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Large Deviations
Stochastic PDEs

1. Introduction

Consider the partial differential equation

dXx

dt
(t) = AXx(t) + b(Xx(t)), Xx(0) = x ∈ H, (1.1)

defined on a separable Hilbert space H, endowed with the scalar product 〈·, ·〉H and 

the corresponding norm ‖ · ‖H . Here A : D(A) ⊂ H → H is the generator of a strongly 

continuous semigroup and b : D(b) ⊆ H → H is some non-linear mapping. Next, consider 

the following stochastic perturbation of (1.1)

dXx
ε (t) = [AXx

ε (t) + b(Xx
ε (t))] dt +

√
ε σ(Xx

ε (t)) dWt, Xx
ε (0) = x ∈ H, (1.2)

where ε > 0 is a small parameter, Wt, t ≥ 0, is a cylindrical Wiener process and σ is 

a mapping, defined on H and taking values in some space of bounded linear operators 

defined on the reproducing kernel of the noise into H. We assume that the differential 

operator A, the coefficients b and σ and the noise Wt are such that both (1.1) and (1.2)

are well-posed.

If the parameter ε is small, the trajectories of the perturbed system (1.2) remain close 

to those of the unperturbed system (1.1) on any bounded time interval. In particular, if 

there exist a domain G ⊂ H and a point x0 ∈ G such that any trajectory of (1.1) starting 

in G remains in G and converges to x0, as time goes to infinity, then with overwhelming 

probability the trajectories of (1.2) starting from any x ∈ G enter any neighborhood of 

x0, before eventually leaving the domain G because of the effect of the noise. As know 

this is a consequence of the large deviations of Xε(t) from X(t) which are described by 

the action functional

Ix
T (f) =

1

2
inf

§

¨

©

T
∫

0

‖ϕ(t)‖2
H dt : f = Xx,ϕ

«

¬

­

,

where we have denoted by Xx,ϕ the solution of the controlled version of (1.1)

dXx,ϕ

dt
(t) = AXx,ϕ(t) + b(Xx,ϕ(t)) + σ(Xx,ϕ(t))ϕ(t), Xx,ϕ(0) = x,

and by the quasi-potential

V (x0, x) = inf {IT (f) : f ∈ C([0, T ]; H), f(0) = x0, f(T ) = x, T > 0} .



S. Cerrai et al. / Journal of Functional Analysis 286 (2024) 110418 3

It is known that the stochastic PDE (1.2) is related to the linear Kolmogorov equation 

on the Hilbert space H

§

¨

©

Dtuε(t, x) =
ε

2
Tr
[

σσ�(x)D2
xuε(t, x)

]

+ 〈Ax + b(x), Duε(t, x)〉H , x ∈ H, t > 0,

uε(0, x) = g(x), x ∈ H.

(1.3)

Actually, under suitable conditions on the operator A, the coefficients b and σ and the 

initial condition g, equation (1.3) admits a unique classical solution uε, which can be 

written in terms of the linear transition semigroup P ε
t associated with (1.2). Namely

uε(t, x) = P ε
t g(x) = Eg(Xε(t, x)), t ≥ 0, x ∈ H.

In particular, the description of the small noise asymptotics of the solutions of equation 

(1.2) provided by the theory of large deviations allows to give a detailed description of 

the long-time behavior of the solutions of infinite dimensional PDE (1.3).

In [10], Freidlin and Koralov have considered more general stochastic perturbations 

of the dynamical system (1.1), when H = R
d, A = 0 and b : R

d → R
d is a Lipschitz-

continuous mapping. They have introduced the following quasi-linear parabolic problem

§

⎪

¨

⎪

©

∂tuε(t, x) =
ε

2

d
∑

i,j=1

ai,j(x, uε(t, x)) ∂ijuε(t, x) +
d
∑

i=1

bi(x) ∂iuε(t, x), x ∈ R
d, t > 0,

uε(0, x) = g(x), x ∈ R
d,

(1.4)

where aij(x, r) = (σσ�)ij(x, r), and by invoking the classical theory of quasi-linear PDEs, 

they have shown that, under reasonable assumptions on the coefficients f and σ, equation 

(1.4) admits a unique classical solution uε. Next, for every t > 0 and x ∈ R
d, they have 

introduced the following randomly perturbed system

§

¨

©

dXt,x
ε (s) = b(Xt,x

ε (s)) ds +
√

ε σ(Xt,x
ε (s), uε(t − s, Xt,x

ε (s))) dBs,

Xt,x
ε (0) = x,

(1.5)

where Bt, t ≥ 0, is a d-dimensional Brownian motion. As in the linear case, the PDE 

(1.4) and the SDE (1.5) are related by the following relation

uε(t, x) = Eg(Xt,x
ε (t)) =: T ε

t g(x), (1.6)

but now T ε
t is a non-linear semigroup. This is in fact the reason why equation (1.5) can 

be seen as a non-linear perturbation of the deterministic system.

The study of the large deviation principle and of the quasi-potential for (1.5), has 

allowed Freidlin and Koralov to study the long-time behavior of the solutions to equation 
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(1.4), restricted to the domain G (that now is a bounded domain in Rd) and endowed 

with the boundary condition uε(t, x) = g(x), for every x ∈ ∂G. In this case

uε(t, x) = Eg(Xt,x
ε (t ∧ τx

ε )),

where τx
ε is the first exit time of Xt,x

ε from the domain G. In particular, the asymp-

totic description of τx
ε in terms of the quasi-potential has made possible to study the 

asymptotic behavior of uε on exponential time scales t(ε) ∼ exp(λ/ε). Freidlin and Ko-

ralov’s idea is to introduce a family of linear equations obtained from (1.4) by freezing 

the second variable in σσ� and putting it equal to a constant c. This allows them to 

describe the asymptotics of uε(exp(λ/ε), x), for different values of λ ∈ (0, ∞), in terms 

of some function c(λ) obtained from VG(c), the minimum of the quasi-potential in G for 

the linear problem corresponding to c, and from g(x�(c)), where x�(c) is the point of ∂G

where the quasi-potential attains its minimum, for different values of c.

The present paper represents the beginning of a longer term project where we aim 

to develop an analogous theory for infinite dimensional dynamical systems described 

by PDEs. As in the finite dimensional case studied in [10], also here, as a first and 

fundamental step, we need to be able to study the well-posedness of the following quasi-

linear equations

§

⎪

⎪

⎪

⎪

¨

⎪

⎪

⎪

⎪

©

Dtuε(t, x) =
ε

2
Tr
[

σσ�(x, uε(t, x))D2
xuε(t, x)

]

+ 〈Ax + b(x), Duε(t, x)〉H ,

x ∈ H, t > 0,

uε(0, x) = g(x), x ∈ H.

(1.7)

However, unlike in finite dimension, where a well-established theory of deterministic 

quasi-linear PDEs is available, it seems that the current literature does not provide any 

Hilbert space counterpart to such classical theory, and everything has to be done.

In our analysis we will proceed in several steps and here we are considering the case 

when σ : H × R → L(H) is Lipschitz continuous and there exist a bounded and non-

negative symmetric operator Q, a continuous mapping f defined on H × R with values 

in the space of trace-class operators and a constant δ > 0 such that

σ�σ(x, r) = Q + δ f(x, r), x ∈ H, r ∈ R.

This allows to rewrite equation (1.7) as

§

¨

©

Dtuε(t, x) = Lεuε(t, x) +
ε

2
Tr
[

δ f(x, uε)(t, x)D2
xuε(t, x)

]

+ 〈b(x), Duε(t, x)〉H ,

uε(0, x) = g(x), x ∈ H,

where
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Lεϕ(x) =
ε

2
Tr
[

QD2
xϕ(x)

]

+ 〈Ax, Dxϕ(x)〉H .

In particular, if we denote by Rε
t the Ornstein-Uhlenbeck semigroup associated with the 

operator Lε, we can rewrite equation (1.7) in mild form as

uε(t, x) = Rε
tg(x) +

t
∫

0

Rε
t−s

( ε

2
Tr
[

δF (uε(s, ·))D2
xuε(s, ·)

]

+ 〈b(·), Duε(s, ·)〉H

)

(x) ds.

(1.8)

We can then introduce the stochastic PDE

§

¨

©

dXt,x
ε (s) =

[

AXt,x
ε (s) + b(Xt,x

ε (s))
]

ds +
√

ε σ(Xt,x
ε (s), uε(t − s, Xt,x

ε (s))) dWs,

Xt,x
ε (0) = x,

(1.9)

where Wt is a cylindrical Wiener process in H, defined on some stochastic basis 

(Ω, F , {Ft}t≥0, P ). Due to the regularity of the coefficients and of the function uε, we can 

show that there exists δ̄ > 0 such that, for every δ ≤ δ̄ and for every t > 0 and x ∈ H, 

equation (1.9) admits a unique mild solution in L2(Ω; C([0, t]; H)). Moreover, we show 

that, as in the finite dimensional case, the quasi-linear equation (1.7) and the stochastic 

PDE are related through formula (1.6) and, in particular, a maximum principle holds 

for equation (1.7).

It is worth noticing that as a consequence of the Markov property, the following 

relation holds

uε(t − s, Xt,x
ε (s))) = E(g(Xt−s,y

ε (t − s)))
∣

∣

y=Xt,x
ε (s)

= E(g(Xt,x
ε (t))|Fs),

for every s ∈ [0, t] and x ∈ H, so that equation (1.5) reads as

§

¨

©

dXt,x
ε (s) =

[

AXt,x
ε (s) + b(Xt,x

ε (s))
]

ds +
√

ε σ(Xt,x
ε (s), E(g(Xt,x

ε (t))|Fs)) dWs,

Xt,x
ε (0) = x.

(1.10)

Setting Y t,x(s) := E(g(Xt,x
ε (t))|Fs)), the equation above can be further rewritten as a 

coupled forward backward infinite dimensional stochastic system

§

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

¨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

©

dXt,x
ε (s) =

[

AXt,x
ε (s) + b(Xt,x

ε (s))
]

ds +
√

ε σ(Xt,x
ε (s), Y t,x(s))) dWs, 0 ≤ s ≤ t

−dsY t,x(s) = −Zt,x(s)dWs, 0 ≤ s ≤ t

Y t,x(t) = g(Xt,x
ε (t))

Xt,x
ε (0) = x.

(1.11)
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Coupled forward-backward systems of stochastic equations of the general form

§

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

¨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

©

dX(s) = b(X(s), Y (s), Z(s))ds + σ(X(s), Y (s)) dWs, 0 ≤ s ≤ t

−dsY (s) = ψ((X(s), Y (s), Z(s)) ds − Z(s)dWs, 0 ≤ s ≤ t

Y (t) = g(X(t))

Xε(0) = x,

(1.12)

have been extensively studied in the finite dimensional case, see [17] where several results 

are collected. Since [1], it has been clear that arbitrary forward-backward stochastic sys-

tems do not always admit a solution. Different techniques have been developed to prove 

existence and uniqueness both locally in time and in arbitrarily long time intervals. In 

particular the classical theory of PDEs, applied to the corresponding nonlinear Kol-

mogorov equations, offers a wide range of results stating well posedness of system (1.12)

(see, for instance [17] [13] or [14]) that include existence and uniqueness of a global solu-

tion to the finite dimensional analogue of system (1.11) when σ is not degenerate. In the 

infinite dimensional case, in which large part of the analytic techniques are not available 

any more, very few results on existence and uniqueness of a solution to system (1.11)

in arbitrary time interval are at hand (for local existence and uniqueness see [12]). It 

seems that the techniques more likely to be extended in infinite dimensions are the ones 

introduced in [18] where quantitative conditions on dissipativity of b and bounds on the 

Lipschitz norm of σ and g are required. Such restrictions go in the same direction as the 

condition on δ that we have to impose here, see above. We finally notice that, if we show 

that system (1.11) is well posed, then we can define a candidate solution to the PDE 

(1.7) by setting

ûε(t − s, ξ) = E(Y t,x(s)|Xt,x(s) = ξ)

but, unless we have a satisfactory analytic theory for equation (1.11), the proof that ûε

is the unique solution of (1.7) (in which formulation?) is still to be done and does not 

seem obvious at all. Once such relation would be understood, it could also be possible to 

study the large deviations principle, see below, for more general nonlinear perturbations 

of (1.1) defined through systems like (1.12) (see [4] for a similar approach in the finite 

dimensional case where the connection between ûε and equation (1.11) is a straight-

forward consequence of existence and uniqueness of a regular solution to (1.11) and Ito 

rule).

As we mentioned at the beginning of this introduction, we are interested in applying 

our results to the study of the asymptotic behavior of (1.9) and (1.7), as ε ↓ 0. This is 

a multi-step project and here we are addressing the problem of the validity of a large 

deviation principle for the trajectories of the solutions of equation (1.9). Thus, in the last 

section of our paper we prove that the family of laws {L(Xt,x
ε )}ε∈(0,1) satisfies a large 

deviation principle in the space C([0, t]; H), which is governed by the action functional
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It,x(X) =
1

2
inf

§

¨

©

t
∫

0

‖ϕ(s)‖2
H ds : X(s) = Xt,x

ϕ (s), s ∈ [0, t]

«

¬

­

,

where Xt,x
ϕ is the unique mild solution of problem

X ′(s) = AX(s) + b(X(s)) + σ(X(s), g(ZX(s)(t − s)))ϕ(s), X(0) = x,

and for every y ∈ H

Zy(s) = esAy +

s
∫

0

e(s−r)Ab(Zy(r)) dr.

2. Notations and preliminaries

Throughout this paper, H is a separable Hilbert space, endowed with the scalar prod-

uct 〈·, ·〉H and the corresponding norm ‖ · ‖H . In what follows we shall introduce some 

notations and preliminary results (we refer to [2], [6] and [15] for all details).

2.1. Operator spaces

We denote by L(H) the Banach space of all bounded linear operators A : H → H, 

endowed with the sup-norm

‖A‖L(H) = sup
‖x‖H ≤1

‖Ax‖H .

An operator A ∈ L(H) is symmetric if it coincides with its adjoint A�, that is if 

〈Ax, y〉H = 〈x, Ay〉H , for all x, y ∈ H. Moreover, it is non-negative if 〈Ax, x〉H ≥ 0, 

for all x ∈ H. We shall denote by L+(H) the subspace of all non-negative and symmet-

ric operators in L(H).

An operator A ∈ L(H) is called an Hilbert-Schmidt operator if there exists an or-

thonormal basis {ei}i∈N of H such that

∞
∑

i=1

‖Aei‖2
H < ∞.

The subspace of Hilbert-Schmidt operators, denoted by L2(H), is a Hilbert space, en-

dowed with the scalar product

〈A, B〉L2(H) =

∞
∑

i=1

〈Aei, Bei〉H .
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As know n, for every B ∈ L+(H) there exists a unique C ∈ L(H), denoted by 
√

B

such that C2 = B. Thus, for any A ∈ L(H) we can define

|A| :=
√

A�A.

We recall that an operator A ∈ L(H) is compact if and only if |A| is compact. Moreover, 

if A is a symmetric compact operator, then there exists an orthonormal basis {ei}i∈N of 

H and a sequence {αi}i∈N converging to zero such that Aei = αiei, for all i ∈ N. With 

these notations, we say that a compact operator A ∈ L(H) is nuclear or trace-class if 

there exists an orthonormal basis of H consisting of eigenvectors of |A| corresponding to 

the eigenvalues {αi}i∈N , such that

∞
∑

i=1

αi < ∞.

In particular, if the operator A is symmetric, it is nuclear if and only if there exists an 

orthonormal basis of H consisting of eigenvectors of A corresponding to the eigenvalues 

{αi}i∈N , such that

∞
∑

i=1

|αi| < ∞.

We denote by L1(H) the set of nuclear operators.

It is possible to prove that for every A ∈ L1(H) the series

TrA :=

∞
∑

i=1

〈Aei, ei〉H

does not depend on the choice of the orthonormal basis {ei}i∈N . Moreover, a symmetric 

operator A belongs to L1(H) if and only if the series above converges absolutely for 

every orthonormal basis {ei}i∈N . The space L1(H) is a Banach space, endowed with the 

norm

‖A‖L1(H) = Tr |A|,

and

|TrA| ≤ ‖A‖L1(H). (2.1)

It is possible to prove that L1(H) ⊂ L2(H) ⊂ L(H) with

‖A‖L(H) ≤ ‖A‖L2(H) ≤ ‖A‖L1(H),
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and for j = 1, 2 it holds

‖AB‖Lj(H) ≤ ‖A‖Lj(H)‖B‖L(H), ‖AB‖Lj(H) ≤ ‖B‖Lj(H)‖A‖L(H).

Moreover, if A, B ∈ L2(H), then AB ∈ L1(H), with

‖AB‖L1(H) ≤ ‖A‖L2(H)‖B‖L2(H).

