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Abstract

We investigate the convergence, in the small mass limit, of the stationary solutions of

a class of stochastic damped wave equations, where the friction coefficient depends

on the state and the noisy perturbation is of multiplicative type. We show that the

Smoluchowski–Kramers approximation that has been previously shown to be true

in any fixed time interval, is still valid in the long time regime. Namely, we prove

that the first marginals of any sequence of stationary solutions for the damped wave

equation converge to the unique invariant measure of the limiting stochastic quasilinear

parabolic equation. The convergence is proved with respect to the Wasserstein distance

associated with the H−1 norm.

Keywords Stochastic wave equations · Smoluchowski-Kramers approximation ·
Convergence of invariant measures · Wasserstein convergence

1 Introduction

In this article we deal with the following stochastic wave equation with state-dependent

damping, on a bounded smooth domain O ⊂ R
d , with d ≥ 1,

⎧

⎪

⎪

«

⎪

⎪

¬

μ∂2
t uμ(t, x) = �uμ(t, x) − γ (uμ(t, x))∂t uμ(t, x)

+ f (x, uμ(t, x)) + σ(uμ(t, ·))∂tw
Q(t, x),

uμ(0, x) = u0(x), ∂t uμ(0, x) = v0(x), uμ(t, x) = 0, x ∈ ∂O,

(1.1)

depending on a parameter 0 < μ << 1. The friction coefficient γ is a strictly

positive, bounded and continuously differentiable function. The diffusion coefficient
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σ is bounded and Lipschitz-continuous and the noise wQ(t) is a cylindrical Q-Wiener

process, white in time and colored in space. The nonlinearity f : O × R → R

is Lipschtz-continuous with respect to the second variable and the identically zero

function is globally asymptotically stable in the absence of the stochastic perturbation.

Here and in what follows, we denote H := L2(O), H−1 := H−1(O), and H1 :=
H1

0 (O) (the set of functions in the Sobolev space H1(O) with zero-trace).

The solution uμ(t, x) of Eq. (1.1) can be interpreted as the displacement of the

particles of a material continuum in a domain O, subject to a random external force

field ∂tw
Q(t, x) and a damping force which is proportional to the velocity field and

depends on the state uμ. The second order differential operator takes into account of

the interaction forces between neighboring particles, in the presence of a non-linear

reaction given by f . Here μ represents the constant density of the particles and we

are interested in the regime when μ → 0, known as the Smoluchowski–Kramers

approximation limit (Refs. [25, 31]).

In [3, 4] it has been proven that, when γ is constant, for every T > 0 and η > 0

lim
μ→0

P

(

sup
t∈ [0,T ]

‖uμ(t) − u(t)‖H > η

)

= 0, (1.2)

where u ∈ L2(�; C([0, T ]; H) ∩ L2(0, T ; H1)) is the solution of the parabolic

problem

⎧

«

¬

γ ∂t u(t, x) = �u(t, x) + f (x, u(t, x)) + σ(u(t, ·))∂tw
Q(t, x),

u(0, x) = u0(x), u(t, ·)
∣

∣

∂O
= 0.

(1.3)

When the friction coefficient γ is state-dependent, the situation is more complicated

and, because of the interplay between the noise and the non-constant friction, in the

small-mass limit an extra drift term is created. In this regard, in [10] it has been proven

that for every u0 ∈ H1, T > 0 and p < ∞, and for every η > 0

lim
μ→0

P

⎛

⎝

T
∫

0

‖uμ(t) − u(t)‖p
H dt > η

⎞

⎠ = 0, (1.4)

where u is the unique solution of the stochastic quasi-linear equation

⎧

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

¬

γ (u(t, x))∂t u(t, x) = �u(t, x) + f (x, u(t, x))

− γ ′(u(t,x))

2γ 2(u(t,x))

∑∞
i=1 |σ(u(t, ·)) Qei (x)|2

+σ(u(t, ·))∂tw
Q(t, x)

u(0, x) = u0(x), u(t, ·)
∣

∣

∂O
= 0.

(1.5)

Notice that the case of a non-constant damping coefficient is not the sole instance

in which, within the context of a small mass limit, an additional drift term appears. For
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example, in the case of a damped stochastic wave equation, constrained to live on the

unitary sphere of H , in the limit the Smoluchowski–Kramers approximation yields a

stochastic parabolic problem also constrained to live on the unitary sphere of H , where

an extra-drift term emerges, and that drift does not encompass the Itô-to-Stratonovich

correction (see [2]). For a partial list of references where this type of limit has been

addressed in a variety of different contexts, see [1, 5, 16, 17, 22–24, 26, 32], in finite

dimension, and [2–4, 9, 10, 27–29], in infinite dimension.

After establishing the validity of the small mass limits within a fixed time interval

[0, T ], the next step of interest is to compare the long-term dynamics of the second-

order system with that of the first-order system (to this purpose, see e.g. [6–8, 11, 12,

24]).

In [3], a comparative analysis of the long-term behavior of equations (1.1) (with a

constant γ ) and (1.3) was conducted, assuming both systems to be of gradient type.

Notably, in the case where the noise is white in both space and time (Q = I ) and the

dimension is d = 1, an explicit expression for the Boltzmann distribution of the process

zμ(t) := (uμ(t), ∂uμ/∂t(t)) in the phase space H := L2(0, L) × H−1(0, L) was

derived. Since there is no equivalent of the Lebesgue measure in the functional space

H, an auxiliary Gaussian measure was introduced, and the density of the Boltzmann

distribution was then expressed with respect to such auxiliary Gaussian measure, which

itself corresponds to the stationary measure of the linear wave equation associated

with problem (1.1). In particular, it was shown that the first marginal of the invariant

measure linked to the process zμ(t) remains independent of μ > 0 and coincides with

the invariant measure for the heat equation (1.3).

In the case of non-gradient systems, that is when the noise is colored in space

and/or of multiplicative type, there is no explicit expression for the invariant measure

νμ associated with system (1.1) and there is no reason to expect that the first marginal

of νμ does not depend on μ or coincides with the invariant measure ν of system (1.3).

Nonetheless, in [6] it was proved that, as the mass parameter μ tends to zero, the first

marginal of any invariant measure νμ associated with the second-order system (1.1)

converges in a suitable manner to the invariant measure ν of the first-order system

(1.3). Specifically, the following convergence was established

lim
μ→0

Wα

(

(
1νμ)′, ν
)

= 0, (1.6)

where (
1νμ)′ denotes the extension of the first marginal of the invariant measure νμ

to H , and the metric Wα corresponds to the Wasserstein metric on P(H) associated

with a distance metric α in H , which was determined based on the characteristics of

the non-linearity function f under consideration.

In the present paper, we want to see if any of the results proved in [6] in the case of a

constant friction γ , can be proven for a state-dependent γ , where the Smoluchowski–

Kramers approximation gives the stochastic quasi-linear parabolic problem (1.5),

instead of the simpler parabolic semi-linear problem (1.3).

One of the key ingredients used in [6] for the proof of (1.6) is the fact that the

transition semigroup P H
t associated with equation (1.3) admits a unique invariant

measure ν ∈ P(H) and the following contraction property holds
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Wα

(

(P H
t )�ν1, (P H

t )�ν2

)

≤ c e−δt Wα(ν1, ν2), t ≥ 0, ν1, ν2 ∈ P(H),

(1.7)

for some c, δ > 0. In the case of Eq. (1.3), these types of problems have been studied

extensively and a wide variety of results is available. However, in the case of the

quasi-linear problem (1.5) the situation is considerably more delicate and several

fundamental facts are not known, as for one whether the semigroup associated is

Feller in H or not. In particular, even the use of the Krylov–Bogoliubov theorem for

the proof of the existence of an invariant measure in H is not possible. Thus, in the

present paper we have to follow a different path, that in particular brings us to study

Eqs. (1.1) and (1.5) in spaces of lower regularity than H1 × H and H , respectively.

In [10], it has been proved that Eq. (1.1) is well-posed in H1 := H1 × H , for every

μ > 0, so that the associated Markov transition semigroup P
μ,H1
t can be introduced.

Our first step is showing that in fact (1.1) is well-posed also in H := H×H−1, for every

μ > 0, and there exists an invariant measure νμ,H for the corresponding transition

semigroup P
μ,H
t . We show that such invariant measure is supported in H1 and its

restriction to H1 is invariant for P
μ,H1
t . Moreover, we prove suitable uniform bounds

for the moments of νμ,H and νμ,H1 , which are fundamental for the proof of the limit.

Next, we move our analysis to the limiting equation (1.5). To this purpose, we do

not work directly with (1.5), but rather with its equivalent formulation

⎧

⎪

«

⎪

¬

∂tρ(t, x) = div
(

1
γ (g−1(ρ(t,x)))

∇ρ(t, x)
)

+ f (x, g−1(ρ(t, x))) + σ(g−1(ρ(t, ·)))∂tw
Q(t, x),

ρ(0, x) = g(u0(x)), ρ(t, ·)|∂O = 0,

(1.8)

where g is the antiderivative of γ vanishing at zero. Since we are assuming that γ is

strictly positive, bounded and continuously differentiable, the mappings

h ∈ H �→ g ◦ h ∈ H , h ∈ H1 �→ g ◦ h ∈ H1,

are both homeomorphisms and the coefficients in (1.8) are all well defined and regular.

Moreover, as shown in [10], by using a generalized Itô’s formula, for every r0 =
g(u0) ∈ H1 and t ≥ 0 we have that

ρr0(t) = g(uu0(t)), g−1(ρr0(t)) = uu0(t). (1.9)

In particular, Eq. (1.8) is well posed in C([0, T ]; H) ∩ L2(0, T ; H1) if and only if

Eq. (1.5) is.

As a consequence of limit (1.4), we have that for every initial condition r0 ∈ H1

Eq. (1.8) has a unique solution ρr0 ∈ L2(�; L p(0, T ; H1)), with p < ∞. However,

since the long time behavior of (1.8) in H1 and H is not well understood, we need to

study its well-posedness in H and H−1, so that we can introduce the corresponding

transition semigroups RH
t and RH−1

t . Due to the equivalence of problems (1.5) and
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(1.8) in H this allows us to introduce the transition semigroup P H
t associated with

Eq. (1.5).

Next, we prove that there exists some constant λ > 0 such that for every r1, r2 ∈
H−1 and t ≥ 0

E
∥

∥ρr1(t) − ρr1(t)
∥

∥

2

H−1 ≤ e−λt ‖r1 − r2‖2
H−1 , t ≥ 0. (1.10)

To this purpose, we would like to mention that in [19, 20], it was proved that under

suitable conditions on the initial conditions, the following property holds

E
∥

∥ρr1(t) − ρr1(t)
∥

∥

2

L1(O)
≤ ‖r1 − r2‖2

L1(O)
, t ≥ 0. (1.11)

Such bound gives in particular the Feller property in L1(O) but, unfortunately, this

is not useful to our analysis, as it is not clear how to handle the proof of our limiting

problem in a L1(O) setting. As far as we know, it is not clear if such a bound like (1.11)

is satisfied in H . As we already mentioned above, this is why it becomes important to

work in H−1, where we have the validity of even stronger condition (1.10).

As a consequence of (1.10), we have that RH−1

t is Feller. This, together with suitable

uniform bounds in H1, allows to conclude that RH−1

t has an invariant measure νH−1
,

supported in H1. Moreover (1.10) implies that for every ϕ ∈ Lipb(H−1) and r1, r2 ∈
H−1

∣

∣

∣R
H−1

t ϕ(r1) − RH−1

t ϕ(r2)

∣

∣

∣ ≤ [ϕ]Lip
H−1 e−λt/2 ‖r1 − r2‖H−1 , t ≥ 0,

(1.12)

so that νH−1
is the unique invariant measure of RH−1

t , and νH , its restriction to H ,

turns out to be the unique invariant measure of RH
t . Finally, due to the equivalence

between Eqs. (1.5) and (1.8), we show that this implies that P H
t has a unique invariant

measure ν.

By using a general argument developed in [15], and already used in [6] in a similar

context, all this allows to obtain our main result. The idea introduced in [15] is quite

simple and general. If {νn}n∈ N is a sequence of invariant measures for a sequence of

Markov processes {Xn(t)}n∈ N on some Banach space E , with transition semigroups

{Pn
t }n∈ N, and ν is the invariant measure for a Markov process X(t) on E , with tran-

sition semigroup Pt , in order to study the convergence of νn to ν with respect to some

Wasserstein distance ρα , associated to some distance α on E , we first notice that, due

to the invariance of νn and ν,

ρα (νn, ν) ≤ ρα

(

(Pn
t )�νn, P�

t νn

)

+ ρα

(

(Pt )
�νn, P�

t ν
)

. (1.13)

Thus, if there exists some δ > 0 such that for every probability measures ν1 and

ν2 on E

ρα

(

P�
t ν1, P�

t ν2
)

≤ c e−δtρα(ν1, ν2), t ≥ 0,
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from (1.13) we get

ρα (νn, ν) ≤ ρα

(

(Pn
t )�νn, P�

t νn

)

+ ce−δtρα (νn, ν) .

This implies that, if we pick t� > 0 such that c e−δt� < 1/2, we have

ρα (νn, ν) ≤ 2 ρα

(

(Pn
t )�νn, P�

t νn

)

, t ≥ t�.

