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Abstract

We investigate the convergence, in the small mass limit, of the stationary solutions of
a class of stochastic damped wave equations, where the friction coefficient depends
on the state and the noisy perturbation is of multiplicative type. We show that the
Smoluchowski—Kramers approximation that has been previously shown to be true
in any fixed time interval, is still valid in the long time regime. Namely, we prove
that the first marginals of any sequence of stationary solutions for the damped wave
equation converge to the unique invariant measure of the limiting stochastic quasilinear
parabolic equation. The convergence is proved with respect to the Wasserstein distance
associated with the H~! norm.

Keywords Stochastic wave equations - Smoluchowski-Kramers approximation -
Convergence of invariant measures - Wasserstein convergence
1 Introduction

In this article we deal with the following stochastic wave equation with state-dependent
damping, on a bounded smooth domain O C Rd, withd > 1,

ualzuu(t, x) = Auy(t,x) — y(uy(t, x))oru,(t, x)
+f O g (1, %)) + 0 (up(r, ))ow(r, x), 1.1

u, (0, x) =up(x), uu(0,x)=1np(x), uy(t,x) =0, x € 30,

depending on a parameter 0 < u << 1. The friction coefficient y is a strictly
positive, bounded and continuously differentiable function. The diffusion coefficient
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o is bounded and Lipschitz-continuous and the noise w Q1)isa cylindrical Q-Wiener
process, white in time and colored in space. The nonlinearity f : O x R — R
is Lipschtz-continuous with respect to the second variable and the identically zero
function is globally asymptotically stable in the absence of the stochastic perturbation.
Here and in what follows, we denote H := L2(0), H~! := H™1(©), and H! :=
Hg (O) (the set of functions in the Sobolev space H'!(O) with zero-trace).

The solution u, (¢, x) of Eq. (1.1) can be interpreted as the displacement of the
particles of a material continuum in a domain O, subject to a random external force
field 3, w? (¢, x) and a damping force which is proportional to the velocity field and
depends on the state u,,. The second order differential operator takes into account of
the interaction forces between neighboring particles, in the presence of a non-linear
reaction given by f. Here u represents the constant density of the particles and we
are interested in the regime when u — 0, known as the Smoluchowski—Kramers
approximation limit (Refs. [25, 31]).

In [3, 4] it has been proven that, when y is constant, for every T > O and n > 0

lim IP’( sup lup (1) —u(®)|lg > n) =0, (1.2)

n=0 " \¢ej0,7]

where u € Lz(Q; C(0,T];H) N L2(0, T; HY) is the solution of the parabolic
problem

you(t,x) = Au(t,x) + f(x,u(t, x)) + o(u(t, -))B,wQ(t, Xx),
(1.3)
u(,x) =up(x),  u(t,)|,n,=0.

When the friction coefficient y is state-dependent, the situation is more complicated
and, because of the interplay between the noise and the non-constant friction, in the
small-mass limit an extra drift term is created. In this regard, in [10] it has been proven
that for every ug € H!, T > 0and p < 00, and for every n > 0

lim P /||uﬂ(t)—u(t)||[;1dt >yl =0, (1.4)
n—0
0

where u is the unique solution of the stochastic quasi-linear equation
y(u(t,x))ou(t,x) = Au(t,x) + f(x,u(t, x))
— D S ot ) Qei ()2
+o (u(t, ) wl(, x)
M(O,x) =u0(x)a I/i(t, )‘30 =0

(1.5)

Notice that the case of a non-constant damping coefficient is not the sole instance
in which, within the context of a small mass limit, an additional drift term appears. For
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example, in the case of a damped stochastic wave equation, constrained to live on the
unitary sphere of H, in the limit the Smoluchowski—Kramers approximation yields a
stochastic parabolic problem also constrained to live on the unitary sphere of H, where
an extra-drift term emerges, and that drift does not encompass the It6-to-Stratonovich
correction (see [2]). For a partial list of references where this type of limit has been
addressed in a variety of different contexts, see [1, 5, 16, 17, 22-24, 26, 32], in finite
dimension, and [2-4, 9, 10, 27-29], in infinite dimension.

After establishing the validity of the small mass limits within a fixed time interval
[0, T'], the next step of interest is to compare the long-term dynamics of the second-
order system with that of the first-order system (to this purpose, see e.g. [6-8, 11, 12,
24)).

