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Large Deviations
Stochastic PDEs

1. Introduction

Consider the partial differential equation

dx®
dt

(t) = AXT() + b(X"(t), X%(0)=z € H, (1.1)

defined on a separable Hilbert space H, endowed with the scalar product (-,-)y and
the corresponding norm || - ||z. Here A : D(A) C H — H is the generator of a strongly
continuous semigroup and b : D(b) C H — H is some non-linear mapping. Next, consider
the following stochastic perturbation of (1.1)

dXZ(t) = [AXZ(t) + b(XZ(t))] dt + Veo(XZ(t))dW,,  XZ(0) ==z € H, (1.2)

where € > 0 is a small parameter, W3, ¢ > 0, is a cylindrical Wiener process and o is
a mapping, defined on H and taking values in some space of bounded linear operators
defined on the reproducing kernel of the noise into H. We assume that the differential
operator A, the coefficients b and o and the noise W; are such that both (1.1) and (1.2)
are well-posed.

If the parameter € is small, the trajectories of the perturbed system (1.2) remain close
to those of the unperturbed system (1.1) on any bounded time interval. In particular, if
there exist a domain G C H and a point zg € G such that any trajectory of (1.1) starting
in G remains in G and converges to g, as time goes to infinity, then with overwhelming
probability the trajectories of (1.2) starting from any x € G enter any neighborhood of
xg, before eventually leaving the domain G because of the effect of the noise. As know
this is a consequence of the large deviations of X (¢) from X (¢) which are described by
the action functional

T
1, N
F(0) = yint § [ eIt s £ = X7 b
0

where we have denoted by X*¥ the solution of the controlled version of (1.1)

dx¥
dt

(t) = AX®(t) + b(XD? (1) + o (XD (1))e(t),  X™¥(0) ==,
and by the quasi-potential

V(zg,z) =inf {I7(f) : f € C([0,T); H), f(0)==x0, f(T)=2, T >0}.
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It is known that the stochastic PDE (1.2) is related to the linear Kolmogorov equation
on the Hilbert space H

Diuc(t,x) = %Tr [o0*(2)D2uc(t,z)] + (Az + b(z), Duc(t,z))y, xz€H, t>0,

uc(0,z) = g(x), x€H.
(1.3)
Actually, under suitable conditions on the operator A, the coefficients b and o and the
initial condition g, equation (1.3) admits a unique classical solution w., which can be
written in terms of the linear transition semigroup Pf associated with (1.2). Namely

ue(t,z) = Pig(z) = Eg(Xc(t,x)), t>0, z€H.

In particular, the description of the small noise asymptotics of the solutions of equation
(1.2) provided by the theory of large deviations allows to give a detailed description of
the long-time behavior of the solutions of infinite dimensional PDE (1.3).

In [10], Freidlin and Koralov have considered more general stochastic perturbations
of the dynamical system (1.1), when H = R% A = 0 and b : RY — R? is a Lipschitz-
continuous mapping. They have introduced the following quasi-linear parabolic problem

d d
Opue(t,x) = % Z a; j(z,uc(t,x)) Oijuc(t,z) + sz(x) diue(t,x), x€RY >0,
i,j=1 i=1
u(0,z) = g(z), xeRY,

(1.4)
where a;;(z,7) = (00*);;(z,7), and by invoking the classical theory of quasi-linear PDEs,
they have shown that, under reasonable assumptions on the coefficients f and o, equation
(1.4) admits a unique classical solution u.. Next, for every ¢t > 0 and = € R¢, they have
introduced the following randomly perturbed system

dXE"(s) = D(XE7(s)) ds + Vea (X (s), ue(t — 5, X7 (s))) dBs, .
Xt(0) = x, '

where By, t > 0, is a d-dimensional Brownian motion. As in the linear case, the PDE
(1.4) and the SDE (1.5) are related by the following relation

ue(t,z) = Eg(Xc (1) = Ty g(x), (1.6)

but now T¥ is a non-linear semigroup. This is in fact the reason why equation (1.5) can
be seen as a non-linear perturbation of the deterministic system.

The study of the large deviation principle and of the quasi-potential for (1.5), has
allowed Freidlin and Koralov to study the long-time behavior of the solutions to equation
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(1.4), restricted to the domain G (that now is a bounded domain in R?) and endowed
with the boundary condition u.(t,z) = g(x), for every x € 9G. In this case

ue(t, ) = Eg(X"(t A 7)),

where 7% is the first exit time of X%® from the domain G. In particular, the asymp-
totic description of 7% in terms of the quasi-potential has made possible to study the
asymptotic behavior of u. on exponential time scales t(e) ~ exp(A/e). Freidlin and Ko-
ralov’s idea is to introduce a family of linear equations obtained from (1.4) by freezing
the second variable in go* and putting it equal to a constant c¢. This allows them to
describe the asymptotics of u.(exp(A/e), x), for different values of A € (0,00), in terms
of some function ¢(\) obtained from Vg (c), the minimum of the quasi-potential in G for
the linear problem corresponding to ¢, and from g(z*(c)), where 2*(c¢) is the point of G
where the quasi-potential attains its minimum, for different values of c.

The present paper represents the beginning of a longer term project where we aim
to develop an analogous theory for infinite dimensional dynamical systems described
by PDEs. As in the finite dimensional case studied in [10], also here, as a first and
fundamental step, we need to be able to study the well-posedness of the following quasi-
linear equations

Dyu(t,x) = %Tr [00* (2, uc(t, 2))D2uc(t, )] + (Az + b(z), Duc(t, 2)) g,
zeH, t>0, (1.7)
uc(0,z) =g(z), =€ H.

However, unlike in finite dimension, where a well-established theory of deterministic
quasi-linear PDEs is available, it seems that the current literature does not provide any
Hilbert space counterpart to such classical theory, and everything has to be done.

In our analysis we will proceed in several steps and here we are considering the case
when o : H x R — L(H) is Lipschitz continuous and there exist a bounded and non-
negative symmetric operator @, a continuous mapping f defined on H x R with values
in the space of trace-class operators and a constant § > 0 such that

oc*o(x,r) =Q+9¢ f(x,r), x€H, reR.
This allows to rewrite equation (1.7) as
Dyu(t,x) = Leue(t, ) + %Tr [(5 fz ue)(t, x)DguE(t,x)] + (b(z), Duc(t,z)) m,
uc(0,2) =g(x), x€H,

where
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Lep(a) = 5T [QD%p()] + (Az, Dyp(a) -

In particular, if we denote by R{ the Ornstein-Uhlenbeck semigroup associated with the
operator L., we can rewrite equation (1.7) in mild form as

ue(t,z) = Rig(x) + /R;,S (%Tr [6F(u€(s, ) D% u(s, )] + (b(+), Duc(s, ))H) (z) ds.
0

(1.8)
We can then introduce the stochastic PDE

dXE7(s) = [AXS"(s) + b(X7(s))] ds+ Ve (X7 (s), ue(t — 5, X0(s))) AW,

Xt (0) = a,

(1.9)
where W; is a cylindrical Wiener process in H, defined on some stochastic basis
(Q, F,{Fi}1>0,P). Due to the regularity of the coefficients and of the function u., we can
show that there exists § > 0 such that, for every § < ¢ and for every t > 0 and x € H,
equation (1.9) admits a unique mild solution in L?(£2; C([0,t]; H)). Moreover, we show
that, as in the finite dimensional case, the quasi-linear equation (1.7) and the stochastic
PDE are related through formula (1.6) and, in particular, a maximum principle holds
for equation (1.7).

It is worth noticing that as a consequence of the Markov property, the following
relation holds

ue(t — 5, X77(s))) = E(g(X*¥(t — 5)))| =E(g(X" (1) Fs),

y=X"(s)
for every s € [0,t] and x € H, so that equation (1.5) reads as
dX{"(s) = [AXS"(s) + b(X07(s))] ds + Ve (X" (s), E(g(X" (1)) Fs)) dW,

X5(0) = a.
(1.10)
Setting Y (s) := E(g(X5*(¢))|Fs)), the equation above can be further rewritten as a
coupled forward backward infinite dimensional stochastic system

AX1(s) = [AXE7(5) + (X ()] ds + VEo(XE(s), Yo () dW,, 0< s <1
—d YY" (s) = —ZV"(s)dWs, 0<s<t

YhI(t) = g(XET (1)

X57(0) = .
(1.11)
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Coupled forward-backward systems of stochastic equations of the general form
dX(s) =b(X(s),Y(s),Z(s))ds+ o(X(s),Y(s))dWs, 0<s<t

—ds;Y (s) = ¢((X(s),Y(s),Z(s))ds — Z(s)dWs, 0<s<t
(1.12)

XE(O) =,

have been extensively studied in the finite dimensional case, see [17] where several results
are collected. Since [1], it has been clear that arbitrary forward-backward stochastic sys-
tems do not always admit a solution. Different techniques have been developed to prove
existence and uniqueness both locally in time and in arbitrarily long time intervals. In
particular the classical theory of PDEs, applied to the corresponding nonlinear Kol-
mogorov equations, offers a wide range of results stating well posedness of system (1.12)
(see, for instance [17] [13] or [14]) that include existence and uniqueness of a global solu-
tion to the finite dimensional analogue of system (1.11) when o is not degenerate. In the
infinite dimensional case, in which large part of the analytic techniques are not available
any more, very few results on existence and uniqueness of a solution to system (1.11)
in arbitrary time interval are at hand (for local existence and uniqueness see [12]). It
seems that the techniques more likely to be extended in infinite dimensions are the ones
introduced in [18] where quantitative conditions on dissipativity of b and bounds on the
Lipschitz norm of ¢ and g are required. Such restrictions go in the same direction as the
condition on § that we have to impose here, see above. We finally notice that, if we show
that system (1.11) is well posed, then we can define a candidate solution to the PDE
(1.7) by setting

ae(t —5,8) = E(Y""(5)|X""(s) = §)

but, unless we have a satisfactory analytic theory for equation (1.11), the proof that @,
is the unique solution of (1.7) (in which formulation?) is still to be done and does not
seem obvious at all. Once such relation would be understood, it could also be possible to
study the large deviations principle, see below, for more general nonlinear perturbations
of (1.1) defined through systems like (1.12) (see [4] for a similar approach in the finite
dimensional case where the connection between @, and equation (1.11) is a straight-
forward consequence of existence and uniqueness of a regular solution to (1.11) and Ito
rule).

As we mentioned at the beginning of this introduction, we are interested in applying
our results to the study of the asymptotic behavior of (1.9) and (1.7), as € | 0. This is
a multi-step project and here we are addressing the problem of the validity of a large
deviation principle for the trajectories of the solutions of equation (1.9). Thus, in the last
section of our paper we prove that the family of laws {£(X!")}.c(o,1) satisfies a large
deviation principle in the space C([0,t]; H), which is governed by the action functional
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t
1. -
I .(X) = 5 inf /||cp(s)||fqu 2 X(s) :X::; (s), s€0,t] ;,
0

where X" is the unique mild solution of problem
X'(s) = AX(s) + b(X(s)) + 0(X (5), g(Z¥ ) (t = 9)))p(s),  X(0) =,

and for every y € H

ZY(s) = sy + /e(s_T)Ab(Zy(r)) dr.
0

2. Notations and preliminaries

Throughout this paper, H is a separable Hilbert space, endowed with the scalar prod-
uct (-, ) and the corresponding norm || - ||z. In what follows we shall introduce some
notations and preliminary results (we refer to [2], [6] and [15] for all details).

2.1. Operator spaces

We denote by L(H) the Banach space of all bounded linear operators A : H — H,
endowed with the sup-norm

||AH£(H) = sup ) | Az|| -

lzlla<

An operator A € L(H) is symmetric if it coincides with its adjoint A*, that is if
(Az,y)y = (x, Ay)g, for all x,y € H. Moreover, it is non-negative if (Ax,x)y > 0,
for all z € H. We shall denote by £ (H) the subspace of all non-negative and symmet-
ric operators in L(H).

