubbing their face
with their hand.

5https://github.com/JustinShenk/fer
6https://huggingface.co/speechbrain/emotion-recognition-wav2vec2- IEMOCAP/tree/
main
7https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion

https://www.youtube.com/howyoutubeworks/policies/copyright/
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Modality Unimodal Stress Prediction Model Predicted Classes
Face pre-trained MTCNN [91] for face detection + CNN pre-trained on FER dataset

for emotion recognition [26]
anger, disgust, fear, sadness, neutral,
happiness, surprise

Voice Wav2Vec 2.0 model [5] pre-trained on the IEMOCAP dataset [13] sad, angry, neutral, happy
Sentiment DistilBERT [68] pre-trained on the Twitter Sentiment Analysis dataset [69] sadness, anger, fear, joy, love, surprise
Fidgeting MoveNet [1] for human pose detection and custom fidget detection algorithm % of video frames with fidgeting

Table 1: Description of each unimodal stress prediction model.

Video Clip

Face Emotion 
Recognition

Images

Audio

Fidget
Detection

Sentiment
Analysis

Voice Emotion
Recognition

Multimodal
Fusion

Stressed / 
Not Stressed

Figure 3: System Diagram. Each video clip is split into a series of images, fed into the facial and fidget stress detectors, and an
audio file, fed into the sentiment and voice stress detectors. Then, the output of each of these unimodal nodes passed through
our multimodal fusion system to obtain a final prediction.

To identify fidgeting signals that are related to stress from a
given video, we first use a pre-trained MoveNet [1] pose detection
model that can detect 17 keypoints on a person’s body to locate
the person’s body in the video. Next, we draw polygons around the
body parts of interest, like people’s hands and faces. Similar to Lin
et al. [47], we focus on the movements of the hands relative to other
body parts, such as gestures involving touching the face or other
hand that are typically associated with fidgeting. Then, we calcu-
late if any polygons overlap to determine if any self-comforting
gestures are present. For these overlapping polygons, we employ
the Gunnar-Farneback method [21] to calculate the optical flow be-
tween the keypoints on successive frames of the video and identify
significant movements that are characteristic of fidgeting. We use
this information to construct a matrix that tracks the overlap of the
person’s limbs with every other body part. We then check whether
the average optical flow value in each overlap region is above one
of several thresholds determined via grid search on videos from
the Rhythmic Gestures Corpus [51] (1.5 for hand-on-hand gestures,
0.2 for hand-on-face gestures, and 0.8 for all other gestures) to
distinguish between static and dynamic self-comforting behaviors.
Then, if over 30% of recent frames contain dynamic self-comforting
behaviors, we say that fidgeting is occurring in the current frame.

4.2 Multimodal Fusion
The main objective of multimodal fusion is to take advantage of the
unique strengths of every modality to produce more accurate pre-
dictions than what can be achieved with a single modality [22]. In

this work, we explore three common multimodal fusion techniques,
intermediate fusion, voting-based late fusion, and learning-based
late fusion, using the predictions of the unimodal classifiers of
stress described in Sec. 4.1 in different ways to determine the most
effective fusion strategy for predicting stress indicators in videos.

4.2.1 Intermediate Fusion. Intermediate or feature-level fusion
combines features or outputs from different modalities before the
final classification stage. In our system, we extract embeddings
from facial emotion recognition, voice emotion recognition, and
sentiment analysis by extracting the output of the last hidden layer
of their individual networks. For the fidget detection module, we
consider the matrix that tracks the overlap of the person’s limbs
with every other body part as the feature vector. We then combine
these feature vectors into a single vector and train a four-layer
Multi-Layer Perceptron (MLP) with hidden sizes [512, 256, 64, 16]
(learning rate = 0.001, batch size = 64) for 100 epochs to perform a
binary classification task to predict whether a person is stressed.
This approach allows the model to learn interactions between dif-
ferent modalities at a feature level, potentially revealing complex
patterns contributing to a more nuanced understanding of stress.