Finally if E and K are arbitrary Banach spaces we denote by Ll(K; E) the space of 

l-linear bounded operators Kl → E. When l = 1 and E = K we just denote Ll(K; E)

by L(K). Finally when K is an Hilbert space and E = R we identify L1(K; R) with K

and L2(K; R) with L(K).

2.2. Functional spaces

If E is an arbitrary Banach space, endowed with the norm ‖ · ‖E , we denote by 

Bb(H; E) the space of Borel and bounded functions ϕ : H → E. Bb(H; E) is a Banach 

space, endowed with the sup-norm

‖ϕ‖0 = sup
x∈H

‖ϕ(x)‖E .

Moreover, we denote by Cb(H; E) the closed subspace of uniformly continuous and 

bounded functions.

For every integer n ≥ 1, we denote by Cn
b (H; E) the space of all functions 

ϕ ∈ Cb(H; E) which are n-times Fréchet differentiable, with uniformly continuous and 

bounded Fréchet derivatives Dlϕ : H → Ll(H; E) for all l ≤ n. We have that Cn
b (H; E)

is a Banach space, endowed with the norm

‖ϕ‖n = ‖ϕ‖0 +

n
∑

l=1

‖Dlϕ‖0.

Next, for every ϑ ∈ (0, 1) we denote by Cϑ
b (H; E) the space of all functions ϕ ∈ Cb(H; E)

such that

[ϕ]ϑ := sup
x,y∈H

x �=y

‖ϕ(x) − ϕ(y)‖E

‖x − y‖ϑ
H

< ∞.

Cϑ
b (H; E) is a Banach space, endowed with the norm

‖ϕ‖ϑ = ‖ϕ‖0 + [ϕ]ϑ.

Finally, for every integer n ∈ N and ϑ ∈ (0, 1), we denote by Cn+ϑ
b (H; E) the space of 

all functions ϕ ∈ Cn
b (H; E) such that
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[Dnϕ]ϑ := sup
x,y∈H

x�=y

‖Dnϕ(x) − Dnϕ(y)‖Ln(H;E)

‖x − y‖ϑ
H

< ∞.

Cn+ϑ
b (H; E) is a Banach space, endowed with the norm

‖ϕ‖n+ϑ = ‖ϕ‖0 +
n
∑

l=1

‖Dlϕ‖0 + [Dnϕ]ϑ = ‖ϕ‖n + [Dnϕ]ϑ.

Notice that in case E = R, we simply write Bb(H) instead of Bb(H; E), and for every 

α ≥ 0 we write Cα
b (H) instead of Cα

b (H; R).

Now, we want to see how classical interpolatory estimates for functions defined on Rn

are still valid for functions defined on the infinite dimensional Hilbert space H. To this 

purpose, we recall that, as shown in [6, Theorem 2.3.5], for every 0 ≤ α < ³ < ´ there 

exists a constant c = c(α, ³, ́ ) > 0 such that for every ϕ ∈ Cγ
b (H)

‖ϕ‖β ≤ c ‖ϕ‖
γ−β
γ−α
α ‖ϕ‖

β−α
γ−α
γ . (2.2)

However, in what follows we will need the following additional interpolatory estimates.

Lemma 2.1. Let us fix ϑ ∈ (0, 1). Then, for every ϕ ∈ C1
b (H) we have

[ϕ]ϑ ≤ c1,ϑ ‖ϕ‖1−ϑ
0 ‖Dϕ‖ϑ

0 , (2.3)

and, for every ρ ∈ (0, ϑ)

[ϕ]ϑ ≤ [ϕ]
1−ϑ
1−ρ
ρ ‖Dϕ‖

ϑ−ρ
1−ρ

0 . (2.4)

Moreover, for every ϕ ∈ C2+ϑ
b (H) we have

‖D2ϕ‖0 ≤ c2,ϑ ‖Dϕ‖
ϑ

1+ϑ

0 [D2ϕ]
1

1+ϑ

ϑ , (2.5)

and

‖Dϕ‖0 ≤ c3,ϑ ‖ϕ‖
1+ϑ
2+ϑ

0 [D2ϕ]
1

2+ϑ

ϑ . (2.6)

Proof. Let us fix ϕ ∈ C1
b (H) and x, y ∈ H. Then, for every ϑ ∈ (0, 1) we have

|ϕ(x + y) − ϕ(x)| ≤ 2 ‖ϕ‖1−ϑ
0

∣

∣

∣

∣

∣

∣

1
∫

0

〈Dϕ(x + λy), y〉H dλ

∣

∣

∣

∣

∣

∣

ϑ

≤ 2 ‖ϕ‖1−ϑ
0 ‖Dϕ‖ϑ

0 ‖y‖ϑ
H ,

so that (2.3) follows. In an analogous way we deduce (2.4), since
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|ϕ(x + y) − ϕ(x)| ≤ [ϕ]
1−ϑ
1−ρ
ρ

∣

∣

∣

∣

∣

∣

1
∫

0

〈Dϕ(x + λy), y〉H dλ

∣

∣

∣

∣

∣

∣

ϑ−ρ
1−ρ

‖y‖
ρ(1−ϑ)

1−ρ

H .

Now, if we fix ϕ ∈ C2+ϑ
b (H), for every μ > 0 and x, z ∈ H, with ‖z‖H = 1, we have

ϕ(x + μz) = ϕ(x) + μ 〈Dϕ(x), z〉H +
μ2

2
〈D2ϕ(x)z, z〉H

+ μ2

1
∫

0

(1 − r)〈[D2ϕ(x + rμz) − D2ϕ(x)]z, z〉H dr.

(2.7)

By proceeding as in [6, proof of Theorem 2.3.5], we use (2.7) to prove (2.5). Actually, 

thanks to (2.7) we have

μ2

2

∣

∣〈D2ϕ(x)z, z〉H

∣

∣ ≤ |ϕ(x + μz) − ϕ(x) − μ 〈Dϕ(x), z〉H |

+ μ2+ϑ[D2ϕ]ϑ

1
∫

0

(1 − r)rϑ dr,

so that

‖D2ϕ‖0 ≤ 2

μ
‖Dϕ‖0 + cϑ μϑ [D2ϕ]ϑ, μ > 0.

If we take the minimum over μ > 0, we get (2.5).

Finally, by using again (2.7), we have

μ |〈Dϕ(x), z〉H | ≤ |ϕ(x + μz) − ϕ(x)|+ μ2

2

∣

∣〈D2ϕ(x)z, z〉H

∣

∣+μ2+ϑ[D2ϕ]ϑ

1
∫

0

(1−r)rϑ dr,

so that, in view of (2.5), we get

‖Dϕ‖0 ≤ 2

μ
‖ϕ‖0 +

c2,ϑμ

2
‖Dϕ‖

ϑ
1+ϑ

0 [D2ϕ]
1

1+ϑ

ϑ + cϑμ1+ϑ[D2ϕ]ϑ

≤ 2

μ
‖ϕ‖0 +

1

2
‖Dϕ‖0 + cϑμ1+ϑ[D2ϕ]ϑ.

This implies that

‖Dϕ‖0 ≤ 4

μ
‖ϕ‖0 + cϑμ1+ϑ[D2ϕ]ϑ, μ > 0,

and if we minimize once again with respect to μ > 0 we obtain (2.6). �
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Remark 2.2. As a consequence of (2.3), (2.5) and (2.6), we have that for every ϑ ∈ (0, 1)

there exists some cϑ > 0 such that for every ϕ ∈ C2+ϑ
b (H)

[ϕ]ϑ ‖D2ϕ‖0 ≤ cϑ ‖ϕ‖0 [D2ϕ]ϑ. (2.8)

Indeed, from (2.5) and (2.6), we have

‖D2ϕ‖0 ≤ c2,ϑ

(

c3,ϑ ‖ϕ‖
1+ϑ
2+ϑ

0 [D2ϕ]
1

2+ϑ

ϑ

)
ϑ

1+ϑ

[D2ϕ]
1

1+ϑ

ϑ ≤ c2,ϑ c
1

1+ϑ

3,ϑ ‖ϕ‖
ϑ

2+ϑ

0 [D2ϕ]
2

2+ϑ

ϑ .

(2.9)

Moreover, thanks to (2.3) and (2.6) we have

[ϕ]ϑ ≤ c1,ϑ ‖ϕ‖1−ϑ
0

(

c3,ϑ ‖ϕ‖
1+ϑ
2+ϑ

0 [D2ϕ]
1

2+ϑ

ϑ

)ϑ

= c1,ϑ cϑ
3,ϑ ‖ϕ‖

2
2+ϑ

0 [D2ϕ]
ϑ

2+ϑ

ϑ .

Therefore, if we combine together this last inequality with (2.9), we obtain (2.8).

2.3. The Ornstein-Uhlenbeck semigroup

By following [6, Chapter 6], we recall here some results about the Ornstein-Uhlenbeck 

semigroup and the associated Kolmogorov equation.

Let A : D(A) ⊂ H → H be the generator of an asymptotically stable C0-semigroup 

etA. We assume that there exist M, ω > 0 such that

‖etA‖L(H) ≤ Me−ωt.

Moreover let Q be an operator in L+(H). For every t ≥ 0 we define

Qt :=

t
∫

0

esAQesA�

ds,

and we assume that Qt ∈ L1(H), for every t ≥ 0. Thus, we can introduce the centered 

Gaussian measure NQt
defined on H with covariance Qt, and we can define

Rtϕ(x) :=

∫

H

ϕ(etAx + y) NQt
(dy), x ∈ H, t ≥ 0, (2.10)

for every ϕ in Bb(H). Rt is the Ornstein-Uhlenbeck semigroup associated with A and Q. 

In what follows, we assume that

etA(H) ⊂ Q
1/2
t (H), t > 0, (2.11)

and we define
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Λt := Q
−1/2
t etA, t > 0,

where Q
−1/2
t is the left pseudo-inverse of Q

1/2
t .

As shown e.g. in [6, Theorem 6.2.2], as a consequence of assumption (2.11) we have 

that Rtϕ ∈ C∞
b (H), for every ϕ ∈ Bb(H) and t > 0, and for every n ∈ N ∪ {0} there 

exists some cn > 0 such that

‖DnRtϕ‖0 ≤ cn ‖Λt‖n
L(H) ‖ϕ‖0

Moreover, if we fix α ∈ (0, 1) and assume ϕ ∈ Cα
b (H) we have

[DnRtϕ]α ≤ cn ‖Λt‖n
L(H) ‖etA‖α

L(H) [ϕ]α, (2.12)

so that we conclude that for all α ∈ [0, 1) and ϕ ∈ Cα
b (H)

‖DnRtϕ‖α ≤ cn ‖Λt‖n
L(H) ‖ϕ‖t,α, t > 0, (2.13)

where, for every t ≥ 0 and α ∈ (0, 1),

‖ϕ‖t,α :=
(

‖ϕ‖0 + e−ωαt [ϕ]α
)

. (2.14)

For every n ∈ N ∪ {0} and 0 ≤ α ≤ ³ < 1 and for every ϕ ∈ Cβ
b (H) and t > 0 we 

have, by the interpolation inequality (2.2) applied to the function DnRtφ with constants 

respectively ³, 1 + α, 1 + ³:

‖DnRtϕ‖1+α ≤ ‖DnRtϕ‖β−α
β ‖DnRtϕ‖1−(β−α)

1+β

= ‖DnRtϕ‖β−α
β

(

‖DnRtϕ‖0 + ‖Dn+1Rtϕ‖β

)1−(β−α)
.

Hence, thanks to (2.13), we get

‖DnRtϕ‖1+α

≤ c β−α
n ‖Λt‖n(β−α)

L(H) ‖ϕ‖β−α
t,β

(

cn ‖Λt‖n
L(H) ‖ϕ‖0 + cn+1 ‖Λt‖n+1

L(H)‖ϕ‖t,β

)1−(β−α)

≤ cα,β,n ‖ϕ‖t,β

(

‖Λt‖n
L(H) + ‖Λt‖n+1−(β−α)

L(H)

)

.

In particular, recalling that ‖Dψ‖α ≤ ‖ψ‖α+1, ψ ∈ C1+α, and DnRtφ = DDn−1Rtφ

this allows to conclude that for every n ∈ N and 0 ≤ α ≤ ³<1 and for every ϕ ∈ Cβ
b (H)

‖DnRtϕ‖α ≤ cα,β,n

(

‖Λt‖n−1
L(H) + ‖Λt‖n−(β−α)

L(H)

)

‖ϕ‖t,β . (2.15)

Next, we recall that in [6, Proposition 6.2.9] it is shown that for every ϕ ∈ C1
b (H) and 

x ∈ H
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Tr [QD2Rtϕ(x)] =

∫

H

〈Q−1/2
t y, ΛtQetA�

Dϕ(etAx + y)〉H NQt
(dy),

so that, if we assume that

ΛtQetA� ∈ L2(H), (2.16)

we have

sup
x∈H

‖QD2Rtϕ(x)‖L1(H) ≤ ‖ΛtQetA�‖L2(H) ‖Dϕ‖0, t > 0.

Therefore, since QD2Rtφ = QD2Rt/2(Rt/2(φ)), (2.15) allows to conclude that for every 

ϕ ∈ Cβ
b (H)

sup
x∈H

‖QD2Rtϕ(x)‖L1(H) ≤ c ‖Λt/2QetA�/2‖L2(H)

(

1 + ‖Λt/2‖1−β
L(H)

)

‖ϕ‖β , t > 0.

(2.17)

Moreover, we recall that in [6, Proposition 6.2.5] it is shown that if the operator ΛtA

has a continuous extension ΛtA to H, for every t > 0, then for every ϕ ∈ Bb(H) and 

x ∈ H

DRtϕ(x) ∈ D(A�), ‖A�DRtϕ‖0 ≤ ‖ΛtA‖L(H) ‖ϕ‖0, t > 0. (2.18)

Now, we introduce the parabolic equation in H

Dtu(t, x) =
1

2
Tr
[

QD2
xu(t, x)

]

+ 〈x, A�Dxu(t, x)〉H , u(0, x) = ϕ(x). (2.19)

Definition 1. A function u : [0, +∞) × H → R is a classical solution of problem (2.19) if

1. u is continuous in [0, +∞) × H and u(0, ·) = ϕ.

2. u(t, ·) ∈ C2
b (H), for all t > 0, and QD2

xu(t, x) ∈ L1(H), for all t > 0 and x ∈ H.

3. Dxu(t, x) ∈ D(A�), for all t > 0 and x ∈ H.

4. u(·, x) is differentiable in (0, +∞) for every x ∈ H and u satisfies equation (2.19).

In [6, Theorem 6.2.4] it is shown that if we assume conditions (2.11) and (2.16) and we 

assume that the operator ΛtA has a continuous extension to H, then for every ϕ ∈ Bb(H)

the function

u(t, x) = Rtϕ(x)

is the unique classical solution of equation (2.19).
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3. Assumptions and main results

3.1. Assumptions

In what follows, we shall make the following hypotheses.

Hypothesis 1.

(1) The mapping σ : H × R → L(H) is Lipschitz continuous and there exist an operator 

Q ∈ L+(H), a continuous mapping f : H × R → L1(H) and a constant δ > 0 such 

that

σ�σ(x, r) = Q + δ f(x, r), x ∈ H, r ∈ R. (3.1)

(2) For every fixed x ∈ H, the function f(x, ·) : R → L1(H) is differentiable. Both f

and ∂rf are Lipschitz continuous in both variables, uniformly with respect to the 

other. Moreover

sup
x∈H

‖f(x, r)‖L1(H) ≤ c (1 + |r|) , r ∈ R. (3.2)

Remark 3.1. (1) Let H = L2(O), for some smooth and bounded domain O ⊂ R
d, with 

d ≥ 1. Let {ei}i∈N be an orthonormal basis of H and let {λi}i∈N be a sequence of 

non-negative real numbers. We assume that ei ∈ L∞(O), for every i ∈ N, and

∞
∑

i=1

λi ‖ei‖L∞(O) < ∞. (3.3)

For every x, y ∈ H and r ∈ R, we define

[f(x, r)y](ξ) =

∞
∑

i=1

fi(x(ξ), r)λi〈y, ei〉Hei(ξ), ξ ∈ O,

for some continuous functions fi : R × R → R such that fi(s, ·) : R → R is differentiable, 

for every s ∈ R and i ∈ N. We assume that both fi and ∂rfi are Lipschitz continuous in 

both variables, uniformly with respect to the other variable, and uniformly with respect 

to i ∈ N. Moreover, we assume that

sup
i∈N

sup
s∈R

|fi(s, r)| ≤ c (1 + |r|) , r ∈ R. (3.4)

With this choice of H and f , we have that condition 2 in Hypothesis 1 holds.