An operator A € L(H) is called an Hilbert-Schmidt operator if there exists an or-
thonormal basis {e;};en of H such that

o0
> el < oo
i=1

The subspace of Hilbert-Schmidt operators, denoted by Lo(H), is a Hilbert space, en-
dowed with the scalar product

o0

(A, B)rymy = Z(A%BEQH.

i=1
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As know n, for every B € LT (H) there exists a unique C' € L(H), denoted by v B
such that C? = B. Thus, for any A € L(H) we can define

|A] = VA*A.

We recall that an operator A € L(H) is compact if and only if |A] is compact. Moreover,
if A is a symmetric compact operator, then there exists an orthonormal basis {e;};cn of
H and a sequence {q;};eN converging to zero such that Ae; = aye;, for all ¢ € N. With
these notations, we say that a compact operator A € L(H) is nuclear or trace-class if
there exists an orthonormal basis of H consisting of eigenvectors of | A| corresponding to
the eigenvalues {«; };en, such that

oo
E a; < 00.
1=1

In particular, if the operator A is symmetric, it is nuclear if and only if there exists an
orthonormal basis of H consisting of eigenvectors of A corresponding to the eigenvalues
{a;}ien, such that

o0
Z |Ot7| < 00.
=1

We denote by £1(H) the set of nuclear operators.
It is possible to prove that for every A € £1(H) the series

o]
TrA = Z<A6i7 ei>H
i=1

does not depend on the choice of the orthonormal basis {e;};cn. Moreover, a symmetric
operator A belongs to £1(H) if and only if the series above converges absolutely for
every orthonormal basis {e; };en. The space £1(H) is a Banach space, endowed with the
norm

Al 2,y = Tr| Al
and

(A < 11A] 2, o) (2.1)

It is possible to prove that £1(H) C Lo(H) C L(H) with

1Al ey < Al zocmy < ANz, ()
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and for j = 1,2 it holds

IABllz, ey < Allz, I Bllecey,  1ABllz,ay < Bl All ey

Moreover, if A, B € Lo(H), then AB € £1(H), with

IABll 2,y < Al 2ol Bll 2oy

Finally if £ and K are arbitrary Banach spaces we denote by £'(K; F) the space of
I-linear bounded operators K! — E. When [ = 1 and E = K we just denote £!(K; E)
by L(K). Finally when K is an Hilbert space and E = R we identify £'(K;R) with K
and £?(K;R) with £(K).

2.2. Functional spaces

If E is an arbitrary Banach space, endowed with the norm || - ||g, we denote by
By(H; E) the space of Borel and bounded functions ¢ : H — E. By(H; E) is a Banach
space, endowed with the sup-norm

lello = sup [le()]| 2
c€H

Moreover, we denote by Cy(H;E) the closed subspace of uniformly continuous and
bounded functions.

For every integer n > 1, we denote by CJ'(H;E) the space of all functions
¢ € Cy(H; E) which are n-times Fréchet differentiable, with uniformly continuous and
bounded Fréchet derivatives D'y : H — L'(H; E) for all | < n. We have that C'(H; E)
is a Banach space, endowed with the norm

lelln = llello + Y 1D"¢llo-
=1

Next, for every ¥ € (0,1) we denote by CP (H; E) the space of all functions ¢ € Cy,(H; E)
such that

) —
o = sup 16 =0l _
z,y€H |z — yll%
zFy

CP(H; E) is a Banach space, endowed with the norm

lells = llello + [¢lo-

Finally, for every integer n € N and ¢ € (0,1), we denote by Cy'*"(H; E) the space of
all functions ¢ € CJ'(H; E) such that
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D" —_ D" .
[D" gl := sup 1D () oW cn(m:E)

.y H lz =yl
TFY

< 00

C’;”rﬂ(H ; E) is a Banach space, endowed with the norm

n
lelln+o = llello + D I1D"ello + [D"¢ly = ll@lln + [D"¢lo-
1=1
Notice that in case E = R, we simply write B,(H) instead of By(H; E), and for every
a > 0 we write Cf'(H) instead of Cy(H; R).

Now, we want to see how classical interpolatory estimates for functions defined on R™
are still valid for functions defined on the infinite dimensional Hilbert space H. To this
purpose, we recall that, as shown in [6, Theorem 2.3.5], for every 0 < oo < 8 < v there
exists a constant ¢ = ¢(e, 3,7y) > 0 such that for every ¢ € C} (H)

lells < cllold= lolly (22)
However, in what follows we will need the following additional interpolatory estimates.
Lemma 2.1. Let us fir 9 € (0,1). Then, for every ¢ € C}(H) we have

[elo < e llells™ 1DIG, (2.3)

and, for every p € (0,1)

Y—

1-9
[elo < lelo " 1Dl ™" - (2.4)

Moreover, for every ¢ € 03“9 (H) we have

9 1
ID*¢llo < 2.0 [Dello™ [D*¢]5™ (2.5)
and
5 (2, 70

[1Dello < ez llllg™ D705 (2.6)

Proof. Let us fix p € C}(H) and z,y € H. Then, for every 9 € (0,1) we have

U

1
lp(z +y) — o) < 2||llg™" /<D<p(x +2y), hmdA| < 2ells IDello vl %,
0

so that (2.3) follows. In an analogous way we deduce (2.4), since
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9—p
1—p
p(1=9)

1
119
oz +9) — o@)] < [li /Dso Ogady e
0

Now, if we fix ¢ € C2Y(H), for every > 0 and x, z € H, with ||z||g = 1, we have

p(a+ pz) = () + p(Dp(x), 2)m <D2 (x)z,2)m

(2.7)

2

+ 12 [ (1= r){[D*o(x + ruz) — D*p(x))z, 2) g dr.

o—_

By proceeding as in [6, proof of Theorem 2.3.5], we use (2.7) to prove (2.5). Actually,
thanks to (2.7) we have

so that

2
1D%pllo < p |Dollo + co 1’ [D?¢lg, 1> 0.

If we take the minimum over p > 0, we get (2.5).
Finally, by using again (2.7), we have

1
2
I
u|<Dso(w),Z>H|S\w(erMZ)—w(w)l+7\<D2<p(w)z,z>H|+u2+” [D?¢] 19/ —r)yr? dr,
0

so that, in view of (2.5), we get

Ca, 19#

N

IDElF (D15 + con (D¢l

2
[1Dgllo < m lello +

2
< lello + §||Ds0||o + cop' T [D?ply.

This implies that
4 1+971 12
[ Dello < m lello + cop " [D7¢lo, 1 >0,

and if we minimize once again with respect to p > 0 we obtain (2.6). O
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Remark 2.2. As a consequence of (2.3), (2.5) and (2.6), we have that for every ¢ € (0,1)
there exists some ¢y > 0 such that for every ¢ € CZTV(H)

[els 1D*¢llo < co llello [D?¢lo- (2.8)

Indeed, from (2.5) and (2.6), we have

149 _1
||D2so|os(:2,ﬁ(c3,ﬁ|so||s+ﬂ [Dm;*ﬂ) D17 < 2 el 0ll277 (D)2

(2.9)
Moreover, thanks to (2.3) and (2.6) we have

N 9
elo < ero lolld™ (Csﬁllwllw D? b) = crocdy lollF (D263

Therefore, if we combine together this last inequality with (2.9), we obtain (2.8).
2.3. The Ornstein-Uhlenbeck semigroup

By following [6, Chapter 6], we recall here some results about the Ornstein-Uhlenbeck
semigroup and the associated Kolmogorov equation.

Let A: D(A) C H — H be the generator of an asymptotically stable Cy-semigroup
et We assume that there exist M,w > 0 such that

HetAHE(H) S Mefwt

Moreover let Q be an operator in LT (H). For every ¢ > 0 we define

t

Qi = /eSAQeSA* ds,

0

and we assume that Q; € L1(H), for every ¢t > 0. Thus, we can introduce the centered
Gaussian measure Ny, defined on H with covariance Q;, and we can define

Rip(z) == /gp(emx +y)No,(dy), =xe€H, t>0, (2.10)
H

for every o in By(H). R is the Ornstein-Uhlenbeck semigroup associated with A and Q.
In what follows, we assume that

“A(H) C Qi*(H), t>0, (2.11)

and we define
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A= Q; %M, t>0,

where @, /2 is the left pseudo-inverse of Q,} /2,

As shown e.g. in [6, Theorem 6.2.2], as a consequence of assumption (2.11) we have
that Ryp € Cp°(H), for every ¢ € By(H) and t > 0, and for every n € N U {0} there
exists some ¢, > 0 such that

D™ Repllo < cn [[Aell 2y lollo
Moreover, if we fix o € (0,1) and assume ¢ € C{'(H) we have
[D" Regla < cn | Aell 2y e 12y [Plas (2.12)
so that we conclude that for all a € [0,1) and ¢ € C{'(H)
ID" Rigplla < cn [ AdllZeary ollar ¢8>0, (2.13)

where, for every t > 0 and « € (0,1),

lellea = (llello +e™* [gla) - (2.14)

For every n € NU {0} and 0 < o < f < 1 and foreverycpECf(H) and t > 0 we
have, by the interpolation inequality (2.2) applied to the function D™ R;¢ with constants
respectively 8, 1 +a, 1 4+ 3:

n n —a n 1—(B—
ID" Regllrva < D" Regpll 3 | D" Reglly 1§~

-« 1-(B—a)
= D" Replly™ (ID" Regllo + | D" R ) :
Hence, thanks to (2.13), we get

D" Ripll14a

—w n(B—a _ " n 1—(B—a)
< e AR N5 (en A2 Iello + cnsr IAEES Ioles)

n n+l—(f—a
< o Il (I8l 2y + Al ).

In particular, recalling that || Do < [|¥]las1, ¥ € CY%, and D"R;¢p = DD" 'R;¢
this allows to conclude that for every n € N and 0 < o < <1 and for every ¢ € C’bﬁ (H)

1D Reglla < capn (I182GH + IANEGH ™) Nl s (2.15)

Next, we recall that in [6, Proposition 6.2.9] it is shown that for every ¢ € C{(H) and
re H
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Tr[QD?R = [(Q; 'y, Qe Dy(et No,(d
r [Q t@(m)] - <Qt Y, th 90(6 T+ y)>H Qt( y)’
H

so that, if we assume that
MQeN € Ly(H), (2.16)

we have
sup 1QD?Rep(x)| 2, a1y < 1MQe™ || ocary I Dpllo, > 0.

Therefore, since QD?*Ry¢p = QD?*Ry2(R;/2(¢)), (2.15) allows to conclude that for every
e CP(H)
ey

sup QD Rup(@)l ey < € lAeja Q'™ Pleaian (14 [18uzel iy ) el >0

(2.17)

Moreover, we recall that in [6, Proposition 6.2.5] it is shown that if the operator A; A

has a continuous extension A;A to H, for every ¢t > 0, then for every ¢ € By(H) and
reH

DRyp(x) € D(A*),  |A*DRigllo < [AAllcem llello, ¢ > 0. (2.18)

Now, we introduce the parabolic equation in H
Dyu(t,z) = %Tr [QD2u(t,z)] + (z, A*Dyu(t,2))p,  u(0,z) = ¢(). (2.19)
Definition 1. A function u : [0, +00) x H — R is a classical solution of problem (2.19) if
w is continuous in [0, 4+00) x H and u(0,-) = ¢.
u(t,-) € C3(H), for all t > 0, and QD?u(t,z) € L1(H), for all t > 0 and x € H.

D,u(t,xz) € D(A*), for allt > 0 and x € H.
u(-, x) is differentiable in (0, +00) for every z € H and u satisfies equation (2.19).

=W

In [6, Theorem 6.2.4] it is shown that if we assume conditions (2.11) and (2.16) and we
assume that the operator A;A has a continuous extension to H, then for every ¢ € By(H)
the function

u(tv 'r) = Rt‘ﬂ(aj)

is the unique classical solution of equation (2.19).
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3. Assumptions and main results
3.1. Assumptions

In what follows, we shall make the following hypotheses.
Hypothesis 1.