Now, thanks to the Kantorovich–Rubinstein duality, we have

ρα

(

(Pn
t )�νn, P�

t νn

)

≤ E α(X
γn
n (t), Xγn (t)),

where γn is a E-valued random variable, distributed as νn , and X
γn
n (t) and Xγn (t) are

the processes Xn(t) and X(t) with initial condition γn . In particular, this implies that

the proof of the converge of νn to ν with respect to the Wasserstein distance ρα reduces

to the proof of the following limit

lim
n→∞

E ρα

(

(Pn
t )�νn, P�

t νn

)

≤ E α(X
γn
n (t), Xγn (t)) = 0,

for a fixed time t sufficiently large.

In the present paper, our goal is showing that if we define

α(u1, u2) := ‖u1 − u2‖H−1 , u1, u2 ∈ H−1,

then it holds

lim
μ→0

Wα

(


1ν
H
μ , ν

)

= 0. (1.14)

Due to (1.12) and the invariance of νH
μ and νH−1

we have

Wα

(

[(


1ν
H
μ

)

◦ g−1
]′

, νH−1

)

≤ Wα

(

[


1((P
μ,H
t )�νH

μ ) ◦ g−1
]′

, (RH−1

t )∗
[(


1ν
H
μ

)

◦ g−1
]′)

+ c e−λt
Wα

(

[(


1ν
H
μ

)

◦ g−1
]′

, νH−1

)

,

and then, if we pick t̄ > 0 such that ce−λt̄ ≤ 1/2, we obtain

Wα

(

[(


1ν
H
μ

)

◦ g−1
]′

, νH−1

)

≤ 2 Wα

(

[

(
1((P
μ,H

t̄
)�νH

μ ) ◦ g−1
]′

, (RH−1

t̄
)∗
[(


1ν
H
μ

)

◦ g−1
]′)

,

(here we are using the notation [·]′ to denote the extension to H−1 of an arbitrary prob-

ability measure defined in H ). As we have seen above, the Kantorovich–Rubinstein

duality gives
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Wα

(

[

(
1((P
μ,H
t )�νH

μ ) ◦ g−1
]′

, (RH−1

t )∗
[(


1ν
H
μ

)

◦ g−1
]′)

≤ E α(g(u
ζμ
μ (t)), ρ g(ξμ)(t)),

for every F0-measurable H1-valued random variable ζμ := (ξμ, ημ), distributed as

the invariant measure νH
μ . Hence, once we prove that for every t ≥ 0 large enough

lim
μ→0

E α(g(u
ζμ
μ (t)), ρg(ξμ)(t)) = lim

μ→0
E ‖g(u

ζμ
μ (t)) − ρg(ξμ)(t)‖H−1 = 0, (1.15)

we obtain that

lim
μ→0

Wα

(

[(


1ν
H
μ

)

◦ g−1
]′

, νH−1

)

= 0.

Our last steps consists in showing that this implies (1.14), which also implies that


1ν
H
μ converges to ν, weakly in H , as μ ↓ 0.

2 Notations and Assumptions

Throughout the present paper O is a bounded domain in R
d , with d ≥ 1, having a

smooth boundary. We denote by H the Hilbert space L2(O) and by ‖ · ‖H and 〈·, ·〉H

the corresponding norm and inner product.

Given the domain O, we denote by A the realization of the Laplace operator

�, endowed with Dirichlet boundary conditions. As known there exists a complete

orthonormal basis {ei }i∈N of H which diagonalizes A. In what follows, we denote by

{−αi }i∈N the corresponding sequence of eigenvalues, and for every δ ∈ R, we define

H δ as the completion of C∞
0 (O) with respect to the norm

‖h‖2
H δ :=

∞
∑

i=1

αδ
i 〈h, ei 〉2

H .

Notice that with this definition H0 = H and, if δ1 < δ2, then H δ2 ↪→ H δ1 with

compact embedding. We also define

Hδ := H δ × H δ−1, H := H × H−1.

Next, for every two separable Hilbert spaces E and F , we denote by L(E, F)

the space of bounded linear operators from E into F and by L2(E, F) the subspace

of Hilbert–Schmidt operators. L2(E, F) is a Hilbert space, endowed with the inner

product

〈B, C〉L2(E,F) = TrE [B�C] = TrF [C B�],
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and, as well known, L2(E, F) ⊂ L(E, F), with

‖B‖L(E,F) ≤ ‖B‖L2(E,F).

Finally, if X is any Polish space, we denote by Bb(X) the space of bounded Borel

measurable functions ϕ : X → R, endowed with the sup-norm

‖ϕ‖∞ := sup
h∈ X

|ϕ(h)|.

Moreover, we denote by Cb(X) the subspace of uniformly continuous and bounded

functions.

2.1 Assumptions

We assume that wQ(t) is a cylindrical Q-Wiener process, for some Q ∈ L(H),

defined on a complete stochastic basis (�,F , (Ft )t≥0, P). This means that wQ(t) can

be formally written as

wQ(t) =
∞
∑

i=1

Qeiβi (t),

where {βi }i∈N is a sequence of independent standard Brownian motions on (�,F ,

(Ft )t≥0, P), and {ei }i∈ N is the complete orthonormal system introduced above that

diagonalizes the Laplace operator, endowed with Dirichlet boundary conditions. When

Q = I , the process w I (t) will be denoted by w(t). In particular, we have wQ(t) =
Qw(t).

In what follows we shall denote by HQ the set Q(H). HQ is the reproducing kernel

of the noise wQ and is a Hilbert space, endowed with the inner product

〈h, k〉HQ
= 〈Q−1h, Q−1k〉H , h, k ∈ HQ .

Notice that the sequence {Qei }i∈ N is a complete orthonormal system in HQ . More-

over, if U is any Hilbert space containing HQ such that the embedding of HQ into U

is Hilbert–Schmidt, we have that

wQ ∈ C([0, T ]; U ).

Hypothesis 1 The mapping σ : H → L2(HQ, H) is defined by

[σ(h)Qei ](x) = σi (x, h(x)), x ∈ O, h ∈ H , i ∈ N,
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for some measurable mappings σi : O ×R → R. We assume that there exists Lσ > 0

such that

sup
x∈O

∞
∑

i=1

|σi (x, y1) − σi (x, y2)|2 ≤ Lσ |y1 − y2|2, y1, y2 ∈ R. (2.1)

Moreover, we assume σ is bounded, that is,

σ∞ := sup
h∈H

‖σ(h)‖L2(HQ ,H) < ∞. (2.2)

Remark 2.1 1. Condition (2.1) implies that σ : H → L2(HQ, H) is Lipschitz con-

tinuous. Namely, for any h1, h2 ∈ H

‖σ(h1) − σ(h2)‖L2(HQ ,H) ≤
√

Lσ ‖h1 − h2‖H . (2.3)

2. If the noise is additive, then Hypothesis 1 is satisfied when Tr Q2 < +∞.

Hypothesis 2 The mapping γ belongs to C1
b(R) and there exist γ0 and γ1 such that

0 < γ0 ≤ γ (r) ≤ γ1, r ∈ R. (2.4)

If we define

g(r) :=
r
∫

0

γ (σ ) dσ, r ∈ R, (2.5)

the function g : R → R is differentiable, strictly increasing and invertible so that its

inverse g−1 : R → R is differentiable, with

sup
r∈ R

(g−1)′(r) ≤ 1

γ0
. (2.6)

Hypothesis 3 The mapping f : O × R → R is measurable and there exists a positive

constant L f such that

L f <
α1γ0

γ1
, (2.7)

where α1 is the smallest eigenvalue of −A, and

sup
x∈O

| f (x, r) − f (x, s)| ≤ L f |r − s|, r , s ∈ R. (2.8)

Moreover,

sup
x∈O

| f (x, 0)| < ∞.
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In what follows, for every x ∈ O and r ∈ R we denote

f(x, r) :=
r
∫

0

f (x, s)ds,

and for every function h : O → R, we denote

F(h)(x) := f (x, h(x)), x ∈ O.

Remark 2.2 1. Condition (2.8) implies that F : H → H is Lipschitz continuous.

Namely for any h1, h2 ∈ H

‖F(h1) − F(h2)‖H ≤ L f ‖h1 − h2‖H .

Moreover, there exists c > 0 such that

‖F(h)‖H ≤ L f ‖h‖H + c. (2.9)

2. If the friction coefficient γ is constant, then γ0 = γ1, and condition (2.7) becomes

L f < α1.

3. It is immediate to check that if for every h ∈ H we define

�(h) :=
∫

O

f (x, h(x)) dx,

then � : H → R is differentiable and its differential is given by

[D�(h)](x) = f (x, h(x)), x ∈ O. (2.10)

Hypothesis 4 We assume

L f + Lσ

2γ0
<

α1γ0

γ1
. (2.11)

Remark 2.3 Condition (2.11) is assumed in order to have the well-posedness of Eq.

(1.8) in H−1 and to prove limit (1.15). If the diffusion coefficient σ is constant, then

Lσ = 0 and Hypothesis 4 reduces to condition (2.7) in Hypothesis 3. However, in

the case σ is non constant, condition (2.7) alone is not enough, as also the Lipschitz

constant of g has to be small, compared to the eigenvalue α1 and the constants γ0 and

γ1.
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3 TheMain Result

For every μ > 0, we denote vμ := ∂t uμ, and rewrite Eq. (1.1) as the following system

⎧

⎪

⎪

⎪

«

⎪

⎪

⎪

¬

duμ(t) = vμ(t)dt,

μdvμ(t) =
[

Auμ(t) − γ (uμ(t))vμ(t) + F(uμ(t))
]

dt + σ(uμ(t))dwQ(t),

uμ(0) = u0, vμ(0) = v0,

(3.1)

where A is the realization in H of the Laplacian �, endowed with Dirichlet boundary

conditions. In [10] it has been proven that, under Hypotheses 1, 2 and 3 (without

condition (2.7)), for every (u0, v0) ∈ L2(�;H1), and for every μ, T > 0, there exists

a unique process zμ ∈ L2(�; C([0, T ];H1)) which solves system (3.1), in the sense

that

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

¬

uμ(t) = u0 +
t

∫

0

vμ(s) ds

μvμ(t) = μ v0 +
t

∫

0

[

Auμ(s) − γ (uμ(s))vμ(s) + F(uμ(s))
]

ds

+
t
∫

0

σ(uμ(s)) dw(s).

(3.2)

In particular, we can introduce the transition semigroup P
μ,H1
t associated with Eq.

(3.1) in H1, by setting

P
μ,H1
t ϕ(z) = E ϕ

(

zz

μ(t)
)

, t ≥ 0,

for every ϕ ∈ Bb(H1) and z ∈ H1.

In what follows, we will need to study system (3.1) also in the space of lower

regularity H, and for this reason we introduce the following notion of generalized

solution.

Definition 3.1 For every μ, T > 0 and every (u0, v0) ∈ H, we say that the pro-

cess zμ ∈ L2(�; C([0, T ];H)) is a generalized solution of system (3.1) if for every

sequence {u0,n, v0,n}n∈N ⊂ H1 converging to (u0, v0) in H, as n → +∞, it holds

lim
n→+∞

E ‖zμ,n − zμ‖2
C([0,T ];H) = 0,

where zμ,n ∈ L2(�; C([0, T ];H1)) is the unique solution of Eq. (3.1) with initial

conditions (u0,n, v0,n).
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Notice that if (u0, v0) ∈ H1, then the weak solution coincides with the solution

defined above in H1 in the sense of (3.2).

In Sect. 5 we will prove that, under Hypotheses 1, 2 and 3, for every μ, T > 0 there

exists a unique generalized solution zμ ∈ L2(�; C([0, T ];H)) for system (3.1). This

will allow us to introduce the transition semigroup associated with (3.1) in H, which

will be denoted by P
μ,H
t . Clearly, if ϕ ∈ Bb(H), for every μ > 0 and z ∈ H1 we

have

P
μ,H1
t ϕ(z) = P

μ,H
t ϕ(z), t ≥ 0.

In Sect. 5 we will also show that under the same Hypotheses, for every μ > 0,

the semigroup P
μ,H
t admits an invariant measure νH

μ in H, with supp (νH
μ ) ⊂ H1.

In particular, since supp (νH
μ ) ⊂ H1 and B(H1) ⊂ B(H), we will have that νH

μ is

also a probability measure on H1. In what follows, it will be convenient to denote the

restriction of νH
μ to H1 by ν

H1
μ .

Now, we recall that, given a lower semicontinuous metric α on H−1, it is possible

to introduce the distance Wα : P(H−1) × P(H−1) → [0,+∞] defined by

Wα(ν1, ν2) = sup
[ϕ]Lipα

H−1
≤1

∣

∣

∣

∣

∣

∣

∣

∫

H−1

ϕ(r)ν1(dr) −
∫

H−1

ϕ(r)ν2(dr)

∣

∣

∣

∣

∣

∣

∣

,

where

[ϕ]Lipα

H−1
= sup

r1,r2∈ H
r1 �=r2

|ϕ(r1) − ϕ(r2)|
α(r1, r2)

.

Notice that, if C(ν1, ν2) is the set of all couplings of (ν1, ν2), the following

Kantorovich–Rubinstein identity holds

Wα(ν1, ν2) = inf
λ∈C(ν1,ν2)

∫ ∫

α(r1, r2) λ(dr1, dr2), (3.3)

and in fact it is possible to prove that the infimum above is attained at some λ̄.

At this point, we are ready to state the main result of this paper.

Theorem 3.2 Assume Hypotheses 1 to 4, and define

α(u1, u2) := ‖u1 − u2‖H−1 , u1, u2 ∈ H−1.