Indeed, since fi(·, r) : R → R is Lipschitz continuous, uniformly with respect to r ∈ R

and i ∈ N, for every x, y ∈ H and r ∈ R we have
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‖f(x, r) − f(y, r)‖L1(H)

≤
∞
∑

i=1

|〈[f(x, r) − f(y, r)] ei, ei〉H |≤
∞
∑

i=1

λi |〈[fi(x(·), r) − fi(y(·), r)] ei, ei〉H |

≤
∞
∑

i=1

‖fi(x(·), r) − fi(y(·), r)‖H‖ei‖L∞(O)λi ≤ c ‖x − y‖H

∞
∑

i=1

λi‖ei‖L∞(O).

In particular, thanks to (3.3), we can conclude that f(·, r) : H → L1(H) is Lipschitz con-

tinuous, uniformly with respect to r ∈ R. Moreover, thanks to (3.4), the same argument 

also yields (3.2). In view of our assumptions, the same is true for ∂rf .

The Lipschitz continuity of f(x, ·) and ∂rf(x, ·) : R → L1(H) with respect to r, 

uniform with respect to x ∈ H, is proved in a similar way. However, in this case (3.3) is 

not required and we only need the weaker condition

∞
∑

i=1

λi < ∞.

(2) In case H is an arbitrary Hilbert space, we fix T ∈ L1(H) and λ : H × R → R

and we define

f(x, r) := λ(x, r)T, (x, r) ∈ H × R.

If we assume that λ and ∂rλ are Lipschitz continuous in both variables, uniformly with 

respect to the other, then Hypothesis 1 2. is satisfied.

Now, we see some consequences of Hypothesis 1.

Lemma 3.2. For any function ϕ : H → R we define

F (ϕ)(x) = f(x, ϕ(x)), x ∈ H. (3.5)

Then, under Hypothesis 1 we have that F maps Cϑ
b (H) into Cϑ

b (H; L1(H)) and for every 

ϕ ∈ Cϑ
b (H)

‖F (ϕ)‖ϑ ≤ c (1 + ‖ϕ‖ϑ) . (3.6)

Moreover for every ϕ1, ϕ2 ∈ Cϑ
b (H) it holds

‖F (ϕ1) − F (ϕ2)‖ϑ ≤ c (1 + ‖ϕ1‖ϑ + ‖ϕ2‖ϑ) ‖ϕ1 − ϕ2‖ϑ. (3.7)

Proof. Due to (3.2), if ϕ ∈ Cϑ
b (H) we have

‖F (ϕ)‖0 ≤ sup
x∈H

‖f(x, ϕ(x))‖L1(H) ≤ c (1 + ‖ϕ‖0) . (3.8)
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Moreover, for every x, y ∈ H

‖f(x, ϕ(x)) − f(y, ϕ(y))‖L1(H)

≤ ‖f(x, ϕ(x)) − f(y, ϕ(x))‖ϑ
L1(H) ‖f(x, ϕ(x)) − f(y, ϕ(x))‖1−ϑ

L1(H)

+‖f(y, ϕ(x)) − f(y, ϕ(y))‖L1(H) ≤ c ‖x − y‖ϑ
H

(

1 + ‖ϕ‖1−ϑ
0

)

+ c |ϕ(x) − ϕ(y)|
≤ c ‖x − y‖ϑ

H

(

1 + ‖ϕ‖1−ϑ
0 + [ϕ]ϑ

)

≤ c ‖x − y‖ϑ
H (1 + ‖ϕ‖0 + [ϕ]ϑ) ,

so that

[F (ϕ)]ϑ ≤ c (1 + ‖ϕ‖0 + [ϕ]ϑ) . (3.9)

This, together with (3.8) allows to conclude that F (ϕ) ∈ Cϑ
b (H) and (3.6) holds.

Concerning (3.7), for every ϕ1, ϕ2 ∈ Cϑ
b (H) we have

‖F (ϕ1) − F (ϕ2)‖0 = sup
x∈H

‖f(x, ϕ1(x)) − f(x, ϕ2(x))‖L1(H) ≤ c ‖ϕ1 − ϕ2‖0. (3.10)

Moreover, for every x, y ∈ H we have

(f(x, ϕ1(x)) − f(x, ϕ2(x))) − (f(y, ϕ1(y)) − f(y, ϕ2(y)))

=

1
∫

0

[´(sϕ1 + (1 − s)ϕ2)(x)(ϕ1 − ϕ2)(x) − ´(sϕ1 + (1 − s)ϕ2)(y)(ϕ1 − ϕ2)(y)] ds,

=

1
∫

0

´(sϕ1 + (1 − s)ϕ2)(x) [(ϕ1 − ϕ2)(x) − (ϕ1 − ϕ2)(y)] ds

+

1
∫

0

[´(sϕ1 + (1 − s)ϕ2)(x) − ´(sϕ1 + (1 − s)ϕ2)(y)] (ϕ1 − ϕ2)(y) ds,

where we have defined

´(ϕ)(x) = ∂rf(x, ϕ(x)), x ∈ H.

This implies that:

||(f(x, ϕ1(x)) − f(x, ϕ2(x))) − (f(y, ϕ1(y)) − f(y, ϕ2(y)))||L1(H)

≤ |x − y|θ
1
∫

0

[

‖´(sϕ1 + (1 − s)ϕ2)‖0[ϕ1 − ϕ2]θ + [´(sϕ1 + (1 − s)ϕ2]θ ‖ϕ1 − ϕ2‖0

]

ds

and consequently that:
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[f(·, ϕ1) − f(·, ϕ2)]ϑ ≤
1
∫

0

‖´(sϕ1 + (1 − s)ϕ2)‖ϑ ds ‖ϕ1 − ϕ2‖ϑ.

Since, we are assuming that ∂rf , like f , is Lipschitz continuous with respect to each 

variable, uniformly with respect to the other, and is clearly uniformly bounded, by using 

the same arguments we have used to prove (3.8) and (3.9), we have

‖´(sϕ1 + (1 − s)ϕ2)‖ϑ ≤ c (1 + s ‖ϕ1‖ϑ + (1 − s) ‖ϕ2‖ϑ) ,

and hence

[F (ϕ1) − F (ϕ2)]ϑ ≤ c (1 + ‖ϕ1‖ϑ + ‖ϕ2‖ϑ) ‖ϕ1 − ϕ2‖ϑ.

This, together with (3.10), implies (3.7). �

Hypothesis 2.

(1) The operator A : D(A) ⊂ H → H generates a C0-semigroup etA and there exist 

M, ω > 0 such that

‖etA‖L(H) ≤ Me−ωt. (3.11)

(2) If Q is the operator introduced in Hypothesis 1 and if we define

Qt :=

t
∫

0

esAQesA�

ds, t ≥ 0,

we have that Qt ∈ L+
1 (H), for every t ≥ 0.

(3) For every t > 0, we have

etA(H) ⊂ Q
1/2
t (H). (3.12)

(4) If we define

Λt := Q
−1/2
t etA, t > 0,

(see the discussion after (2.11)) there exists some λ > 0 such that

‖Λt‖L(H) ≤ c (t ∧ 1)−1/2e−λt, t > 0. (3.13)

(5) For every t > 0 we have that ΛtQetA� ∈ L2(H) and for every ϑ ∈ (0, 1) there exist 

³ϑ < 1 and αϑ > 0 such that

κϑ(t) := ‖ΛtQetA�‖L2(H)

(

‖Λt‖1−ϑ
L(H) + 1

)

≤ c (t ∧ 1)−βϑe−αϑt, t > 0. (3.14)
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Hypothesis 3. For every (x, r) ∈ H × R and t > 0 we have

etAσ(x, r) ∈ L2(H).

Moreover,

‖etAσ(x, r)‖L2(H) ≤ c (t ∧ 1)− 1
4 (1 + ‖x‖H + |r|) , t > 0, (3.15)

and for every (x, r), (y, s) ∈ H × R

‖etAσ(x, r) − etAσ(y, s)‖L2(H) ≤ c (t ∧ 1)− 1
4 (‖x − y‖H + |r − s|) , t > 0. (3.16)

Remark 3.3. Let {ei}i∈N be an orthonormal basis in H and assume that Aei = −αiei

and Qei = ´i ei, for every i ∈ N, with αi, ´i > 0, and αi ↑ +∞, as i → ∞. By proceeding 

as in [6, Example 6.2.11], we have that

Qtei =
´i

2αi

(

1 − e−2αit
)

ei, i ∈ N,

so that Qt ∈ L1(H) if and only if

∞
∑

i=1

´i

αi
< ∞. (3.17)

Moreover,

Λtei =

(

2 αit e−αit

´i (1 − e−2αit)

)1/2

t−1/2e− αi
2 tei, i ∈ N.

In particular, if ´i ≥ ´0 > 0, we have

‖Λt‖L(H) ≤ c t−1/2e− α1
2 t, t > 0,

so that (3.13) holds. Furthermore,

‖ΛtQetA�‖2
L2(H) = 2

∞
∑

i=1

αi ´i e−2αit

e2αit − 1
≤ c t−1e−2α1t. (3.18)

Moreover if αi ∼ ip for some p > 0 then

‖etA‖2
L2(H) =

∞
∑

i=1

e−2ipt ∼ t−1/p. (3.19)

Thus (3.16) hold whenever p ≥ 2 and σ is Lipschitz. Moreover, (3.15) follows since
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sup
t≥0

‖etAσ(0, 0)‖2
L2(H) < ∞.

In the special case when A is the realization of the Laplace operator in an interval, 

endowed with Dirichlet boundary conditions, we have that αi ∼ i2 and (3.17) is satisfied, 

for every choice of Q ∈ L(H). If we assume that Q = I, we have that (3.13) holds. 

Moreover, thanks to (3.18) we have

‖ΛtQetA�‖L2(H)

(

‖Λt‖1−ϑ
L(H) + 1

)

≤ c t− 1
2 e−α1t

(

t− 1−ϑ
2 e− α1(1−ϑ)t

2 + 1
)

≤ c (t ∧ 1)−(1− ϑ
2 )e− α1

2 t,

and Condition (5) in Hypothesis 2 holds for every ϑ ∈ (0, 1). Also notice that in this 

case Hypothesis 3 is satisfied, due to (3.19) with p = 2.

Hypothesis 4. The mapping b : H → H is Lipschitz continuous and bounded.

3.2. Main results

As we have done in Section 2 for the linear Kolmogorov equation (2.19), we introduce 

here the notion of classical solution for the quasi-linear problem

§

¨

©

Dtuε(t, x) =
ε

2
Tr
[

σ�σ(x, uε(t, x))D2
xuε(t, x)

]

+ 〈Ax + b(x), Duε(t, x)〉H , x ∈ D(A),

uε(0, x) = g(x), x ∈ H.

(3.20)

We recall, see (3.1), that the above equation depends on parameter δ and can be rewritten 

as:

§

⎪

⎪

⎪

⎪

¨

⎪

⎪

⎪

⎪

©

Dtuε(t, x) =
ε

2
Tr
[

(Q + δf(x, uε(t, x)))D2
xuε(t, x)

]

+ 〈Ax + b(x), Duε(t, x)〉H , x ∈ D(A),

uε(0, x) = g(x), x ∈ H.

Definition 2. A function uε : [0, +∞) × H → R is a classical solution of problem (3.20)

if the following conditions are satisfied.

1. It is continuous in [0, +∞) × H and uε(0, ·) = g.

2. uε(t, ·) ∈ C2
b (H), for all t > 0, and QD2

xuε(t, x) ∈ L1(H), for all (t, x) ∈ (0, +∞) ×H.

3. uε(·, x) is differentiable in (0, +∞), for every x ∈ D(A).

4. It satisfies equation (3.20), for every (t, x) ∈ (0, +∞) × D(A).
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In what follows, for every ε ∈ (0, 1), 0 < ϑ < η < 1, � ∈ (0, 1/2) and T > 0, 

we denote by Cε,
,η((0, T ]; C2+ϑ
b (H)) the space of all functions u ∈ C([0, T ]; Cη

b (H)) ∩
C((0, T ]; C2+ϑ

b (H)) such that

‖u‖ε,
,η,ϑ,T := sup
t∈(0,T ]

(

‖u(t, ·)‖η + ε
(t ∧ 1)
‖Dxu(t, ·)‖ϑ + ε
+ 1
2 (t ∧ 1)
+ 1

2 ‖D2
xu(t, ·)‖ϑ

)

< ∞.

Theorem 3.4. Assume Hypotheses 1 to 4, and fix an arbitrary g ∈ Cη
b (H), for some 

η ∈ (1/2, 1). Moreover fix ϑ ∈ (0, η − 1/2) and we define

� =
1 − (η − ϑ)

2
. (3.21)

Then there exists δ̄ > 0 such that for every δ ≤ δ̄, ε ∈ (0, 1) and T > 0 there exists a 

unique classical solution uε ∈ Cε,
,η((0, T ]; C2+ϑ
b (H)) for equation (3.20).

Finally

‖uε‖ε,
,η,ϑ,T ≤ cε,δ ‖g‖η, ε ∈ (0, 1), (3.22)

for some constant cε,δ > 0 independent of T > 0.

Next, for every ε > 0, we fix arbitrary t > 0 and x ∈ H and we introduce the following 

stochastic PDE

§

⎪

⎪

⎪

⎪

¨

⎪

⎪

⎪

⎪

©

dX(s) = [AX(s) + b(X(s)) + σ(X(s), uε(t − s, X(s))) ϕ(s)] ds

+
√

ε σ(X(s), uε(t − s, X(s))) dWs,

X(0) = x.

(3.23)

Here Wt, t ≥ 0, is a cylindrical Wiener process on H, defined on the filtered probability 

space (Ω, F , {Ft}t≥0, P ), such that for every h, k ∈ H and t, s ≥ 0

E 〈Wt, h〉H〈Ws, k〉H = (t ∧ s) 〈h, k〉H ,

and ϕ is a predictable process in L2(Ω; L2(0, t; H)).

Definition 3. An adapted process Xt,x
ϕ,ε ∈ L2(Ω; C([0, t]; H)) is a mild solution for equation 

(3.23) if for every s ∈ [0, t]
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Xt,x
ϕ,ε(s) = esAx +

s
∫

0

e(s−r)Ab(Xt,x
ϕ,ε(r)) dr

+

s
∫

0

e(s−r)Aσ(Xt,x
ϕ,ε(r), uε(t − r, Xt,x

ϕ,ε(r))) ϕ(r) dr

+
√

ε

s
∫

0

e(s−r)Aσ(Xt,x
ϕ,ε(r), uε(t − r, Xt,x

ϕ,ε(r))) dWr.

(3.24)

Theorem 3.5. Suppose that Hypotheses 1 to 4 hold, and fix any g ∈ Cη
b (H), with η ∈

(1/2, 1), ε ∈ (0, 1) and δ ∈ [0, ̄δ), where δ̄ is the constant introduced in Theorem 3.4. 

Moreover, fix an arbitrary predictable process in L2(Ω; L2(0, T ; H)) such that

t
∫

0

‖ϕ(s)‖2
H ds ≤ M, P − a.s., (3.25)

for some M > 0. Then equation (3.23) admits a unique mild solution Xt,x
ϕ,ε ∈

L2(Ω; C([0, t]; H)), for every x ∈ H and t > 0.

In what follows, the solution of the uncontrolled version of equation (3.23), corre-

sponding to ϕ = 0, will be denoted by Xt,x
ε .

Once proved Theorem 3.5, we are interested in studying the limiting behavior of Xt,x
ε

as ε ↓ 0. More precisely, we want to prove that for every fixed t > 0 and x ∈ H the family 

{L(Xt,x
ε )}ε∈(0,1) satisfies a large deviation principle in the space C([0, t]; H) (with speed 

ε) with respect to a suitable action functional It,x that we will describe explicitly. For 

all definitions and details we refer e.g. to [8] and [11].

In order to state our result, we have to introduce some notations. First, we introduce 

the unperturbed problem

Z ′(s) = AZ(s) + b(Z(s)), Z(0) = y ∈ H. (3.26)

Since we are assuming that b : H → H is Lipschitz continuous, for every T > 0 and 

y ∈ H there exists a unique Zy ∈ C([0, T ]; H) such that

Zy(s) = esAy +

s
∫

0

e(s−r)Ab(Zy(r)) dr.

Next, for every x ∈ H, t > 0 and ϕ ∈ L2(0, t; H) we introduce the controlled problem

X ′(s) = AX(s) + b(X(s)) + σ(X(s), g(ZX(s)(t − s)))ϕ(s), X(0) = x. (3.27)
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In Section 8 we will see that under the same assumptions of Theorem 3.5, equation (3.27)

admits a unique mild solution Xt,x
ϕ ∈ C([0, t]; H). This will allow to state the last main 

result of this paper.

Theorem 3.6. In addition to the conditions assumed in Theorem 3.5, suppose that 

g : H → R is Lipschitz-continuous. Moreover, suppose that the semigroup etA is an-

alytic. Then, for every fixed t > 0 and x ∈ H the family {L(Xt,x
ε )}ε∈(0,1) satisfies a 

large deviation principle in the space C([0, t]; H), with speed ε, with respect to the action 

functional

It,x(X) =
1

2
inf

§

¨

©

t
∫

0

‖ϕ(s)‖2
H ds : X(s) = Xt,x

ϕ (s), s ∈ [0, t]

«

¬

­

, (3.28)

where Xt,x
ϕ is the unique mild solution of problem (3.27).