(1) The mapping o : H x R — L(H) is Lipschitz continuous and there exist an operator
Q € LT(H), a continuous mapping f : H x R — £;(H) and a constant § > 0 such
that

oc*o(x,r)=Q+4¢ f(x,r), xz€H, rekR. (3.1)

(2) For every fixed x € H, the function f(z,) : R — £1(H) is differentiable. Both f
and 0, f are Lipschitz continuous in both variables, uniformly with respect to the
other. Moreover

sug”f(:ar)HLl(H) <c(l+|r]), r € R. (3.2)
S

Remark 3.1. (1) Let H = L?(0), for some smooth and bounded domain O C R%, with
d > 1. Let {e;};eny be an orthonormal basis of H and let {\;};en be a sequence of
non-negative real numbers. We assume that e; € L°°(0), for every i € N, and

D Aileill o) < 0. (3.3)

i=1
For every x,y € H and r € R, we define

o0

[, r)yl(€) = D Ri(@(€), P)Nily e)uei(§),  £€0,

i=1

for some continuous functions f; : R x R — R such that f;(s,-) : R — R is differentiable,
for every s € R and 7 € N. We assume that both §; and 0,f; are Lipschitz continuous in
both variables, uniformly with respect to the other variable, and uniformly with respect
to ¢ € N. Moreover, we assume that

sup sup [fi(s,7)| < c(1+r|), r e R. (3.4)
i€eN seR
With this choice of H and f, we have that condition 2 in Hypothesis 1 holds.
Indeed, since f;(-,r) : R — R is Lipschitz continuous, uniformly with respect to r € R
and ¢ € N, for every x,y € H and r € R we have



16 S. Cerrai et al. / Journal of Functional Analysis 286 (2024) 110418

1f (@) = f(ys )l 2
<Z| ) eiei) |<Z/\‘ [fi(@(-),r) = Fi(y(-), 7)) eis ei)

< Z IFo(@(-),m) = Fsw()s )€l Lo o)X < el =yl Y Ailleillze (o)

i=1

In particular, thanks to (3.3), we can conclude that f(-,r) : H — £1(H) is Lipschitz con-
tinuous, uniformly with respect to r € R. Moreover, thanks to (3.4), the same argument
also yields (3.2). In view of our assumptions, the same is true for 9, f.

The Lipschitz continuity of f(x,-) and 9,f(x,) : R — £;(H) with respect to r,
uniform with respect to x € H, is proved in a similar way. However, in this case (3.3) is
not required and we only need the weaker condition

o0
Z A; < 00.
i=1

(2) In case H is an arbitrary Hilbert space, we fix T € £1(H) and A : H x R = R
and we define

flz,r) =Xz, r)T, (z,7)€ HxR.

If we assume that A and 9, \ are Lipschitz continuous in both variables, uniformly with
respect to the other, then Hypothesis 1 2. is satisfied.

Now, we see some consequences of Hypothesis 1.
Lemma 3.2. For any function ¢ : H — R we define
F(e)(@) = f(z,0(x), =€l (3.5)

Then, under Hypothesis 1 we have that F maps C{ (H) into CY (H; L1(H)) and for every
p € Cy(H)

[F(@)lo < e(L+llello) - (3.6)
Moreover for every @1, @a € CY(H) it holds
[1F(p1) = Fp2)llv < (1 + llorlly + lle2llo) lor — w2llo- (3.7)

Proof. Due to (3.2), if p € CJ(H) we have

I1E(p)llo < sup 1f (@, (@)l 2, oy < (1 +lello) - (3.8)
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Moreover, for every x,y € H

1f (z, o(2)) = £y, o)l 2y )
< N f (@ o(@) = Fy @Iz, 1 (2, 0(2)) = £y, 0@ £ (i

HIF (s o(@) = Fle@)lleym < cllz —yllE 1+ elld™?) + cle@) — o)l
<cle—yl% @+ llells™ + elo) <cllz =yl @+ llello + [elo)

so that
[F(p)]o < e (1+[lello + [#]o) - (3.9)

This, together with (3.8) allows to conclude that F(yp) € CY(H) and (3.6) holds.
Concerning (3.7), for every ¢1, s € CY(H) we have

1 (1) = Fle2)llo = sup |l £ (@, 1(z)) = f(z, 2(@)llescany < elier = eallo- (3:10)

Moreover, for every x,y € H we have

(f(z,p1(2) = [z, 02(2))) = (f(y, 1(y)) — f(y, p2(¥)))

1

- / (s + (1 — 8)p2)(@) (01 — 92) () — (501 + (L — 8)02) (1) (01 — 02)()] ds,
0
1
- / A(s1 + (1= 8)p2)(@) [(91 — 92)() — (1 — 02)()] ds
0

+ / (s + (1= 8)p2) (1) — 7501 + (1 — 8)02) )] (1 — 02) () ds,
0

where we have defined
Y(p)(x) = 0rf(z,0(2)), x€H.
This implies that:

1(f(z,01(x)) = fz,02(2))) = (f (¥, 1(¥) — f (v, p2¥)|| 21 (a)

<lo=ol’ [ [Intser + (1= shealolor = eala + Diser + (L= s)aly ln = el ds

and consequently that:
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[FCrpr) = (w2l < /Ilv(ssm + (1= s)pa)llo ds llpr — pallo-

Since, we are assuming that 9, f, like f, is Lipschitz continuous with respect to each
variable, uniformly with respect to the other, and is clearly uniformly bounded, by using
the same arguments we have used to prove (3.8) and (3.9), we have

[7(s1 + (1 = s)p2)llo < c(X+sllpallo + (1= s) [l@2llv)
and hence

[F(p1) = Fpa)ls < c(L+[l@rlly + llpallo) [lo1 = wallo-
This, together with (3.10), implies (3.7). O
Hypothesis 2.

(1) The operator A : D(A) C H — H generates a Cy-semigroup e*4 and there exist
M,w > 0 such that

e ceary < Me™ " (3.11)

(2) If Q is the operator introduced in Hypothesis 1 and if we define

t

Qi = / Qe ds, >0,

0

we have that Q; € L] (H), for every t > 0.
(3) For every t > 0, we have

e A(H) C QY2 (H). (3.12)
(4) If we define
Ay i=Q; %M, t>0,
(see the discussion after (2.11)) there exists some A > 0 such that
Al ey < c(EA1)TH2e™A ¢ >0. (3.13)

(5) For every t > 0 we have that A;Qet4” € Lo(H) and for every 9 € (0,1) there exist
B9 < 1 and ay > 0 such that

mo(®) = INQE™ oy (Il +1) Se(tAl) et £>0.  (314)
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Hypothesis 3. For every (z,7) € H x R and t > 0 we have
eo(x,r) € Lo(H).
Moreover,
||etAa(x,r)||Lz(H) < c(t/\l)fi I+ ||z|g +|r]), t>0, (3.15)
and for every (z,7), (y,s) € H xR
HetAU(a:,r) —etAa(y,s)H[;z(H) < c(t/\1)7i (le=yllg +|r—s]), t>0. (3.16)
Remark 3.3. Let {e;};en be an orthonormal basis in H and assume that Ae; = —aye;

and Qe; = ; e;, for every ¢ € N, with «;, v; > 0, and a; T +00, as ¢ — co. By proceeding
as in [6, Example 6.2.11], we have that

Qie; = 22/; (1—6_20’ “Ye;, 1€N,
1

so that Q; € £1(H) if and only if
< . (3.17)

Moreover,

2agte—t 2 o .
Atei = (m) t 1/26 2 tei, i € N.

In particular, if v; > 79 > 0, we have
el ey < ct™H2e= 3t >0,

so that (3.13) holds. Furthermore,

tA* |2 o~ e 2ot —1_—2a1t
i=1
Moreover if a; ~ iP for some p > 0 then
le“ N2, ) = j{: e 2t LT, (3.19)

Thus (3.16) hold whenever p > 2 and o is Lipschitz. Moreover, (3.15) follows since
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tA 2
sup [e""a(0,0)[Iz, (rry < o0

In the special case when A is the realization of the Laplace operator in an interval,
endowed with Dirichlet boundary conditions, we have that a; ~ 92 and (3.17) is satisfied,
for every choice of @ € L(H). If we assume that @ = I, we have that (3.13) holds.
Moreover, thanks to (3.18) we have

* — ap(1-9)t
100Qe™ ey (Il +1) S et d et (177%™ 1)

1y

<e(t A1) 07D T

and Condition (5) in Hypothesis 2 holds for every ¢ € (0,1). Also notice that in this
case Hypothesis 3 is satisfied, due to (3.19) with p = 2.

Hypothesis 4. The mapping b: H — H is Lipschitz continuous and bounded.
3.2. Main results

As we have done in Section 2 for the linear Kolmogorov equation (2.19), we introduce
here the notion of classical solution for the quasi-linear problem

Dyu(t,z) = %Tr [0*0(2, uc(t, z))Diuc(t, z)] + (Az + b(z), Duc(t,z))y, =€ D(A),

ue(0,2) = g(x), =z € H.
(3.20)
We recall, see (3.1), that the above equation depends on parameter 6 and can be rewritten
as:

Dyue(t,z) = %Tr [(Q + 6f(x, uc(t, ) D2uc(t, z)]
+ (Az 4+ b(x), Du(t,z))y, « € D(A),

uc(0,2) = g(x), x€H.

Definition 2. A function u, : [0,+00) X H — R is a classical solution of problem (3.20)
if the following conditions are satisfied.

It is continuous in [0, 4+00) x H and uc(0,-) = g.

ue(t,") € CZ(H), for all t > 0, and QD2u.(t,x) € L1(H), for all (t,z) € (0,+00) x H.
uc(+, z) is differentiable in (0, +00), for every x € D(A).

It satisfies equation (3.20), for every (t,x) € (0,400) x D(A).

= L
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In what follows, for every € € (0,1), 0 < ¥ < n < 1, p € (0,1/2) and T > 0,
we denote by C. ,.,((0,T]); CZ™(H)) the space of all functions u € C([0,T];Cy(H)) N
C((0,T); CF(H)) such that

1 1
[ulle.om9,7 = sup (||U(t7 Wiy + €2t AD2|IDgult, )lo + €272 (¢ A1) 2| D3 ult, ')||19)
te(o,

< 00.

Theorem 3.4. Assume Hypotheses 1 to 4, and fix an arbitrary g € C}(H), for some
n € (1/2,1). Moreover fix 9 € (0,7 —1/2) and we define

_1-(m=-9)

0= : (3.21)

Then there exists 6 > 0 such that for every 6 < 6, € € (0,1) and T > 0 there exists a
unique classical solution u. € Ce o ,((0,T); Cf*ﬁ(H)) for equation (3.20).
Finally

[telle.omor < cesllglly, €€ (0,1), (3.22)
for some constant cc s > 0 independent of T > 0.

Next, for every € > 0, we fix arbitrary ¢ > 0 and x € H and we introduce the following
stochastic PDE

dX(s) = [AX(s) + (X (5)) + 0 (X (s), uclt — 5, X(s))) o(s)] ds

+Vea(X(s),uc(t — s, X (s))) dWs, (3.23)

Here Wy, t > 0, is a cylindrical Wiener process on H, defined on the filtered probability
space (Q, F, {Fi}i>0,P), such that for every h,k € H and ¢,s > 0

[ <Wt’ h>H<W87 k>H = (t A 5) <ha k>Ha
and ¢ is a predictable process in L2(Q; L?(0,t; H)).

Definition 3. An adapted process X% € L*(€; C([0,t]; H)) is a mild solution for equation
(3.23) if for every s € [0, t]
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t,x _ _SA s—r)A t,x
XW}E(S) =e x+/e( ) b(XLN(r)) dr

0

S

+ / TG (X (), uelt = v, X)) (r) dr (3.24)

0
S
b e / TN AG (XL (r), ue(t — 7, XLE(r))) AWy
0

Theorem 3.5. Suppose that Hypotheses 1 to / hold, and fix any g € C)(H), with n €
(1/2,1), € € (0,1) and § € [0,6), where § is the constant introduced in Theorem 3./.
Moreover, fix an arbitrary predictable process in L*(Q; L?(0,T; H)) such that

t
/ lo(s) % ds <M, P - as., (3.25)
0

for some M > 0. Then equation (3.23) admits a unique mild solution X5% €
L3(;C([0,t]; H)), for every x € H and t > 0.