Then we have

lim
μ→0

Wα

(


1ν
H
μ , ν

)

= 0,
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where ν is the unique invariant measure for P H
t , the transition semigroup associated

to the limiting equation (1.5). Moreover,

lim
μ→0


1ν
H
μ = ν, weakly in H .

4 Plan of the Paper and List of Symbols

In Sect. 5, we will study the well-posedness of system (3.1) in H. Namely, we will

prove that for every initial condition (u0, v0) ∈ H system (3.1) admits a unique

generalized solution in H. This will allow us to introduce the transition semigroup

P
μH
t , t ≥ 0, for every μ > 0. Moreover, we will prove that P

μH
t admits an invariant

measure νH
μ supported in H1.

In Sect. 6, we will prove suitable a-priori bounds for the solutions of system (3.1).

In particular, we will prove some uniform bounds for the momenta of the invariant

measures νH
μ .

In Sect. 7, we will consider the limiting problem (1.5) in the space H . To this

purpose, we will introduce the auxiliary problem (1.8) and we will first study its well-

posedness in H . Due to (1.9), we will get the analogous results for problem (1.5).

Moreover, we will study the well-posedness of (5.1) in H−1.

In Sect. 8, we will investigate the ergodic behavior of the limiting Eq. (1.5) in H−1.

We will prove that the corresponding semigroup has a contractive property in H−1. In

particular, we it admits a unique invariant measure in H−1. Moreover, we will show

that such invariant measure is supported in H and its restriction to H is the unique

invariant measure for the semigroup associated with Eq. (1.5) in H . Finally, we will

show that this implies that the semigroup P H
t admits a unique invariant measure.

In Sect. 9, we will finally prove the main result of this paper, Theorem 3.2.

Symbols Used Throughout the Paper

Almost all the symbols listed below are introduced for the first time in the Introduction.

However, they are introduced again with all the needed details throughout the paper.

In what follows, we describe what is their meaning and where their definition is given.

– H = L2(O), H1 = H1
0 (O), and H−1 = H−1(O), Sect. 2.

– H = H × H−1, and H1 = H1 × H , Sect. 2.

– For every μ > 0, zμ = (uμ, vμ) denotes the solution of system (3.1), both in H

and H1, Sect. 3.

– For every μ > 0, P
μ,H1
t is the semigroup associated with system (3.1) in H1, and

P
μ,H
t is the semigroup associated with system (3.1) in H, Sect. 3.

– For every μ > 0, ζμ = (uμ, ημ) denotes the solution of system (1.8), both in H

and H1, Sect. 5.

– For every μ > 0, νH
μ is an invariant measure for the semigroup P

μ,H
t , and ν

H1
μ is

its restriction to H1, which is invariant for P
μ,H1
t , Sect. 5.3.
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– For every μ > 0, Nμ is the Kolmogorov operator associated with system (3.1) in

H1 and its associated semigroup P
μ,H1
t , Sect. 6.

– u denotes the solution of the limiting problem (1.5), both in H and H−1, Sect. 7.

– P H
t is the transition semigroup associated with the limiting problem (1.5) in H ,

Sect. 7.2.

– ρ denotes the solution of the limiting problem (1.8), both in H and H−1, Sect. 7.

– RH
t is the transition semigroup associated with the auxiliary problem (1.8) in H

and RH−1

t is the transition semigroup associated with (1.8) in H−1, Sect. 8.

– νH is the unique invariant measure of the semigroup RH
t and νH−1

is the unique

invariant measure of the semigroup RH−1

t , Sect. 8.

– νH ◦ g is the unique invariant measure of the semigroup P H
t , Sect. 9.

5 Generalized Solutions for System (3.1) and Invariant Measures

We have seen in Sect. 3 that Eq. (1.1) is equivalent to system (3.1). In fact, we can

give another equivalent formulation for system (3.1). Actually, if g is the function

introduced in (2.5) and we define

η := 1
√

μ

(

μ∂t u + g(u)
)

, ζ = (u, η),

then system (3.1) can be rewritten as

dζμ(t) = Aμ(ζμ(t))dt + �μ(ζμ(t))dwQ(t), ζμ(0) =
(

u0,
√

μv0 + g(u0)√
μ

)

,

(5.1)

where we have denoted

Aμ(ζ ) := 1
√

μ

(

η − g(u)
√

μ
, Au + F(u)

)

, ζ = (u, η) ∈ D(Aμ) = H1,

and

�μ(ζ ) := 1
√

μ

(

0, σ (u)
)

, ζ = (u, η) ∈ H.

This means that, for every μ > 0 and every (u0, v0) ∈ H1, the adapted H1-

valued process ζμ = (uμ, ημ) is the unique solution of Eq. (5.1), with ζμ(0) =
(

u0,
√

μv0 + g(u0)/
√

μ
)

, if and only if the adapted H1-valued process

zμ(t) := (uμ(t), vμ(t)) = (uμ(t), ημ(t)/
√

μ − g(uμ(t))/μ), t ≥ 0,

is the unique solution of system (3.1), with zμ(0) = z0 := (u0, v0). The reason why we

have introduced the equivalent problem (5.1) is that, in the presence of a non-constant
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friction γ , while it is not clear how to study the well-posedness of system (3.1), the

analogous problem for (5.1) can be handled in a more direct way, both in H1 and in

H, thanks to the theory of non-linear quasi-dissipative operators.

As a matter of fact, in [10] it has been proven that, under Hypotheses 1, 2 and 3

(without condition (2.7)), for every ζ 0 ∈ L2(�;H1) and for every μ, T > 0, there

exists a unique solution ζμ ∈ L2(�; C([0, T ];H1)) for Eq. (5.1), with ζμ(0) = ζ 0,

and this has allowed to conclude that for every (u0, v0) ∈ L2(�;H1), and for every

μ, T > 0, there exists a unique solution zμ ∈ L2(�; C([0, T ];H1)) to Eq. (3.1), with

zμ(0) = (u0, v0).

5.1 Generalized Solutions for System (5.1)

In order to study the existence and uniqueness of generalized solutions for system

(3.1), we study the analogous problem for system (5.1). As for (3.1), we have the

following definition of generalized solution for system (5.1).

Definition 5.1 For every μ, T > 0 and every ζ 0 ∈ H, we say that ζμ ∈
L2(�; C([0, T ];H)) is a generalized solution of problem (5.1), with initial condi-

tion ζ 0, if for every sequence {ζ 0
n }n∈N ⊂ H1 converging to ζ 0 in H, as n → +∞, it

holds

lim
n→+∞

E ‖ζμ,n − ζμ‖2
C([0,T ];H),

where ζμ,n ∈ L2(�; C([0, T ];H1)) is the unique solution of Eq. (5.1) with initial

condition ζ 0
n .

The following result holds.

Lemma 5.2 Under Hypotheses 1, 2 and 3, for every μ, T > 0 and every ζ 0 ∈ H,

there exists a unique generalized solution ζμ ∈ L2(�; C([0, T ];H)) for Eq. (5.1).

Moreover, if ζ 1
μ, ζ 2

μ are two generalized solutions of (5.1), with initial conditions

ζ 1, ζ 2 ∈ H, respectively, then

E sup
t∈ [0,T ]

‖ζ 1
μ(t) − ζ 2

μ(t)‖2
H ≤ ecμT ‖ζ 1 − ζ 2‖2

H, (5.2)

for some constant cμ.

Proof Without any loss of generality, we assume μ = 1, and for simplicity of notation,

we denote A1 and �1 by A and �, respectively. In [10], it is proved that the operator

A is quasi-m-dissipative in H. Namely, there exists η ≥ 0 such that for every ζ, θ ∈
D(A)

〈

A(ζ ) − A(θ), ζ − θ
〉

H
≤ η ‖ζ − θ‖2

H , (5.3)

and there exists λ0 > 0 such that

Range(I − λA) = H, λ ∈ (0, λ0).
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Now, let ζ 0 ∈ H and let {ζ 0
n }n∈N ⊂ H1 be any sequence converging to ζ 0 in H. For

every n ∈ N, we denote by ζn the unique solution of Eq. (5.1) with initial condition

ζn(0) = ζ 0
n . By applying Itô’s formula, thanks to (2.1) and (5.3), we get

1

2
d ‖ζn(t) − ζm(t)‖2

H

=
〈

A(ζn(t)) − A(ζm(t)), ζn(t) − ζm(t)
〉

H
dt + 1

2
‖�(ζn(t)) − �(ζm(t))‖2

L2(HQ ,H) dt

+
〈

ζn(t) − ζm(t),
[

�(ζn(t)) − �(ζm(t))
]

dwQ(t)
〉

H

≤ c ‖ζn(t) − ζm(t)‖2
H

dt +
〈

ζn(t) − ζm(t),
[

�(ζn(t)) − �(ζm(t))
]

dwQ(t)
〉

H
.

(5.4)

Due to (2.3) we have

E sup
s∈ [0,t]

∣

∣

∣

∣

∣

∣

s
∫

0

〈

ζn(r) − ζm(r),
[

�(ζn(r)) − �(ζm(r))
]

dwQ(r)
〉

H

∣

∣

∣

∣

∣

∣

≤ c E

⎛

⎝

t
∫

0

‖ζn(s) − ζm(s)‖4
H ds

⎞

⎠

1
2

≤ 1

4
E sup

s∈ [0,t]
‖ζn(s) − ζm(s)‖2

H

+c
t
∫

0

E‖ζn(s) − ζm(s)‖2
H

ds.

Thus, if we first integrate both sides in (5.4) with respect to time, and then take the

supremum and the expectation, we get

E sup
s∈ [0,t]

‖ζn(s) − ζm(s)‖2
H ≤

∥

∥

∥
ζ 0

n − ζ 0
m

∥

∥

∥

2

H
+ c

t
∫

0

E ‖ζn(s) − ζm(s)‖2
H ds,

and the Gronwall’s inequality gives

E sup
s∈ [0,t]

‖ζn(s) − ζm(s)‖2
H ≤ ec t

∥

∥

∥ζ
0
n − ζ 0

m

∥

∥

∥

2

H
, t ≥ 0,

for some constant c. In particular, this implies that the sequence {ζn}n∈N is Cauchy in

the space L2(�; C([0, T ];H)), so there exists a limit ζ ∈ L2(�; C([0, T ];H)). It is

easy to see that the limit ζ does not depend on the choice of the sequence {ζ 0
n } ⊂ H1,

which implies the uniqueness of generalized solutions. Finally, by using a similar

argument as above, we obtain (5.2). ��

Remark 5.3 When ζ 0 ∈ H1, the unique generalized solution ζμ of Eq. (5.1) coincides

with its unique classical solution.
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5.2 Generalized Solutions for System (3.1)

Due to Hypothesis 2, it is immediate to check that zμ = (uμ, vμ) is a generalized

solution to (3.1), with initial condition z0 = (u0, v0), if and only if ζμ =
(

uμ,
√

μvμ+
g(uμ)/

√
μ
)

is a generalized solution for system (5.1), with initial condition ζμ(0) =
(u0,

√
μv0 + g(u0)/

√
μ). In this case, we have

uμ = 
1ζμ, vμ = 1

μ

(

− g(uμ) + √
μ 
2ζμ

)

, μ > 0. (5.5)

Thus, as a consequence of Lemma 5.2 and Remark 5.3, we have the following

result.

Proposition 5.4 Fix (u0, v0) ∈ H and assume Hypotheses 1, 2 and 3. Then, for every

μ, T > 0 there exists a unique generalized solution zμ ∈ L2(�; C([0, T ];H)) for

system (3.1).

5.3 Existence of Invariant Measures for System (3.1)

We are proving now that, for every fixed μ > 0, system (3.1) admits an invariant

measure νH
μ in H, which is supported on H1.

Proposition 5.5 Assume Hypotheses 1, 2 and 3. Then, for every μ > 0, the semigroup

P
μ,H
t admits an invariant measure νH

μ in H, with supp (νH
μ ) ⊂ H1.

Proof First, if z
z1
μ and z

z2
μ are generalized solutions to system (3.1), with initial con-

ditions z1, z2 ∈ H, respectively, then due to (5.2) and (5.5), it is easy to see that for

every t ≥ 0

E
∥

∥zz1
μ (t) − zz2

μ (t))
∥

∥

H
≤ cμ(t) ‖z1 − z2‖H ,

for some cμ(t) > 0. This means that the transition semigroup P
μ,H
t is Feller on H.

Now, for every z ∈ H we introduce the following family of measures on H

�
μ
t (z, ·) := 1

t

t
∫

0

(P
μ,H
t )�δz dt, t > 0,

and for every R > 0 we define the set

BR :=
{

z ∈ H1 : ‖z‖H1
≤ R

}

.

Then, from (6.1) and (6.2) with μ = 1, we have

�
μ
t (0, Bc

R) = 1

t

t
∫

0

P
(

∥

∥

∥z0
μ(s)

∥

∥

∥

H1

> R
)

ds ≤ c

R2
, t > 0, R > 0,
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and, due to the compactness of the embedding of H1 into H, this implies that the family

of measures {�μ
t (0, ·)}t≥0 is tight in H. By the Prokhorov theorem, there exists some

sequence tn ↑ ∞ such that �
μ
tn
(0, ·) converges weakly, as n → +∞, to a probability

measure νH
μ that is invariant for P

μ,H
t . Moreover, since

νH
μ (Bc

R) ≤ c

R2
, R > 0,

it follows that supp (νH
μ ) ⊂ H1. ��

Remark 5.6 Since supp (νH
μ ) ⊂ H1 and B(H1) ⊂ B(H), we have that νH

μ is also

a probability measure on H1. In what follows, it will be convenient to denote the

restriction of νH
μ to H1 by ν

H1
μ .