In [3], a comparative analysis of the long-term behavior of equations (1.1) (with a
constant y) and (1.3) was conducted, assuming both systems to be of gradient type.
Notably, in the case where the noise is white in both space and time (Q = I) and the
dimensionisd = 1, anexplicitexpression for the Boltzmann distribution of the process
Zu(t) = (uy(t), 0uy/0t(t)) in the phase space H := L2(0,L) x H1(0, L) was
derived. Since there is no equivalent of the Lebesgue measure in the functional space
‘H, an auxiliary Gaussian measure was introduced, and the density of the Boltzmann
distribution was then expressed with respect to such auxiliary Gaussian measure, which
itself corresponds to the stationary measure of the linear wave equation associated
with problem (1.1). In particular, it was shown that the first marginal of the invariant
measure linked to the process z, (f) remains independent of + > 0 and coincides with
the invariant measure for the heat equation (1.3).

In the case of non-gradient systems, that is when the noise is colored in space
and/or of multiplicative type, there is no explicit expression for the invariant measure
v, associated with system (1.1) and there is no reason to expect that the first marginal
of v, does not depend on p or coincides with the invariant measure v of system (1.3).
Nonetheless, in [6] it was proved that, as the mass parameter p tends to zero, the first
marginal of any invariant measure v, associated with the second-order system (1.1)
converges in a suitable manner to the invariant measure v of the first-order system
(1.3). Specifically, the following convergence was established

lim W (M1, v) =0, (1.6)
n—

where (ITjv,,)" denotes the extension of the first marginal of the invariant measure v,
to H, and the metric W, corresponds to the Wasserstein metric on P(H) associated
with a distance metric « in H, which was determined based on the characteristics of
the non-linearity function f under consideration.

In the present paper, we want to see if any of the results proved in [6] in the case of a
constant friction y, can be proven for a state-dependent y, where the Smoluchowski—
Kramers approximation gives the stochastic quasi-linear parabolic problem (1.5),
instead of the simpler parabolic semi-linear problem (1.3).

One of the key ingredients used in [6] for the proof of (1.6) is the fact that the
transition semigroup PZH associated with equation (1.3) admits a unique invariant
measure v € P(H) and the following contraction property holds
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W (B o1, (PFY'02) < ce™ Wa(ni,v2), 120, vi,va € POH),
(1.7)

for some ¢, § > 0. In the case of Eq. (1.3), these types of problems have been studied
extensively and a wide variety of results is available. However, in the case of the
quasi-linear problem (1.5) the situation is considerably more delicate and several
fundamental facts are not known, as for one whether the semigroup associated is
Feller in H or not. In particular, even the use of the Krylov—Bogoliubov theorem for
the proof of the existence of an invariant measure in H is not possible. Thus, in the
present paper we have to follow a different path, that in particular brings us to study
Egs. (1.1) and (1.5) in spaces of lower regularity than H' x H and H, respectively.

In [10], it has been proved that Eq. (1.1) is well-posed in H; := H! x H, for every
w > 0, so that the associated Markov transition semigroup P/* 1 can be introduced.
Our first step is showing that in fact (1.1)is well-posed alsoin H := H x H !, forevery
w > 0, and there exists an invariant measure v*7? for the corresponding transition
semigroup P/ " We show that such invariant measure is supported in H; and its
restriction to H is invariant for P,M T . Moreover, we prove suitable uniform bounds
for the moments of v*- " and v*-H1 which are fundamental for the proof of the limit.

Next, we move our analysis to the limiting equation (1.5). To this purpose, we do
not work directly with (1.5), but rather with its equivalent formulation

dp(t, x) = div (mvm, x))
£ g Mot 1)) + o (g (o, N, x), (1.8)
p(0.x) = g(up(x)),  p(t, Va0 =0,

where g is the antiderivative of y vanishing at zero. Since we are assuming that y is
strictly positive, bounded and continuously differentiable, the mappings

he H—gohe H, he H'r>gohe H',

are both homeomorphisms and the coefficients in (1.8) are all well defined and regular.
Moreover, as shown in [10], by using a generalized It6’s formula, for every vg =
g(up) € H' and r > 0 we have that

p™ (1) = g™ (1)), g (p™ ) = u (). (1.9)

In particular, Eq. (1.8) is well posed in C([0, T']; H) N L2(O, T: H')if and only if
Eq. (1.5) is.