In what follows, the solution of the uncontrolled version of equation (3.23), corre-
sponding to ¢ = 0, will be denoted by X!*.

Once proved Theorem 3.5, we are interested in studying the limiting behavior of X5*
as € J. 0. More precisely, we want to prove that for every fixed ¢ > 0 and x € H the family
{L(XE")}ee0,1) satisfies a large deviation principle in the space C([0,t]; H) (with speed
€) with respect to a suitable action functional I; , that we will describe explicitly. For
all definitions and details we refer e.g. to [8] and [11].

In order to state our result, we have to introduce some notations. First, we introduce
the unperturbed problem

Z'(s) = AZ(s) + b(Z(s)), Z(0)=y € H. (3.26)

Since we are assuming that b : H — H is Lipschitz continuous, for every 7" > 0 and
y € H there exists a unique Z¥ € C([0,T]; H) such that

S

ZY(s) = ¥y + /e(sfr)Ab(Zy(r)) dr.
0

Next, for every x € H, t > 0 and ¢ € L?(0,t; H) we introduce the controlled problem

X'(s) = AX(s) + b(X(s)) + (X (5), g(Z¥ (¢ —5)p(s),  X(0)=a.  (3.27)
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In Section 8 we will see that under the same assumptions of Theorem 3.5, equation (3.27)
admits a unique mild solution X}* € C([0,t]; H). This will allow to state the last main
result of this paper.

Theorem 3.6. In addition to the conditions assumed in Theorem 5.5, suppose that

g : H — R is Lipschitz-continuous. Moreover, suppose that the semigroup et is an-

alytic. Then, for every fized t > 0 and x € H the family {L(X1")}ec0,1) satisfies a
large deviation principle in the space C([0,t]; H), with speed e, with respect to the action
functional

LalX) = 5 inf § [ o)l ds - X(5) = Xe*(e), s€ 066, (329
0

where Xfp’m is the unique mild solution of problem (3.27).
4. The well-posedness of the stochastic PDE (3.23)

In this section we will, for the moment, assume that, for some T > 0, n €
(1/2,1) and ¥ € (0,n — 1/2), o < 1/4, and ¢ € (0,1) there exists a solution
e € Ce . ((0,T); CFP(H)) for equation (3.20). We will show how this allows to prove
Theorem 3.5 for every ¢ € (0,T].

We fix t € (0,7], a predictable process ¢ € L?*(Q; L%(0,t; H)) satisfying (3.25), a
regular enough function ¢ defined on [0,¢] x H and we consider the stochastic equation
in [0,¢]

dX(s) = [AX(s) +b(X(s)) + o(X(s),9(t = 5, X(s)))p(s)] ds
+Veo(X(s),v(t—s,X(s)))dWs, (4.1)
X(0) ==z.
For every s € [0,¢] and = € H, we define
Si(s,x) == o(z,¢(t — s, 2)). (4.2)

Definition 4. We say that a process X € L2(Q;C([0,t]; H)) is a mild solution of equation
(4.1) if for all s € [0,¢] it holds:

S S

X(s) = e + / =AY (X (1)) ds + / IS, (1, X () () dr
0 0

S
+\/E/e<s—*)A2t(r,X(r))dWT.
0



24 S. Cerrai et al. / Journal of Functional Analysis 286 (2024) 110418

Theorem 4.1. Suppose that Hypotheses 1 to J hold. Fix n € (1/2), e € (0,1), ¢ €
(0,7 — 1/2) and define o by (3.21). Moreover, fix an arbitrary predictable process
¢ € L2(;C([0,t]; H)) verifying (3.25) and function ¢ € Ce ,,((0,T]; CE7(H)). Then
equation (3.23) admits a unique mild solution X € L*(Q; C([0,t]; H)), for every x € H.

Proof. We start by noticing that a process X € L?(Q; C([0,t]; H)) is a mild solution of
equation (4.1) if it is a fixed point of the mapping A; . defined by

S S

A (X)(s) := e + /e(s_r)Ab(X(r)) ds + /e(s_r)AZt(r,X(r)) o(r)dr
0 0

+ \/E/e(s_”)AZt(nX(r)) AW,..
0

According to Hypothesis 3, for every 7 > 0, s € [0,t] and z,y € H we have

e (Z(s,2) = Ze(s.9) o) < e (T AL)TE (o =yl + [0(t = 5.2) =t = 5,9)])

Since ¢ € C. ,.,((0,T); CF(H)), we have

[t = s,2) =t = 5, y)|< [[Datp(t = 5, )0 [l = yllm
<e (=) AN Plleomorllz = ylla,

so that

[e™ (Se(s,2) — 2e(5,9)) || 2o o)

1 (4.3)
<e(r AT (et =) AT Plleomor) 2 —ylla.

Now, for every § > 0 we denote by K (H) the Banach space of all H-valued pre-
dictable processes X such that

1XN%,., ) = sup_e” P E [ X(s)||7 < oo

se

In what follows, we need to show that A;. maps the space g (H) into itself and, for
some [ > 0, is a contraction. In fact, we are only going to prove the contraction property,
as the proof that A; . maps Kg+(H) into itself follows from analogous arguments.

If X1,X5 € Kgt(H), in view of (4.3) and (3.25) we have

s 2

E /e(s_r)A [Ee(r, X1(r)) — e (r, Xo(r))] o(r) dr
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S

S]EO/He(s—r)A [zt(r,xl(r))—zt(r,xz(r))]H;(H) dr0/|<p(r)||§, dr

S

<eME [((s=r) AT+ (=) A) P ) 1Xa(r) = X0y dr

S

—1 _ _ .
< M Xy —lelfcﬁ,,,(H)/((S—r)Al) T+ e (=) AT g0 r) €77
0

Since we are assuming that ¢ < 1/4, for every s € [0, ]

S

Js=nan s (@-nan

0

|E7Q,7M9,T) e P ar < Ce.pt(5),

for some continuous increasing function ce g ¢ : [0,t] — [0, +00) such that

lim sup cepi(s) =0.
B—=0 se(0,4]

Therefore, we pick 81 = 51(e,t) > 0 such that

1
eM sup cep,i(s) < =,
s€0,t] 6

we have

s 2

1
sup e PUE || [ eCTIS(r, X1(r) = B, Xo(r)] @(r)dr|| < 2 X = Xalk,, -
6 /1,f( )

s€[0,t]
0 H

Moreover by (4.3) with 7 = s — r and s = r, we have:

s 2

E /e(s_r)A [3e(r, X1(r)) — Ze(r, Xa(r))] dW,

0 H
s

< 6/((8 ) AD)TE (L4 et =) AT o) ENX () = Xa(r)|[3 dr
0

S

<ellX - Xl / ((s—r) A3 (L4 e 22((t =) AL 22,0 1) 7 dr
0

Then, by proceeding as above
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s 2

sup e R /G(S_T)A [Ei(r, X1(r)) — Be(r, Xao(r))] dW;
s€[0,t]
0 H

1
<glXi- Xolli,, oo

Finally, due to the Lipschitz-continuity of b, we have that there exists 83 > 0 such that

s 2

sup e P2 /e(sfr)A [b(X1(r)) —b(Xa(r))] dr|| < % X1 — XQH,QCL%N(H).
s€[0,t] 5 o
Therefore, if we take 3 := 8 V B2, we have that A, . is a contraction in K5 ,(H) and its
fixed point is the unique mild solution of equation (4.1).

Finally, by using a stochastic factorization argument, it is possible to prove that
X5* belongs to L*(9; C([0,t]; H)) (for all details about stochastic factorization see [7,
Subsection 5.3.1]). O

Remark 4.2. If we still assume that, T > 0, n € (1/2,1) and ¢ € (0,7 —1/2), 0 < 1/4,
and € € (0,1) but now we also suppose that u. € C. ,,((0,T]; C(H)) is a solution
for equation (3.20) and we set ¢ = u, in Theorem 4.1 then, for all ¢ € (0, T1], the process
X provided Theorem 4.1 is the process X fa‘ﬁ required in Theorem 3.5.

5. Local existence of mild solutions for the quasi-linear problem

In this section we will prove that the quasi-linear problem (3.20) admits a local mild
solution, for every e € (0,1).
In view of (3.1) and (3.5), problem (3.20) can be rewritten as

Dyuc(t,x) = Leue(t,z) + %Tr [6 F(ue)(t, z)D2u.(t, z)] + (b(z), Duc(t, z)) u, (5.1)
ue(0,2) = g(x), x€ H,

where L. is the linear Kolmogorov operator
€
Lep(w) = STr [QDLp(w)] + (A, Dpp(w)) .

As we have recalled in Subsection 2.3, see, in particular (2.18) and (2.19) for the
definition of operator L., for every ¢ € By(H) the unique classical solution of the linear
problem

Divc(t,x) = Love(t,z),  v(0,2) = p(x),

is given by the Ornstein-Uhlenbeck semigroup
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veltyn) = Rigo) = [ ole'ta +5)Noo, (dy)
H

Before proceeding with the study of equation (5.1), we show how, in view of Hypoth-
esis 2, the properties of the Ornstein-Uhlenbeck semigroup described in Subsection 2.3
apply to the semigroup Ry.

Thanks to (3.11) and (3.13), inequality (2.13) gives for every n € NU{0} and 6 € (0,1)

ID"Ripllo < cnoe 2(tAL) "2 |lpflo, >0, €€ (0,1), (5.2)

where

—wbt [

lelles == (lello + ™" [lo) -

Moreover, thanks again to (3.11) and (3.13), inequality (2.15) gives for every n € N and
0<0<p<1

(p 9) pf 0)

ID"Riollo < cnppe (tA1)~" e M ollep >0, €€ (0,1). (5.3)

Finally,
IRfello < llello,  [Riwlp < e P[], €>0. (5.4)
By (2.4), with # = o and p = 8, we have
[Riela < IDR5ol [Rivl 1,
so that, thanks to (5.3), with # =0, p = 8 and n =1, and (5.4), with p = §, we get
[Ritla < Cap e (EAD) 2 e g, £>0, €€ (0,1), (5.5)
for some wq g > 0. In particular, due to (5.4), this implies

IRS|la < (cap+1)e 2" (tA1)~ 2" t>0, ec(0,1). (5.6)

Now, we introduce the notion of mild solution for equation (3.20).

Definition 5. A function u. € C([0,+o0); H) such that u.(t,-) € CZ(H), for every t > 0,
is a mild solution for problem (3.20) if for every (¢,z) € [0,4+00) x H

u(t,z) = Rig(a / Ri_ (577 [8F (ue(s, ) D2uc(s, )] + (6(), Ducls, ) ) () d.
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For every R >0, n € (1/2,1),0 € (0,n—1/2), p€ (0,1/4), T > 0 we define

Vol = {u € Cegn((0,T)CIT(H)) « uf

€,0,m,9,T S R} 3

and for every v € y;*fj"ﬂ o and 6 > 0 we define

¢
Les(v)(t,z) := /R§78%75(v,8)(x) ds, tel0,T], =€H,
0

where
Ye,5(v, 8)(x) == %Tr [5F(v(s, ))(x)Div(s,x)] + (b(x), Dv(s,x)) g
In particular, u, is a mild solution for problem (3.20) if and only if
ue(t,r) = Ryg(x) + e s(ue)(t, z).
First, we investigate the dependence of .5 on v € y;ff 9.7
Lemma 5.1. For every v € y;fiw and 6 > 0
Yes(v, s)|lo < ce2 26R(1+R) (s A1)~ L ce®R(sA1)72,  s€(0,T]. (5.7)

R
Moreover, for every vi,ve € YO

QnﬁT(md6>0

[7e,5(v1,8) = Ye5(v2,8)|l9 < ¢ €2 2T R(1+ R) (s A1)~ Doy (5,-) — va(s, )|l

(5.8)
+ced(1+ R)[|D2vi(s,-) — Diva(s,-)llo + || Davi(s, -) — Dava(s, )| o-

Proof. In view of (3.6) and Hypothesis 4, we have

17es(v,8)llo < ced||F (s, ))llo 1D20(s, )llo + [1bllo [|1Dzv(s, )llo
< ced (L+[u(s, o) | D3u(s, )llo + | Dov(s, )lla,

and since we are assuming that v € y;ﬁﬂ 7, this implies (5.7).