4.2.2 Voting-Based Late Fusion. Voting-based late fusion entails
aggregating the predictions from each modality using a majority
voting scheme. To calculate the vote of the face, voice, and sentiment
unimodal node, the voting-based late fusion system will first sum
up the values of stress and no-stress predicted classes that the face,
voice, and sentiment unimodal predictors, as seen in Table 1. In
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other words, we compute the sum of probabilities 𝑋𝑠 =
∑
𝑥𝑠 for

stress indicators, and 𝑋𝑛𝑠 =
∑
𝑥𝑛𝑠 for non-stress indicators where

𝑥𝑠 and 𝑥𝑛𝑠 represent the probability score of a stress and non-stress
indicator from a given unimodal classifier respectively. For each of
these 3 unimodal predictors, if the probability of stress predicted
(𝑋𝑠 ) is above some empirically determined threshold, a vote is cast in
favor of stress. Similarly, if the sum of the probabilities of unimodal
non-stress indicators (𝑋𝑛𝑠 ) is above a different threshold, a vote
is cast against stress. Mathematically, for a given unimodal node,
we compare 𝑋𝑠 and 𝑋𝑛𝑠 to a stress threshold 𝑡𝑠 , and a non-stress
threshold 𝑡𝑛𝑠 respectively, and update the vote count 𝑠 as follows:

𝑠 =

{
𝑠 + 1 if 𝑋𝑠 > 𝑡𝑠

𝑠 − 1 if 𝑋𝑛𝑠 > 𝑡𝑛𝑠

For each modality in face, sentiment and voice, 𝑡𝑠 and 𝑡𝑛𝑠 are
calculated as:

𝑡𝑠 =
number of classes indicating stress

total number of classes

𝑡𝑛𝑠 =
number of classes indicating no stress

total number of classes
This is done to consider that there may be different numbers

of stressed and non-stressed classes for each modality, so the sum
value that constitutes an unimodal node predicting stress over
non-stress may vary. This approach also prevents a modality from
influencing the final decision of stress or non-stress if a given
classifier predicts an equal probability distribution for all classes in
a video clip.

The fidget node works slightly differently: if a majority of frames
are judged as containing fidgeting, a vote is cast in favor of stress;
the fidget node cannot actively vote against stress as the lack of
frames containing fidgeting does not necessarily mean that the
subject is not stressed. This is because, for many videos in our
dataset, a subject’s hands may become obscured for several reasons,
such as being out of frame or behind another body part. In these
instances, our fidget predictor will default to predicting no fidgeting
for that frame.

Themajority vote across all modalities determines the final stress
prediction. If neither sum of votes is above their threshold, no vote
is cast by that unimodal node in either direction. For each unimodal
predictor, their stress and non-stress indicators, and the threshold
values are:
(1) Face: The expressions anger, disgust, fear, and sadness are con-
sidered indicators of stress [18], while the other expressions (happi-
ness, surprise) are considered indicators of no stress. The neutral
emotional score is not considered to indicate stress or no stress.
The threshold for a stress vote (𝑡𝑠 ) is 4/7, and the threshold for a
no-stress vote (𝑡𝑛𝑠 ) is 2/7.
(2) Sentiment:We classify sadness, anger, and fear as indicators of
stress, while joy, love, and surprise are considered indicative of no
stress. The threshold for a stress vote (𝑡𝑠 ) is 3/6, and the threshold
for a no-stress (𝑡𝑛𝑠 ) vote is 3/6.
(3) Voice: The emotions of sadness and anger are considered indi-
cators of stress, while happy is considered an indicator of no stress.
The neutral emotional score is not considered to indicate stress

or no stress. The threshold for a stress vote (𝑡𝑠 ) is 2/4, and the
threshold for a no-stress vote (𝑡𝑛𝑠 ) is 1/4.
(4) Fidgeting: If more than 50% of frames contain fidgeting behav-
iors, it suggests that the person is experiencing stress.

4.2.3 Learning-Based Late Fusion. Learning-based late fusion or
stacking [85] employs a learning model to integrate the final multi-
class probability outputs from each unimodal classifier as summa-
rized in the last column of Table 1. Unlike voting-based fusion,
where each vote is weighted equally, learning-based fusion allows
for learning how each modality’s predictions should be weighted
to best predict if a person shown in the video clip is stressed or
not. For instance, in contexts where facial expressions and prosodic
features are particularly telling if a person is stressed, a learning-
based model can learn to prioritize these modalities over others.
Our system extracts the raw probability scores from each unimodal
classifier and concatenates the outputs to form a feature vector.
We experiment with training a two layer Multi-Layer Perceptron
(MLP) with hidden size of 128 and Random Forest (maximum depth
= None, minimum samples a leaf node = 2, minimum samples to
split an internal node = 10, number of estimators = 200) separately
with this feature vector to learn how the predictions from each
unimodal classifier can be combined to predict stress indicators.