As a consequence of limit (1.4), we have that for every initial condition vy € H'
Eq. (1.8) has a unique solution p* € L2(; LP, T, HY)), with p < oo. However,
since the long time behavior of (1.8) in H I'and H is not well understood, we need to
study its well-posedness in H and H~!, so that we can introduce the corresponding

transition semigroups RtH and RtH ' Due to the equivalence of problems (1.5) and

@ Springer



Applied Mathematics & Optimization (2024) 90:7 Page 5 of 48 7

(1.8) in H this allows us to introduce the transition semigroup P associated with
Eq. (1.5).

Next, we prove that there exists some constant A > 0 such that for every v1, vy €
Hlandr >0

2 —
E o) = p" @) |y < €M v —vally, 120, (1.10)

To this purpose, we would like to mention that in [19, 20], it was proved that under
suitable conditions on the initial conditions, the following property holds

2 2
E o) = p" 0|} 0) < It —w2lf10) 120 (1.11)

Such bound gives in particular the Feller property in L' () but, unfortunately, this
is not useful to our analysis, as it is not clear how to handle the proof of our limiting
problemina L' (0) setting. As far as we know, it is not clear if such a bound like (1.11)
is satisfied in H. As we already mentioned above, this is why it becomes important to
work in H~1, where we have the validity of even stronger condition (1.10).

As aconsequence of (1.10), we have that RtH s Feller. This, together with suitable
uniform bounds in H', allows to conclude that R ' has an invariant measure v¥ |
supported in H'. Moreover (1.10) implies that for every ¢ € Lip,(H “Handrty, e
H-!

~1 -1 _
R o)) = Rl p(02)| < [@lLip, e " Iti —wallg-1 . 120,
(1.12)

so that v ! is the unique invariant measure of R,H 71, and v, its restriction to H,
turns out to be the unique invariant measure of RtH . Finally, due to the equivalence
between Egs. (1.5) and (1.8), we show that this implies that P,H has a unique invariant
measure v.

By using a general argument developed in [15], and already used in [6] in a similar
context, all this allows to obtain our main result. The idea introduced in [15] is quite
simple and general. If {v,},c N is a sequence of invariant measures for a sequence of
Markov processes { X, (f)},en on some Banach space E, with transition semigroups
{P/'}nen, and v is the invariant measure for a Markov process X (¢) on E, with tran-
sition semigroup Py, in order to study the convergence of v, to v with respect to some
Wasserstein distance p, associated to some distance @ on E, we first notice that, due
to the invariance of v, and v,

Pa (Vn, V) < po ((Ptn)*vna P;*Vn) + Pa ((Pt)*vn’ Pt*l)) . (1.13)

Thus, if there exists some 8 > 0 such that for every probability measures v' and
2
v-on E

Pa (P,*vl, P,*v2> <ce ¥ pe (! v?), t >0,
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from (1.13) we get
Pa (Vs V) < pa (P v, Pvn) + ce ™ py (va, v) .
This implies that, if we pick 7, > 0 such that c e =% < 1/2, we have
Pa (Vn, V) <2 pgy ((P;n)*vnv P[*Vn) T
Now, thanks to the Kantorovich—Rubinstein duality, we have
Pa (P v, PFvy) < Ea(X)" (1), X7 (1)),
where y, is a E-valued random variable, distributed as v,,, and X Yr(t) and X7 (¢) are
the processes X, (¢) and X (¢) with initial condition y,,. In particular, this implies that
the proof of the converge of v, to v with respect to the Wasserstein distance p, reduces
to the proof of the following limit

lim E pg ((P/)*va, Pfvy) < Ea(X)" (1), X (1)) = 0,
n—oo

for a fixed time ¢ sufficiently large.
In the present paper, our goal is showing that if we define

. ~1
a(,u) = llug —ullg-1, uL,uw€H
then it holds

. H _
lim W, (l'[lvﬂ , v) —0. (1.14)

Due to (1.12) and the invariance of v]f and v~ we have
We ([(nluf) os7]. uH"> < W <[1‘11((P,“*H)*vf) og '] I [(m) og*‘]/)

e ([(mofe)ee ],

and then, if we pick 7 > 0 such that ce ™M < 1/2, we obtain

e ([(m) o] o)

<2W, ([(Hl((P,—’"H ) o g_l]/, REH*[(mvf) o g_l]/) ’