Next, if v, v € y;ffﬂ 7+ and 0 > 0 we have

1Yes(v1,8) = Yes(v2,8) o < ced[|F(vi(s, ) = F(va(s,))llo |1 D701 (s, )l
+ced||F(va(s,))llo | D3vi(s, ) = Diva(s, o + [Ibllo [ Davi(s, ) — Dava(s,)llo-

Thus, according to (3.6) and (3.7),
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”’Vé,é(vlv S) - 76,6(“27 S)Hﬁ
< ced (s, ) —va(s, )l (L+ [[oa(s,)llo + llva(s, )llo) [1DZvi(s, )l
+eed (1+[|va(s, )llo) [1DFvi(s, ) = DZva(s, )llo + ¢ | Davi(s,-) = Dyva(s,)|lo-

Recalling that vy, v, € y;;f;fw, this implies (5.8). O
Remark 5.2. If for every fixed ¢, > 0 we define
acs(R,s) =2 %R(1+ R)(s A1)~(@t2) 4 e ?R(sA1)72, >0, R>0,
and
acs(R,s) = e 7251+ R)2(s A1)~(@t2) f e 2(sA1)72  s>0, R>0,
due (5.7) and (5.8) we have that for every v,vi,vs € V" 19 o and s € (0,7]
1Ve.5(v,8)lly < caes(R,5), (5.9)
and
s (01, 5) = Ve 02, 5)ll9 < cacs(Ros) on = vallegmor (5.10)

Notice that for all 3 <1 and g > 0 and for all ¢ > 0

((t—s) A1) Pemt=9q 5(R, s)ds

o

t
< eé_géR(l +R) /((t — ) A1) Pemt=9) (s A1)~ (eF3) g5
0

+e_9R/((t —s) A1) Pemrt=9)(s A1) ds,

and this implies that there exists some constant ¢ > 0 only dependent on 8 and p such
that

t
/ ((t—s) A1) Pe#=5)q, 5(R,s)ds < c(t A1)z~ @TFes—ex_s(R, 1), (5.11)
0

where

Aes(R,t) :=6R(1+R) +e 2R(tA1)Z,
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To get the above we have observed that, when ¢ > 1 the right hand side of (5.11) reduces
to

cere [51%(1 +R) + e*%R}
and (5.11) follows since
aes(R,s) < e%_"(s A 1)_(%“’) (5R(1 + R) + e_%R) ,

and

t

sup/((t —s) A1) Pemrlt=s) (s A 1)*(%+@) ds < oo.
t>1
=0

In the other case, that is when ¢ < 1, we have (t —s) A1 = (t — s), s € [0,¢] and

14 t
/t—s e M=), s(R, s)ds<e5_95R 1+ R) / —Bg=(e+3) gg
0 0

t
+ e_QéR/(t —s)Psds

and

t t
/ (t—s) —Bg=(e+3) g < ct_'e_ﬁ%, /(t — s)_ﬁs_gds < gt Pett
0 0

by a standard change of variable.
In an analogous way

t
/((t — ) A1) Pe =g 5(R,s)ds < c(t A1)z (@HF ezl 5(R, 1), (5.12)

0

where
ls(R,t) :=06(1+R)* +e 2(tA1)7.
Next we prove the following estimates for I'c 5 on Y o, 79 .

Lemma 5.3. For every v € y;;fﬁ,T and €,6 € (0,1) it holds

ITe5(0)le.omor < A5 (R, T) [J"Z”’)—@ (T A5 e (rvi) + 1} . (513)
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Proof. Step 1. We have

1-(n—9) 1-(n—9)

IDes@)()]ly Sce 2 "N s(RE)(EAL) 2 2(tVv1), te[0,T]. (5.14)

Proof of Step 1. In view of (5.6), applied for 8 = ¢ and a = 1), we have that, for every
te[0,7T]:

t

t
n—9 )
Tes @@l < [ IR es(ws)lyds < e [ (= 5) A5 reslo.s) o ds
0 0
t

<ce "2’ /((t —$)A 1)_ﬂ%§a675(R7s) ds.
0
Then, by adapting (5.11) to the case u = 0, we get

1—(n—"79)

ITes(@)(@)]ly < ce "2 €3 A 5(R,)(EAT) 2 2 (tV 1),

and (5.14) follows.
Step 2. We have

(tA1)?[[Dles(v)(t)]lo < ce™® [5 R(1+R)+ € ZR(t A 1)%} : (5.15)

Proof of Step 2. According to (5.2), we have that

t

t
/ IDR;_ es(v, s)llo ds < e / (¢ — 8) A 1) 2e 9 s (0, 8)|lo ds.
0 0

Then, thanks to (5.9) and (5.11) we conclude
¢
/ DR yes(0,8)]lo ds < ced (A1) -2 —2N_5(R, 1),
0
and (5.15) follows.
Step 3. We have

(t A1)2T2 DT s(0)(t)]lo < ce GHIN5(R, 1) (5.16)

Proof of Step 3. By proceeding as in the proof of Step 2, we have, using (5.3) with
n=2 a=0and §=0:
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t
| D?Tc.s(v)(t)]lo < ce™ 1+%/ ((t—s) A1) 3 =90 (R, s)ds
0

< ceflJrfe?*g(t A 1)7(g+§)+g Aes(R, 1),
and this implies

(tA1)2T2 |D2Tes(0)(B)]lo < ce BTN S(RE)(EA1)E. (5.17)

Now, for every z,h € H and t € [0,T], we have

w\ea

(t A1)2H2(| DT 5(v)(t, 2 + h) — DT 5(v)(t, )|l oy < ceGTOTEN_S(R ) (EA1)2.
Hence, if we assume that ||h||% > € (t A 1)/2 we get
(EAD)2T2 | DT 5(v)(t, @+ h) = DT (o) (1 @) | oy < cemEFONG (R, 1) |17 (5.18)

When ||h||% < e(t A1)/2 we have

e hl%
DT s(v)(t,2) = / D2Rey 5(v,t — s)(x) ds + / D2Rey 5(v,t — s)(x) ds
0 e~ 1h|%

=: ac,5(h,t,z) + be 5(h,t, ).
Due to (5.3), from (5.9) we have to evaluate the Holderianity

llae,s(h,t, x4+ h) — acs(h, t,z)| com

e Hnll%
<ce s / (s A 1)_1+ge_2’\5||'y€’5(v,t —9)||lo ds
0
(5.19)
e HInlE
<celts / (s A 1)_1-"—%6_/\8&675(]%,15 —s)ds
0

<ceGTIN S(R, 1) (tA1)~(0F2) ||p)Y,.

To get the last inequality we have observed that,
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e Hlnll%
< €37 %R(1+ R) / (sA1)TIFE((t—s) A1)~ (et)emPs g
0

e HIRlE
+e °R / (s/\l)*H%((tfs) Al)"Ce e ds
0

and recalling that e~!||h]|%, < (¢ A1)/2 < t/2 and hence (t —s) A1 >t/2 A1 we deduce
that
e HInlZ
(sAD) " MH3e 0 s(Rt—s)ds <ce? 273\ 5(R,t) (tA1)~@F2) |||

0

As for b 5(h,t,), we have

bes(h,t,x+h) —bes(h,t,x)
¢
= / [D?Rve5(v,t — s)(z + h) — D*Rye (v, t — s)(2)] ds.

e IRl

Hence, due again to (5.3), we have

lbe.s(ht, 2 + ) = be.g(ht2) | ey
t
< [ 1D Roslot = ) h) - D Rveslot = 5)(a) e ds
e~ HIRl%
t
<c [ IRt - 9lads il
e~ HIRli%
t
<ce i / (s A1)~ "2 e 3N ((t— 5) A 1)@ DA (R, — s) ds |1

1
Since we are assuming ||h||% < e(t A 1)/2, we have

t
(8/\1)_¥6_3/\S((t—8)/\1)_(Q+%))d8
e-1ini,
t/2
- / (s A1)~ 223 (¢ — 5) A 1)~(e+H) g

e~ H|RlI%
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t

+/(smr¥e—3“((t—s)Al)—<9+%>ds

t/2
< (AL DT Y 4o (a1 0rOTE
=c(tA 1)—(9+%) (6% Rl5 + (£ A 1),%>

<ce T (tn1)let 2 ||n||5Ho.

Moreover, in the same way we have

t
(8 A 1)_¥€—3>\s((t _ s) A 1)—9 ds < Ce%(t N 1)_9 ||hHI_{1+19,

=inli
so that
(t A3 b s(ht,x + h) — bes(hyt, @) || ooy < ce GHON (R, 1)|B]|%.
This, together with (5.19) and (5.18), implies that for every h € H
(t A2 D2T 5 (v) (@ + h) = D*Tes(v)(t,2)|| ey < ce TN (R, 1) ||| 7
Thus, thanks to (5.17), we obtain (5.16).

Conclusion. Estimate (5.13) is a consequence of (5.14), (5.15) and (5.16). O

Remark 5.4. From the proof of the previous lemma, we easily see that for every ¢t € (0, 7]
and € € (0,1)

n—"1y

€7 [Des(v)(t)]y + €2t A1) DT5(0)(#)[|g + €272t A1) 2| DT s (0) (1) o

o, (5.20)
n 1) :

< ches(R, 1) (&—g (tA1)

for some constant ¢ > 0 independent of 7' > 0. Indeed, in view of (5.5), with & = 7 and
B =6 and (5.9), we have

t
Ces(®) @)y < e /6_“‘9’"“_5)(@ — ) AT e (v, 9)]lo ds

0
¢
—nz? —wy,n(t—s) —nz%
z e @) ((t —s) A1)" "2 ac5(R,s)ds
0

—(n—"9
2

<edes(RY) (THE A TE ).
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This, together with (5.15) and (5.16), implies (5.20).
Now we are ready to prove the existence of a local mild solution.
Theorem 5.5. Fizn € (1/2,1) and ¥ € (0,7 — 1/2) and define

_1-(m=-9)

5 (5.21)

o:

Then, there exist 01 such that for every e € (0,1) there exists T1(e) > 0 so that problem
(3.20) has a mild solution u, in Ce 4,((0,T1(e)]; C2T(H)), for every § < 6.

Proof. A function u. is a mild solution of equation (3.20) if and only if it is a fixed point
for the mapping FZ, s defined by

I? s(0)(t) = Rig + Tes(v)(t), t€[0,T].

Thus, we will prove the existence of a local mild solution for equation (3.20) by showing
that there exist some 77, R > 0 and 0; > 0 such that I'Y ; maps y;’fﬁ 1, into itself as a

contraction, for every § < 4.
Thanks to (5.6) we have

115glln < ¢llglly- (5.22)
Moreover, thanks to (5.3)

n—"9) _1=-(m=v)

_1=C _
IDRig(v)(t)lo <ce = (AL = e |lglly,

L . (5.23)
ID*Rig(v)(t)]ly < ce” 2@ A 1)~ e 722 g,

Therefore, if we define g as in (5.21), we have that o € (0,1/4) and 1 — Z’;—e —0=0,s0
from (5.22) and (5.23), it follows

IRglln + €2t A1) DRig(t)[lo + €2 72(t A1) 2 [ D2 Rig(t)]|o < cllglly.  (5:24)
With ¢ defined as in (5.21), together with (5.13) this implies that for every v € y;fﬁw
IT2 5lleomor < cllglly + e |SRO+R)+e *R(T A (T V).

In particular, if we first take R := 3c||g||,, and ¢’ > 0 small enough such that

cd R(1+R) <

w| =

and then fix 77 < 1 small enough so that
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ce 2R(T A1)z <

w|

we conclude that for every § < ¢ and T < T’

||F§,5(U)||e,9,nﬂ97T <R,

so that I‘95 maps y“ffﬁ o into itself.