4. The well-posedness of the stochastic PDE (3.23)

In this section we will, for the moment, assume that, for some T > 0, η ∈
(1/2, 1) and ϑ ∈ (0, η − 1/2), � < 1/4, and ε ∈ (0, 1) there exists a solution 

uε ∈ Cε,
,η((0, T ]; C2+ϑ
b (H)) for equation (3.20). We will show how this allows to prove 

Theorem 3.5 for every t ∈ (0, T ].

We fix t ∈ (0, T ], a predictable process ϕ ∈ L2(Ω; L2(0, t; H)) satisfying (3.25), a 

regular enough function ψ defined on [0, t] × H and we consider the stochastic equation 

in [0, t]

§

⎪

⎪

⎪

⎪

¨

⎪

⎪

⎪

⎪

©

dX(s) = [AX(s) + b(X(s)) + σ(X(s), ψ(t − s, X(s)))ϕ(s)] ds

+
√

ε σ(X(s), ψ(t − s, X(s))) dWs,

X(0) = x.

(4.1)

For every s ∈ [0, t] and x ∈ H, we define

Σt(s, x) := σ(x, ψ(t − s, x)). (4.2)

Definition 4. We say that a process X ∈ L2(Ω; C([0, t]; H)) is a mild solution of equation 

(4.1) if for all s ∈ [0, t] it holds:

X(s) := esAx +

s
∫

0

e(s−r)Ab(X(r)) ds +

s
∫

0

e(s−r)AΣt(r, X(r)) ϕ(r) dr

+
√

ε

s
∫

0

e(s−r)AΣt(r, X(r)) dWr.
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Theorem 4.1. Suppose that Hypotheses 1 to 4 hold. Fix η ∈ (1/2), ε ∈ (0, 1), ϑ ∈
(0, η − 1/2) and define � by (3.21). Moreover, fix an arbitrary predictable process 

ϕ ∈ L2(Ω; C([0, t]; H)) verifying (3.25) and function ψ ∈ Cε,
,η((0, T ]; C2+ϑ
b (H)). Then 

equation (3.23) admits a unique mild solution X ∈ L2(Ω; C([0, t]; H)), for every x ∈ H.

Proof. We start by noticing that a process X ∈ L2(Ω; C([0, t]; H)) is a mild solution of 

equation (4.1) if it is a fixed point of the mapping Λt,ε defined by

Λt,ε(X)(s) := esAx +

s
∫

0

e(s−r)Ab(X(r)) ds +

s
∫

0

e(s−r)AΣt(r, X(r)) ϕ(r) dr

+
√

ε

s
∫

0

e(s−r)AΣt(r, X(r)) dWr.

According to Hypothesis 3, for every τ > 0, s ∈ [0, t] and x, y ∈ H we have

‖eτA (Σt(s, x) − Σt(s, y)) ‖L2(H) ≤ c (τ ∧ 1)− 1
4 (‖x − y‖H + |ψ(t − s, x) − ψ(t − s, y)|) .

Since ψ ∈ Cε,
,η((0, T ]; C2+ϑ
b (H)), we have

|ψ(t − s, x) − ψ(t − s, y)|≤ ‖Dxψ(t − s, ·)‖0 ‖x − y‖H

≤ ε−
 ((t − s) ∧ 1)−
‖ψ‖ε,
,η,ϑ,T ‖x − y‖H ,

so that

‖eτA (Σt(s, x) − Σt(s, y)) ‖L2(H)

≤ c (τ ∧ 1)− 1
4

(

1 + ε−
((t − s) ∧ 1)−
‖ψ‖ε,
,η,ϑ,T

)

‖x − y‖H .
(4.3)

Now, for every ³ ≥ 0 we denote by Kβ,t(H) the Banach space of all H-valued pre-

dictable processes X such that

‖X‖2
Kβ,t(H) := sup

s∈[0,t]

e−βs
E ‖X(s)‖2

H < ∞.

In what follows, we need to show that Λt,ε maps the space Kβ,t(H) into itself and, for 

some ³ > 0, is a contraction. In fact, we are only going to prove the contraction property, 

as the proof that Λt,ε maps Kβ,t(H) into itself follows from analogous arguments.

If X1, X2 ∈ Kβ,t(H), in view of (4.3) and (3.25) we have

E

∥

∥

∥

∥

∥

∥

s
∫

0

e(s−r)A [Σt(r, X1(r)) − Σt(r, X2(r))] ϕ(r) dr

∥

∥

∥

∥

∥

∥

2

H
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≤ E

s
∫

0

∥

∥

∥
e(s−r)A [Σt(r, X1(r)) − Σt(r, X2(r))]

∥

∥

∥

2

L2(H)
dr

s
∫

0

‖ϕ(r)‖2
H dr

≤ cME

s
∫

0

((s − r) ∧ 1)− 1
2

(

1 + ε−2
((t − r) ∧ 1)−2
‖ψ‖2
ε,
,η,ϑ,T

)

‖X1(r) − X2(r)‖2
H dr

≤ cM ‖X1 − X2‖2
Kβ,t(H)

s
∫

0

((s − r) ∧ 1)− 1
2

(

1 + e−2
((t − r) ∧ 1)−2
‖ψ‖2
ε,
,η,ϑ,T

)

eβr dr.

Since we are assuming that � < 1/4, for every s ∈ [0, t]

s
∫

0

((s − r) ∧ 1)− 1
2

(

1 + e−2
((t − r) ∧ 1)−2
‖ψ‖2
ε,
,η,ϑ,T

)

e−β(s−r) dr ≤ cε,β,t(s),

for some continuous increasing function cε,β,t : [0, t] → [0, +∞) such that

lim
β→∞

sup
s∈[0,t]

cε,β,t(s) = 0.

Therefore, we pick ³1 = ³1(ε, t) > 0 such that

cM sup
s∈[0,t]

cε,β1,t(s) ≤ 1

6
,

we have

sup
s∈[0,t]

e−β1s
E

∥

∥

∥

∥

∥

∥

s
∫

0

e(s−r)A [Σt(r, X1(r)) − Σt(r, X2(r))] ϕ(r) dr

∥

∥

∥

∥

∥

∥

2

H

≤ 1

6
‖X1 −X2‖2

Kβ1,t(H).

Moreover by (4.3) with τ = s − r and s = r, we have:

E

∥

∥

∥

∥

∥

∥

s
∫

0

e(s−r)A [Σt(r, X1(r)) − Σt(r, X2(r))] dWr

∥

∥

∥

∥

∥

∥

2

H

≤ c

s
∫

0

((s − r) ∧ 1)− 1
2

(

1 + ε−2
((t − r) ∧ 1)−2
‖ψ‖2
ε,
,η,ϑ,T

)

E‖X1(r) − X2(r)‖2
H dr

≤ c ‖X1 − X2‖2
Kβ,t(H)

s
∫

0

((s − r) ∧ 1)− 1
2

(

1 + ε−2
((t − r) ∧ 1)−2
‖ψ‖2
ε,
,η,ϑ,T

)

eβr dr.

Then, by proceeding as above
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sup
s∈[0,t]

e−β1s
E

∥

∥

∥

∥

∥

∥

s
∫

0

e(s−r)A [Σt(r, X1(r)) − Σt(r, X2(r))] dWr

∥

∥

∥

∥

∥

∥

2

H

≤ 1

6
‖X1 − X2‖2

Kβ1,t(H).

Finally, due to the Lipschitz-continuity of b, we have that there exists ³2 > 0 such that

sup
s∈[0,t]

e−β2s
E

∥

∥

∥

∥

∥

∥

s
∫

0

e(s−r)A [b(X1(r)) − b(X2(r))] dr

∥

∥

∥

∥

∥

∥

2

H

≤ 1

6
‖X1 − X2‖2

Kβ2,t(H).

Therefore, if we take ³̄ := ³1 ∨ ³2, we have that Λt,ε is a contraction in Kβ̄,t(H) and its 

fixed point is the unique mild solution of equation (4.1).

Finally, by using a stochastic factorization argument, it is possible to prove that 

Xt,x
ϕ belongs to L2(Ω; C([0, t]; H)) (for all details about stochastic factorization see [7, 

Subsection 5.3.1]). �

Remark 4.2. If we still assume that, T > 0, η ∈ (1/2, 1) and ϑ ∈ (0, η − 1/2), � < 1/4, 

and ε ∈ (0, 1) but now we also suppose that uε ∈ Cε,
,η((0, T ]; C2+ϑ
b (H)) is a solution 

for equation (3.20) and we set ψ = uε in Theorem 4.1 then, for all t ∈ (0, T ], the process 

X provided Theorem 4.1 is the process Xt,x
ϕ,ε required in Theorem 3.5.

5. Local existence of mild solutions for the quasi-linear problem

In this section we will prove that the quasi-linear problem (3.20) admits a local mild 

solution, for every ε ∈ (0, 1).

In view of (3.1) and (3.5), problem (3.20) can be rewritten as

§

¨

©

Dtuε(t, x) = Lεuε(t, x) +
ε

2
Tr
[

δ F (uε)(t, x)D2
xuε(t, x)

]

+ 〈b(x), Duε(t, x)〉H ,

uε(0, x) = g(x), x ∈ H,

(5.1)

where Lε is the linear Kolmogorov operator

Lεϕ(x) =
ε

2
Tr
[

QD2
xϕ(x)

]

+ 〈Ax, Dxϕ(x)〉H .

As we have recalled in Subsection 2.3, see, in particular (2.18) and (2.19) for the 

definition of operator Lε, for every ϕ ∈ Bb(H) the unique classical solution of the linear 

problem

Dtvε(t, x) = Lεvε(t, x), vε(0, x) = ϕ(x),

is given by the Ornstein-Uhlenbeck semigroup
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vε(t, x) = Rε
tϕ(x) =

∫

H

ϕ(etAx + y)NεQt
(dy).

Before proceeding with the study of equation (5.1), we show how, in view of Hypoth-

esis 2, the properties of the Ornstein-Uhlenbeck semigroup described in Subsection 2.3

apply to the semigroup Rε
t .

Thanks to (3.11) and (3.13), inequality (2.13) gives for every n ∈ N∪{0} and θ ∈ (0, 1)

‖DnRε
tϕ‖θ ≤ cn,θ ε− n

2 (t ∧ 1)− n
2 e−λnt‖ϕ‖t,θ, t > 0, ε ∈ (0, 1), (5.2)

where

‖ϕ‖t,θ :=
(

‖ϕ‖0 + e−ωθt [ϕ]θ
)

.

Moreover, thanks again to (3.11) and (3.13), inequality (2.15) gives for every n ∈ N and 

0 ≤ θ ≤ ρ ≤ 1

‖DnRε
tϕ‖θ ≤ cn,θ,ρ ε− n−(ρ−θ)

2 (t ∧ 1)− n−(ρ−θ)
2 e−λnt‖ϕ‖t,ρ, t > 0, ε ∈ (0, 1). (5.3)

Finally,

‖Rε
tϕ‖0 ≤ ‖ϕ‖0, [Rε

tϕ]ρ ≤ e−ωρt[ϕ]ρ, ε > 0. (5.4)

By (2.4), with θ = α and ρ = ³, we have

[Rε
tϕ]α ≤ ‖DRε

tϕ‖
α−β
1−β

0 [Rε
tϕ]

1−α
1−β

β ,

so that, thanks to (5.3), with θ = 0, ρ = ³ and n = 1, and (5.4), with ρ = ³, we get

[Rε
tϕ]α ≤ cα,β ε− α−β

2 (t ∧ 1)− α−β
2 e−ωα,βt‖ϕ‖t,β , t > 0, ε ∈ (0, 1), (5.5)

for some ωα,β > 0. In particular, due to (5.4), this implies

‖Rε
tϕ‖α ≤ (cα,β + 1) ε− α−β

2 (t ∧ 1)− α−β
2 ‖ϕ‖t,β , t > 0, ε ∈ (0, 1). (5.6)

Now, we introduce the notion of mild solution for equation (3.20).

Definition 5. A function uε ∈ C([0, +∞); H) such that uε(t, ·) ∈ C2
b (H), for every t > 0, 

is a mild solution for problem (3.20) if for every (t, x) ∈ [0, +∞) × H

uε(t, x) = Rε
tg(x) +

t
∫

0

Rε
t−s

( ε

2
Tr
[

δF (uε(s, ·))D2
xuε(s, ·)

]

+ 〈b(·), Duε(s, ·)〉H

)

(x) ds.
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For every R > 0, η ∈ (1/2, 1), θ ∈ (0, η − 1/2), ρ ∈ (0, 1/4), T > 0 we define

Yε,R

,η,ϑ,T :=

{

u ∈ Cε,
,η((0, T ]; C2+ϑ
b (H)) : ‖u‖ε,
,η,ϑ,T ≤ R

}

,

and for every v ∈ Yε,R

,η,ϑ,T and δ > 0 we define

Γε,δ(v)(t, x) :=

t
∫

0

Rε
t−s´ε,δ(v, s)(x) ds, t ∈ [0, T ], x ∈ H,

where

´ε,δ(v, s)(x) :=
ε

2
Tr
[

δF (v(s, ·))(x)D2
xv(s, x)

]

+ 〈b(x), Dv(s, x)〉H .

In particular, uε is a mild solution for problem (3.20) if and only if

uε(t, x) = Rε
tg(x) + Γε,δ(uε)(t, x).

First, we investigate the dependence of ´ε,δ on v ∈ Yε,R

,η,ϑ,T .

Lemma 5.1. For every v ∈ Yε,R

,η,ϑ,T and δ > 0

‖´ε,δ(v, s)‖ϑ ≤ c ε
1
2 −
 δR (1 + R) (s ∧ 1)−(
+ 1

2 ) + c ε−
R(s ∧ 1)−
, s ∈ (0, T ]. (5.7)

Moreover, for every v1, v2 ∈ Yε,R

,η,ϑ,T and δ > 0

‖´ε,δ(v1, s) − ´ε,δ(v2, s)‖ϑ ≤ c ε
1
2 −
δ R(1 + R) (s ∧ 1)−(
+ 1

2 )‖v1(s, ·) − v2(s, ·)‖ϑ

+ c ε δ(1 + R) ‖D2
xv1(s, ·) − D2

xv2(s, ·)‖ϑ + c ‖Dxv1(s, ·) − Dxv2(s, ·)‖ϑ.
(5.8)

Proof. In view of (3.6) and Hypothesis 4, we have

‖´ε,δ(v, s)‖ϑ ≤ c ε δ ‖F (v(s, ·))‖ϑ ‖D2
xv(s, ·)‖ϑ + ‖b‖ϑ ‖Dxv(s, ·)‖ϑ

≤ c ε δ (1 + ‖v(s, ·)‖ϑ) ‖D2
xv(s, ·)‖ϑ + c ‖Dxv(s, ·)‖ϑ,

and since we are assuming that v ∈ Yε,R

,η,ϑ,T , this implies (5.7).

Next, if v1, v2 ∈ Yε,R

,η,ϑ,T and δ > 0 we have

‖´ε,δ(v1, s) − ´ε,δ(v2, s)‖ϑ ≤ c ε δ ‖F (v1(s, ·)) − F (v2(s, ·))‖ϑ ‖D2
xv1(s, ·)‖ϑ

+ c ε δ ‖F (v2(s, ·))‖ϑ ‖D2
xv1(s, ·) − D2

xv2(s, ·)‖ϑ + ‖b‖ϑ ‖Dxv1(s, ·) − Dxv2(s, ·)‖ϑ.

Thus, according to (3.6) and (3.7),
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‖´ε,δ(v1, s) − ´ε,δ(v2, s)‖ϑ

≤ c ε δ ‖v1(s, ·) − v2(s, ·)‖ϑ (1 + ‖v1(s, ·)‖ϑ + ‖v2(s, ·)‖ϑ) ‖D2
xv1(s, ·)‖ϑ

+ c ε δ (1 + ‖v2(s, ·)‖ϑ) ‖D2
xv1(s, ·) − D2

xv2(s, ·)‖ϑ + c ‖Dxv1(s, ·) − Dxv2(s, ·)‖ϑ.