(here we are using the notation [-]’ to denote the extension to H ! of an arbitrary prob-
ability measure defined in H). As we have seen above, the Kantorovich—Rubinstein
duality gives
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We ([(Hl (BT o g7t I [(mt) 0 g‘l]/)
< Ea(gu (1)), p& (1)),

for every JFo-measurable H;-valued random variable ¢, := (§,, n,), distributed as
the invariant measure v]f. Hence, once we prove that for every ¢ > 0 large enough

lim Ea (g 1)), o)1) = lim E gl ) = p* S 0llg-1 =0, (115)

we obtain that

’ _
lim W, <[(l’[1v;{) og—l] ’UH 1) =0.
u—0

Our last steps consists in showing that this implies (1.14), which also implies that
I v?f converges to v, weakly in H, as u | 0.

2 Notations and Assumptions

Throughout the present paper O is a bounded domain in R?, with d > 1, having a
smooth boundary. We denote by H the Hilbert space L>(0) and by || - || and (-, -) g
the corresponding norm and inner product.

Given the domain O, we denote by A the realization of the Laplace operator
A, endowed with Dirichlet boundary conditions. As known there exists a complete
orthonormal basis {e;};c of H which diagonalizes A. In what follows, we denote by
{—a;i}ien the corresponding sequence of eigenvalues, and for every 6 € R, we define
H? as the completion of C°(O) with respect to the norm

o0
IRl =Y ad (. e,
i=1

Notice that with this definition H = H and, if §; < &, then H® < H% with
compact embedding. We also define

Hs .= H® x H*!, H:=Hx H .

Next, for every two separable Hilbert spaces E and F, we denote by L(E, F)
the space of bounded linear operators from E into F and by £ (E, F) the subspace
of Hilbert—Schmidt operators. £, (E, F) is a Hilbert space, endowed with the inner
product

(B, C) (e, F) = Trg [B*C] = Trp[CB™],
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and, as well known, £>(E, F) C L(E, F), with

1Bl Fy < 1Bl gy, F)-

Finally, if X is any Polish space, we denote by By (X) the space of bounded Borel
measurable functions ¢ : X — R, endowed with the sup-norm

l¢lloc := sup [(h)].
he X

Moreover, we denote by Cp (X) the subspace of uniformly continuous and bounded
functions.

2.1 Assumptions

We assume that w2 (z) is a cylindrical Q-Wiener process, for some Q € L(H),
defined on a complete stochastic basis (2, F, (F;)s>0, P). This means that w<(r) can
be formally written as

wl() =) Qeipi(0),

i=1

where {f;}icn is a sequence of independent standard Brownian motions on (2, F,
(F1)i>0, P), and {e;};c is the complete orthonormal system introduced above that
diagonalizes the Laplace operator, endowed with Dirichlet boundary conditions. When
Q = I, the process w (¢) will be denoted by w(z). In particular, we have w?(r) =

Qw(t).
In what follows we shall denote by Hg the set Q(H). H is the reproducing kernel
of the noise w< and is a Hilbert space, endowed with the inner product

(h,k)y =(Q'h, 0 'k)u. h.k e Hg.

Notice that the sequence {Qe; };c v is a complete orthonormal system in Hgp. More-
over, if U is any Hilbert space containing H¢ such that the embedding of Hg into U
is Hilbert—-Schmidt, we have that

w? e C([0,T]; U).
Hypothesis 1 The mapping o : H — L,(Hg, H) is defined by

[o(h)Qeil(x) =0i(x,h(x)), xe€ O, he H, ieN,
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for some measurable mappings o; : O x R — R. We assume that there exists Ly > 0
such that

o
sup Y loi(x,y) —0i(x y) P < Lo Iy — 2. vy e R (2D)
xeO ;5

Moreover, we assume o is bounded, that is,

Ooo 1= SUp llo (W)l 2y (Hg, o) < 0. (2.2)
heH

Remark 2.1 1. Condition (2.1) implies that o : H — L,(Hp, H) is Lipschitz con-
tinuous. Namely, for any sy, h, € H

lo(ht) — o (h)llgy(Hg, ) = V Lo IRt — hallh. 2.3)

2. If the noise is additive, then Hypothesis 1 is satisfied when Tr Q2 < +o0.
Hypothesis 2 The mapping y belongs to C l} (R) and there exist yy and yy such that