Now, if we fix vy, vy € yg 00,7 We have, in view of Definition 5 and estimates (5.3)
and (5.6)

||F§,5(”1) - Fg,g(W)He,mﬁI

t

'(9
<ce '3 sup / (= $) A1) "% [yess (01, 8) — e.s (v )l ds
te(0,T]

t

+¢? sup (tA1 Q/e_% ((t—s)A 1)_%6_/\“_5)”%,5(1}175) — Ye.s(v2,8)|lo ds
te(OyT]

[}

et sup (t/\l)ﬁé
te(0,T]

t
x/e_(l‘%)((t—s)Al)f( D (01, 5) — e (v2,9)llo d
0

+6%+Qts(1[1)pT](t/\ 1)9+% [DQFi&(vl)( ) — D2I‘f§ (v2)()]y = ZI‘“
€(0,

Then, according to (5.10) and (5.12), we have, since n — 9 < 1.

15’1(6) S C[E’g(R, T) ||’U1 - 'UQHE’Q’n’ﬁ’T. (525)

In the same way,

t
Is2(e)< ce? sup (tA1) Q/G_% ((t—s) /\1) e M "a 5(R, s)ds [lvr — v2le,pm0.7
+€(0,T]

0

<cles(R,T)|lv1 — ve

|e,g,n,19,T7
(5.26)

and
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Iss(e) < cert gup (tA l)ﬁé

te(0,T]
t
X /e—(l—%)((t —8) A1) Eg (R, 5) ds||oy — vallepmor 027
0
ol
<ce? [ 5(R,T) |lvr — valle,om,0,7-

As for I5 4(€), due to (5.27), if we fix any x,h € H and assume ||h||% > et/2 we have

T E(t A1)HE | DAY s (v1)(t, @ + h) — D*TY s(v2)(t,2) | £y

9
2

(5.28)

)
<cer(tAD)ELs(R,t)llvr = vallepmor < cles(R,t) [l = vallepmorlhl-

On the other hand, if we assume that ||h||% < €t/2 we write

DQFg&(vl)(t, x) — D2Fg’5(’02)(t, z) = aes(h, t,x) + bes(h, t, ),

where
e Hrl%
ae,é(hv L, 1‘) = / DzRZ (76,6(1}17 t— S) - ’76,15(”2775 - S)) dS,
0
and

bes(h,t,z) =: / DZRZ (Ve,s(v1,t —8) — Ve s(v2,t — 5)) ds.

e~Hhl%

Then, thanks to (5.10) and (5.12), we can proceed as in Step 3 of the proof of Lemma 5.3
and we obtain that (5.28) holds also when e!||h[|%, < ¢/2. In particular, we obtain that

e (t A1) [DTY s(01)(t) = DL 5(02) (D)o < cles(Rot)[or = valle.gono.r
so that
Isa(e) < cles(R,t)||vr — v2lle,0m,9,7- (5.29)
Therefore, if we combine (5.25), (5.26), (5.27) and (5.29), we obtain that
IT¢ 5(01) = T 5 (v2)lle,om0.0 < cles(Bot) o1 = v2lle om0,

This means that if we first choose §; < §’ such that

cdy (1 +R)2 < %,
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and then Ty < T’ such that

1
cez (Ty A 1)% <3

we can conclude that I's ; maps ngTl into itself as a contraction, for every 6 < §;. O
6. Further properties of mild solutions of the quasi-linear problem

We will show that any mild solution u. of equation (3.20) that belongs to
Ce o ((0,T7]; Cb2+19 (H)) is in fact a classical solution in the sense of Definition 2. More-
over, by using its probabilistic interpretation in terms of equation (3.23), we will prove
that a maximum principle holds for equation (3.20). This will imply that the local mild
solution we have found in Section 5 is the unique global classical solution of Theorem 3.4.

We start by proving that QD2u.(t,x) is a trace-class operator.

Lemma 6.1. For every t € (0,T] and x € H, we have that QD>u.(t,z) € L1(H).

Proof. If u. is a mild solution, with the notations we have introduced in Section 5 we
have

ue(t, z) = Rig(x) + Te5(uc)(t, ).

According to (2.17) we have that QD2R{g(z) € L1(H), for every € € (0,1), t > 0 and
x € H, and thanks to (2.17) and (3.14)

IQDZ Rigllo < ke (t/2) gl

Here ke, is the constant defined in (3.14) with @ replaced by /e Q. As far as I'c 5(u.)
is concerned, if R = |[uc||e,o,5,9,7, thanks to (2.17), (3.14) and (5.9), we have

|QDTc s (ue)(t, ) 2, ()

t t
< / IQD2R;_ e s (ter 5)(@)]| 2 oy ds < / e ((t = 8)/2)||es (e, 8)]lo ds
0 0

t
<ce / ((t—s)/2 A1) Poemao T emetd (s A 1)~(e+ D))\ (R, 5) ds < c.(R, T).
0

This allows to conclude that QD2u(t,z) € L1(H) for every e € (0,1), t € (0,T] and
reH O
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Next, we show that w,. is differentiable with respect to ¢t € (0,T] and = € D(A) and
is a classical solution of equation (3.20). In Subsection 2.3, we have seen that for every
¢ € By(H) and = € D(A) the mapping

t € (0,+00) — Rip(z) € R,
is differentiable and
DiRip(x) = L Rip(x).

See (2.18) and (2.19). Hence, since

uclt,x) = Rigl / Ry (ST 16 F(ue(s, ) D2ucs, )] + (b(), Ducls, V) ) (x) ds

= R,fg(as) + Fe,&(“&)(t’ '73)7

thanks to Lemma 6.1, for every z € D(A) we can differentiate both sides with respect
to t > 0, and we get

Diuc(t,z) = LRig(x) + %Tr [6 F(uc(t, ) D2uc(t, x)] + (b(x), Duc(t,z))u
+ LT 5(ue)(t,x)
= Leu(t,z) + %Tr [6 F(uc(t, ) D2uc(t, x)] + (b(x), Duc(t,z)) g

Thus, we have proven the following result.

Theorem 6.2. Under Hypotheses 1 to /4, if u. is a mild solution of equation (3.20) that
belongs to Ce o.,((0,T]; CEY(H)), then it is a classical solution.

Next, we show how any solution of equation (3.20) is related to the stochastic PDE
(3.23).

Theorem 6.3. Assume Hypotheses 1 to J. Then if uc € Ce o n((0,T7; C§+”9(H)) is a so-
lution of equation (3.20) and X® € L*(Q;C([0,t]; H)) is a solution of equation (3.23),
we have

ue(t, r) = Eg(X5*(t)). (6.1)

Proof. The natural way to prove (6.1) is by applying the It6 formula to the function
(s,x) € 0,t] X H + u(t — s,2) and to the process X'*(s). However, we cannot do this
directly first because u. satisfies equation (3.20) in classical sense only for x € D(A) and
second because X is only a mild solution of equation (3.23), and not a strong solution,
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as required when It6’s formula is used. To overcome these difficulties, we introduce a
suitable approximation of u. and X%, by adapting an argument introduced in [7, Proof
of Theorem 9.25].

For every m € N we define J,,, = m(m — A)~! and

Uem (t, T) = ue(t, Jmz), (t,xz) € [0,T] x H.
Since Jy,x — x, as m — 00, and u. € Ce ,,((0,T); CZTY(H)), we have that

lim  sup |uem(t, ) —uc(t,z)|= lUm sup |uem(t, Jmx) —ue(t,z)| =0, z€H.

M=% 40,7 M=% +c(0,T)
(6.2)
For all the details about the Yoshida approximants J,, we refer to [19]. Moreover,
Dytiem(t, @) = I3 Dyt (t, Jm@),  D2uem(t,x) = J3D2uc(t, Jpna) Jom. (6.3)
Next, for every m € N we introduce the stochastic PDE
dXon(s) = [AXER,(5) + Jmb(X 7, (5))] ds + VedmS(s, X (s) WL, (6.4)
X(0) = Jp, '

where ¥; is the operator introduced in (4.2) and W;™ is the projection of the cylindrical
Wiener process W; onto H,, := span{ey, ..., ey }. By proceeding as in Section 4, we can
prove that equation (6.4) admits a unique mild solution X!2 € L?(Q; C([0,t]; H)). Since

Jm maps H into D(A) and W™ is a finite dimensional noise, it is immediate to check

t,x

¢m 0 its mild form,

that X7 is a strong solution. Namely, writing X

S S

XE2 (s) = AT + / DAL B(XE (1) dr + / eCTIAE TS, XEE (1)) AW
0 0

we see that all the terms lives in D(A).

At the end of this section we will prove that

lim sup IE||JmX:’7fL(s) — Xb(s)||g = lim sup IEHX:’%(S)—X:I(S)HH =0.

M= 5¢10,t] M—=90 5¢10,t]
(6.5)
Now we apply It6’s formula to uc ., and X! and thanks to (6.3) we get

dsuevm(t - S, Xet:fn(s))
= —Dtue(t - S, JmXQ'rwn(s)) ds
+ 5T [T D2t = 5, T XL (3) T (T B, X5, () (I B (5, X7, (5)))°] s

+ (AT X (5) + Job(XER (), Daue(t — s, J X7 (5))) m ds
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+ Ve (s, X (5) AW, Doue(t — s, Jm X7 (3))) -

Therefore, recalling that wuc(¢,z) satisfies equation (5.1), for every x € D(A), since
Jm X7 (s) € D(A) we have
dsue,m(t -5, Xﬁ:fn(s))
= V(5 Se(s, X8, () AW, Doue(t — 5, T XE () i + (I3, 1(5) + I ()] ds,
(6.6)

where

I (s) = %Tr [T D2uc(t = 8, i X e (5)) Jin (S B (5, X (1)) (S B (5, X (5))) ]

m, €,m

- gTr [DRuc(t — s, Jin X3 () (Ba (5, T X (5))) (S (5, T X En ()]

and

IG

m,2

() = (Jmb(X L7 (5) = b(Im X (9)), Daue(t = 5, Jnn X &7 (5))) 1

If we take the expectation of both sides in (6.6) and integrate with respect to s € [0, ¢]
we get

B9 X050 (0) = et n) + [ E (L5, (5) 4 Fp(e)) ds. (61)
0

In view of (6.2) and (6.5), recalling that g is bounded, we have that

lim Eg(J,, X5Z (1)) = Eg(XE* (1)), Um e m(t, Jmx) = uc(t, z).
m—00 ’ m—00
Moreover, since u, € C€7g7n((0,T];C’g+ﬂ(H)), by using again (6.2) and (6.5), since we
have pointwise and dominated convergence as m — +oo of all terms appearing in I, ;
and I¢

£1.20 We get

m—r oo

t
lim /IE (T2 ()] + TS, 5(s)]) ds = 0.
0

Therefore, if we take the limit of both sides in (6.7), as m — oo, we obtain (6.1). O

Remark 6.4. Thanks to the representation formula (6.1) of u., we have that

sup [|ue(t, )llo < [lgllo- (6.8)
t€[0,T]
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Now, we conclude this section with the proof of (6.5).