6 Some Uniform Bounds for System (3.1)

We have seen that for every μ > 0 Eq. (3.1) has an invariant measure. In this section

we will prove some uniform bounds for the moments of such family of invariant

measures. To this purpose, we need to start with suitable uniform bounds for the

solution (uμ, vμ) of system (3.1). Some of them have been already proved in [10,

Proposition 4.2, Remark 4.3]. In what follows, we show how those bounds depend on

time and on random initial conditions in L2(�;H1).

Lemma 6.1 Assume Hypotheses 1, 2 and 3, and fix (ξ, η) ∈ L2(�;H1). For every

μ, T > 0, let (uμ, vμ) ∈ L2(�; C([0, T ];H1)) be the unique solution to system (3.1)

with initial conditions (ξ, η). Then there exist two constants μ0 ∈ (0, 1) and c > 0,

independent of T > 0, such that for every μ ∈ (0, μ0) and t ∈ [0, T ]

E sup
s∈[0,t]

∥

∥uμ(s)
∥

∥

2

H1 + μ E sup
s∈[0,t]

∥

∥vμ(s)
∥

∥

2

H
+

t
∫

0

E
∥

∥vμ(s)
∥

∥

2

H
ds

≤ c

(

t

μ
+ 1

)

+ c
(

E ‖ξ‖2
H1 + μ E ‖η‖2

H

)

,

(6.1)

and

E sup
s∈[0,t]

∥

∥uμ(s)
∥

∥

2

H
+

t
∫

0

E
∥

∥uμ(s)
∥

∥

2

H1 ds

≤ c
(

1 + t + E ‖ξ‖2
H + μ E ‖ξ‖2

H1 + μ2
E ‖η‖2

H

)

. (6.2)

Proof Let (u0, v0) ∈ L2(�;H1) and let (uμ, vμ) ∈ L2(�; C([0, T ];H1)) be the

unique solution to system (3.1). By proceeding as in the proof of [10, Lemma 4.2],
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we have for every μ ∈ (0, 1)

E sup
s∈[0,t]

∥

∥uμ(s)
∥

∥

2

H1 + μ E sup
s∈[0,t]

∥

∥vμ(s)
∥

∥

2

H
+

t
∫

0

E
∥

∥vμ(s)
∥

∥

2

H
ds

≤ c

⎛

⎝

t

μ
+
(

1 + E ‖ξ‖2
H1 + μE ‖η‖2

H

)

+
t

∫

0

E
∥

∥uμ(s)
∥

∥

2

H
ds

⎞

⎠.

(6.3)

Moreover, by proceeding as in the proof of [10, Lemma 4.1], we have P-a.s.

γ0

4

∥

∥uμ(t)
∥

∥

2

H
≤ c

(

‖ξ‖2
H + μ2 ‖η‖2

H

)

+ c μ2
∥

∥vμ(t)
∥

∥

2

H
+ μ

t
∫

0

∥

∥vμ(s)
∥

∥

2

H
ds

−
t

∫

0

∥

∥uμ(s)
∥

∥

2

H1 ds +
t

∫

0

〈

F(uμ(s)), uμ(s)
〉

H
ds +

t
∫

0

〈

uμ(s), σ (uμ(s))dwQ(s)
〉

H
.

Due to (2.9), for every δ > 0 we have

E sup
s∈[0,t]

∣

∣

∣

∣

∣

∣

s
∫

0

〈

F(uμ(r)), uμ(r)
〉

H
dr

∣

∣

∣

∣

∣

∣

≤ 1

α1
(L f + δ)

t
∫

0

E
∥

∥uμ(s)
∥

∥

2

H1 ds + cδt .

Moreover, due to (2.2) we have

E sup
s∈[0,t]

∣

∣

∣

∣

∣

∣

s
∫

0

〈

uμ(r), σ (uμ(r))dwQ(r)
〉

H

∣

∣

∣

∣

∣

∣

≤ c

⎛

⎝E

t
∫

0

‖uμ(s)‖2
H ds

⎞

⎠

1
2

≤ δ

α1

t
∫

0

E
∥

∥uμ(t)
∥

∥

2

H1 dt + cδ.

According to (2.7), we can fix δ > 0 such that

1

α1

(

L f + 2 δ
)

< 1,
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and this yields

E sup
s∈[0,t]

∥

∥uμ(s)
∥

∥

2

H
+

t
∫

0

E
∥

∥uμ(s)
∥

∥

2

H1 ds

≤ c
(

1 + t + E ‖ξ‖2
H + μ2

E ‖η‖2
H

)

+ c μ2
E sup

s∈[0,t]

∥

∥vμ(s)
∥

∥

2

H

+c μ
t
∫

0

E
∥

∥vμ(s)
∥

∥

2

H
ds.

(6.4)

Thus (6.2) holds by combining (6.4) with (6.3). Finally, by combining (6.2) with

(6.3), we complete the proof of (6.1). ��

Lemma 6.2 Let {(ξμ, ημ)}μ∈ (0,1) ⊂ L2(�;H1) be a family of random variables such

that

sup
μ∈(0,1)

E

(

∥

∥ξμ

∥

∥

2

H1 + μ
∥

∥ημ

∥

∥

2

H

)

< ∞. (6.5)

If (uμ, vμ) ∈ L2(�; C([0, T ];H1)) is the solution to system (3.1) with initial

condition (ξμ, ημ), then there exist μT ∈ (0, μ0) and cT > 0 such that for every

μ ∈ (0, μT )

E sup
t∈[0,T ]

(

∥

∥uμ(t)
∥

∥

2

H1 + μ
∥

∥vμ(t)
∥

∥

2

H

)

≤ cT√
μ

+
(

E
∥

∥ξμ

∥

∥

2

H1 + μ E
∥

∥ημ

∥

∥

2

H

)

. (6.6)

Proof If for every μ ∈ (0, μ0) and t ∈ [0, T ], we define

Lμ(t) :=
∥

∥uμ(t)
∥

∥

2

H1 + μ
∥

∥vμ(t)
∥

∥

2

H
−
(

∥

∥ξμ

∥

∥

2

H1 + μ
∥

∥ημ

∥

∥

2

H

)

,

then (6.6) is equivalent to

√
μ E sup

t∈[0,T ]
Lμ(t) ≤ cT , μ ∈ (0, μT ), (6.7)

for some constants μT ∈ (0, 1) and cT > 0.

Now, if we assume (6.7) is not true, there exists a sequence (μk)k∈N ⊂ (0, μ0)

converging to 0, as k → ∞, such that

lim
k→∞

√
μk E sup

t∈[0,T ]
Lμk

(t) = +∞. (6.8)

For every k ∈ N, the mapping t �→ Lμk
(t) is continuous P-a.s., so that there exists

a random time tk ∈ [0, T ] such that

Lμk
(tk) = sup

t∈[0,T ]
Lμk

(t).
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As a consequence of Itô’s formula, we have

1

2
d
(

‖uμ(t)‖2
H1 + μ ‖vμ(t)‖2

H

)

=
(

〈F(uμ(t), vμ(t)〉H − 〈γ (uμ(t))vμ(t), vμ(t)〉H + 1

2μ
‖σ(uμ(t))‖2

L2(HQ ,H)

)

dt

+ 〈vμ(t), σ (uμ(t))dwQ(t)〉H

≤
(

c
(

‖uμ(t)‖2
H + 1

)

− γ0

2
‖vμ(t)‖2

H + σ 2
∞

2μ

)

dt + 〈vμ(t), σ (uμ(t))dwQ(t)〉H .

Hence, if s is any random time such that P(s ≤ tk) = 1, we have

Lμk
(tk) − Lμk

(s) ≤ σ 2
∞

μk

(tk − s) + c

tk
∫

s

(

1 +
∥

∥uμk
(r)

∥

∥

2

H

)

dr + 2
(

Mk(tk) − Mk(s)
)

,

where

Mk(t) :=
t

∫

0

〈

vμk
(r), σ (uμk

(r))dwQ(r)
〉

H
.

If we define

Uk := c

T
∫

0

∥

∥uμk
(t)

∥

∥

2

H
dt, Mk := sup

t∈[0,T ]
|Mk(t)|,

this implies that there exists some constant λ > 0, independent of k, such that

Lμk
(tk) − Lμk

(s) ≤ λ

μk

(tk − s) + Uk + 4Mk, (6.9)

and since Lμk
(0) = 0, if we take s = 0 we get

tk ≥ μk

λ

(

Lμk
(tk) − Uk − 4Mk

)

=: μkθk

λ
.

Now, on the set Ek :=
{

θk > 0
}

, we fix an arbitrary s ∈
[

tk −μkθk/(2λ), tk
]

. Since

tk − s ≤ μkθk/(2λ), by using again (6.9) and recalling the definition of θk , we have

Lμk
(s) ≥ Lμk

(tk) − 1

2
θk − Uk − 4Mk = 1

2
θk > 0. (6.10)
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Hence, if we define

Ik :=
T
∫

0

L+
μk

(s) ds,

due to (6.10) we have

Ik ≥
tk
∫

tk− μk θk
2λ

Lμk
(s)ds ≥ μk

4λ
θ2

k , on Ek,

so that

E(Ik; Ek) ≥ E

(

μk

4λ
θ2

k ; Ek

)

. (6.11)

Now, according to (6.1), (6.2) and (6.5)

E Uk ≤ c
(

1 + T + E
∥

∥ξμk

∥

∥

2

H
+ μk E

∥

∥ξμk

∥

∥

2

H1 + μ2
k E

∥

∥ημk

∥

∥

2

H

)

≤ cT ,

and

E Mk ≤ c
(

T
∫

0

E
∥

∥vμk
(t)

∥

∥

2

H
dt
)

1
2

≤ c

(

1 + T

μk

+ E
∥

∥ξμk

∥

∥

2

H1 + μk E
∥

∥ημk

∥

∥

2

H

)
1
2

≤ cT

(

1 + 1

μk

)
1
2
,

so that

lim sup
k→∞

√
μk (E Uk + 4 E Mk) < +∞.

Thanks to (6.8) this gives

lim
k→∞

√
μk E(θk) = +∞,

and hence

lim
k→∞

√
μk E(θk; Ek) = +∞. (6.12)

Now, according to (6.11), we have

E(Ik; Ek) ≥ μk

4λ
E
(

θ2
k ; Ek

)

≥ μk

4λ
(E(θk; Ek))

2 ,
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and due to (6.12), this implies

lim
k→∞

E(Ik; Ek) = +∞.

However, as a consequence of (6.1), (6.2) and (6.5), we have

sup
k∈N

E Ik ≤ sup
k∈N

T
∫

0

E |Lμk
(s)|ds

≤ cT sup
k∈N

(

1 + T + E
∥

∥ξμk

∥

∥

2

H1 + μkE
∥

∥ημk

∥

∥

2

H

)

< +∞,

and this gives a contradiction, since E(Ik; Ek) ≤ E(Ik) for every k ∈ N. In particular,

this means that claim (6.7) is true, and (6.6) holds. ��

Lemma 6.3 For every μ > 0, if νH
μ ∈ P(H) is any invariant measure for P

μ,H
t

supported in H1, then ν
H1
μ ∈ P(H1) is invariant for P

μ,H1
t . Moreover,

sup
μ∈ (0,1)

∫

H1

(

‖u‖2
H1 + μ ‖v‖2

H

)

νH1
μ (du, dv) < ∞. (6.13)

Proof First, we show the invariance of ν
H1
μ for P

μ,H1
t . Due to the invariance of νH

μ in

H, for every ϕ ∈ Cb(H) we have

∫

H

P
μ,H
t ϕ(z)νH

μ (dz) =
∫

H

ϕ(z)νH
μ (dz).

Thus, since supp (νH
μ ) ⊂ H1 and B(H1) ⊂ B(H), for every ϕ ∈ Cb(H) we get

∫

H1

P
μ,H
t ϕ(z)νH1

μ (dz) =
∫

H1

ϕ(z)νH1
μ (dz).

If (êi )i∈ N ⊂ H1 is an orthonormal basis of H, for every n ∈ N we denote by 
n

the projection of H onto H(n) := span(ê1, . . . , ên). We have that 
n : H → H1 is

continuous and

‖πnh‖H1
≤ cn ‖h‖H, h ∈ H, lim

n→∞
‖
nh − h‖H1

= 0, h ∈ H1.

Hence, if for any ϕ ∈ Cb(H1) and n ∈ N, we define ϕn := ϕ ◦ 
n , we have

ϕn ∈ Cb(H) and

lim
n→∞

|ϕn(h) − ϕ(h)| = 0, h ∈ H1.
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For every n ∈ N, we have supn∈N ‖ϕn‖∞ ≤ ‖ϕ‖∞, and the dominated convergence

theorem implies that for any given μ > 0 and ϕ ∈ Cb(H1)

lim
n→∞

P
μ,H
t ϕn(z) = lim

n→∞
E ϕn

(

zz
μ(t)

)

= E ϕ
(

zz
μ(t)

)

= P
μ,H1
t ϕ(z), z ∈ H1, t ≥ 0.

In particular, by taking the limit as n goes to infinity in both sides of

∫

H1

P
μ,H
t ϕn(z)νH1

μ (dz) =
∫

H1

ϕn(z)νH1
μ (dz), ϕ ∈ Cb(H1),

we conclude that

∫

H1

P
μ,H1
t ϕ(z)νH1

μ (dz) =
∫

H1

ϕ(z)νH1
μ (dz), ϕ ∈ Cb(H1),

and this implies the invariance of ν
H1
μ .