Recalling that v1, v2 ∈ Yε,R

,η,ϑ,T , this implies (5.8). �

Remark 5.2. If for every fixed ε, δ > 0 we define

αε,δ(R, s) := ε
1
2 −
δR(1 + R)(s ∧ 1)−(
+ 1

2 ) + ε−
R(s ∧ 1)−
, s > 0, R > 0,

and

aε,δ(R, s) := ε
1
2 −
δ(1 + R)2(s ∧ 1)−(
+ 1

2 ) + ε−
(s ∧ 1)−
, s > 0, R > 0,

due (5.7) and (5.8) we have that for every v, v1, v2 ∈ Yε,R

,η,ϑ,T and s ∈ (0, T ]

‖´ε,δ(v, s)‖ϑ ≤ c αε,δ(R, s), (5.9)

and

‖´ε,δ(v1, s) − ´ε,δ(v2, s)‖ϑ ≤ c aε,δ(R, s) ‖v1 − v2‖ε,
,η,ϑ,T . (5.10)

Notice that for all ³ < 1 and μ > 0 and for all t ≥ 0

t
∫

0

((t − s) ∧ 1)−βe−μ(t−s)αε,δ(R, s) ds

≤ ε
1
2 −
δR(1 + R)

t
∫

0

((t − s) ∧ 1)−βe−μ(t−s)(s ∧ 1)−(
+ 1
2 ) ds

+ε−
R

t
∫

0

((t − s) ∧ 1)−βe−μ(t−s)(s ∧ 1)−
 ds,

and this implies that there exists some constant c > 0 only dependent on ³ and μ such 

that

t
∫

0

((t − s) ∧ 1)−βe−μ(t−s)αε,δ(R, s) ds ≤ c (t ∧ 1)
1
2 −(
+β)ε

1
2 −
λε,δ(R, t), (5.11)

where

λε,δ(R, t) := δR(1 + R) + ε− 1
2 R (t ∧ 1)

1
2 .
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To get the above we have observed that, when t ≥ 1 the right hand side of (5.11) reduces 

to

c ε
1
2 −

[

δR(1 + R) + ε− 1
2 R
]

and (5.11) follows since

αε,δ(R, s) ≤ ε
1
2 −
(s ∧ 1)−( 1

2 +
)
(

δR(1 + R) + ε− 1
2 R
)

,

and

sup
t≥1

t
∫

0

((t − s) ∧ 1)−βe−μ(t−s)(s ∧ 1)−( 1
2 +
) ds < ∞.

In the other case, that is when t < 1, we have (t − s) ∧ 1 = (t − s), s ∈ [0, t] and

t
∫

0

(t − s)−βe−μ(t−s)αε,δ(R, s) ds ≤ ε
1
2 −
δR(1 + R)

t
∫

0

(t − s)−βs−(
+ 1
2 ) ds

+ ε−
δR

t
∫

0

(t − s)−βs−
 ds

and

t
∫

0

(t − s)−βs−(
+ 1
2 ) ds ≤ ct−β−
+ 1

2 ,

t
∫

0

(t − s)−βs−
 ds ≤ ct−β−
+1

by a standard change of variable.

In an analogous way

t
∫

0

((t − s) ∧ 1)−βe−μ(t−s)aε,δ(R, s) ds ≤ c (t ∧ 1)
1
2 −(
+β)ε

1
2 −
lε,δ(R, t), (5.12)

where

lε,δ(R, t) := δ(1 + R)2 + ε− 1
2 (t ∧ 1)

1
2 .

Next we prove the following estimates for Γε,δ on Yε,R

,η,ϑ,T .

Lemma 5.3. For every v ∈ Yε,R

,η,ϑ,T and ε, δ ∈ (0, 1) it holds

‖Γε,δ(v)‖ε,
,η,ϑ,T ≤ c λε,δ(R, T )
[

ε
1−(η−ϑ)

2 −
 (T ∧ 1)
1−(η−ϑ)

2 −
 (T ∨ 1) + 1
]

. (5.13)
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Proof. Step 1. We have

‖Γε,δ(v)(t)‖η ≤ c ε
1−(η−ϑ)

2 −
λε,δ(R, t) (t ∧ 1)
1−(η−ϑ)

2 −
(t ∨ 1), t ∈ [0, T ]. (5.14)

Proof of Step 1. In view of (5.6), applied for ³ = ϑ and α = η, we have that, for every 

t ∈ [0, T ]:

‖Γε,δ(v)(t)‖η ≤
t
∫

0

‖Rε
t−s´ε,δ(v, s)‖η ds ≤ c ε− η−ϑ

2

t
∫

0

((t − s) ∧ 1)− η−ϑ
2 ‖´ε,δ(v, s)‖ϑ ds

≤ c ε− η−ϑ
2

t
∫

0

((t − s) ∧ 1)− η−ϑ
2 αε,δ(R, s) ds.

Then, by adapting (5.11) to the case μ = 0, we get

‖Γε,δ(v)(t)‖η ≤ c ε− η−ϑ
2 ε

1
2 −
λε,δ(R, t)(t ∧ 1)

1−(η−ϑ)
2 −
 (t ∨ 1),

and (5.14) follows.

Step 2. We have

(t ∧ 1)
 ‖DΓε,δ(v)(t)‖ϑ ≤ c ε−

[

δ R(1 + R) + ε− 1
2 R(t ∧ 1)

1
2

]

. (5.15)

Proof of Step 2. According to (5.2), we have that

t
∫

0

‖DRε
t−s´ε,δ(v, s)‖ϑ ds ≤ cε− 1

2

t
∫

0

((t − s) ∧ 1)− 1
2 e−λ(t−s)‖´ε,δ(v, s)‖ϑ ds.

Then, thanks to (5.9) and (5.11) we conclude

t
∫

0

‖DRε
t−s´ε,δ(v, s)‖ϑ ds ≤ c ε− 1

2 (t ∧ 1)−
ε
1
2 −
λε,δ(R, t),

and (5.15) follows.

Step 3. We have

(t ∧ 1)
+ 1
2 ‖D2Γε,δ(v)(t)‖ϑ ≤ c ε−( 1

2 +
)λε,δ(R, t). (5.16)

Proof of Step 3. By proceeding as in the proof of Step 2, we have, using (5.3) with 

n = 2, α = 0 and ³ = θ:
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‖D2Γε,δ(v)(t)‖0 ≤ cε−1+ ϑ
2

t
∫

0

((t − s) ∧ 1)−1+ ϑ
2 e−λ(t−s)αε,δ(R, s) ds

≤ c ε−1+ ϑ
2 ε

1
2 −
(t ∧ 1)−(
+ 1

2 )+ ϑ
2 λε,δ(R, t),

and this implies

(t ∧ 1)
+ 1
2 ‖D2Γε,δ(v)(t)‖0 ≤ c ε−( 1

2 +
)+ ϑ
2 λε,δ(R, t)(t ∧ 1)

ϑ
2 . (5.17)

Now, for every x, h ∈ H and t ∈ [0, T ], we have

(t ∧ 1)
+ 1
2 ‖D2Γε,δ(v)(t, x + h) − D2Γε,δ(v)(t, x)‖L(H) ≤ c ε−( 1

2 +
)+ ϑ
2 λε,δ(R, t) (t ∧ 1)

ϑ
2 .

Hence, if we assume that ‖h‖2
H > ε (t ∧ 1)/2 we get

(t∧1)
+ 1
2 ‖D2Γε,δ(v)(t, x+h)−D2Γε,δ(v)(t, x)‖L(H) ≤ c ε−( 1

2 +
)λε,δ(R, t) ‖h‖ϑ
H . (5.18)

When ‖h‖2
H ≤ ε (t ∧ 1)/2 we have

D2Γε,δ(v)(t, x) =

ε−1‖h‖2
H

∫

0

D2Rε
s´ε,δ(v, t − s)(x) ds +

t
∫

ε−1‖h‖2
H

D2Rε
s´ε,δ(v, t − s)(x) ds

=: aε,δ(h, t, x) + bε,δ(h, t, x).

Due to (5.3), from (5.9) we have to evaluate the Hölderianity

‖aε,δ(h, t, x + h) − aε,δ(h, t, x)‖L(H)

≤ c ε−1+ ϑ
2

ε−1‖h‖2
H

∫

0

(s ∧ 1)−1+ ϑ
2 e−2λs‖´ε,δ(v, t − s)‖ϑ ds

≤ c ε−1+ ϑ
2

ε−1‖h‖2
H

∫

0

(s ∧ 1)−1+ ϑ
2 e−λsαε,δ(R, t − s) ds

≤ c ε−( 1
2 +
)λε,δ(R, t) (t ∧ 1)−(
+ 1

2 ) ‖h‖ϑ
H .

(5.19)

To get the last inequality we have observed that,

ε−1||h||2
H

∫

0

(s ∧ 1)−1+ θ
2 e−λsαε,δ(R, t − s) ds
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≤ ε
1
2 −
δR(1 + R)

ε−1||h||2
H

∫

0

(s ∧ 1)−1+ θ
2 ((t − s) ∧ 1)−(
+ 1

2 )e−λs ds

+ε−
R

ε−1||h||2
H

∫

0

(s ∧ 1)−1+ θ
2 ((t − s) ∧ 1)−
e−λs ds

and recalling that ε−1‖h‖2
H ≤ (t ∧ 1)/2 ≤ t/2 and hence (t − s) ∧ 1 ≥ t/2 ∧ 1 we deduce 

that

ε−1‖h‖2
H

∫

0

(s ∧ 1)−1+ θ
2 e−λsαε,δ(R, t − s) ds ≤ c ε

1
2 −
− ϑ

2 λε,δ(R, t) (t ∧ 1)−(
+ 1
2 ) ‖h‖ϑ

H .

As for bε,δ(h, t, ·), we have

bε,δ(h, t, x + h) − bε,δ(h, t, x)

=

t
∫

ε−1‖h‖2
H

[

D2Rε
s´ε,δ(v, t − s)(x + h) − D2Rε

s´ε,δ(v, t − s)(x)
]

ds.

Hence, due again to (5.3), we have

‖bε,δ(h, t, x + h) − bε,δ(h, t, x)‖L(H)

≤
t
∫

ε−1‖h‖2
H

‖D2Rε
s´ε,δ(v, t − s)(x + h) − D2Rε

s´ε,δ(v, t − s)(x)‖L(H) ds

≤ c

t
∫

ε−1‖h‖2
H

‖Rε
s´ε,δ(v, t − s)‖3 ds ‖h‖H

≤ c ε− 3−ϑ
2 ε

1
2 −


t
∫

ε−1‖h‖2
H

(s ∧ 1)− 3−ϑ
2 e−3λs((t − s) ∧ 1)−(
+ 1

2 )λε,δ(R, t − s) ds ‖h‖H .

Since we are assuming ‖h‖2
H ≤ ε (t ∧ 1)/2, we have

t
∫

ε−1‖h‖2
H

(s ∧ 1)− 3−ϑ
2 e−3λs((t − s) ∧ 1)−(
+ 1

2 )) ds

=

t/2
∫

ε−1‖h‖2
H

(s ∧ 1)− 3−ϑ
2 e−3λs((t − s) ∧ 1)−(
+ 1

2 ) ds
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+

t
∫

t/2

(s ∧ 1)
− 3−ϑ

2 e−3λs((t − s) ∧ 1)−(
+ 1
2 ) ds

≤ c (t ∧ 1)
−(
+ 1

2 )
ε

1−θ
2 ‖h‖−1+ϑ

H + c (t ∧ 1)−(1+
)+ θ
2

= c (t ∧ 1)−(
+ 1
2 )
(

ε
1−ϑ

2 ‖h‖−1+ϑ
H + (t ∧ 1)

− 1−ϑ
2

)

≤ c ε
1−ϑ

2 (t ∧ 1)−(
+ 1
2 ) ‖h‖−1+ϑ

H .

Moreover, in the same way we have

t
∫

ε−1‖h‖2
H

(s ∧ 1)− 3−ϑ
2 e−3λs((t − s) ∧ 1)−
 ds ≤ c ε

1−ϑ
2 (t ∧ 1)−
 ‖h‖−1+ϑ

H ,

so that

(t ∧ 1)
+ 1
2 ‖bε,δ(h, t, x + h) − bε,δ(h, t, x)‖L(H) ≤ c ε−( 1

2 +
)λε,δ(R, t)‖h‖ϑ
H .

This, together with (5.19) and (5.18), implies that for every h ∈ H

(t ∧ 1)
+ 1
2 ‖D2Γε,δ(v)(t, x + h) − D2Γε,δ(v)(t, x)‖L(H) ≤ c ε−( 1

2 +
)λε,δ(R, t) ‖h‖ϑ
H .

Thus, thanks to (5.17), we obtain (5.16).

Conclusion. Estimate (5.13) is a consequence of (5.14), (5.15) and (5.16). �

Remark 5.4. From the proof of the previous lemma, we easily see that for every t ∈ (0, T ]

and ε ∈ (0, 1)

ε
η−ϑ

2 [Γε,δ(v)(t)]η + ε
(t ∧ 1)
‖DΓε,δ(v)(t)‖ϑ + ε
1
2 +
(t ∧ 1)
+ 1

2 ‖D2Γε,δ(v)(t)‖ϑ

≤ c λε,δ(R, t)
(

ε
1
2 −
 (t ∧ 1)

1−(η−ϑ)
2 −
 + 1

)

,
(5.20)

for some constant c > 0 independent of T > 0. Indeed, in view of (5.5), with α = η and 

³ = θ and (5.9), we have

[Γε,δ(v)(t)]η ≤ c ε− η−ϑ
2

t
∫

0

e−ωϑ,η(t−s)((t − s) ∧ 1)− η−ϑ
2 ‖´ε,δ(v, s)‖ϑ ds

≤ c ε− η−ϑ
2

t
∫

0

e−ωϑ,η(t−s)((t − s) ∧ 1)− η−ϑ
2 αε,δ(R, s) ds

≤ c λε,δ(R, t)
(

ε
1−(η−ϑ)

2 −
(t ∧ 1)
1−(η−ϑ)

2 −

)

.
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This, together with (5.15) and (5.16), implies (5.20).

Now we are ready to prove the existence of a local mild solution.

Theorem 5.5. Fix η ∈ (1/2, 1) and ϑ ∈ (0, η − 1/2) and define

� :=
1 − (η − ϑ)

2
. (5.21)

Then, there exist δ1 such that for every ε ∈ (0, 1) there exists T1(ε) > 0 so that problem 

(3.20) has a mild solution uε in Cε,
,η((0, T1(ε)]; C2+ϑ
b (H)), for every δ ≤ δ1.

Proof. A function uε is a mild solution of equation (3.20) if and only if it is a fixed point 

for the mapping Γg
ε,δ defined by

Γg
ε,δ(v)(t) = Rε

tg + Γε,δ(v)(t), t ∈ [0, T ].

Thus, we will prove the existence of a local mild solution for equation (3.20) by showing 

that there exist some T1, R > 0 and δ1 > 0 such that Γg
ε,δ maps Yε,R


,η,ϑ,T1
into itself as a 

contraction, for every δ ≤ δ1.

Thanks to (5.6) we have

‖Rε
tg‖η ≤ c ‖g‖η. (5.22)

Moreover, thanks to (5.3)

‖DRε
tg(v)(t)‖ϑ ≤ c ε− 1−(η−ϑ)

2 (t ∧ 1)− 1−(η−ϑ)
2 e−λt ‖g‖η,

‖D2Rε
tg(v)(t)‖ϑ ≤ c ε−(1− η−ϑ

2 )(t ∧ 1)−(1− η−ϑ
2 ) e−2λt ‖g‖η.

(5.23)

Therefore, if we define � as in (5.21), we have that � ∈ (0, 1/4) and 1 − η−θ
2 − � = 0, so 

from (5.22) and (5.23), it follows

‖Rε
tg‖η + ε
(t ∧ 1)
‖DRε

tg(t)‖ϑ + ε
1
2 +
(t ∧ 1)
+ 1

2 ‖D2Rε
tg(t)‖ϑ ≤ c ‖g‖η. (5.24)

With � defined as in (5.21), together with (5.13) this implies that for every v ∈ Yε,R

,η,ϑ,T

‖Γg
ε,δ(v)‖ε,
,η,ϑ,T ≤ c ‖g‖η + c

[

δ R(1 + R) + ε− 1
2 R (T ∧ 1)

1
2

]

(T ∨ 1).

In particular, if we first take R := 3c ‖g‖η and δ′ > 0 small enough such that

c δ′ R(1 + R) ≤ R

3
,

and then fix T ′ ≤ 1 small enough so that
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c ε− 1
2 R(T ′ ∧ 1)

1
2 ≤ R

3
,

we conclude that for every δ ≤ δ′ and T ≤ T ′

‖Γg
ε,δ(v)‖ε,
,η,ϑ,T ≤ R,

so that Γg
ε,δ maps Yε,R


,η,ϑ,T into itself.