Lemma 6.5. If Xb% is the solution of problem (6.4), we have

€,m

lim sup E[,, X5 (s) — XI7(s)[3 = lim  sup E[X05(s) — XD7 ()3 = 0. (6.9)

M= 5¢10,t] m=00 5¢(0,t]

Proof. If we denote pe n(s) := X0 (s) — X2*(s) and W™ .= W, — W, we have
pem(s) = € (Jmz — z) + / eI (Jb(XEE (1) — b(XE(r))) dr
0
Ve [ I (S XU () = Sl X0 (1)) dV
0

+ Ve / eGTIAS, (r, XE (1)) dW ™.
0

Therefore, since || J,,| () < 1, we have

S

Ellpem(s)llir < cllJma — alf + ce /EHﬂe,m(T)II?{ dr
0

S

te / E[|Jnb(X1 (1)) — b(XD* (1)) |3 dr
0

S

tec / B[l (Sy(r, XI5 (1)) — So(r, X02(1)) 12, 0y dr
0

+ €C/E||Jm€(sf’“)A2t(7", X (r)) = AT (r, XEP () 2 () dr
0

S

6
tec / B[l DA5, (r, X2 (1) S |2, 0y dr = 315, 4(5),
0 =1

where Sy, := I — P, is the projection of H onto span{e,;+1, €m+2,---}-
By proceeding as in Section 4, we have that

S

0405 (@) [[(ls=r) ADTH U+ (0= 1) A1) Ellpe (1)
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so that

Ellpem(s)} < ce) [ ((s—1) A1) TCHDE| pe o (1)1} dr + A (s),

o\

where

Aem(s) =15, 1(8) + I, 5(8) + I, 5(5) + 15, 6(s)-

Since 2p + 1/2 < 1, thanks to a generalized Gronwall’s inequality (see [20, Theorem 1)),
this implies that

E”pe,m(s)”%ﬁ[ S Ce,t Ae,m(s) S Ce,t Ae,m(t)v ERS [Ovt]a

and (6.9) follows if we can prove that

mlgnoo Aem(t) = 0. (6.10)
It is immediate to check that
lgn I, 1 + If 73(t) =0. (6.11)

Moreover, according to Hypothesis 3 and to the fact that « is bounded in [0, ¢] x H, for
every m € N we have

[ T A8, (r, X2 (r)) — A8, (r, X5 (1) || 2 (a1

< 2| A (XE (1), ue(t = 1, XE“ D ay < et =) 7% (L4 [IXE7 () |n)
Then, since
lim | Tme A8 (r, XEE(r)) — ePAS (r, X5 ()| 250y = 0,
and since the mapping
€01 (t=5)7F (L+ [ XE7(s)]lm) € R,
belongs to L?(£2; L?([0,t])), by the dominated convergence theorem we have that

lim Iy, <(t) = 0. (6.12)

m—r 00

In the same way, by the dominated convergence theorem we have also that

lim I}, () = 0. (6.13)

m—ro0
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Therefore, combining together (6.11), (6.12) and (6.13), we obtain (6.10) and we get

lim sup E[X5F (s)— X52(s5)|1% = 0. (6.14)

M=% 5¢(0,t]
Moreover, since ||Jy, |2y < 1, we have
1T X e () = Xe® ()l < IIXER () = XE7 ()|l + T XET(5) — X" (5)| 1,
and due to (6.14), we have

limsup sup E ||JmX§:;”1(s) — X:z(s)H%I < 2limsup sup E ||J,, X" (s) — Xﬁz(s)H%

m—00 s€(0,t] m—00 s€(0,t]
Now, since
fn(8) == E || Jn X5%(s) — XE%(s) |3, s€[0,t], meN,

defines an equicontinuous sequence of functions, pointwise converging to zero, we have
that they converge to zero uniformly for s € [0,¢] and we can conclude that (6.9)
holds. O

7. Existence and uniqueness of global classical solutions for the quasi-linear problem

In Theorem 5.5 we have proved that for every n € (1/2,1) and ¢ € (0, —
1/2), there exist 41,73 > 0 such that problem (3.20) has a mild solution w. in
Coe.pn((0,T1]; C2Y(H)). In Section 6 we have shown that such mild solution is in fact
a classical solution. Our purpose here is first proving that u. is defined on the interval
[0, T, for every T > 0, and then proving that it is the unique solution.

We start with the following a-priori bound.

Lemma 7.1. There exists 62 € (0, 61], that depends only on ||gl|,,, such that if u. is a mild
solution of (3.20) for some & < 8z, belonging to C o, ((0,T); C2T°(H)), with o given in
(5.21), then

Hu6||619ﬂ77197T < Ces ||g||77a €€ (Oa ]-)7 (71)
for some constant cc s independent of T' > 0.
Proof. In what follows, for any function v : [0,7] x H — R we define

Ne(v(t)) = [v(t, )]y + €2(t A1)2[ Dot )llo + €273 (t A1)2F2]| D2u(t, )|

With the notations we have introduced in Section 5, thanks to (6.8) we have
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l[ue(t, -)llo + Ne(ue(t)) < llgllo + Ne(Rig) + Ne(I'§ 1 (ue)(t)) + Ne(T5(uc)(t),  (7.2)

where

t

D5a)(ta)i= [ RS afa(us)la)dsi= 5 [ RE TSP () DPuls, )] () ds
0 0
and
5 (u)(t,x) := /Ri_sw(u,s)(x) ds := /R;_S(b, Du(s,-))g(x) ds.
0 0

In (5.24) we have already shown that

sup Nc(Rig) <clgly- (7.3)
te[0,T)

Thus, in order to prove (7.1) we need to estimate N(I'§  (ue)(t)) and Ne(I's(ue)(t)).
Thanks to (3.8) and (6.8), we have

1 (ue(s, )llo < ¢ (1 +[lue(s, )llo) < c(1+lgllo)
and then
1751 (e, 8)llo < ce 8] F(uc(s, ) ol D?ue(s,)llo < ced (1 + [lgllo) [D*ue(s, )o-  (7.4)
Moreover, due to (3.9) and (6.8) we have

[F(ue(s, )]o < e (14 Jlue(s, )llo + [uc(s, )]o) < (1 +[lgllo + [ue(s, )]v),

so that

5.1 (ue, 8)]o < ced [F(uc(s, ))lollD?*ue(s, )llo + c €| F(ue(s, -))llo[D?ue(s, )]y
< ced(1+|lgllo) | D*uc(s, )llo + ced [uc(s, )]s D*uc(s, )llo-

According to (2.8) and (6.8), this implies

V5.1 (ue, 8)lo < ced (1 + llgllo) [D?uc(s, )llo + cedl|uc(s, ) llo[D?uc(s, )]s

(7.5)
< ced (1+gllo) [1D%uc(s,-)o-

Therefore, if we combine together (7.4) and (7.5) we conclude that
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1951 (e, 8)llo < ced (14 [lgllo) [|1D%ue(s, )l
<ceb(1+]gllo) e @2 (s A 1)) N (u(s, ).

By proceeding as in the proof of Lemma 5.3 (see also Remark 5.4), this allows to conclude

Ne(T,1 (ue) (#) < 6 (1+ llgllo) A Ne(ue(s;-)),  t€[0,T]. (7.6)

Now, let us estimate N (I'§(ue)(t)). We have, by direct computations taking into
account Hypothesis 4,

12 (e, )l < e ([ Due(t, ) o + D% ue(t, )lo) -

Thus, according to (2.6) and (2.9) and thanks to Young inequality for every ¢ > 0 there
exists kg > 0 such that

Iaue DS et NG (D%t 3 + el N [Duc(t,)15)  (7.7)
< C[D?ue(t, )]o + sellue(t, )o-

In view of (5.3), (5.5), (6.8) and (7.7), there exists some Ay > 0 and &, such that for
every t € [0,T]

t
N (TS (uc)(t) < ey / ((t —s) A1) e =)Dy (s, )]y ds
0

+ec1,9,1e@(m1)@/ M=) =3 (¢ — 5) A1)~ [D2uc(s, )]y ds

t
+ec279,169+%(m1)@+%/ “Xolt=5) =2 (1 — ) A 1)~ 5 [D2uc(s, Y] ds
0

t
+/%e/ ol=9= 5 (¢~ 5) A 1)~ dsllgllo
0

< cle(et1/2) sup Ne(ue(s,-)) + chee™ 5 llgllo
s€[0,t]

Notice that in the last inequality we put e~ (¢+1/2) because o+1/2 > (14-19)/2. Moreover,
in the first inequality of (7.8) we have applied (5.5) with a = n and 8 = n — ¢ with ¢
arbitrarily small together with (7.7) in the first term (recall that || - || is stronger than
I lle), (5.3) with n =1 and p = 1 in the second term and again (5.3) with n = 2 and
p = 1 in the third term. Hence, if we plug (7.3), (7.6) and (7.8) into (7.2), we obtain
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l[we(t, )llo + Ne(ue(t,-))

< clglly+ <[5 1+ llglo) + =@/ sup Nouels, ) + o5 gl
s€[0,t]

where ¢ only depends on the costants of Hypotheses 1, 2 and 3.
In particular if take ¢ = §e2t1/2 and 65 < §; such that

o2 (2+llgllo) <1/2,

we obtain (7.1) for every 6 < dy. O
7.1. Conclusion of the proof of Theorem 3./

Thanks to (7.1), by standard arguments we have that for every e € (0,1) the local
solution we found in Theorem 5.5 is in fact a global solution. Moreover, this global
solution is unique. The arguments used to get a global solution from a local one and
the arguments used to get uniqueness are quite similar and both rely on the a-priori
bound (7.1). Even though they are well known in the literature, here, for the reader’s
convenience, we give the proof of uniqueness.

Indeed, if ui,us € Ce o, ((0,T]; C’b2+19(H)) are two solutions of equation (5.1), for some
fixed § < §,, we assume that

to:=sup{t € (0,7] : ui(s) =wuz(s), s€[0,t]} <T.
With the same notations we have used in Section 5, we introduce the problem
u(t) =T75(u)(t) = Rjp + Tes(u)(t), ¢ > to, (7.9)

where ¢ := u1(tg) = ua(to). Due to (7.1), we have that

el < ces llglln,

for some constant c. s > 0 independent of 7" > 0.
As shown in Section 5, there exist R, 7 > 0 and § < §, such that the mapping r?s

R . . . <
maps y;n,ﬁ,m into itself as a contraction, for every § < ¢, where

R - .
Vomotor = 1€ Cegnl(to,to + 71 Gy (H)) = |lulleomotor < R}

and C. o, ((to, to + 7); CZT?(H)) is the space of all functions u belonging to C([to, to +
7J; CP(H)) N C((to, to + 7); CFT7(H)) such that the norm
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HuHe,g,nﬁ,tof

R (IIU(t,-)IIW+e@((t—to>Al)QHDwu(t,-)IIﬂ
te(to,to+7)

+ et ((t— to) A 12T D2u(t, )1y

is finite.

&R

In particular I'? ; has a unique fixed point in ) o9t 7 OF> equivalently, equation (7.9)

has a unique solution on the interval [tg,to + 7]. This implies that

u1(s) = ua(s), s €10,t0+ 7],
violating the definition of [0, tg] as the maximal interval where u; and uy coincide.
8. The large deviation principle

In this last section we give a proof of Theorem 3.6. We follow the well-known method
based on weak convergence, as developed in [3]. To this purpose, we need to introduce
some notations.

For every t > 0, we denote by L2 (0,T; H) the space L?(0,T; H) endowed with the
weak topology, and by P; the set of predictable processes in L?(Q x [0,t]; H), and for
every M > 0 we introduce the sets

Stm = {80 € L2(0,t; H) : lollL20,6:0) < M}’

and
At,M = {(,0 ePy p e 8t,M7 P —a.s.}.

In Theorem 3.5 we have shown that for every M,¢ > 0 and ¢ € A; ps and for every
x € H and € € (0,1) there exists a unique mild solution X% € L*(Q; C([0,t]; H)) for
equation (3.23).

Next, we consider the problem

dX

5 (8) = AX(s) +b(X(s)) + (X (s), 92Xt = s))els),  X(O0) =z,  (81)

where, as we did in Section 3, for every y € H we denote by Z¥ the solution of equation

(3.26). We recall that X € C([0,t]; H) is a mild solution for equation (8.1) if

S S

X(s) = e o+ / eCTIANX (1)) dr + / eCTIAS (X (r),7) p(r)dr, s €[0,1],
0 0

where for every y € H and s € [0,t] we have defined
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Si(y, s) =0y, 9(Z¥(t - 5))).
In what follows, we show that the following result holds.

Proposition 8.1. Assume that g : H — R is Lipschitz-continuous. Then, under the same
assumptions of Theorem 3.5, for every t > 0 and ¢ € L*(0,t; H) and for every x € H,
there exists a unique mild solution X;* € C([0,t]; H) for equation (8.1).

Once proved Theorem 3.5 (see Section 4) and Proposition 8.1, we introduce the fol-
lowing two conditions.