Next, in order to prove (6.13), we consider the Kolmogorov operator associated to

P
μ,H1
t in H1

Nμϕ(u, v) = 1

2μ2
TrH

[

(

σ(u)Q
)

(σ (u)Q)∗D2
vϕ(u, v)

]

+
〈

v, Duϕ(u, v)
〉

H1

+ 1

μ

〈

Au − γ (u)v + F(u), Dvϕ(u, v)
〉

H
.

If, with the notations of Sect. 2, we define

ϕμ(u, v) := 1

2

(

‖u‖2
H1 + μ ‖v‖2

H

)

−
∫

O

f(x, u(x))dx = 1

2

(

‖u‖2
H1 + μ ‖v‖2

H

)

− �(u),

due to (2.10) and to the fact that ‖u‖2
H1 = 〈(−A)u, u〉H , we have

Duϕμ(u, v) = (−A)u − f (·, u), Dvϕμ(u, v) = μ v, D2
vϕμ(u, v) = μ IH .

Then, we have

Nμϕμ(u, v)

= 1

2μ
TrH

[

(

σ(u)Q
)

(σ (u)Q)∗
]

+
〈

v, u − (−A)−1 F(u)
〉

H1 + 1

μ

〈

Au − γ (u)v + F(u), μv
〉

H

= 1

2μ
‖σ(u)‖2

L2(HQ ,H) +
〈

v,−Au − F(u)
〉

H
+ 1

μ

〈

Au − γ (u)v + F(u), μv
〉

H

= 1

2μ
‖σ(u)‖2

L2(HQ ,H) −
〈

γ (u)v, v
〉

H
≤ 1

2μ
‖σ(u)‖2

L2(HQ ,H) − γ0 ‖v‖2
H .

(6.14)
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By the invariance of ν
H1
μ in H1, we have

∫

H1

Nμϕμ(u, v) νH1
μ (du, dv) = 0,

and thus, due to (6.14) and (2.2),

sup
μ∈ (0,1)

μ

∫

H1

‖v‖2
H νH1

μ (du, dv) < ∞. (6.15)

Next, we consider the function

ψμ(u, v) := 1

2

(

μ ‖u‖2
H1 + ‖g(u) + μv‖2

H

)

.

We have

Duψ(u, v) = μ (−A)u + γ (u) (g(u) + μ v) ,

Dvψ(u, v) = μ (g(u) + μ v) , D2
vψ(u, v) = μ2 IH ,

so that

Nμψμ(u, v) = 1

2
TrH

[

(

σ(u)Q
)

(σ (u)Q)∗
]

+
〈

v, μu + (−A)−1γ (u)g(u) + μ(−A)−1γ (u)v
〉

H1

+ 1

μ

〈

Au − γ (u)v + F(u), μ2v + μg(u)
〉

H

= 1

2
‖σ(u)‖2

L2(HQ ,H) + μ
〈

v,−Au + γ (u)

μ
g(u) + γ (u)v

〉

H

+
〈

Au − γ (u)v + F(u), μv + g(u)
〉

H

= 1

2
‖σ(u)‖2

L2(HQ ,H) −
〈

γ (u)∇u,∇u
〉

H
+ μ

〈

F(u), v
〉

H
+
〈

F(u), g(u)
〉

H
.

Note that for every δ > 0 and μ ∈ (0, 1)

μ
∣

∣

〈

F(u), v
〉

H

∣

∣ ≤ μ ‖F(u)‖H ‖v‖H ≤ δ
(

1 + ‖u‖2
H1

)

+ cδ μ2 ‖v‖2
H ,

and

∣

∣

〈

F(u), g(u)
〉

H

∣

∣ ≤
(

L f γ1 + δ
)

‖u‖2
H + cδ ≤ 1

α1

(

L f γ1 + δ
)

‖u‖2
H1 + cδ,
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so that, due to the invariance of νH
μ , we have

γ0

∫

H1

‖u‖2
H1 νH

μ (du, dv)

≤ σ 2
∞
2

+
(

L f γ1

α1
+ 2 δ

) ∫

H1

‖u‖2
H1 νH

μ (du, dv) + cδ + cδ μ2

∫

H1

‖v‖2
H νH

μ (du, dv).

Thanks to (2.7), this implies that we can take δ > 0 sufficiently small so that

L f γ1

α1
+ 2 δ < γ0,

and then

∫

H1

‖u‖2
H1 νH1

μ (du, dv) ≤ c

⎛

⎜

⎝
1 + μ2

∫

H1

‖v‖2
H νH1

μ (du, dv)

⎞

⎟

⎠
, μ ∈ (0, 1).

By combining this with (6.15), we complete the proof of (6.13). ��
Remark 6.4 1. In Proposition 5.5, we have seen that for every μ > 0 the semigroup

P
μ,H
t admits an invariant measure. Thanks to Lemma 6.3, this implies that for

every μ > 0 the transition semigroup P
μ,H1
t admits an invariant measure in H1.

2. As a consequence of (6.13), we have

sup
μ∈ (0,1)

∫

H

(

‖u‖2
H1 + μ ‖v‖2

H

)

νH
μ (du, dv) < ∞. (6.16)

7 The Limiting Equation

As we have mentioned in the Introduction, in order to study the limiting problem

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

⎪

⎪

¬

γ (u(t, x))∂t u(t, x) = �u(t, x) + f (x, u(t, x)) − γ ′(u(t, x))

2γ 2(u(t, x))

∞
∑

i=1

|σ(u(t, ·)) Qei (x)|2

+σ(u(t, ·))∂tw
Q(t, x)

u(0, x) = u0(x), u(t, ·)
∣

∣

∂O
= 0,

(7.1)

we consider first the following quasilinear stochastic parabolic equation

⎧

«

¬

∂tρ(t, x) = div
(

b(ρ(t, x))∇ρ(t, x)
)

+ fg(x, ρ(t, x)) + σg(ρ(t, ·))∂tw
Q(t, x),

ρ(0, x) = r0(x), ρ(t, ·)|∂O = 0,

(7.2)
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where for every r ∈ R and x ∈ O

b(r) := 1

γ (g−1(r))
, fg(x, r) := f (x, g−1(r)),

and for every h ∈ H

σg(h) := σ
(

g−1 ◦ h
)

.

The rationale behind this approach stems from the inherent advantage of initially

establishing the small-mass limit of g(uμ) to ρ, alongside their stationary counterparts,

before moving back to the original problem involving uμ and u. As explained in [10],

due to a generalized Itô’s formula, the solutions u and ρ of Eqs. (7.1) and (7.2),

respectively, are related by

ρr0(t) = g(uu0(t)), t ≥ 0, r0 := g(u0). (7.3)

From Hypothesis 2, we know

1

γ1
≤ b(r) ≤ 1

γ0
, r ∈ R.

Moreover, if we define

Fg(h)(x) := fg(x, h(x)), x ∈ O,

due to Hypotheses 1, 2 and 3, and due to (6.14), for every h1, h2 ∈ H we have

∥

∥Fg(h1) − Fg(h2)
∥

∥

H−1 ≤ 1
√

α1

∥

∥Fg(h1) − Fg(h2)
∥

∥

H
≤ L f√

α1γ0

‖h1 − h2‖H ,

and

∥

∥σg(h1) − σg(h2)
∥

∥

L2(HQ ,H−1)

≤ 1
√

α1

∥

∥σg(h1) − σg(h2)
∥

∥

L2(HQ ,H)
≤

√
Lσ√

α1γ0

‖h1 − h2‖H .

Moreover, for every δ > 0

∣

∣

〈

Fg(h), h
〉

H

∣

∣ ≤
(

L f

γ0
+ δ

)

‖h‖2
H + cδ ≤ 1

α1

(

L f

γ0
+ δ

)

‖h‖2
H1 + cδ, h ∈ H1,

(7.4)

and

∣

∣

〈

Fg(h), h
〉

H−1

∣

∣ ≤ 1

α1

∥

∥Fg(h)
∥

∥

H
‖h‖H ≤ 1

α1

(

L f

γ0
+ δ

)

‖h‖2
H + cδ, h ∈ H . (7.5)
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Finally, thanks to (2.2) we have

∥

∥σg(h)
∥

∥

L2(HQ ,H)
≤ σ∞, h ∈ H . (7.6)

7.1 Well-Posedness of Eq. (7.2) in H

Throughout this subsection we will not need to assume condition (2.7) in Hypothesis

3. Namely, we will just assume that the mapping f : O×R → R is measurable, with

sup
x∈O

| f (x, 0)| < ∞, sup
x∈O

| f (x, r) − f (x, s)| ≤ c |r − s|, r , s ∈ R. (7.7)

As a consequence of the limiting result proved in [10], the well-posedness of Eq.

(7.2) has been established when the initial condition r0 ∈ H1. Here we want to prove

the existence and uniqueness of the solution of (7.2) when r0 ∈ L2(�; H).

Definition 7.1 Let r0 ∈ L2(�; H). An adapted process ρ ∈ L2(�; C([0, T ]; H) ∩
L2(0, T ; H1)) is a solution of Eq. (7.2) if for every ϕ ∈ C∞

0 (O)

〈

ρ(t), ϕ
〉

H
=
〈

r0, ϕ
〉

H
−

t
∫

0

〈

b(ρ(s))∇ρ(s),∇ϕ
〉

H
ds

+
t

∫

0

〈

Fg(ρ(s)), ϕ
〉

H
ds +

t
∫

0

〈

ϕ, σg(ρ(s))dwQ(s)
〉

H
, P-a.s.

(7.8)

In order to study Eq. (7.2), we first consider the following approximating problem

⎧

⎪

«

⎪

¬

∂tρ
ε(t, x) = div

(

b(ρε(t, x))∇ρε(t, x)
)

−ε�2ρε(t, x) + f (x, ρ(t, x)) + σg(ρ(s, ·))∂tw
Q(t, x),

ρε(0, x) = r0, ρε(t, ·)|∂O = 0,

(7.9)

with 0 < ε << 1 (for a similar approach see e.g. [14]).

Lemma 7.2 Assume Hypotheses 1 and 2 and condition (7.7). Then, for every ε, T > 0

and every ρ0 ∈ L2(�; H), Eq. (7.9) admits a unique solution

ρε ∈ L2(�; C([0, T ]; H) ∩ L2(0, T ; H2)).

Moreover, there exists some cT > 0 such that for every ε > 0
E sup

t∈[0,T ]
‖ρε(t)‖2

H + 2

γ1

t
∫

0

E‖∇ρε(s)‖2
H ds

+2 ε

t
∫

0

E‖�ρε(s)‖2
H ds ≤ cT

(

1 + E ‖r0‖2
H

)

. (7.10)

123



Applied Mathematics & Optimization             (2024) 90:7 Page 29 of 48     7 

Proof The uniqueness and the existence of solutions for Eq. (7.9) can be proven by

proceeding as in the proof of [18, Theorem 5.1].

In order to prove the energy estimate (7.10), we apply Itô’s formula and we get

1

2
‖ρε(t)‖2

H = 1

2
‖r0‖2

H +
t

∫

0

〈

div
(

b(ρε(s))∇ρε(s)
)

, ρε(s)
〉

H
ds

−ε
t
∫

0

〈

�2ρε(s), ρε(s)
〉

H
ds

+
t

∫

0

〈

Fg(ρ
ε(s)), ρε(s)

〉

H
ds + 1

2

t
∫

0

‖σg(ρ
ε(s))‖2

L2(HQ ,H)ds

+
t
∫

0

〈

ρε(s), σg(ρ
ε(s))dwQ(s)

〉

H

≤ 1

2
‖r0‖2

H − 1

γ1

t
∫

0

‖∇ρε(s)‖2
H ds − ε

t
∫

0

‖�ρε(s)‖2
H ds

+c

t
∫

0

(

1 + ‖ρε(s)‖2
H

)

ds + 2

t
∫

0

〈

ρε(s), σg(ρ
ε(s))dwQ(s)

〉

H
.

Note that

E sup
s∈[0,t]

∣

∣

∣

∣

∣

∣

s
∫

0

〈

ρε(r), σg(ρ
ε(r))dwQ(r)

〉

H

∣

∣

∣

∣

∣

∣

≤ c

t
∫

0

E ‖ρε(s)‖2
H ds + cT ,

and hence

E sup
s∈[0,t]

‖ρε(s)‖2
H + 2

γ1
E

t
∫

0

‖∇ρε(s)‖2
H ds + 2ε E

t
∫

0

‖�ρε(s)‖2
H ds

≤ E‖r0‖2
H + c

t
∫

0

E‖ρε(s)‖2
H ds + cT .

Therefore, the Gronwall lemma gives (7.10). ��

Proposition 7.3 Assume Hypotheses 1, 2 and condition (7.7), and fix r0 ∈ L2(�; H).

Then, for every T > 0, there exists a unique solution

ρ ∈ L2(�; C([0, T ]; H)) ∩ L2(0, T ; H1)),
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of Eq. (7.2). Moreover, there exists some constant cT > 0 such that

E sup
t∈[0,T ]

‖ρ(t)‖2
H + E

T
∫

0

‖∇ρ(s)‖2
H ds ≤ cT

(

1 + E‖r0‖2
H

)

. (7.11)

Proof By proceeding as in [11, Theorem 6.2], we can show that equation (7.2) admits

at most one solution in L2(�; C([0, T ]; H))∩ L2(0, T ; H1)). Hence, if we show that

there exists a probabilistically weak solution

(�̂, F̂ , {F̂}t , P̂, ŵQ, ρ̂),

such that ρ̂ ∈ L2(�̂; C([0, T ]; H)) ∩ L2(0, T ; H1)), the existence and uniqueness

of a probabilistically strong solution for Eq. (7.2) follows.