Now, if we fix v1, v2 ∈ Yε,R

,η,ϑ,T , we have, in view of Definition 5 and estimates (5.3)

and (5.6)

‖Γg
ε,δ(v1) − Γg

ε,δ(v2)‖ε,
,η,ϑ,T

≤ c ε− η−ϑ
2 sup

t∈(0,T ]

t
∫

0

((t − s) ∧ 1)
− η−ϑ

2 ‖´ε,δ(v1, s) − ´ε,δ(v2, s)‖ϑ ds

+ ε
 sup
t∈(0,T ]

(t ∧ 1)


t
∫

0

ε− 1
2 ((t − s) ∧ 1)− 1

2 e−λ(t−s)‖´ε,δ(v1, s) − ´ε,δ(v2, s)‖ϑ ds

+ ε
1
2 +
 sup

t∈(0,T ]

(t ∧ 1)
+ 1
2

×
t
∫

0

ε−(1− ϑ
2 )((t − s) ∧ 1)

−(1− ϑ
2 )

e−2λ(t−s)‖´ε,δ(v1, s) − ´ε,δ(v2, s)‖ϑ ds

+ ε
1
2 +
 sup

t∈(0,T ]

(t ∧ 1)
+ 1
2 [D2Γg

ε,δ(v1)(t) − D2Γg
ε,δ(v2)(t)]ϑ =:

4
∑

i=1

Iδ,i(ε).

Then, according to (5.10) and (5.12), we have, since η − ϑ < 1.

Iδ,1(ε) ≤ c lε,δ(R, T ) ‖v1 − v2‖ε,
,η,ϑ,T . (5.25)

In the same way,

Iδ,2(ε)≤ c ε
 sup
t∈(0,T ]

(t ∧ 1)


t
∫

0

ε− 1
2 ((t − s) ∧ 1)

− 1
2 e−λ(t−s)aε,δ(R, s) ds ‖v1 − v2‖ε,
,η,ϑ,T

≤ c lε,δ(R, T )‖v1 − v2‖ε,
,η,ϑ,T ,

(5.26)

and
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Iδ,3(ε) ≤ c ε
1
2 +
 sup

t∈(0,T ]

(t ∧ 1)
+ 1
2

×
t
∫

0

ε−(1− ϑ
2 )((t − s) ∧ 1)−(1− ϑ

2 )e−2λ(t−s)aε,δ(R, s) ds ‖v1 − v2‖ε,
,η,ϑ,T

≤ c ε
ϑ
2 lε,δ(R, T ) ‖v1 − v2‖ε,
,η,ϑ,T .

(5.27)

As for Iδ,4(ε), due to (5.27), if we fix any x, h ∈ H and assume ‖h‖2
H > ε t/2 we have

ε
+ 1
2 (t ∧ 1)
+ 1

2 ‖D2Γg
ε,δ(v1)(t, x + h) − D2Γg

ε,δ(v2)(t, x)‖L(H)

≤ c ε
ϑ
2 (t ∧ 1)

ϑ
2 lε,δ(R, t)‖v1 − v2‖ε,
,η,ϑ,T ≤ c lε,δ(R, t) ‖v1 − v2‖ε,
,η,ϑ,T ‖h‖ϑ

H .
(5.28)

On the other hand, if we assume that ‖h‖2
H ≤ ε t/2 we write

D2Γg
ε,δ(v1)(t, x) − D2Γg

ε,δ(v2)(t, x) = aε,δ(h, t, x) + bε,δ(h, t, x),

where

aε,δ(h, t, x) :=

ε−1‖h‖2
H

∫

0

D2Rε
s (´ε,δ(v1, t − s) − ´ε,δ(v2, t − s)) ds,

and

bε,δ(h, t, x) =:

t
∫

ε−1‖h‖2
H

D2Rε
s (´ε,δ(v1, t − s) − ´ε,δ(v2, t − s)) ds.

Then, thanks to (5.10) and (5.12), we can proceed as in Step 3 of the proof of Lemma 5.3

and we obtain that (5.28) holds also when ε−1‖h‖2
H ≤ t/2. In particular, we obtain that

ε
+ 1
2 (t ∧ 1)
+ 1

2 [D2Γg
ε,δ(v1)(t) − D2Γg

ε,δ(v2)(t)]ϑ ≤ c lε,δ(R, t)‖v1 − v2‖ε,
,η,ϑ,T ,

so that

Iδ,4(ε) ≤ c lε,δ(R, t)‖v1 − v2‖ε,
,η,ϑ,T . (5.29)

Therefore, if we combine (5.25), (5.26), (5.27) and (5.29), we obtain that

‖Γg
ε,δ(v1) − Γg

ε,δ(v2)‖ε,
,η,ϑ,T ≤ c lε,δ(R, t)‖v1 − v2‖ε,
,η,ϑ,T .

This means that if we first choose δ1 ≤ δ′ such that

c δ1 (1 + R)2 <
1

2
,
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and then T1 ≤ T ′ such that

c ε− 1
2 (T1 ∧ 1)

1
2 <

1

2
,

we can conclude that Γδ,g maps YR

,η,ϑ,T1

into itself as a contraction, for every δ ≤ δ1. �

6. Further properties of mild solutions of the quasi-linear problem

We will show that any mild solution uε of equation (3.20) that belongs to 

Cε,
,η((0, T ]; C2+ϑ
b (H)) is in fact a classical solution in the sense of Definition 2. More-

over, by using its probabilistic interpretation in terms of equation (3.23), we will prove 

that a maximum principle holds for equation (3.20). This will imply that the local mild 

solution we have found in Section 5 is the unique global classical solution of Theorem 3.4.

We start by proving that QD2
xuε(t, x) is a trace-class operator.

Lemma 6.1. For every t ∈ (0, T ] and x ∈ H, we have that QD2
xuε(t, x) ∈ L1(H).

Proof. If uε is a mild solution, with the notations we have introduced in Section 5 we 

have

uε(t, x) = Rε
tg(x) + Γε,δ(uε)(t, x).

According to (2.17) we have that QD2
xRε

tg(x) ∈ L1(H), for every ε ∈ (0, 1), t > 0 and 

x ∈ H, and thanks to (2.17) and (3.14)

‖QD2
xRε

tg‖0 ≤ κε,η(t/2) ‖g‖η.

Here κε,η is the constant defined in (3.14) with Q replaced by 
√

ε Q. As far as Γε,δ(uε)

is concerned, if R = ‖uε‖ε,
,η,ϑ,T , thanks to (2.17), (3.14) and (5.9), we have

‖QD2Γε,δ(uε)(t, x)‖L1(H)

≤
t
∫

0

‖QD2
xRε

t−s´ε,δ(uε, s)(x)‖L1(H) ds ≤ c

t
∫

0

κε,ϑ((t − s)/2)‖´ε,δ(uε, s)‖ϑ ds

≤ c e−βϑ

t
∫

0

((t − s)/2 ∧ 1)−βϑe−αϑ
(t−s)

2 ε−
+ 1
2 (s ∧ 1)−(
+ 1

2 )λε,δ(R, s) ds ≤ cε(R, T ).

This allows to conclude that QD2
xuε(t, x) ∈ L1(H) for every ε ∈ (0, 1), t ∈ (0, T ] and 

x ∈ H. �
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Next, we show that uε is differentiable with respect to t ∈ (0, T ] and x ∈ D(A) and 

is a classical solution of equation (3.20). In Subsection 2.3, we have seen that for every 

ϕ ∈ Bb(H) and x ∈ D(A) the mapping

t ∈ (0, +∞) �→ Rε
tϕ(x) ∈ R,

is differentiable and

DtR
ε
tϕ(x) = LεR

ε
tϕ(x).

See (2.18) and (2.19). Hence, since

uε(t, x) = Rε
tg(x) +

t
∫

0

Rε
t−s

( ε

2
Tr [δ F (uε(s, ·))D2

xuε(s, ·)] + 〈b(·), Duε(s, ·)〉H

)

(x) ds

= Rε
tg(x) + Γε,δ(uε)(t, x),

thanks to Lemma 6.1, for every x ∈ D(A) we can differentiate both sides with respect 

to t > 0, and we get

Dtuε(t, x) = LεR
ε
tg(x) +

ε

2
Tr [δ F (uε(t, x))D2

xuε(t, x)] + 〈b(x), Duε(t, x)〉H

+ LεΓε,δ(uε)(t, x)

= Lεuε(t, x) +
ε

2
Tr [δ F (uε(t, x))D2

xuε(t, x)] + 〈b(x), Duε(t, x)〉H .

Thus, we have proven the following result.

Theorem 6.2. Under Hypotheses 1 to 4, if uε is a mild solution of equation (3.20) that 

belongs to Cε,
,η((0, T ]; C2+ϑ
b (H)), then it is a classical solution.

Next, we show how any solution of equation (3.20) is related to the stochastic PDE 

(3.23).

Theorem 6.3. Assume Hypotheses 1 to 4. Then if uε ∈ Cε,
,η((0, T ]; C2+ϑ
b (H)) is a so-

lution of equation (3.20) and Xt,x
ε ∈ L2(Ω; C([0, t]; H)) is a solution of equation (3.23), 

we have

uε(t, x) = Eg(Xt,x
ε (t)). (6.1)

Proof. The natural way to prove (6.1) is by applying the Itô formula to the function 

(s, x) ∈ [0, t] × H �→ uε(t − s, x) and to the process Xt,x
ε (s). However, we cannot do this 

directly first because uε satisfies equation (3.20) in classical sense only for x ∈ D(A) and 

second because Xt,x
ε is only a mild solution of equation (3.23), and not a strong solution, 
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as required when Itô’s formula is used. To overcome these difficulties, we introduce a 

suitable approximation of uε and Xt,x
ε , by adapting an argument introduced in [7, Proof 

of Theorem 9.25].

For every m ∈ N we define Jm = m(m − A)−1 and

uε,m(t, x) = uε(t, Jmx), (t, x) ∈ [0, T ] × H.

Since Jmx → x, as m → ∞, and uε ∈ Cε,
,η((0, T ]; C2+ϑ
b (H)), we have that

lim
m→∞

sup
t∈[0,T ]

|uε,m(t, x) − uε(t, x)| = lim
m→∞

sup
t∈[0,T ]

|uε,m(t, Jmx) − uε(t, x)| = 0, x ∈ H.

(6.2)

For all the details about the Yoshida approximants Jm we refer to [19]. Moreover,

Dxuε,m(t, x) = J�
mDxuε(t, Jmx), D2

xuε,m(t, x) = J�
mD2

xuε(t, Jmx)Jm. (6.3)

Next, for every m ∈ N we introduce the stochastic PDE

{

dXt,x
ε,m(s) =

[

AXt,x
ε,m(s) + Jmb(Xt,x

ε,m(s))
]

ds +
√

εJmΣt(s, Xt,x
ε,m(s)) dW m

s ,

Xt,x(0) = Jmx,
(6.4)

where Σt is the operator introduced in (4.2) and W m
t is the projection of the cylindrical 

Wiener process Wt onto Hm := span{e1, . . . , em}. By proceeding as in Section 4, we can 

prove that equation (6.4) admits a unique mild solution Xt,x
ε,m ∈ L2(Ω; C([0, t]; H)). Since 

Jm maps H into D(A) and W m
t is a finite dimensional noise, it is immediate to check 

that Xt,x
ε,m is a strong solution. Namely, writing Xt,x

ε,m in its mild form,

Xt,x
ε,m(s) = esAJmx +

s
∫

0

e(s−r)AJmb(Xt,x
ε,m(r)) dr +

s
∫

0

e(s−r)A
√

ε JmΣt(r, Xt,x
ε,m(r)) dW m

r

we see that all the terms lives in D(A).

At the end of this section we will prove that

lim
m→∞

sup
s∈[0,t]

E‖JmXt,x
ε,m(s) − Xt,x

ε (s)‖H = lim
m→∞

sup
s∈[0,t]

E‖Xt,x
ε,m(s) − Xt,x

ε (s)‖H = 0.

(6.5)

Now we apply Itô’s formula to uε,m and Xt,x
ε,m and thanks to (6.3) we get

dsuε,m(t − s, Xt,x
ε,m(s))

= −Dtuε(t − s, JmXt,x
ε,m(s)) ds

+
ε

2
Tr
[

J�
mD2

xuε(t − s, JmXt,x
ε,m(s))Jm(JmΣt(s, Xt,x

ε,m(s)))(JmΣt(s, Xt,x
ε,m(s)))�

]

ds

+ 〈AJmXt,x
ε,m(s) + J2

mb(Xt,x
ε,m(s)), Dxuε(t − s, JmXt,x

ε,m(s))〉H ds
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+
√

ε〈J2
mΣt(s, Xt,x

ε,m(s)) dW m
s , Dxuε(t − s, JmXt,x

ε,m(s))〉H .

Therefore, recalling that uε(t, x) satisfies equation (5.1), for every x ∈ D(A), since 

JmXt,x
ε,m(s) ∈ D(A) we have

dsuε,m(t − s, Xt,x
ε,m(s))

=
√

ε〈J2
mΣt(s, Xt,x

ε,m(s)) dW m
s , Dxuε(t − s, JmXt,x

ε,m(s))〉H + [Iε
m,1(s) + Iε

m,2(s)] ds,

(6.6)

where

Iε
m,1(s) :=

ε

2
Tr
[

J�
mD2

xuε(t − s, JmXt,x
ε,m(s))Jm(JmΣt(s, Xt,x

ε,m(r)))(JmΣt(s, Xt,x
ε,m(s)))�

]

− ε

2
Tr
[

D2
xuε(t − s, JmXt,x

ε,m(s))(Σt(s, JmXt,x
ε,m(s)))(Σt(s, JmXt,x

ε,m(s)))�
]

,

and

Iε
m,2(s) := 〈J2

mb(Xt,x
ε,m(s)) − b(JmXt,x

ε,m(s)), Dxuε(t − s, JmXt,x
ε,m(s))〉H .

If we take the expectation of both sides in (6.6) and integrate with respect to s ∈ [0, t]

we get

Eg(JmXt,x
ε,m(t)) = uε,m(t, Jmx) +

t
∫

0

E
(

Iε
m,1(s) + Iε

m,2(s)
)

ds. (6.7)

In view of (6.2) and (6.5), recalling that g is bounded, we have that

lim
m→∞

Eg(JmXt,x
ε,m(t)) = Eg(Xt,x

ε (t)), lim
m→∞

uε,m(t, Jmx) = uε(t, x).

Moreover, since uε ∈ Cε,
,η((0, T ]; C2+ϑ
b (H)), by using again (6.2) and (6.5), since we 

have pointwise and dominated convergence as m → +∞ of all terms appearing in Iε
m,1

and Iε
m,2, we get

lim
m→∞

t
∫

0

E
(

|Iε
m,1(s)| + |Iε

m,2(s)|
)

ds = 0.

Therefore, if we take the limit of both sides in (6.7), as m → ∞, we obtain (6.1). �

Remark 6.4. Thanks to the representation formula (6.1) of uε, we have that

sup
t∈[0,T ]

‖uε(t, ·)‖0 ≤ ‖g‖0. (6.8)
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Now, we conclude this section with the proof of (6.5).

Lemma 6.5. If Xt,x
ε,m is the solution of problem (6.4), we have

lim
m→∞

sup
s∈[0,t]

E‖JmXt,x
ε,m(s) − Xt,x

ε (s)‖2
H = lim

m→∞
sup

s∈[0,t]

E‖Xt,x
ε,m(s) − Xt,x

ε (s)‖2
H = 0. (6.9)

Proof. If we denote ρε,m(s) := Xt,x
ε,m(s) − Xt,x

ε (s) and Ŵ m
r := Wr − W m

r , we have

ρε,m(s) = esA(Jmx − x) +

s
∫

0

e(s−r)A
(

Jmb(Xt,x
ε,m(r)) − b(Xt,x

ε (r))
)

dr

+
√

ε

s
∫

0

e(s−r)A
(

JmΣt(r, Xt,x
ε,m(r)) − Σt(r, Xt,x

ε (r))
)

dW m
r

+
√

ε

s
∫

0

e(s−r)AΣt(r, Xt,x
ε (r))dŴ m

r .

Therefore, since ‖Jm‖L(H) ≤ 1, we have

E‖ρε,m(s)‖2
H ≤ c‖Jmx − x‖2

H + ct

s
∫

0

E‖ρε,m(r)‖2
H dr

+ ct

s
∫

0

E‖Jmb(Xt,x
ε (r)) − b(Xt,x

ε (r))‖2
H dr

+ ε c

s
∫

0

E‖e(s−r)AJm

(

Σt(r, Xt,x
ε,m(r)) − Σt(r, Xt,x

ε (r))
)

‖2
L2(H) dr

+ ε c

s
∫

0

E‖Jme(s−r)AΣt(r, Xt,x
ε (r)) − e(s−r)AΣt(r, Xt,x

ε (r))‖2
L2(H) dr

+ ε c

s
∫

0

E‖e(s−r)AΣt(r, Xt,x
ε (r))Sm‖2

L2(H) dr =:

6
∑

i=1

Iε
m,i(s),

where Sm := I − Pm is the projection of H onto span{em+1, em+2, . . .}.

By proceeding as in Section 4, we have that

Iε
m,4(s) ≤ c(ε)

s
∫

0

((s − r) ∧ 1)− 1
2

(

1 + ((t − r) ∧ 1)−2

)

E‖ρε,m(r)‖2
H dr,
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so that

E‖ρε,m(s)‖2
H ≤ c(ε)

s
∫

0

((s − r) ∧ 1)−(2
+ 1
2 )

E‖ρε,m(r)‖2
H dr + Λε,m(s),

where

Λε,m(s) := Iε
m,1(s) + Iε

m,3(s) + Iε
m,5(s) + Iε

m,6(s).