O<w=yr)=n, rek (2.4)
If we define
.
g(r) = [y(a)do, reR, (2.5)
0

the function g : R — R is differentiable, strictly increasing and invertible so that its
inverse g~! : R — R is differentiable, with

1
sup (1) (r) < —. (2.6)
reR Y0

Hypothesis 3 The mapping f : O x R — R is measurable and there exists a positive
constant L ¢ such that

Ly <X 2.7)

4!

where « is the smallest eigenvalue of —A, and

sup|f(x,r) — f(x,s)| < Lglr —s|, r,s eR. (2.8)
xeO

Moreover,

sup £ (x, 0)] < oo
xeO
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In what follows, for every x € O and r € R we denote

flx,r) ::/f(x,s)ds,
0

and for every function i : © — R, we denote
F(h)(x) := f(x, h(x)), xeO.

Remark2.2 1. Condition (2.8) implies that F : H — H is Lipschitz continuous.
Namely for any h1, hp € H

[ F(h1) = F(ho)llg < Ly lht —hallp -

Moreover, there exists ¢ > 0 such that
IF(MWa < Lgllhlla +c. (2.9)
2. If the friction coefficient y is constant, then yy = y1, and condition (2.7) becomes
Ly <aj.

3. Itis immediate to check that if for every h € H we define

Ah) = / . h(x)) dx,
O

then A : H — R is differentiable and its differential is given by
[DAW)](x) = f(x,h(x)), xe€ O. (2.10)
Hypothesis 4 We assume

L, a1Y0
—_— << .

L+
! 2y0 71

2.11)

Remark 2.3 Condition (2.11) is assumed in order to have the well-posedness of Eq.
(1.8) in H~! and to prove limit (1.15). If the diffusion coefficient ¢ is constant, then
L, = 0 and Hypothesis 4 reduces to condition (2.7) in Hypothesis 3. However, in
the case o is non constant, condition (2.7) alone is not enough, as also the Lipschitz
constant of g has to be small, compared to the eigenvalue « and the constants y and

Yi-
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3 The Main Result
For every i > 0, we denote v, := 9;u,,, and rewrite Eq. (1.1) as the following system
du, (t) = v, (t)dt,

pdvy (t) = [Auy () = y () (1) + F () ]dt + 0 (u, (8)dw (1),

uy, (0) = up, v, (0) = vy,
3.1

where A is the realization in H of the Laplacian A, endowed with Dirichlet boundary
conditions. In [10] it has been proven that, under Hypotheses 1, 2 and 3 (without
condition (2.7)), for every (ug, vg) € L%(Q2; H,), and for every u, T > 0, there exists
a unique process 7, € L?(2; C([0, T): H1)) which solves system (3.1), in the sense
that

t

uy, (1) =uo+/vu(s)ds

0 t
vt = oo + / [Auy(s) — ¥ () vu(s) + Flups)] ds 2
0
t
+ [ o (uu(s)) dw(s).
0

In particular, we can introduce the transition semigroup P/* 1 associated with Eq.
(3.1) in H;, by setting

PIoG) =Eg().,  1=0,

for every ¢ € Bp(H1) and 3 € H;.

In what follows, we will need to study system (3.1) also in the space of lower
regularity H, and for this reason we introduce the following notion of generalized
solution.

Definition 3.1 For every u, T > 0 and every (ug, vg) € H, we say that the pro-
cess 7, € L2(Q; C ([0, T]; 'H)) is a generalized solution of system (3.1) if for every
sequence {1 ,, Vo n}neny C H1 converging to (ug, vo) in H, as n — 400, it holds

lim Bz — 2ullgqo. 10 = 0-
Jim Bz = 2ulleqo,r:r0

where z,,, € L2(Q; C([0, T1: Hy)) is the unique solution of Eq. (3.1) with initial
conditions (ug,,, 90,)-
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Notice that if (ug, bg) € Hi, then the weak solution coincides with the solution
defined above in H; in the sense of (3.2).