Step 1 There exists a filtered probability space (�̂, F̂ , {F̂}t , P̂), a cylindrical

Wiener process ŵQ associated with {F̂}t and a process ρ̂ ∈ L2(�; L∞(0, T ; H)) ∩
L2(0, T ; H1)) such that

〈

ρ̂(t), ϕ
〉

H
=
〈

r0, ϕ
〉

H
−

t
∫

0

〈

b(ρ̂(s))∇ρ̂(s),∇ϕ
〉

H
ds

+
t

∫

0

〈

Fg(ρ̂(s)), ϕ
〉

H
ds +

t
∫

0

〈

ϕ, σg(ρ̂(s))dŵQ(s)
〉

H
, P̂-a.s.,

for every ϕ ∈ C∞
0 (O).

Proof of Step 1. According to Proposition 7.2, we know that for every ε > 0 there

exists a unique solution ρε to Eq. (7.9), and

sup
ε∈ (0,1)

⎛

⎝E sup
t∈[0,T ]

‖ρε(t)‖2
H + E

T
∫

0

‖ρε(t)‖2
H1 dt

⎞

⎠ < ∞. (7.12)

For every h ∈ (0, T ) and t ∈ [0, T − h] we have

ρε(t + h) − ρε(t) =
t+h
∫

t

div
(

b(ρε(s))∇ρε(s)
)

ds − ε

t+h
∫

t

�2ρε(s) ds

+
t+h
∫

t

Fg(ρ
ε(s)) ds +

t+h
∫

t

σg(ρ
ε(s))dwQ(s) =:

4
∑

k=1

I ε
k (t, h).
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We have

sup
t∈ [0,T −h]

‖I ε
1 (t, h)‖H−1 ≤ c sup

t∈ [0,T ]

t+h
∫

t

‖ρε(s)‖H1 ds ≤ c

⎛

⎝

T
∫

0

‖ρε(s)‖2
H1 ds

⎞

⎠

1/2

h1/2.

(7.13)

For I ε
2 (t, h), if ε ∈ (0, 1) we have

sup
t∈ [0,T −h]

‖I ε
2 (t, h)‖H−3

≤ sup
t∈ [0,T −h]

t+h
∫

t

‖ρε(s)‖H1 ds ≤ c

⎛

⎝

T
∫

0

‖ρε(s)‖2
H1 ds

⎞

⎠

1/2

h1/2,

(7.14)

and for I ε
3 (t, h) we have

sup
t∈ [0,T −h]

‖I ε
3 (t, h)‖H

≤ c sup
t∈ [0,T −h]

t+h
∫

t

(

1 + ‖ρε(s)‖H

)

ds ≤ cT

(

1 + sup
t∈ [0,T ]

‖ρε(s)‖H

)

h.

(7.15)

Finally, for I ε
4 (t, h), by using a factorization argument as in [13, Theorems 5.11,

5.15], due to the boundedness of σg in L2(HQ, H) we obtain that for some θ ∈ (0, 1)

sup
ε∈ (0,1)

E ‖I ε
4 (t, h)‖Cθ ([0,T ];H) < ∞. (7.16)

Therefore, by putting together (7.13), (7.14), (7.15) and (7.16), thanks to (7.12) we

conclude

sup
t∈ [0,T −h]

‖ρε(t + h) − ρε(t)‖H−3 ≤ c h
1
2 ∧θ , h ∈ [0, T ),

and together with the bound

sup
ε∈ (0,1)

E sup
t∈ [0,T ]

‖ρε(t)‖H < ∞,

due to [30, Theorem 7] this implies that {ρε}ε∈ (0,1) is tight in L∞(0, T ; H−α), for

every α > 0. Moreover, since for every β ∈ (−3, 1) we have

‖u‖Hβ ≤ ‖u‖
3+β

4

H1 ‖u‖
1−β

4

H−3 ,
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and the bound

sup
ε∈ (0,1)

T
∫

0

E ‖ρε(s)‖2
H1 ds < ∞,

holds, thanks again to [30, Theorem 7], we have that the family {ρε}ε∈ (0,1) is tight

also in the space L8/(3+β)(0, T ; Hβ), for every β ∈ (−3, 1).

In what follows, for every α > 0 and β ∈ (−3, 1) we denote

Xα,β(T ) :=
[

L∞(0, T ; H−α) ∩ L8/(3+β)(0, T ; Hβ)
]

× C([0, T ]; U ),

where U is any Hilbert space such that the embedding HQ ↪→ U is Hilbert–Schmidt.

Due to the tightness of {ρε, wQ}ε∈ (0,1) in Xα,β(T ), there exists a sequence εn ↓ 0

such that L(ρεn , wQ) is weakly convergent in Xα,β(T ). Due to Skorohod’s Theorem

this implies that there exists a probability space (�̂, F̂ , P̂), a sequence of Xα,β(T )-

valued random variables Yn = (ρ̂n, ŵ
Q
n ) and a Xα,β(T )-valued random variable Y =

(ρ̂, ŵQ), all defined on the probability space (�̂, F̂ , P̂), such that

L(Yn) = L(ρεn , wQ), (7.17)

and

lim
n→∞

(

‖ρ̂n − ρ̂‖L∞(0,T ;H−α) + ‖ρ̂n − ρ̂‖L8/(3+β)(0,T ;Hβ ) + ‖ŵQ
n − ŵQ‖C([0,T ];U )

)

= 0, P̂ − a.s. (7.18)

Now, we have

t
∫

0

〈

div
(

b(ρ̂n(s))∇ρ̂n(s)
)

, ϕ
〉

H
ds = −

t
∫

0

〈

b(ρ̂n(s))∇ρ̂n(s),∇ϕ
〉

H
ds

= −
t

∫

0

〈

∇(B(ρ̂n(s)),∇ϕ
〉

H
ds =

t
∫

0

〈

B(ρ̂n(s)),�ϕ
〉

H
ds,

and thanks to (7.17) and (7.18), this gives for every ϕ ∈ C∞
0 (O),

〈

ρ̂n(t), ϕ
〉

H
=
〈

r0, ϕ
〉

H
+

t
∫

0

〈

B(ρ̂n(s)),�ϕ
〉

H
ds − εn

t
∫

0

〈

ρ̂n(s),�2ϕ
〉

H
ds

+
t

∫

0

〈

Fg(ρ̂n(s)), ϕ
〉

H
ds +

t
∫

0

〈

ϕ, σg(ρ̂n(s))dŵQ
n (s)

〉

H
.
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Thus, by using the general argument introduced in [14, proof of Theorem 4.1],

thanks to (7.18) we can take the limit as n → ∞ of both sides in the equality

above, and we obtain that ρ̂ satisfies (7.8), with wQ replaced by ŵQ . Moreover,

ρ̂ ∈ L2(�̂; L∞(0, T ; H))∩ L2(0, T ; H1)) and satisfies (7.11), with E replaced by Ê.

Step 2 We have that there exists a unique solution ρ ∈ L2(�; C([0, T ]; H) ∩
L2(0, T ; H1)) that satisfies (7.11).

Proof of Step 2 Due to what we have seen above, there exists a unique solution

ρ ∈ L2(�; L∞(0, T ; H) ∩ L2(0, T ; H1)),

that satisfies (7.11). It only remains to prove that ρ ∈ C([0, T ]; H), P-a.s. By pro-

ceeding as in [14, Sect. 4.3] we consider the problem

⎧

«

¬

∂tξ(t, x) = �ξ(t, x) + σg(ρ(t, ·))∂tw
Q(t, x),

ξ(0, x) = r0(x), ξ(t, ·)|∂O = 0,

whose unique solution ξ belongs to L2(�; C([0, T ]; H)∩ L2(0, T ; H1)). Then, if we

denote η(t) := ρ(t) − ξ(t), we have that η ∈ L∞(0, T ; H) ∩ L2(0, T ; H1), P-a.s.,

and solves

⎧

«

¬

∂tη(t, x) = div
(

b(ρ(t, x))∇η(t, x)
)

+ div
[

(b(ρ(t, x)) − I )∇ξ(t, x)
]

+ fg(x, ρ(t, x)),

η(0, x) = 0, η(t, ·)|∂O = 0.

(7.19)

Now, if we denote by U (t, s) the evolution family associated with the time-

dependent differential operator

Ltϕ(x) = div [b(ρ(t, x))∇ϕ(x)] , x ∈ O,

we have that

η(t, x) =
t

∫

0

U (t, s)
[

div [b(ρ(t, ·)) − I ] ∇ξ(s, ·) + fg(·, ρ(s, ·))
]

(x) ds,

and since ξ ∈ L2(0, T ; H1) and ρ ∈ L∞(0, T ; H), P-a.s., we get that η ∈
C([0, T ]; H), P-a.s. In particular, ρ = η + ξ belongs to C([0, T ]; H), P-a.s. ��

7.2 Well-Posedness of Eq. (7.1) in H

From the well-posedness of the quasilinear stochastic parabolic Eq. (7.2), we get the

well-poseness of Eq. (7.1) in H . By proceeding as in the proof of [10, Theorem 7.1],

we can show that u ∈ L2(�; C([0, T ]; H)∩ L2([0, T ]; H1)) is a solution to Eq. (7.1)

with initial condition u0 ∈ L2(�; H) if and only if ρ := g(u) is a weak solution to
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equation (7.2) with initial value r0 = g(u0) ∈ L2(�; H). Moreover, as a consequence

of the Lipschitz continuity of g and g−1 on R, we have the following result.

Proposition 7.4 Assume Hypotheses 1, 2 and condition (7.7). For every T > 0 and

every u0 ∈ L2(�; H), there exists a unique weak solution u ∈ L2(�; C([0, T ]; H) ∩
L2(0, T ; H1)), to Eq. (7.1) such that

E sup
t∈[0,T ]

‖u(t)‖2
H + E

T
∫

0

‖u(t)‖2
H1 dt ≤ cT

(

1 + E‖u0‖2
H

)

.

In what follows, we shall denote

P H
t ϕ(u) := E ϕ(uu(t)), u ∈ H , t ≥ 0,

for every ϕ ∈ Bb(H).

7.3 Some Bounds for� and u

Once established the existence of a unique weak solution in L2(�; C([0, T ]; H) ∩
L2([0, T ]; H1)), both for (7.1) and (7.2), we prove some bounds for their solutions h

and ρ.

Lemma 7.5 Under Hypotheses 1, 2 and 3, there exist some λ > 0 and c > 0, such

that for every t ≥ 0

E ‖ρ(t)‖2
H ≤ c

(

1 + e−λt
E ‖r0‖2

H

)

, E

t
∫

0

‖ρ(s)‖2
H1 ds ≤ c

(

t + E ‖r0‖2
H

)

.

(7.20)

Proof We apply Itô’s formula to the process ρ(t) and the function K (r) = ‖r‖2
H and

we get

1

2
d ‖ρ(t)‖2

H ≤ −γ −1
1 ‖ρ(t)‖2

H1 dt +
〈

Fg(ρ(t)), ρ(t)
〉

H
dt + 1

2

∥

∥σg(ρ(t))
∥

∥

2

L2(HQ ,H)
dt

+ 〈ρ(t), σg(ρ(t))dwQ(t)〉H .

Then thanks to (7.4) and (2.7), together with 7.6, we can find some constant λ > 0

such that

d

dt
E ‖ρ(t)‖2

H + λE ‖ρ(t)‖2
H1 ≤ c,

and this allows we complete the proof. ��
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Due to estimates (7.20) and the Lipschitz continuity of g and g−1 on R, estimates

analogous to (7.20) holds for the solution u.

Proposition 7.6 Assume Hypotheses 1, 2 and 3. For every T > 0 and every u0 ∈
L2(�; H), there exists a unique u ∈ L2(�; C([0, T ]; H) ∩ L2(0, T ; H1)) which

solves Eq. (7.1) in the following sense

〈u(t), ψ〉H = 〈u0, ψ〉H −
t

∫

0

〈 ∇u(s)

γ (u(s))
,∇ψ

〉

H

ds −
t

∫

0

〈

∇
(

1

γ (u(s))

)

· ∇u(s), ψ

〉

H

ds

+
t

∫

0

〈

f (u(s))

γ (u(s))
, ψ

〉

H

ds −
t

∫

0

〈

γ ′(u(s))

2γ (u(s))3

∞
∑

i=1

(σ (u(s))Qei )
2, ψ

〉

H

ds

+
t

∫

0

〈

σ(u(s))

γ (u(s))
dwQ(s), ψ

〉

H

,

for any ϕ ∈ C∞
0 (O). Moreover, for every t ≥ 0

E ‖u(t)‖2
H ≤ c

(

1 + e−λt
E ‖u0‖2

H

)

, E

t
∫

0

‖u(s)‖2
H1 ds ≤ c

(

t + E ‖u0‖2
H

)

.

7.4 Well-Posedness of Eq. (7.2) in H−1

Here, we will use the results we have just mentioned about the well-posedness of Eq.

(7.2) in H , to study its well-posedness in H−1.