Since 2� + 1/2 < 1, thanks to a generalized Gronwall’s inequality (see [20, Theorem 1]), 

this implies that

E‖ρε,m(s)‖2
H ≤ cε,t Λε,m(s) ≤ cε,t Λε,m(t), s ∈ [0, t],

and (6.9) follows if we can prove that

lim
m→∞

Λε,m(t) = 0. (6.10)

It is immediate to check that

lim
m→∞

Iε
m,1 + Iε

m,3(t) = 0. (6.11)

Moreover, according to Hypothesis 3 and to the fact that u is bounded in [0, t] × H, for 

every m ∈ N we have

‖Jme(t−r)AΣt(r, Xt,x
ε (r)) − e(t−r)AΣt(r, Xt,x

ε (r))‖L2(H)

≤ 2 ‖e(t−r)Aσ(Xt,x
ε (r), uε(t − r, Xt,x

ε (r))‖L2(H) ≤ c (t − r)− 1
4

(

1 + ‖Xt,x
ε (r)‖H

)

.

Then, since

lim
m→∞

‖Jme(t−r)AΣt(r, Xt,x
ε (r)) − e(t−r)AΣt(r, Xt,x

ε (r))‖L2(H) = 0,

and since the mapping

s ∈ [0, t] �→ (t − s)− 1
4

(

1 + ‖Xt,x
ε (s)‖H

)

∈ R,

belongs to L2(Ω; L2([0, t])), by the dominated convergence theorem we have that

lim
m→∞

Iε
m,5(t) = 0. (6.12)

In the same way, by the dominated convergence theorem we have also that

lim
m→∞

Iε
m,6(t) = 0. (6.13)
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Therefore, combining together (6.11), (6.12) and (6.13), we obtain (6.10) and we get

lim
m→∞

sup
s∈[0,t]

E‖Xt,x
ε,m(s) − Xt,x

ε (s)‖2
H = 0. (6.14)

Moreover, since ‖Jm‖L(H) ≤ 1, we have

‖JmXt,x
ε,m(s) − Xt,x

ε (s)‖H ≤ ‖Xt,x
ε,m(s) − Xt,x

ε (s)‖H + ‖JmXt,x
ε (s) − Xt,x

ε (s)‖H ,

and due to (6.14), we have

lim sup
m→∞

sup
s∈[0,t]

E ‖JmXt,x
ε,m(s) − Xt,x

ε (s)‖2
H ≤ 2 lim sup

m→∞
sup

s∈[0,t]

E ‖JmXt,x
ε (s) − Xt,x

ε (s)‖2
H .

Now, since

fm(s) := E ‖JmXt,x
ε (s) − Xt,x

ε (s)‖2
H , s ∈ [0, t], m ∈ N,

defines an equicontinuous sequence of functions, pointwise converging to zero, we have 

that they converge to zero uniformly for s ∈ [0, t] and we can conclude that (6.9)

holds. �

7. Existence and uniqueness of global classical solutions for the quasi-linear problem

In Theorem 5.5 we have proved that for every η ∈ (1/2, 1) and ϑ ∈ (0, η −
1/2), there exist δ1, T1 > 0 such that problem (3.20) has a mild solution uε in 

Cε,
,η((0, T1]; C2+ϑ
b (H)). In Section 6 we have shown that such mild solution is in fact 

a classical solution. Our purpose here is first proving that uε is defined on the interval 

[0, T ], for every T > 0, and then proving that it is the unique solution.

We start with the following a-priori bound.

Lemma 7.1. There exists δ2 ∈ (0, δ1], that depends only on ‖g‖η, such that if uε is a mild 

solution of (3.20) for some δ ≤ δ2, belonging to Cε,
,η((0, T ]; C2+ϑ
b (H)), with � given in 

(5.21), then

‖uε‖ε,
,η,ϑ,T ≤ cε,δ ‖g‖η, ε ∈ (0, 1), (7.1)

for some constant cε,δ independent of T > 0.

Proof. In what follows, for any function v : [0, T ] × H → R we define

Nε(v(t)) := [v(t, ·)]η + ε
(t ∧ 1)
‖Dv(t, ·)‖ϑ + ε
+ 1
2 (t ∧ 1)
+ 1

2 ‖D2v(t, ·)‖ϑ.

With the notations we have introduced in Section 5, thanks to (6.8) we have
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‖uε(t, ·)‖0 + Nε(uε(t)) ≤ ‖g‖0 + Nε(R
ε
tg) + Nε(Γ

ε
δ,1(uε)(t)) + Nε(Γ

ε
2(uε)(t)), (7.2)

where

Γε
δ,1(u)(t, x) :=

t
∫

0

Rε
t−s ´ε

δ,1(u, s)(x) ds :=
ε

2

t
∫

0

Rε
t−sTr

[

δF (u)(s, ·)D2u(s, ·)
]

(x) ds

and

Γε
2(u)(t, x) :=

t
∫

0

Rε
t−s´2(u, s)(x) ds :=

t
∫

0

Rε
t−s〈b, Du(s, ·)〉H(x) ds.

In (5.24) we have already shown that

sup
t∈[0,T ]

Nε(R
ε
tg) ≤ c ‖g‖η. (7.3)

Thus, in order to prove (7.1) we need to estimate Nε(Γ
ε
δ,1(uε)(t)) and Nε(Γ

ε
2(uε)(t)).

Thanks to (3.8) and (6.8), we have

‖F (uε(s, ·))‖0 ≤ c (1 + ‖uε(s, ·)‖0) ≤ c (1 + ‖g‖0) ,

and then

‖´ε
δ,1(uε, s)‖0 ≤ c ε δ‖F (uε(s, ·))‖0‖D2uε(s, ·)‖0 ≤ c ε δ (1 + ‖g‖0) ‖D2uε(s, ·)‖0. (7.4)

Moreover, due to (3.9) and (6.8) we have

[F (uε(s, ·))]ϑ ≤ c (1 + ‖uε(s, ·)‖0 + [uε(s, ·)]ϑ) ≤ c (1 + ‖g‖0 + [uε(s, ·)]ϑ) ,

so that

[´ε
δ,1(uε, s)]ϑ ≤ c ε δ [F (uε(s, ·))]ϑ‖D2uε(s, ·)‖0 + c ε δ‖F (uε(s, ·))‖0[D2uε(s, ·)]ϑ

≤ c ε δ (1 + ‖g‖0) ‖D2uε(s, ·)‖ϑ + c ε δ [uε(s, ·)]ϑ‖D2uε(s, ·)‖0.

According to (2.8) and (6.8), this implies

[´ε
δ,1(uε, s)]ϑ ≤ c ε δ (1 + ‖g‖0) ‖D2uε(s, ·)‖ϑ + c ε δ ‖uε(s, ·)‖0[D2uε(s, ·)]ϑ

≤ c ε δ (1 + ‖g‖0) ‖D2uε(s, ·)‖ϑ.
(7.5)

Therefore, if we combine together (7.4) and (7.5) we conclude that
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‖´ε
δ,1(uε, s)‖ϑ ≤ c ε δ (1 + ‖g‖0) ‖D2uε(s, ·)‖ϑ

≤ c ε δ (1 + ‖g‖0) ε−(
+ 1
2 )(s ∧ 1)−(
+ 1

2 ) Nε(uε(s, ·)).

By proceeding as in the proof of Lemma 5.3 (see also Remark 5.4), this allows to conclude

Nε(Γ
ε
δ,1(uε)(t)) ≤ c δ (1 + ‖g‖0) sup

s∈[0,t]

Nε(uε(s, ·)), t ∈ [0, T ]. (7.6)

Now, let us estimate Nε(Γ
ε
2(uε)(t)). We have, by direct computations taking into 

account Hypothesis 4,

‖´2(uε, t)‖1 ≤ c
(

‖Duε(t, ·)‖0 + ‖D2uε(t, ·)‖0

)

.

Thus, according to (2.6) and (2.9) and thanks to Young inequality for every � > 0 there 

exists κ� > 0 such that

‖´2(uε, t)‖1≤ c(‖uε(t, ·)‖
1+θ
2+θ

0 [D2uε(t, ·)]
1

2+θ

ϑ + ‖uε(t, ·)‖
θ

2+θ

0 [D2uε(t, ·)]
2

2+θ

ϑ ) (7.7)

≤ � [D2uε(t, ·)]ϑ + κ�‖uε(t, ·)‖0.

In view of (5.3), (5.5), (6.8) and (7.7), there exists some λϑ > 0 and κ̂� such that for 

every t ∈ [0, T ]

Nε(Γ
ε
2(uε)(t)) ≤ � cη,1

t
∫

0

((t − s) ∧ 1)−ςe−λϑ(t−s)[D2uε(s, ·)]ϑ ds

+ � c1,θ,1 ε
 (t ∧ 1)


t
∫

0

e−λϑ(t−s)ε− ϑ
2 ((t − s) ∧ 1)− ϑ

2 [D2uε(s, ·)]ϑ ds

+ � c2,θ,1 ε
+ 1
2 (t ∧ 1)
+ 1

2

t
∫

0

e−λϑ(t−s)ε− 1+ϑ
2 ((t − s) ∧ 1)− 1+ϑ

2 [D2uε(s, ·)]ϑ ds

+ κ̂�

t
∫

0

e−λϑ(t−s)ε− 1+ϑ
2 ((t − s) ∧ 1)− 1+ϑ

2 ds‖g‖0

≤ c �ε−(
+1/2) sup
s∈[0,t]

Nε(uε(s, ·)) + c κ̂�ε
− 1+ϑ

2 ‖g‖0

(7.8)

Notice that in the last inequality we put ε−(
+1/2) because � +1/2 > (1 +ϑ)/2. Moreover, 

in the first inequality of (7.8) we have applied (5.5) with α = η and ³ = η − ς with ς

arbitrarily small together with (7.7) in the first term (recall that ‖ · ‖1 is stronger than 

‖ · ‖ς), (5.3) with n = 1 and ρ = 1 in the second term and again (5.3) with n = 2 and 

ρ = 1 in the third term. Hence, if we plug (7.3), (7.6) and (7.8) into (7.2), we obtain
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‖uε(t, ·)‖0 + Nε(uε(t, ·))

≤ c ‖g‖η + c
[

δ (1 + ‖g‖0) + �ε−(
+1/2)
]

sup
s∈[0,t]

Nε(uε(s, ·)) + c κ̂�ε
− 1+ϑ

2 ‖g‖0,

where c only depends on the costants of Hypotheses 1, 2 and 3.

In particular if take � = δε
+1/2 and δ2 ≤ δ1 such that

c δ2 (2 + ‖g‖0) < 1/2,

we obtain (7.1) for every δ ≤ δ2. �

7.1. Conclusion of the proof of Theorem 3.4

Thanks to (7.1), by standard arguments we have that for every ε ∈ (0, 1) the local 

solution we found in Theorem 5.5 is in fact a global solution. Moreover, this global 

solution is unique. The arguments used to get a global solution from a local one and 

the arguments used to get uniqueness are quite similar and both rely on the a-priori 

bound (7.1). Even though they are well known in the literature, here, for the reader’s 

convenience, we give the proof of uniqueness.

Indeed, if u1, u2 ∈ Cε,
,η((0, T ]; C2+ϑ
b (H)) are two solutions of equation (5.1), for some 

fixed δ ≤ δ2, we assume that

t0 := sup {t ∈ (0, T ] : u1(s) = u2(s), s ∈ [0, t]} < T.

With the same notations we have used in Section 5, we introduce the problem

u(t) = Γϕ
ε,δ(u)(t) = Rε

tϕ + Γε,δ(u)(t), t ≥ t0, (7.9)

where ϕ := u1(t0) = u2(t0). Due to (7.1), we have that

‖ϕ‖η ≤ cε,δ ‖g‖η,

for some constant cε,δ > 0 independent of T > 0.

As shown in Section 5, there exist R̄, τ̄ > 0 and δ̄ ≤ δ2 such that the mapping Γϕ
ε,δ

maps Yε,R̄

,η,ϑ,t0,τ̄ into itself as a contraction, for every δ ≤ δ̄, where

Yε,R

,η,ϑ,t0,τ̄ :=

{

u ∈ Cε,
,η((t0, t0 + τ̄ ]; C2+ϑ
b (H)) : ‖u‖ε,
,η,ϑ,t0,τ̄ ≤ R̄

}

,

and Cε,
,η((t0, t0 + τ̄ ]; C2+ϑ
b (H)) is the space of all functions u belonging to C([t0, t0 +

τ̄ ]; Cη
b (H)) ∩ C((t0, t0 + τ̄ ]; C2+ϑ

b (H)) such that the norm
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‖u‖ε,
,η,ϑ,t0,τ̄

:= sup
t∈(t0,t0+τ̄ ]

(

‖u(t, ·)‖η + ε
((t − t0) ∧ 1)
‖Dxu(t, ·)‖ϑ

+ ε
+ 1
2 ((t − t0) ∧ 1)
+ 1

2 ‖D2
xu(t, ·)‖ϑ

)

is finite.

In particular Γϕ
ε,δ has a unique fixed point in Yε,R̄


,η,ϑ,t0,τ̄ or, equivalently, equation (7.9)

has a unique solution on the interval [t0, t0 + τ̄ ]. This implies that

u1(s) = u2(s), s ∈ [0, t0 + τ̄ ],

violating the definition of [0, t0] as the maximal interval where u1 and u2 coincide.

8. The large deviation principle

In this last section we give a proof of Theorem 3.6. We follow the well-known method 

based on weak convergence, as developed in [3]. To this purpose, we need to introduce 

some notations.

For every t > 0, we denote by L2
w(0, T ; H) the space L2(0, T ; H) endowed with the 

weak topology, and by Pt the set of predictable processes in L2(Ω × [0, t]; H), and for 

every M > 0 we introduce the sets

St,M :=
{

ϕ ∈ L2
w(0, t; H) : ‖ϕ‖L2(0,t;H) ≤ M

}

,

and

Λt,M := {ϕ ∈ Pt : ϕ ∈ St,M , P − a.s.} .

In Theorem 3.5 we have shown that for every M, t > 0 and ϕ ∈ Λt,M and for every 

x ∈ H and ε ∈ (0, 1) there exists a unique mild solution Xt,x
ϕ,ε ∈ L2(Ω; C([0, t]; H)) for 

equation (3.23).

Next, we consider the problem

dX

ds
(s) = AX(s) + b(X(s)) + σ(X(s), g(ZX(s)(t − s)))ϕ(s), X(0) = x, (8.1)

where, as we did in Section 3, for every y ∈ H we denote by Zy the solution of equation 

(3.26). We recall that X ∈ C([0, t]; H) is a mild solution for equation (8.1) if

X(s) = esAx +

s
∫

0

e(s−r)Ab(X(r)) dr +

s
∫

0

e(s−r)AΣt(X(r), r) ϕ(r) dr, s ∈ [0, t],

where for every y ∈ H and s ∈ [0, t] we have defined
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Σt(y, s) := σ(y, g(Zy(t − s))).

In what follows, we show that the following result holds.

Proposition 8.1. Assume that g : H → R is Lipschitz-continuous. Then, under the same 

assumptions of Theorem 3.5, for every t > 0 and ϕ ∈ L2(0, t; H) and for every x ∈ H, 

there exists a unique mild solution Xt,x
ϕ ∈ C([0, t]; H) for equation (8.1).

Once proved Theorem 3.5 (see Section 4) and Proposition 8.1, we introduce the fol-

lowing two conditions.

C1. Let {ϕε}ε>0 be an arbitrary family of processes in Λt,M such that

lim
ε→0

ϕε = ϕ, in distribution in L2
w(0, t; H),

where L2
w(0, t; H) is the space L2(0, t; H) endowed with the weak topology and ϕ ∈

Λt,M . Then we have

lim
ε→0

Xt,x
ϕε,ε = Xt,x

ϕ , in distribution C([0, t], H).

C2. For every t, R > 0, the level sets Φt,R = {It,x ≤ R} are compact in the space 

C([0, t]; H), where we recall that It,x is the functional defined in (3.28).

As shown in [3], Conditions C1. and C2. imply that the family {Xt,x
ε }ε∈(0,1) satisfies 

a Laplace principle with action functional It,x in the space C([0, t]; H). As known, if 

It,x has compact level sets, then the large deviation principle with action functional It,x

is equivalent to the Laplace principle with actional functional It,x. Hence, due to the 

compactness of the level sets Φt,R stated in C2, the proof of C1. and C2. is equivalent 

to the proof of Theorem 3.6.