In Sect. 5 we will prove that, under Hypotheses 1, 2 and 3, for every i, T > 0 there
exists a unique generalized solution z,, € L?(:; C([0, T]: H)) for system (3.1). This
will allow us to introduce the transition semigroup associated with (3.1) in H, which

will be denoted by P/* s Clearly, if ¢ € Bp(H), for every u > 0 and 3 € H; we
have

H H
P MoG) = P TeG), 120

In Sect.5 we will also show that under the same Hypotheses, for every u > 0,
the semigroup P/ " admits an invariant measure v]f in ‘H, with supp (v?f) C Hj.
In particular, since supp (v]f) C Hi and B(H;) C B(H), we will have that v]f is
also a probability measure on . In what follows, it will be convenient to denote the
restriction of vt to H; by it

Now, we recall that, given a lower semicontinuous metric o« on H =1 tis possible
to introduce the distance W, : P(H™') x P(H™') — [0, +o0c] defined by

Watnm) = swp f o (®)v1 (dv) — / o(©V(dv)]

[w]upi[_l - el
where
(o] lp(r1) — @(r2)]
L' o = _——,
lpH?] v, veH O[(t], t2)
SEa)

Notice that, if C(vy, 1) is the set of all couplings of (vi, vp), the following
Kantorovich—Rubinstein identity holds

Wy (v, 10) = inf / /Ot(t] , ) Adrey, dey), (3.3)

reC(vy,)

and in fact it is possible to prove that the infimum above is attained at some A.
At this point, we are ready to state the main result of this paper.

Theorem 3.2 Assume Hypotheses 1 to 4, and define
a(ui,w) = llw —wllg-1,  unueH

Then we have
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where v is the unique invariant measure for P,H , the transition semigroup associated
to the limiting equation (1.5). Moreover,

lim Hlv;l =v, weaklyin H.
n—0

4 Plan of the Paper and List of Symbols

In Sect.5, we will study the well-posedness of system (3.1) in 7. Namely, we will
prove that for every initial condition (ug, o) € H system (3.1) admits a unique
generalized solution in H. This will allow us to introduce the transition semigroup
P,“H, t > 0, for every u > 0. Moreover, we will prove that P,“H
measure vZf supported in H.

In Sect. 6, we will prove suitable a-priori bounds for the solutions of system (3.1).
In particular, we will prove some uniform bounds for the momenta of the invariant
measures v/t

In Sect.7, we will consider the limiting problem (1.5) in the space H. To this
purpose, we will introduce the auxiliary problem (1.8) and we will first study its well-
posedness in H. Due to (1.9), we will get the analogous results for problem (1.5).
Moreover, we will study the well-posedness of (5.1) in H -1

In Sect. 8, we will investigate the ergodic behavior of the limiting Eq. (1.5) in H~!.
We will prove that the corresponding semigroup has a contractive property in H ! In
particular, we it admits a unique invariant measure in H —1 Moreover, we will show
that such invariant measure is supported in H and its restriction to H is the unique
invariant measure for the semigroup associated with Eq. (1.5) in H. Finally, we will
show that this implies that the semigroup P,H admits a unique invariant measure.

In Sect.9, we will finally prove the main result of this paper, Theorem 3.2.

admits an invariant

Symbols Used Throughout the Paper

Almost all the symbols listed below are introduced for the first time in the Introduction.
However, they are introduced again with all the needed details throughout the paper.
In what follows, we describe what is their meaning and where their definition is given.

H=L%), H' = H}(O),and H~! = H~1(0), Sect.2.

- H=HxH ', andH, = H' x H, Sect.2.

— For every u > 0, z;, = (uy, vu) denotes the solution of system (3.1), both in H
and H;, Sect. 3.

For every u > 0, P/* s the semigroup associated with system (3.1) in H;, and
H
PIM,

is the semigroup associated with system (3.1) in H, Sect. 3.
For every i > 0, ¢, = (uy, n,) denotes the solution of system (1.8), both in H
and H, Sect. 5.

. . . . H .
For every u > 0, vZ{ is an invariant measure for the semigroup P/**"*, and vﬁ‘ is

its restriction to 7, which is invariant for P,“ ’H', Sect.5.3.
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— For every > 0, V,, is the Kolmogorov operator associated with system (3.1) in

H1 and its associated semigroup P/* ’Hl, Sect. 6.

u denotes the solution of the limiting problem (1.5), both in H and H -1 Sect.7.

— P is the transition semigroup associated with the limiting problem (1.5) in H,
Sect.7.2.

— p denotes the solution of the limiting problem (1.8), both in H and H —1 Sect.7.