Definition 7.7 For every fixed r0 ∈ H−1 and T > 0, an adapted process ρ ∈
L2(�; L2(0, T ; H)) is a solution of Eq. (7.2) with initial condition ρ0 if for every

ϕ ∈ C∞
0 (O)

〈

ρ(t), ϕ
〉

H
=
〈

r0, ϕ
〉

H
+

t
∫

0

〈

B(ρ(s)),�ϕ
〉

H
ds +

t
∫

0

〈

Fg(ρ(s)), ϕ
〉

H
ds

+
t

∫

0

〈

ϕ, σg(ρ(s))dwQ(s)
〉

H
,

P-a.s., where

B(r) :=
r
∫

0

b(s)ds, r ∈ R.
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Proposition 7.8 Assume Hypotheses 1, 2, 3 and 4. Then, for every r0 ∈ H−1 and every

T > 0, there exists a unique solution

ρr0 ∈ L2(�; C([0, T ]; H−1) ∩ L2(0, T ; H)),

to Eq. (7.2). Moreover, there exist c, λ > 0 independent of T > 0 such that for every

t ∈ [0, T ]

E
∥

∥ρr0(t)
∥

∥

2

H−1 ≤ c
(

1 + e−λt
E ‖r0‖2

H−1

)

,

E

t
∫

0

∥

∥ρr0(s)
∥

∥

2

H
ds ≤ c

(

t + E ‖r0‖2
H−1

)

. (7.21)

Proof We fix an arbitrary sequence {rε}ε>0 ⊂ H converging to r0 strongly in H−1,

as ε → 0. Thanks to Proposition 7.3, for each ε > 0 there exists a solution ρε ∈
L2(�; C([0, T ]; H) ∩ L2([0, T ]; H1)) for problem (7.2) with initial condition rε . If

for every ε, δ > 0 we define

ϑε,δ(t) := ρε(t) − ρδ(t), t ∈ [0, T ],

we have

1

2
d
∥

∥ϑε,δ(t)
∥

∥

2

H−1

= −
〈

B(ρε(t)) − B(ρδ(t)), ϑε,δ(t)
〉

H
dt +

〈

Fg(ρε(t)) − Fg(ρδ(t)), ϑε,δ(t)
〉

H−1 dt

+1

2

∥

∥σg(ρε(t)) − σg(ρδ(t))
∥

∥

2

L2(HQ ,H−1)
dt +

〈

ϑε,δ(t),
[

σg(ρε(t)) − σg(ρδ(t))
]

dwQ(t)
〉

H−1 .

Since

B(r) =
r
∫

0

b(s) ds =
r
∫

0

1

γ (g−1(s))
ds,

we have

(B(r1) − B(r2))(r1 − r2) ≥ 1

γ1
|r1 − r2|2, r1, r2 ∈ R,

so that

1

2
d
∥

∥ϑε,δ(t)
∥

∥

2

H−1 ≤ −c0

∥

∥ϑε,δ(t)
∥

∥

2

H
dt

+
〈

ϑε,δ(t),
[

σg(ρε(t)) − σg(ρδ(t))
]

dwQ(t)
〉

H−1 ,
(7.22)
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where

c0 :=
(

1

γ1
− Lσ

2α1γ
2
0

− L f

α1γ0

)

> 0,

last inequality following from (2.11).

Hence, if we first integrate both sides in (7.22) with respect to time and then take

the expectation, we get

sup
s∈ [0,T ]

E
∥

∥ϑε,δ(s)
∥

∥

2

H−1 + 2 c0

T
∫

0

E
∥

∥ϑε,δ(s)
∥

∥

2

H
ds ≤ E ‖rε − rδ‖2

H−1 ,

and this implies that the sequence (ρε) is Cauchy in C([0, T ]; L2(�; H−1)) ∩
L2(�; L2(0, T ; H))). In particular, it converges to someρ in C([0, T ]; L2(�; H−1))∩
L2(�; L2(0, T ; H))), as ε → 0. For every ε > 0 and ϕ ∈ C∞

0 (O) we have

〈

ρε(t), ϕ
〉

H
=
〈

rε, ϕ
〉

H
+

t
∫

0

(〈

B(ρε(s)),�ϕ
〉

H
+
〈

Fg(ρε(s)), ϕ
〉

H

)

ds

+
t

∫

0

〈

ϕ, σg(ρε(s))dwQ(s)
〉

H
.

Then, due to the Lipschitz continuity of B, Fg and σg , we can take the limit in both

sides of the identity above, as ε → 0, and we get that ρ is a solution for (7.2).

To prove the uniqueness, assume that ρ1, ρ2 are two solutions to (7.2). By proceed-

ing as above, we have

sup
t∈ [0,T ]

E ‖ρ1(t) − ρ2(t)‖2
H−1 + c0

T
∫

0

E ‖ρ1(t) − ρ2(t)‖2
H dt ≤ 0,

which gives ρ1 = ρ2.

Next, we prove that ρ ∈ L2(�; C([0, T ]; H−1) ∩ L2(0, T ; H))). We apply Itô’s

formula to ‖ρ‖2
H−1 and we get
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1

2
d ‖ρ(t)‖2

H−1=
1

2

∥

∥σg(ρ(t))
∥

∥

2

L2(HQ ,H−1)
dt − 〈B(ρ(t)), ρ(t)〉H dt

+
〈

Fg(ρ(t)), ρ(t)
〉

H−1 dt + 〈ρ(t), σg(ρ(t))dwQ(t)〉H−1

≤ c − γ −1
1 ‖ρ(t)‖2

H dt +
〈

Fg(ρ(t)), ρ(t)
〉

H−1 dt + 〈ρ(t), σg(ρ(t))dwQ(t)〉H−1 .

Due to (2.7) there exists δ̄ > 0 such that

c1 := 1

γ1
− L f + δ̄

α1γ0
> 0,

so that, thanks to (7.5) we have

1

2
d ‖ρ(t)‖2

H−1 ≤ c − c1 ‖ρ(t)‖2
H dt + 〈ρ(t), σg(ρ(t))dwQ(t)〉H−1 . (7.23)

Now, since we have

E sup
s∈ [0,t]

∣

∣

∣

∣

∣

∣

s
∫

0

〈ρ(t), σg(ρ(t))dwQ(t)〉H−1

∣

∣

∣

∣

∣

∣

≤ 1

4
E sup

s∈ [0,t]
‖ρ(s)‖2

H−1 + c,

if we integrate both sides in (7.23) and then take the supremum with respect to time

and the expectation, we get

E sup
t∈ [0,T ]

‖ρ(t)‖2
H−1 +

T
∫

0

E ‖ρ(s)‖2
H ds ≤ cT

(

1 + ‖r0‖2
H−1

)

,

which, in particular implies that ρ ∈ L2(�; L∞(0, T ; H−1) ∩ L2(0, T ; H))). More-

over, since ρ solves equation (7.2), it belongs to C([0, T ]; H−1), P-a.s.

Finally, in order to prove (7.21), we take the expectation of both sides of (7.23) and

we get

d

dt
E ‖ρ(t)‖2

H−1 + 2 c1E ‖ρ(s)‖2
H ds ≤ c,

and this implies that there exist some c, λ > 0 such that (7.21) holds. ��

8 Ergodic Behavior of the Limiting Equation

We first study the existence of a unique invariant measure for RH
t and RH−1

t , and then

we show how this implies the existence of a unique invariant measure for P H
t .
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8.1 Ergodicity of Eq. (7.2)

In what follows, we denote by RH−1

t the transition semigroup associated to Eq. (7.2)

on H−1

RH−1

t ϕ(r) := Eϕ(ρr(t)), r ∈ H−1, t ≥ 0,

for every ϕ ∈ Bb(H−1). Similarly, we denote by RH
t the transition semigroup asso-

ciated to equation (7.2) on H ,

RH
t ϕ(r) := Eϕ(ρr(t)), r ∈ H , t ≥ 0,

for every ϕ ∈ Bb(H). Clearly, if r ∈ H and ϕ ∈ Bb(H−1), then

RH
t ϕ(r) = RH−1

t ϕ(r), t ≥ 0.

For every A ∈ B(H−1) we have that A ∩ H ∈ B(H). Thus, if ν ∈ P(H), we can

define its extension ν′ ∈ P(H−1) by setting

ν′(A) = ν(A ∩ H), A ∈ B(H−1).

With this definition, supp (ν′) ⊂ H . Indeed, if we denote by BH (r, R) the closed

ball in H centered at r ∈ H with radius R > 0, then Bc
H (r, R) ∈ B(H), so that

lim
R→+∞

ν′(Bc
H (0, R)) = lim

R→+∞
ν(Bc

H (0, R)) = 0,

which implies that supp (ν′) ⊂ H .

Proposition 8.1 Assume Hypotheses 1, 2, 3 and 4, and define α(r, s) := |r − s|H−1 .

Then, there exist some positive constant λ0, t0 and c such that

Wα

(

(RH−1

t )∗ν1, (RH−1

t )∗ν2

)

≤ c e−λ0t Wα(ν1, ν2), t > t0. (8.1)

Moreover, RH−1

t has a unique invariant measure νH−1
such that supp (νH−1

) ⊂ H1

and

Wα

(

(RH−1

t )∗δr, νH−1
)

≤ c
(

1 + ‖r‖H−1

)

e−λ0t , t ≥ 0, r ∈ H−1. (8.2)

Proof Let ρr1 , ρr2 be two solutions of (7.2), with initial conditions r1, r2 ∈ H−1,

respectively. By proceeding as in the proof of Proposition 7.8, we have

E
∥

∥ρr1(t) − ρr1(t)
∥

∥

2

H−1 ≤ e−λt ‖r1 − r2‖2
H−1 , t ≥ 0,
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for some constant λ > 0. In particular, the semigroup RH−1

t is Feller in H−1 and for

every ϕ ∈ Lipb(H−1) and r1, r2 ∈ H−1

∣

∣

∣
RH−1

t ϕ(r1) − RH−1

t ϕ(r2)

∣

∣

∣
≤ [ϕ]Lip

H−1,α
e−λt/2 ‖r1 − r2‖H−1 , t ≥ 0. (8.3)

As shown e.g. in [21, Theorem 2.5], (8.3) implies (8.1). Moreover, it implies that

RH−1

t has at most one invariant measure.

If for every R > 0 and t > 0 we denote

BR :=
{

r ∈ H−1 : ‖r‖H1 ≤ R
}

, �t := 1

t

t
∫

0

(RH−1

t )∗ δ0 dt .

Then, thanks to (7.20), for every R > 0 and t > 0 we have

Rt (Bc
R) = 1

t

t
∫

0

P

(∥

∥

∥ρ
0(s)

∥

∥

∥

H1
> R

)

ds ≤ c

R2
. (8.4)

Since BR is compactly embedded in H−1, this implies that the family of measures

{�t }t>0, is tight in H−1. Then, by Prokhorov’s Theorem, there exists tn ↑ ∞ such

that �tn converges weakly to some probability measure in P(H−1) which is invariant

for RH−1

t and, due to what we have seen above, such measure is the unique invariant

measure νH−1
of RH−1

t . Moreover, (8.4) gives

νH−1

(Bc
R) ≤ lim inf

n→∞
�tn (Bc

R) ≤ c

R2
, R > 0,

so that supp (νH−1
) ⊂ H1.

Finally, in order to prove (8.2), we first notice that due to the invariance of νH−1

and (7.21)

∫

H−1

‖r‖2
H−1 νH−1

(dr) ≤ lim inf
R→∞

∫

H−1

(

‖r‖2
H−1 ∧ R

)

νH−1

(dr)

= lim inf
R→∞

∫

H−1

(

E ‖ρr(t)‖2
H−1 ∧ R

)

νH−1

(dr)

≤ c

⎛

⎜

⎝
1 + e−λt

∫

H−1

‖r‖2
H−1ν

H−1

(dr)

⎞

⎟

⎠
.
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Thus, if we take t̄ > 0 such that ce−λt̄ = 1/2, we get

∫

H−1

‖r‖2
H−1 νH−1

(dr) ≤ c. (8.5)

Then, in view of (8.3), for every ϕ ∈ Lipb(H−1) we have

Wα

(

(RH−1

t )∗δr, νH−1
)

≤

∣

∣

∣

∣

∣

∣

∣

RH−1

t ϕ(r) −
∫

H−1

ϕ(s) νH−1

(ds)

∣

∣

∣

∣

∣

∣

∣

≤
∫

H−1

∣

∣

∣
RH−1

t ϕ(r) − RH−1

t ϕ(s)

∣

∣

∣
νH−1

(ds)

≤ [ϕ]Lip
H−1 ,α e−λt/2

∫

H−1

‖r − s‖H−1νH−1

(ds),

and (8.5) allows to obtain (8.2), with λ0 = λ/2. ��

Remark 8.2 Based on the fact that B(H) ⊂ B(H−1) and the fact that supp (νH−1
) ⊂

H1, we have that νH−1 ∈ P(H−1) is also a probability measure on H . In what follows,

it will be convenient to distinguish the restriction of νH−1
to H from νH−1

itself and

for this reason we will denote it by νH .

Proposition 8.3 The probability measure νH is the unique invariant measure for the

transition semigroup RH
t . Moreover, supp (νH ) ⊂ H1 and

∫

H

‖r‖2
H1 νH (dr) < ∞. (8.6)

Proof By proceeding as in the proof of Lemma 6.3, it is possible to show that νH is

invariant for RH
t , and from Proposition 8.1 we get that supp(νH ) ⊂ H1.

To prove its uniqueness, we notice that if ν ∈ P(H) is any invariant measure for

RH
t , then its extension ν′ ∈ P(H−1), with the support in H , is invariant for RH−1

t .

From Proposition 8.1, we have ν′ = νH−1
, and hence

ν(A) = ν′(A) = νH−1

(A) = νH (A), A ∈ B(H),

which implies that ν = νH .