8.1. Proof of Proposition 8.1

With the notation introduced above, a function in C([0, t]; H) is a mild solution for 

equation (8.1) if it is a fixed point of the mapping Λt defined for every X ∈ C([0, t]; H)

by

Λt(X)(s) := esAx +

s
∫

0

e(s−r)Ab(X(r)) dr +

s
∫

0

e(s−r)AΣt(X(r), r) ϕ(r) dr, s ∈ [0, t].

It is immediate to check that there exists a continuous increasing function κ(s) such that 

for every y1, y2 ∈ H
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‖Zy1(s) − Zy2(s)‖H ≤ κ(s) ‖y1 − y2‖H , s ≥ 0. (8.2)

Hence, since we are assuming that g : H → R is Lipschitz-continuous, according to 

Hypothesis 1 for every y1, y2, h ∈ H we have

‖[Σt(y1, r) − Σt(y2, r)]h‖H ≤ c (1 + κ(t − r)) ‖y1 − y2‖H‖h‖H , r ∈ [0, t].

In particular, for every X1, X2 ∈ C([0, t]; H) and s ∈ [0, t] we have

‖Λt(X1)(s) − Λt(X2)(s)‖H ≤ c

s
∫

0

(1 + (1 + κ(t − r)) ‖ϕ(r)‖H) ‖X1(r) − X2(r)‖H dr

≤ ct

(

‖ϕ‖L2(0,t;H) + 1
)

‖X1 − X2‖C([0,t];H).

This implies that Λt : C([0, t]; H) → C([0, t]; H) is Lipschitz continuous and by standard 

arguments we conclude that Λt has a unique fixed point.

8.2. Preliminary results

Lemma 8.2. Under the same assumptions of Theorem 3.6, for every p ≥ 1 we have

sup
ε∈(0,1)

E sup
s∈[0,t]

‖Xt,x
ϕε,ε(s)‖p

H ≤ c(t, M, p) (1 + ‖x‖p
H) . (8.3)

Proof. We have

Xt,x
ϕε,ε(s) := esAx +

s
∫

0

e(s−r)Ab(Xt,x
ϕε,ε(r)) ds +

s
∫

0

e(s−r)AΣt,ε(r, Xt,x
ϕε,ε(r)) ϕε(r) dr

+
√

ε

s
∫

0

e(s−r)AΣt,ε(r, Xt,x
ϕε,ε(r)) dWr,

where Σt,ε is the operator defined in (4.2). Hence, for every s ∈ [0, t] and p ≥ 1 we have

‖Xt,x
ϕε,ε(s)‖p

H ≤ cp ‖x‖p
H + cp

s
∫

0

‖Xt,x
ϕε,ε(r)‖p

H dr

+ cp,M

⎛

¿

s
∫

0

‖e(s−r)AΣt,ε(r, Xt,x
ϕε,ε(r))‖2

L(H) dr

À

⎠

p
2

+ cp

∥

∥

∥

∥

∥

∥

s
∫

0

e(s−r)AΣt,ε(r, Xt,x
ϕε,ε(r)) dWr

∥

∥

∥

∥

∥

∥

p

H

+ cp,t.

(8.4)
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According to Hypothesis 3, for every τ > 0, s ∈ [0, t] and x ∈ H we have

‖eτAΣt,ε(s, x)‖2
L2(H) ≤ c (τ ∧ 1)− 1

2

(

‖x‖2
H + |uε(t − s, x)|2 + 1

)

.

Moreover, according to (6.1), we have

sup
(s,x)∈[0,t]×H

|uε(s, x)| ≤ ‖g‖0, ε ∈ (0, 1),

so that

sup
ε∈(0,1)

‖eτAΣt,ε(s, x)‖2
L2(H) ≤ c (τ ∧ 1)− 1

2

(

‖x‖2
H + 1

)

. (8.5)

In particular, if p > 4

E sup
r∈[0,s]

⎛

¿

r
∫

0

‖e(r−ρ)AΣt,ε(ρ, Xt,x
ϕε,ε(ρ))‖2

L(H) dρ

À

⎠

p
2

≤ cp,t

s
∫

0

E
(

‖Xt,x
ϕε,ε(r)‖p

H + 1
)

dr.

(8.6)

Now, if we fix p > 4, we can find α < 1/4 such that (α − 1)p/(p − 1) > −1. By using 

the stochastic factorization, we have

s
∫

0

e(s−r)AΣt,ε(r, Xt,x
ϕε,ε(r)) dWr = cα

s
∫

0

e(s−r)A(s − r)α−1Yα,ε(r) dr,

where

Yα,ε(r) :=

r
∫

0

e(r−ρ)A(r − ρ)−αΣt,ε(ρ, Xt,x
ϕε,ε(ρ)) dWρ.

Then, we obtain

∥

∥

∥

∥

∥

∥

s
∫

0

e(s−r)AΣt,ε(r, Xt,x
ϕε,ε(r)) dWr

∥

∥

∥

∥

∥

∥

p

H

≤ cα,p

⎛

¿

s
∫

0

(s − r)
(α−1)p

p−1 dr

À

⎠

p−1 s
∫

0

‖Yα,ε(r)‖p
H dr,

so that, thanks to (8.5) and to the fact that α < 1/4
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E sup
r∈[0,s]

∥

∥

∥

∥

∥

∥

r
∫

0

e(r−ρ)AΣt,ε(ρ, Xt,x
ϕε,ε(ρ)) dWρ

∥

∥

∥

∥

∥

∥

p

H

≤ cα,p,t

s
∫

0

E‖Yα,ε(r)‖p
H dr

≤ cα,p,t

s
∫

0

E

⎛

¿

r
∫

0

(r − ρ)−( 1
2 +2α)

(

‖Xt,x
ϕε,ε(ρ)‖2

H + 1
)

dρ

À

⎠

p
2

dr

≤ cα,p,t

⎛

¿

s
∫

0

E sup
ρ∈[0,r]

‖Xt,x
ϕε,ε(ρ)‖p

H dr + 1

À

⎠ .

(8.7)

Therefore, thanks to (8.4), (8.6) and (8.7),

E sup
r∈[0,s]

‖Xt,x
ϕε,ε(r)‖p

H ≤ ct,M,p (‖x‖p
H + 1) + cp,t

s
∫

0

E sup
ρ∈[0,r]

‖Xt,x
ϕε,ε(ρ)‖p

H dr,

and Gronwall’s Lemma allows to conclude in case p > 4. The case p ∈ [1, 4] follows from 

the Hölder inequality. �

Lemma 8.3. Under the same assumptions of Theorem 3.6, we have

|uε(s, x) − g(Zx(s))| ≤ ct

√
ε (1 + ‖x‖H) , s ∈ [0, t]. (8.8)

Proof. Thanks to (6.1), we have

uε(s, x) − g(Zx(s)) = E (g(Xs,x
ε (s)) − g(Zx(s))) ,

so that, since we are assuming that g is Lipschitz-continuous

|uε(s, x) − g(Zx(s))| ≤ c E ‖Xs,x
ε (s) − Zx(s)‖H .

Now, if we define ρx
ε (s) := Xs,x

ε (s) − Zx(s), we have

ρx
ε (s) =

s
∫

0

e(s−r)A (b(Xs,x
ε (r)) − b(Zx(r))) dr +

√
ε

s
∫

0

e(s−r)AΣs,ε(r, Xs,x
ε (r)) dWr,

where Σs,ε is the operator introduced in (4.2). Due to (8.3) and (8.7), we have

E‖ρε(s)‖H ≤ c

s
∫

0

E‖ρε(r)‖H dr + ct

√
ε (1+‖x‖H) ,

and Gronwall’s lemma allows to conclude. �
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8.3. Proof of the validity of Condition C1

Now, we are ready to prove condition C1. Let {ϕε}ε>0 be an arbitrary family of pro-

cesses in Λt,M converging in distribution, with respect to the weak topology of L2(0, t; H), 

to some ϕ ∈ Λt,M . As a consequence of Skorohod theorem (see e.g. [7, Theorem 2.4]), we 

can assume that the sequence {ϕε}ε>0 converges P -a.s. to ϕ, with respect to the weak 

topology of L2(0, t; H). We will prove that this implies that

lim
ε→0

E sup
s∈[0,t]

‖Xt,x
ϕε,ε(s) − Xt,x

ϕ (s)‖2
H = 0, (8.9)

and in particular Xt,x
ϕε,ε converges in distribution to Xt,x

ϕ in C([0, t]; H). If we define

ρε(s) := Xt,x
ϕε,ε(s) − Xt,x

ϕ (s), s ∈ [0, t],

we have

ρε(s) =

s
∫

0

e(s−r)A
[

b(Xt,x
ϕε,ε(r)) − b(Xt,x

ϕ (r))
]

dr

+

s
∫

0

e(s−r)A
[

σ(Xt,x
ϕε,ε(r), uε(t − r, Xt,x

ϕε,ε(r))) ϕε(r)

− σ(Xt,x
ϕ (r), g(ZXt,x

ϕ (r)(t − r))) ϕ(r)
]

dr

+
√

ε

s
∫

0

e(s−r)AΣt,ε(r, Xt,x
ϕ,ε(r)) dWr =:

3
∑

k=1

Ik,ε(s).

(8.10)

For I1,ε(s), due to the Lipschitz continuity of b, we have

‖I1,ε(s)‖2
H ≤ ct

s
∫

0

‖ρε(s)‖2
H ds. (8.11)

Concerning I2,ε(s), it can be written as

s
∫

0

e(s−r)A
[

σ(Xt,x
ϕε,ε(r), uε(t − r, Xt,x

ϕε,ε(r))) − σ(Xt,x
ϕ (r), g(ZXt,x

ϕε,ε(r)(t − r)))
]

ϕε(r) dr

+

s
∫

0

e(s−r)A
[

σ(Xt,x
ϕ (r), g(ZXt,x

ϕε,ε(r)(t − r))) − σ(Xt,x
ϕ (r), g(ZXt,x

ϕ (r)(t − r)))
]

ϕε(r) dr

+

s
∫

0

e(s−r)Aσ(Xt,x
ϕ (r), g(ZXt,x

ϕ (r)(t − r))) (ϕε(r) − ϕ(r)) dr =:
3
∑

k=1

Jk,ε(s).
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According to (8.8), we have

‖J1,ε(s)‖H ≤ c

s
∫

0

(

‖ρε(r)‖H + ct

√
ε
(

1 + ‖Xt,x
ϕε,ε(r)‖H

))

‖ϕε(r)‖H dr,

so that

‖J1,ε(s)‖2
H ≤ ct,M

s
∫

0

‖ρε(r)‖2
H dr + ε ct,M

(

1 + sup
r∈[0,t]

‖Xt,x
ϕε,ε‖2

H

)

. (8.12)

Moreover, thanks to (8.2), we have

‖J2,ε(s)‖2
H ≤ ct,M

s
∫

0

‖ZXt,x
ϕε,ε(r)(t − r) − ZXt,x

ϕ (r)(t − r)‖2
H dr ≤ ct,M

s
∫

0

‖ρε(r)‖2
H dr.

(8.13)

Finally, for I3,ε(s), thanks to (8.3) and (8.7) we have

E sup
s∈[0,t]

‖I3,ε(s)‖2
H ≤ ctε

(

1 + ‖x‖2
H

)

. (8.14)

Therefore, if we plug (8.11), (8.12), (8.13) and (8.14) into (8.10), in view of (8.3) we 

obtain

E sup
r∈[0,s]

‖ρε(r)‖2
H ≤ ct,M

s
∫

0

E sup
r∈[0,ρ]

‖ρε(r)‖2
H dρ + ct,M ε

(

1 + ‖x‖2
H

)

+ E sup
s∈[0,t]

‖J3,ε(s)‖2
H ,

and the Gronwall lemma gives

E sup
r∈[0,t]

‖ρε(r)‖2
H ≤ ct,M ε

(

1 + ‖x‖2
H

)

+ ct,M E sup
s∈[0,t]

‖J3,ε(s)‖2
H dr. (8.15)

Thus, if we prove that

lim
ε→0

E sup
s∈[0,t]

‖J3,ε(s)‖2
H = 0, (8.16)

by taking the limit as ε goes to zero in both sides of (8.15) we obtain (8.9).

Thanks to the stochastic factorization formula, for every ³ ∈ (0, 1) we have

J3,ε(s) = cβ

s
∫

0

(s − r)β−1e(s−r)AYβ,ε(r) dr,

where
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Yβ,ε(r) :=

r
∫

0

(r − ρ)−βe(r−ρ)Aσ(Xt,x
ϕ (ρ), g(ZXt,x

ϕ (ρ)(t − ρ))) (ϕε(ρ) − ϕ(ρ)) dρ.

Due to the Young inequality, we get

‖Yβ,ε‖p
Lp(0,t;H) ≤ ct,M

t
∫

0

⎛

¿

r
∫

0

(r − ρ)−β‖ϕε(ρ) − ϕ(ρ)‖H dρ

À

⎠

p

dr

≤ ct,M,p ‖ϕε − ϕ‖p
L2(0,T ;H)

⎛

¿

t
∫

0

r− 2βp
p+2 dr

À

⎠

p+2
2

.

Hence, if ³ < 1/2, we have

‖Yβ,ε‖Lp(0,t;H) ≤ ct,M,p ‖ϕε − ϕ‖L2(0,T ;H).

Now, due to the analyticity of etA, we have that etA maps H into D((−A)γ), for every 

´ > 0, with

‖etAx‖D((−A)γ) = ‖(−A)γetAx‖H ≤ cγ(t ∧ 1)−γ‖x‖H .

Thus, if ³ > α + 1/p the mapping

Y ∈ Lp(0, t; H) �→ G(Y ) :=

·
∫

0

(· − r)β−1e(· −r)AY (r) dr ∈ Cβ−α−1/p([0, t]; D((−A)α))

is well defined and

‖G(Y )‖Cβ−α−1/p([0,t];D((−A)α)) ≤ c ‖Y ‖Lp(0,t;H). (8.17)

(see the computations in the proof of [5, Proposition A 1.1]). Therefore, since J3,ε =

cβ G(Yβ,ε) and (8.17) holds, we conclude that if α + 1/p < ³ < 1/2, then

‖J3,ε‖Cβ−α−1/p([0,t];D((−A)α)) ≤ c̃t,M,p ‖ϕε − ϕ‖L2(0,T ;H), P − a.s.

Due to condition 3.12 and point (4) in Hypothesis 2, we have that

etA = Q
1/2
t Λt, t > 0,

for some Λt ∈ L(H), and since Q
1/2
t is compact, it follows that etA is compact. As shown 

in [9, Theorem 4.29] this implies that A has compact resolvent. Since (−A)α is defined in 

terms of an integral in L(H) of the resolvent (see [16, Definition 4.3]), this implies that 
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(−A)α is a compact operator. In particular, this means that Cβ−α−1/p([0, t]; D((−A)α))

is compact in C([0, T ]; H) and D(−A)α) is compactly embedded in H.

Therefore, since ϕε → ϕ, as ε → 0, in L2
w(0, t; H), we conclude that

lim
ε→0

‖J3,ε‖C([0,t];H) = 0, P − a.s.

Moreover, since

sup
ε∈(0,1)

‖J3,ε‖C([0,t];H) ≤ cM,t, P − a.s.

by the dominated convergence theorem we obtain (8.16).

8.4. Proof of the validity of Condition C2

In the proof of Condition C1. we have seen that if ϕε converges P -a.s. to ϕ, with 

respect to the weak topology in L2(0, t; H), then (8.9) holds. In particular, this holds in 

the deterministic case, so that the mapping

ϕ ∈ L2
w(0, t; H) �→ Xt,x

ϕ ∈ C([0, t]; H),

is continuous, and for every c > 0

⋂

ε∈(0,1)

{

Xt,x
ϕ , ϕ ∈ St,c+ε

}

=
{

Xt,x
ϕ , ϕ ∈ St,c

}

. (8.18)

Moreover, for every t > 0 and x ∈ H the set St,c is compact in L2
w(0, t; H), so that

{

Xt,x
ϕ , ϕ ∈ St,c

}

⊂ C([0, t]; H) is compact.

Now, recalling the definition of It,x, for every R > 0 we have

Φt,R = {It,x ≤ R} = {Xt,x
ϕ , ϕ ∈ St,

√
2R}. (8.19)

Indeed, if X belongs to {Xt,x
ϕ : ϕ ∈ St,

√
2R}, then there exists ϕ̄ ∈ St,

√
2R such that 

X = Xt,x
ϕ̄ , so that It,x(X) ≤ R. On the other hand, if X ∈ {It,x ≤ R}, then for any ε > 0

there exists ϕε ∈ St,
√

2R+ε such that X = Xt,x
ϕε

, and together with (8.18) this implies

X ∈
⋂

ε∈(0,1)

{

Xt,x
ϕ , ϕ ∈ St,

√
2R+ε

}

=
{

Xt,x
ϕ , ϕ ∈ St,

√
2R

}

.

Therefore, from (8.19) and the compactness of {Xt,x
ϕ , ϕ ∈ St,

√
2R}, we conclude that 

Condition C2. holds.
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