5 EXPERIMENTS AND RESULTS
In this work, we first use unimodal classifiers to extract indicators
of stress from people’s sentiment, facial expressions, vocal prosodic
intonation and fidgeting gestures from our MultiAffectStress (MAS)
dataset. Then, we compare the performance of intermediate fusion,
voting-based late-fusion, and two learning-based late multimodal
fusion models on our MAS dataset. Finally, we conduct an ablation
study across modalities for each multimodal fusion technique to
investigate the contribution of each modality towards the final
performance of each of multimodal fusion technique.

As shown in Fig. 5, the F1 scores across the fusion techniques
exhibit a clear trend: combinations that integrate more modalities
tend to achieve higher F1 scores, highlighting that our selected
modalities contain complementary information about predicting if
a person is stressed from audio-visual data.

5.1 Comparison between Different Fusion
Techniques

We compare the following multimodal fusion techniques to effec-
tively predict whether a person is stressed from short video clips
of people from our MultiAffectStress dataset.

5.1.1 Intermediate Fusion. In Section 4.2.1, we explain that we
collect feature vectors from four different modules: facial emotion
recognition, voice emotion recognition, sentiment analysis, and
fidget detection. We use these feature vectors to train a Multi-Layer
Perceptron (MLP) model on the training set of our MultiAffectStress
dataset. To find the best set of hyperparameters (learning rate =
0.001, batch size = 64, number of epochs=100), we perform a grid
search on the validation set of our dataset. Our findings indicate
that combining all four modalities leads to an F1 score of 0.73 on the
test set. Intermediate fusion produces the lowest F1 score among all
the other fusion techniques because when features from multiple
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Figure 4: Comparison between different multimodal fusion
techniques with four modalities.

modalities are combined, the resulting feature vector is significantly
larger than any single-modality feature set. Therefore, models with
higher capacity and a larger dataset would be needed to learn
complex interactions between the different modalities effectively.

5.1.2 Voting-Based Late Fusion. Section 4.2.2 explains our voting-
based late fusion method. We utilize the predictions from each
unimodal classifier to identify indicators of stress. Then, we em-
pirically determine the optimal number of modalities and their
weightage to predict stress based on the training and validation
sets. Our model achieved an F1 score of 0.81 on the test set, out-
performing intermediate fusion techniques when using all four
modalities of data.

5.1.3 Learning-Based Late Fusion. To combine the final predictions
of each unimodal model, we utilize the method described in Sec-
tion 4.2.3. A feature vector is constructed by concatenating the
probability scores from each modality’s predictions. We conducted
experiments using Multi-Layer Perceptron (MLP) and Random For-
est models on the feature vector from the training partition of our
dataset. We performed a grid search on the validation set to ob-
tain the best set of hyperparameters for both the MLP (number of
epochs = 10, batch size = 64, learning rate = 0.001) and Random
Forest (maximum depth = None, minimum samples a leaf node
= 2, minimum samples to split an internal node = 10, number of
estimators = 200) models. When all four modalities were combined,
the Random Forest model achieved a higher F1 score (0.85) than the
MLP model (0.80). Overall, the Random Forest method for learning-
based late fusion outperformed all other fusion techniques when
using all four modalities.

5.2 Ablation Study of Different Modalities
We performed an ablation study to determine the contribution of
each modality in predicting stress, using all four multimodal fusion
techniques described in Sec. 4.2. First, we evaluate the performance
of each modality individually to determine how good each of them
is at individually predicting stress. Then, we removed one modality
at a time from the input and computed the F1 score of the method in
accurately predicting stress in the person. We repeated this process
for all four fusion techniques.

5.2.1 Unimodal Analysis of Stress Indicators. Fig 5 a) shows models
trained on a single data modality. When compared to Fig. 4 and
Fig. 5 a), we observed that unimodal predictors almost always had
the lowest performance over using more modalities, indicating
that single modalities may struggle to predict stress indicators
accurately.

Additionally, we found that the strongest indicator of a per-
son’s stress levels is the sentiment expressed in the content of their
speech. This can be attributed to the fact that most videos in the
MultiAffectStress dataset contain instances of people talking about
stressful life experiences. On the other hand, the vocal stress de-
tector appears to perform worse than other modalities. This may
be since the Wav2Vec 2.0 model [5] used in the study is trained
on an acted dataset, IEMOCAP [13], which may not accurately
reflect real-world emotions [31]. Finally, the fidget stress detector
performs surprisingly well despite making up the smallest propor-
tion of labels in the dataset (as shown by Fig. 2 b)), indicating that
self-comforting gestures can be an important indicator of stress.