Finally, in order to prove (8.6), we consider the Komolgov operator associated to

RH
t

Nϕ(r) = 1

2
TrH

[

(

σg(r)Q
)(

σg(r)Q
)∗

D2ϕ(r)
]

+
〈

div
(

b(r)∇r
)

+ Fg(r), Dϕ(r)
〉

H
.
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We consider the function ϕ(r) := ‖r‖2
H /2, then

Nϕ(r) = 1

2

∥

∥σg(r)
∥

∥

2

L2(HQ ,H)
−
〈

b(r)∇r,∇r
〉

H

+
〈

Fg(r), r
〉

H
≤ 1

2
σ 2

∞ − γ −1
1 ‖∇r‖2

H +
〈

Fg(r), r
〉

H
,

so thanks to (7.4) and (2.7), by the invariance of νH on H we have

∫

H

‖r‖2
H1 νH (dr) < ∞.

��

Remark 8.4 As a direct consequence of (8.6), we have

∫

H−1

‖r‖2
H1 νH−1

(dr) < ∞. (8.7)

8.2 Ergodicity for Eq. (7.1)

Now, we recall that we denoted by P H
t the transition semigroup associated to the

limiting problem (7.1)

P H
t ϕ(u) := E ϕ(uu(t)), u ∈ H , t ≥ 0,

for every ϕ ∈ Bb(H). For every r, u ∈ H and t ≥ 0 we have

g−1(ρr(t)) = ug−1(r)(t), ρg(u)(t) = uu(t).

Hence, if we define the operator Tg : Cb(H) → Cb(H) by

[Tgϕ](u) = ϕ(g(u)), u ∈ H ,

we have T −1
g := Tg−1 ,

∫

H

[Tgϕ](u) (ν ◦ g)(du) =
∫

H

ϕ(r) ν(dr), (8.8)

and for every ϕ ∈ Cb(H)

RH
t ϕ(r) = E ϕ(ρr(t)) = E [Tgϕ](ug−1(r)(t)) = P H

t [Tgϕ](g−1(r)), t ≥ 0.(8.9)

Lemma 8.5 ν ∈ P(H) is invariant for P H
t if and only ν ◦ g−1 is invariant for RH

t . In

particular, νH ◦ g is the unique invariant measure for P H
t .
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Proof Assume ν ∈ P(H) is invariant for P H
t . Then, thanks to (8.9) and (8.8), for

every ϕ ∈ Cb(H) and t ≥ 0 we have

∫

H

RH
t ϕ(r) (ν ◦ g−1)(dr) =

∫

H

RH
t ϕ(g(u)) ν(du) =

∫

H

P H
t [Tgϕ](u) ν(du)

=
∫

H

[Tgϕ](u) ν(du) =
∫

H

ϕ(r) (ν ◦ g−1)(dr).

This implies that ν ◦ g−1 is invariant for RH
t . In the same way, if λ ∈ P(H) is

invariant for RH
t , then λ ◦ g is invariant for P H

t . Hence, we can conclude due to (9.1).

Our statement can be rephrased by saying that there exists a unique invariant mea-

sure for RH
t if and only is there exists a unique invariant measure for P H

t . Therefore,

since we have shown in Corollary 8.3 that νH is the unique invariant measure for RH
t ,

we obtain that νH ◦ g is the unique invariant measure for P H
t . ��

9 Proof of Theorem 3.2

Due to Hypothesis 2, with an abuse of notation in this section we will look at g and

g−1 as mappings on H

[g(h)](x) := g(h(x)), [g−1(h)](x) := g−1(h(x)), x ∈ O, h ∈ H .

For every probability measure ν ∈ P(H), we define probability measures ν ◦ g and

ν ◦ g−1 ∈ P(H) by

(

ν ◦ g
)

(A) := ν(g(A)),
(

ν ◦ g−1
)

(A) := ν(g−1(A)), A ∈ B(H).

Clearly, we have

(ν ◦ g) ◦ g−1 = (ν ◦ g−1) ◦ g = ν. (9.1)

We notice that Theorem 3.2 is proved once we can show that if (νH
μ )μ>0 ⊂ P(H)

is a family of invariant measures for the transition semigroups P
μ,H
t , such that

supp(νH
μ ) ⊂ H1, then

lim
μ→0

Wα

(

[(


1ν
H
μ

)

◦ g−1
]′

, νH−1

)

= 0, (9.2)

where νH−1
is the unique invariant measure for RH−1

t in H−1.

Actually, in view of (6.16), the family of probability measures (
1ν
H
μ )μ∈(0,1) is

tight in H δ , for every δ < 1. If ν is any weak limit of 
1ν
H
μ in H , as μ → 0, we
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have (
1ν
H
μ ) ◦ g−1 converges weakly to ν ◦ g−1 on H . Due to the continuity of the

embedding of H−1 into H ,

[

(
1ν
H
μ ) ◦ g−1

]′
⇀
(

ν ◦ g−1
)′
, as μ → 0,

as measures on H−1. On the other hand, according to (9.2) we have that
[

(
1ν
H
μ ) ◦ g−1

]′
converges weakly to νH−1

in H−1, so that (ν ◦ g−1)′ = νH−1
in

H−1. This implies that ν ◦ g−1 = νH ∈ P(H), and thus ν = νH ◦ g ∈ P(H). Since

this holds for every weak limit ν of 
1ν
H
μ , we conclude that 
1ν

H
μ converges weakly

to νH ◦ g in H , as μ → 0, and, due to Lemma 8.5, νH ◦ g is the unique invariant

measure for P H
t .

9.1 Proof of (9.2)

Due to the invariance of νH
μ and νH−1

, we have

Wα

(

[(


1ν
H
μ

)

◦ g−1
]′

, νH−1

)

≤ Wα

(

[


1((P
μ,H
t )�νH

μ ) ◦ g−1
]′

, (RH−1

t )∗
[(


1ν
H
μ

)

◦ g−1
]′)

+ Wα

(

(RH−1

t )∗
[(


1ν
H
μ

)

◦ g−1
]′

, (RH−1

t )∗νH−1

)

.

According to (8.1), we have

Wα

(

(RH−1

t )∗
[(


1ν
H
μ

)

◦ g−1
]′

, (RH−1

t )∗νH−1

)

≤ c e−λ0tWα

(

[(


1ν
H
μ

)

◦ g−1
]′

, νH−1

)

,

and then, if we pick t̄ > 0 such that ce−λ0 t̄ ≤ 1/2, we obtain

Wα

(

[(


1ν
H
μ

)

◦ g−1
]′

, νH−1

)

≤ 2 Wα

(

[

(
1((P
μ,H

t̄
)�νH

μ ) ◦ g−1
]′

, (RH−1

t̄
)∗
[(


1ν
H
μ

)

◦ g−1
]′)

.

Now, if we fix a F0-measurable H1-valued random variable ϑμ := (ξμ, ημ), dis-

tributed as the invariant measure νH
μ , the Kantorovich–Rubinstein identity (3.3) gives

for every t ≥ 0

Wα

(

[

(
1((P
μ,H
t )�νH

μ ) ◦ g−1
]′

, (RH−1

t )∗
[(


1ν
H
μ

)

◦ g−1
]′)

≤ E α(g(u
ϑμ
μ (t)), ρ g(ξμ)(t)).
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Thus, (9.2) follows once we prove that for every t ≥ 0 large enough

lim
μ→0

E α(g(u
ϑμ
μ (t)), ρ g(ξμ)(t)) = lim

μ→0
E ‖g(u

ϑμ
μ (t)) − ρ g(ξμ)(t)‖H−1 = 0. (9.3)

According to (6.16) we have that ϑμ ∈ L2(�;H1), for every μ ∈ (0, 1). Hence,

if we denote ρμ(t) := g(u
ϑμ
μ (t)), by proceeding as in [10, Sect. 5], we can rewrite

equation (3.1) in the following way

ρμ(t) + μv
ϑμ
μ (t) = g(ξμ) + μημ +

t
∫

0

�[B(ρμ(s))]ds

+
t
∫

0

Fg(ρμ(s))ds +
t
∫

0

σg(ρμ(s))dwQ(s),

where the identity holds in H−1 sense. Since ρ g(ξμ) solves Eq. (7.2) with initial

condition g(ξμ) ∈ L2(�; H) in H−1 sense, we have

ρμ(t) − ρ g(ξμ)(t) + μv
ϑμ
μ (t) = μημ +

t
∫

0

�
[

B(ρμ(s)) − B(ρ g(ξμ)(s))
]

ds

+
t

∫

0

(

Fg(ρμ(s)) − Fg(ρ
g(ξμ)(s))

)

ds +
t

∫

0

(

σg(ρμ(s)) − σg(ρ
g(ξμ)(s))

)

dwQ(s).

If we define ϑμ(t) := ρμ(t) − ρ g(ξμ)(t), as a consequence of Itô’s formula, we

have

ϑμ(t) := ρμ(t) − ρ g(ξμ)(t), as a consequence of Itô’s formula, we have

1

2
E ‖ϑμ(t) + μv

ϑμ
μ (t)‖2

H−1

= 1

2
μ2

E ‖ημ‖2
H−1 − E

t
∫

0

〈

B
(

ρμ(s)
)

− B
(

ρ g(ξμ)(s)
)

, ϑμ(s) + μv
ϑμ
μ (s)

〉

H
ds

+E

t
∫

0

〈

Fg

(

ρμ(s)
)

− Fg

(

ρ g(ξμ)(s)
)

, ϑμ(s) + μv
ϑμ
μ (s)

〉

H−1ds

+1

2
E

t
∫

0

‖σg(ρμ(s)) − σg(ρ
g(ξμ)(s))‖2

L2(HQ ,H−1)
ds
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so that

E ‖ϑμ(t) + μv
ϑμ
μ (t)‖2

H−1 ≤ μ2
E
∥

∥ημ

∥

∥

2

H−1 − 2μ E

t
∫

0

〈

B
(

ρμ(s)
)

− B
(

ρ g(ξμ)(s)
)

, v
ϑμ
μ (s)

〉

H
ds

+2μ E

t
∫

0

〈

Fg

(

ρμ(s)
)

− Fg

(

ρ g(ξμ)(s)
)

, v
ϑμ
μ (s)

〉

H−1 ds − c0 E

t
∫

0

‖ϑμ(s)‖2
H ds,

where

c0 := 2
( 1

γ1
− Lσ

2α1γ
2
0

− L f

α1γ0

)

> 0.

Since B has linear growth, thanks to (6.1) and (6.2) for every μ ∈ (0, μ0) we have

μ · E

∣

∣

∣

∣

∣

∣

t
∫

0

〈

B(ρμ(s)
)

− B
(

ρ g(ξμ)(s)), v
ϑμ
μ (s)

〉

H
ds

∣

∣

∣

∣

∣

∣

≤ c

⎛

⎝

t
∫

0

(

1 + E
∥

∥ρμ(t)
∥

∥

2

H
+ E ‖ρ g(ξμ)(t)‖2

H

)

dt

⎞

⎠

1
2
⎛

⎝

t
∫

0

μ2
E ‖vϑμ

μ (t)‖2
H dt

⎞

⎠

1
2

≤ c
(

1 + t + E
∥

∥ξμ

∥

∥

2

H1 + μ2
E‖ημ‖2

H

)
1
2
(

μ t + μ2 + μ2
E‖ξμ‖2

H1 + μ3
E
∥

∥ημ

∥

∥

2

H

)
1
2

≤ ct

⎛

⎝1 +
∫

H

(

‖u‖2
H1 + μ2 ‖v‖2

H

)

νH
μ (du, dv)

⎞

⎠

1
2

(

μ + μ2
∫

H

(

‖u‖2
H1 + μ ‖v‖2

H

)

νH
μ (du, dv)

)
1
2

≤ ct
√

μ

⎛

⎝1 +
∫

H

(

‖u‖2
H1 + μ ‖v‖2

H

)

νH
μ (du, dv)

⎞

⎠.

Similarly, thanks to the linear growth of Fg , we have for every μ ∈ (0, μ0)

μ · E

∣

∣

∣

∣

∣

∣

t
∫

0

〈

Fg(ρμ(s)
)

− Fg

(

ρ g(ξμ)(s)), v
ϑμ
μ (s)

〉

H−1 ds

∣

∣

∣

∣

∣

∣

≤ ct
√

μ

⎛

⎝1 +
∫

H

(

‖u‖2
H1 + μ ‖v‖2

H

)

νH
μ (du, dv)

⎞

⎠ .
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Moreover, due to (6.16) we know the family of random variable ϑμ satisfies (6.5).

Then, from (6.6) we obtain that for every μ ∈ (0, μt )

μ2
E ‖vϑμ

μ (t)‖2
H−1 ≤ ct

√
μ + c μ

(

E
∥

∥ξμ

∥

∥

2

H1 + μ E
∥

∥ημ

∥

∥

2

H

)

= ct
√

μ + c μ

∫

H

(

‖u‖2
H1 + μ ‖v‖2

H

)

νH
μ (du, dv).

Therefore, from (2.11) and once again (6.16), we conclude that for every μ ∈
(0, μt )

1

2
E ‖ρμ(t) − ρ g(ξμ)(t)‖2

H−1

≤
(

E ‖ρμ(t) − ρ g(ξμ)(t) + μv
ϑμ
μ (t)‖2

H−1 + μ2
E ‖vϑμ

μ (t)‖2
H−1

)

≤ ct
√

μ

⎛

⎝1 +
∫

H

(

‖u‖2
H1 + μ ‖v‖2

H

)

νH
μ (du, dv)

⎞

⎠ ,

and (9.3) follows.
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