C1. Let {¢e}es0 be an arbitrary family of processes in A; ps such that
liH(l) .=, in distribution in L2 (0,¢; H),
e—

where L2 (0,t; H) is the space L?(0,t; H) endowed with the weak topology and ¢ €

w

Ay pr. Then we have

liII(l) XL =X5*,  indistribution C([0,¢], H).
€e— €

C2. For every t,R > 0, the level sets ®, p = {I;, < R} are compact in the space
C([0,t]; H), where we recall that I, , is the functional defined in (3.28).

As shown in [3], Conditions C1. and C2. imply that the family {X!*}.c( 1) satisfies
a Laplace principle with action functional I; , in the space C([0,¢]; H). As known, if
I, , has compact level sets, then the large deviation principle with action functional I; ,
is equivalent to the Laplace principle with actional functional I; ,. Hence, due to the
compactness of the level sets ®; g stated in C2, the proof of C1. and C2. is equivalent
to the proof of Theorem 3.6.

8.1. Proof of Proposition 8.1

With the notation introduced above, a function in C([0,¢]; H) is a mild solution for
equation (8.1) if it is a fixed point of the mapping A; defined for every X € C([0,t]; H)
by

S S

Ay(X)(s) == ez + /e(sfr)Ab(X(r)) dr + /e(sfr)AEt(X(r),r) o(r)dr, s€]0,t.
0 0

It is immediate to check that there exists a continuous increasing function x(s) such that
for every y1,y2 € H
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1294 (s) = 2 ()|l < K(s) llyr — w2lla, s >0 (8.2)

Hence, since we are assuming that ¢ : H — R is Lipschitz-continuous, according to
Hypothesis 1 for every yi1,y2, h € H we have

1Ze(yrs7) = Bely2, )bl < ¢ (L4 w(E=7) lyr = y2llalPlla, e (0.2,

In particular, for every X1, Xo € C([0,t]; H) and s € [0,t] we have

S

1A (X1)(s) = Ae(X2)(s)[|lor < € /(1 + (4wt =) lle)la) 1X2(r) = Xo(r) || dr
0

< e (llellemy + 1) 1 X1 — Xallego.:m)

This implies that A; : C([0,t]; H) — C([0,t]; H) is Lipschitz continuous and by standard
arguments we conclude that A; has a unique fixed point.

8.2. Preliminary results

Lemma 8.2. Under the same assumptions of Theorem 5.0, for every p > 1 we have

sup E sup [[X57 (s)|y < e(t, M,p) (1 + ||=|%) - (8.3)
€€(0,1)  s€[0,t]
Proof. We have
XEe (s) = e+ / eCTIAN(XET (1)) ds + / e TIAS, (r, X5T (1)) e(r) dr
0 0

S

—+ \/E/6(87T)Azt,e(ra Xfof,e(r)) dWT’

0

where ¥, . is the operator defined in (4.2). Hence, for every s € [0,t] and p > 1 we have

XG2S < e Izl +cp/||X“” ) dr
P
2

et / JeCDA%, (1, XE2 ()2 0y dr (8.4)

s p
+c /e(S_T)AEt,E(r, Xfp’:e(r)) AW, || +cp-

0 H
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According to Hypothesis 3, for every 7 > 0, s € [0,¢] and 2 € H we have

. _1
e S e(s, )2,y < € (T ADT2 (lollfr + Jue(t — 5,2)* +1) .

Moreover, according to (6.1), we have

sSup ‘UE(S,JJ” < ”9”07 €€ (Oa 1)’
(s,z)€[0,t]x H

so that

_1
sup le™ St e(s, @) 7y () < € (T A2 (JflFy + 1) (8.5)
ec(0,

In particular, if p > 4

IS

)
E sup / =245, (o, XE= ()20, dp
relo,s] 0

S

<ep / E (IX52,(r)|[% + 1) dr.
0

Now, if we fix p > 4, we can find o < 1/4 such that (« — 1)p/(p — 1) > —1. By using
the stochastic factorization, we have

S S

[ X ) AW, = o [ A s =) ()
0 0

where

r

Valr) = [0 DA = )8, (0, X2 () AW,

0
Then, we obtain
s p s p—1
[ Xz e aw, | e | [0S ) [ Ve
0 H 0 0

so that, thanks to (8.5) and to the fact that o < 1/4
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T P s
E sup / T=PAT, (p, XE2 (p)) AW, < Copr / E||Ya (r)|[2, dr
re(0,s] " J
S r g
—(1 (e} T
= Ca,p,t/]E /(T—P) G2 (X5 (o) |7 +1) dp | dr (8.7)
0 0

S

gcm%t(/E sup [ X7 (p)| dr +1
0 pE€(0,r]

Therefore, thanks to (8.4), (8.6) and (8.7),

S

E s IX52 (I < cenrp (2l +1) +cp,t/E sup X2 (o)l dr,
re|0,s pe|0,r

and Gronwall’s Lemma allows to conclude in case p > 4. The case p € [1, 4] follows from
the Holder inequality. O

Lemma 8.3. Under the same assumptions of Theorem 3.6, we have

lue(s, x) — g(Z%(s))| < et Ve(L+ [lzllu), s €[0,2]. (8.8)

Proof. Thanks to (6.1), we have
ue(s, ) — g(2%(s)) = E (9(X2*(s)) — 9(2%(s))),
so that, since we are assuming that g is Lipschitz-continuous
|uc(s, ) = g(Z2%(s))| < cE [[XO*(s) = 2%(s) | r-

Now, if we define p?(s) := X2 (s) — Z%(s), we have

S

(o) = [ A BT 2 0) dr ok VE [ TS X () Y,

where ¥ ¢ is the operator introduced in (4.2). Due to (8.3) and (8.7), we have

S

Ellpe(s)lla < C/Ellpe(r)llH dr + e Ve (1+|z|m) ,
0

and Gronwall’s lemma allows to conclude. O
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8.3. Proof of the validity of Condition C1

Now, we are ready to prove condition C1. Let {¢.}c~0 be an arbitrary family of pro-
cesses in A4 ps converging in distribution, with respect to the weak topology of L2(0,t; H),
to some ¢ € Ay pr. As a consequence of Skorohod theorem (see e.g. [7, Theorem 2.4]), we
can assume that the sequence {¢.}cso converges P-a.s. to ¢, with respect to the weak
topology of L2(0,t; H). We will prove that this implies that

lim E sup HX (s) — X;x(s)qu =0, (8.9)
€0 s€[0,t]

and in particular X%”  converges in distribution to X;* in C([0,t}; H). If we define

€

Pe ( ) th ( )_ng(s)v s € [O’t]7

Pes€

we have

pls) = / oA X (1) ~ WXL ()] dr

+ / (A (XL (1) et = 1 XE2 (1) )
0 (8.10)
— o(X57 (), 9(Z% Ot = 1)) (1) | e
3
+ \f/ AT (1, X5E(r) AW,y =2 ) T o(s)
k=1
For Iy (s), due to the Lipschitz continuity of b, we have
11 / loc(s) 1% ds. (8.11)

Concerning I ((s), it can be written as

S

[ A ot .l = r XU () = (X0, (25 = )] eulr
0

S

+ / DA [ (XL (r), g(ZX500) 1 = 1)) = o (X47(), g(ZXE Ot = 1)))] elr)
0

S

3
+ / T AG(XGH (r), (27 Ot = 1)) (pe(r) — p(r) dr = Y~ Tre(s)
k=1

0
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According to (8.8), we have

S

[ J1e(8)llm < c/ (el + e Ve (L+ 1XG7 (M) 1)) e (r) 1 2
0
|§{> . (8.12)

Hhan<qM/Wﬁw“> ) - 20 mHm<qM/wenHm

(8.13)

so that

17 (8) 11 <CtM/||pe Wi dr + e <1+ S 1X52
€[0

Moreover, thanks to (8.2), we have

Finally, for I3 .(s), thanks to (8.3) and (8.7) we have

E sup, 1s,e()lI 7 < cee (1 + llelz) - (8.14)
s€|(0,t

Therefore, if we plug (8.11), (8.12), (8.13) and (8.14) into (8.10), in view of (8.3) we
obtain

E sup [lpc(r)ll7 < CtM/IE sup [|pe(r)||% dp + coore (1+ [[2]13) +E sup [[Js.(s)l[7,
rel0,s] rel0,p] s€[0,t]

and the Gronwall lemma gives

E s?p]l\pe( M < ceare U+ llzlF) + e mE Sl[lp]IIJzae( s)|[ dr. (8.15)
rel0,t s€|0

Thus, if we prove that

W E sup [y ()% =0, (316)
=0 s€[0,t]

by taking the limit as € goes to zero in both sides of (8.15) we obtain (8.9).
Thanks to the stochastic factorization formula, for every 8 € (0,1) we have

S

J3.(s) =cg /(s — T)B_le(s_r)AYg’E(r) dr,
0

where
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Vel / )PP AG(XE" (p), (2%t — p))) (¢e(p) — () dp.
0

Due to the Young inequality, we get

r p

t
Yol < cea [ | [ =0 Pllecto) = c(o)lndp | - ar
0 0

p+2
2

t
_28p
< conrp 0e = olB20 2y / 2 g
0

Hence, if § < 1/2, we have

1Y3,elle 0,60y < cenrp l0e — @l L2(0,150)-

Now, due to the analyticity of e!4, we have that 4 maps H into D((—A)?), for every
v > 0, with

e allp—ayy = (=AY el < eyt A1) alla-
Thus, if 8 > a + 1/p the mapping

Y € LP(0,t; H) — G(Y) ::/( )P tel TNAY (r) dr € CPT2YP((0,8]; D((—A)))
0

is well defined and
IGY ) co-a-1/v(0,9:D((-a)2)) < €Y e 0,68)- (8.17)

(see the computations in the proof of [5, Proposition A 1.1]). Therefore, since J3 . =
cg G(Yp,) and (8.17) holds, we conclude that if « +1/p < 8 < 1/2, then

[J3,ellcs—a—1/p(0,0:0((~ a)~)) < Eenrp |0 — @llzorimy, P —as.
Due to condition 3.12 and point (4) in Hypothesis 2, we have that
etd = 1/2A,57 t >0,
for some A; € L(H), and since Qtl /% s compact, it follows that e*4 is compact. As shown

in [9, Theorem 4.29] this implies that A has compact resolvent. Since (—A)“ is defined in
terms of an integral in £(H) of the resolvent (see [16, Definition 4.3]), this implies that
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(—A)® is a compact operator. In particular, this means that C#=*=1/7(]0,t]; D((—A)%))
is compact in C([0,T]; H) and D(—A)%) is compactly embedded in H.
Therefore, since ¢, — @, as € — 0, in L2 (0,t; H), we conclude that

w
lim || J3.c[l (o) =0, P —as.
e—0
Moreover, since

sup || Jzclleqos;my < e, P —as.
€€(0,1)

by the dominated convergence theorem we obtain (8.16).
8.4. Proof of the validity of Condition C2

In the proof of Condition C1. we have seen that if ¢, converges P-a.s. to ¢, with
respect to the weak topology in L?(0,¢; H), then (8.9) holds. In particular, this holds in
the deterministic case, so that the mapping

2 . t,x .
¢ € Ly, (0,6, H) — X" € C([0,t]; H),
is continuous, and for every ¢ > 0

ﬂ (XL, 0 €8iere} ={XL", 0 €Sic}. (8.18)
e€(0,1)

Moreover, for every t > 0 and x € H the set S; . is compact in L2 (0,t; H), so that
{X3", €8} CC(0,1); H) is compact.
Now, recalling the definition of I ;, for every R > 0 we have

O p={l. <R} ={X.", v €S, sr} (8.19)

Indeed, if X belongs to {X5* : ¢ € S, 55}, then there exists ¢ € S, 55 such that
X = X;’x, so that I; »(X) < R. On the other hand, if X € {I; , < R}, then for any ¢ > 0
there exists pc € S, | 55, such that X = X;’f, and together with (8.18) this implies

X e ﬂ {Xj;””, <peSt7\/ﬁ+6} = {Xj;“*’, <peSt’\/ﬁ}.
e€(0,1)

Therefore, from (8.19) and the compactness of {X}", ¢ € S, 5z}, we conclude that
Condition C2. holds.
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