5.2.2 Impact of Adding Modalities on Stress Prediction. Fig. 5 b)
shows that the addition of more modalities leads to an improvement
in performance for stress detection. As sentiment stress has been
shown to be the strongest indicator of stress in Fig. 5 a), Fig. 5
c) investigates the impact of adding and removing the sentiment
modality on the performance of each multimodal fusion model
when three modalities are used.

In Fig. 5 c), the "verbal" bars show the mean and standard de-
viation of F1 scores when sentiment stress is combined with two
of fidget, face, or voice emotion recognition modalities. The "non-
verbal" bars indicate the F1 score of our model when sentiment
stress is excluded. When sentiment analysis is combined with two
of fidget, face, or voice emotion recognition (verbal), all three late
fusion techniques significantly improve performance over the non-
verbal modality combination (face + voice + fidget). However, we
find that intermediate fusion results in higher performance than
all combinations where sentiment is included when the sentiment
modality is excluded (non-verbal). This suggests that intermediate
fusion is particularly effective at leveraging non-verbal cues and
extracting nuanced stress indicators by analyzing complex features
across modalities for our MultiAffectStress dataset.

6 LIMITATIONS AND FUTUREWORK
This work has several limitations. First, as demonstrated in Fig. 1,
we selected video clips where a person was very clearly stressed
or not stressed as outlined by our clip selection process in Sec. 3.
Even though this helped us achieve a high IRR, it also means that
models trained on this dataset may not be able to pick up on more
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Figure 5: a) Performance of unimodal stress prediction models. b) Comparison between the combination of two vs three
modalities for all four multimodal fusion techniques. c) Comparison between fusion of non-verbal stress indicators (facial,
vocal, and fidgeting) and verbal stress indicators (mean and standard deviation for combining sentiment with two other
modalities between facial, voice, and fidgeting) for all four multimodal fusion techniques.

subtle signs of stress, which could impact how widely applicable
they would be. Therefore, an interesting direction to take would be
to curate another dataset with less obvious expressions of stress, to
train models that can learn subtle stress indicators.

In a similar vein, the videos that we have chosen for our dataset
show individuals recalling and discussing past stressful events.
However, this is very different from experiencing stress in real-time,
as the expression of stress while recalling an event can be quite
different from expressions during the actual occurrence of stress.
Therefore, further research could benefit from incorporating data
sources that capture real-time stress responses to better understand
and detect stress in real-world scenarios, where non-verbal cues
may be more prevalent or immediate. These narrations also tend
to focus heavily on the verbal expression of stress, specifically
through sentiment. This can significantly impact the training of
our multimodal fusion models, causing them to be biased towards
recognizing sentiment stress.

In this work, we only benchmark our model with our binary
stress or no stress labels. Future work could additionally use our
unimodal labels to fine-tune the publicly available emotion recogni-
tion classifiers before training the multimodal fusion models. This
would potentially enhance the identification of contributing factors
to stress levels in an individual.

Additionally, developing a model that performs well on a dataset
differs from deploying it in real-world settings, such as on social
robots [3, 53, 67, 71]. The data in the real world may be far noisier,
with multiple speakers or people in a frame, background noise,
partially obscured subjects, poor lighting, hardware differences,
and more varied and subtle expressions of stress. Therefore, fine-
tuning stress detection models with real-world data for continual
stress monitoring in the wild is left for future work.

Finally, it is also worth considering the ethical implications of
our stress detection system. As our system is purely audio-visual,

utilizing publicly displayed signals, there are not the same privacy
concerns associated with biometric stress detectors. Instead, the
focus should be on the ways our system could be deployed. While
it may be harmless when used by a shopping mall robot, the same
cannot necessarily be said when deploying it for use in airport
security checkpoints, or when screening job applicants.

7 CONCLUSION
In this work, we found that combining different modalities such as
facial expressions, vocal prosody, sentiment analysis, and physical
fidgeting using various multimodal fusion techniques can capture
a comprehensive spectrum of stress indicators. Due to the lack of
available datasets with these modalities, we sampled videos from
YouTube and annotated for stress-related indicators across these
four modalities. Our experimental results support our hypothesis
that a multimodal approach is more effective than unimodal meth-
ods. Our models achieved a maximum F1 score of 0.85, demonstrat-
ing the potential of combining different modal inputs to improve
stress detection systems. Ablation studies provided insights into
how each modality contributes to the detection process, and we
found that the combined use of all modalities consistently resulted
in the highest performance metrics across all tested multimodal
fusion techniques.
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