- RtH is the transition semigroup associated with the auxiliary problem (1.8) in H

-1, . . . . ;
and R¥ " is the transition semigroup associated with (1.8) in H —1 Sect.8.
. L . -1, .
— v# is the unique invariant measure of the semigroup R/’ and v¥ " is the unique

. . . -1
invariant measure of the semigroup RtH , Sect. 8.
— v o g is the unique invariant measure of the semigroup P,H , Sect.9.

5 Generalized Solutions for System (3.1) and Invariant Measures

We have seen in Sect.3 that Eq. (1.1) is equivalent to system (3.1). In fact, we can
give another equivalent formulation for system (3.1). Actually, if g is the function
introduced in (2.5) and we define

n = ﬁ(uazu +gw)), &= (un),

then system (3.1) can be rewritten as

w),

VI
(5.1)

45, (1) = A5 ()t + B Gu)dw? (o). 5u(0) = (uo, /ivo +

where we have denoted

1
A0 = o= (1= 29 Aut Fw). ¢ =wn e DA =M,

NN

and

1
2u8) = ﬁ(O,a(u)), ¢ =(u,n eH.

This means that, for every u > 0 and every (ug, bg) € Hi, the adapted H;-
valued process ¢, = (uy, n,) is the unique solution of Eq. (5.1), with £,(0) =
(uo, o + g(ug)/ ﬁ), if and only if the adapted 7 |-valued process

2 (1) i= (up (), v () = @), @O/ — gup®)/p), 1 =0,

is the unique solution of system (3.1), with z,,(0) = 30 := (uo, ). The reason why we
have introduced the equivalent problem (5.1) is that, in the presence of a non-constant

@ Springer



Applied Mathematics & Optimization (2024) 90:7 Page 15 of 48 7

friction y, while it is not clear how to study the well-posedness of system (3.1), the
analogous problem for (5.1) can be handled in a more direct way, both in H; and in
‘H, thanks to the theory of non-linear quasi-dissipative operators.

As a matter of fact, in [10] it has been proven that, under Hypotheses 1, 2 and 3
(without condition (2.7)), for every ¢ 0 e L2(:; H,) and for every u, T > 0, there
exists a unique solution ¢, € L*(Q; C([0, T1; Hy)) for Eq. (5.1), with £,,(0) = ¢°,
and this has allowed to conclude that for every (ug, vg) € L?(S2; Hy), and for every
w, T > 0, there exists a unique solution z,, € L?(Q; C([0, T1; H1)) to Eq. (3.1), with
2,.(0) = (up, vp).

5.1 Generalized Solutions for System (5.1)

In order to study the existence and uniqueness of generalized solutions for system
(3.1), we study the analogous problem for system (5.1). As for (3.1), we have the
following definition of generalized solution for system (5.1).

Definition 5.1 For every u, T > 0 and every ¢’ € H, we say that lu €
L2(Q; C([0, T]; H)) is a generalized solution of problem (5.1), with initial condi-
tion ¢Y, if for every sequence {¢2},eny C M converging to ¢% in H, as n — 400, it
holds

. 2
nEIJIrlooE NEpn — §ﬂ||C([0,T];H)’
where ., € L2(Q; C([0, T1; Hy)) is the unique solution of Eq. (5.1) with initial
condition 2.
The following result holds.

Lemma 5.2 Under Hypotheses 1, 2 and 3, for every u, T > 0 and every ¢° € H,
there exists a unique generalized solution ¢, € L2(2: C([0, T1; H)) for Eq. (5.1).
Moreover, if Cli, g‘ﬁ are two generalized solutions of (5.1), with initial conditions

¢t ¢% € H, respectively, then

E sup [1£,(1) = ¢i07, < e T lct — 2113, (5.2)
te[0,T]

for some constant Cp-

Proof Without any loss of generality, we assume . = 1, and for simplicity of notation,
we denote .4 and Xy by A and X, respectively. In [10], it is proved that the operator
A is quasi-m-dissipative in . Namely, there exists n > 0 such that for every ¢, 0 €
D(A)

(A@) = A®). ¢ —0), <nlic -0l (5.3)

and there exists Ao > 0 such that

Range(I — 2 A) =H, X € (0, Arp).
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Now, let ¢ € H and let {¢},en C H) be any sequence converging to ¢ in H. For
every n € N, we denote by ¢, the unique solution of Eq. (5.1) with initial condition
£ (0) = ;,? . By applying 1t6’s formula, thanks to (2.1) and (5.3), we get

! 2
Ed 180 (1) = Em (Dl5

1
= <A(§n (t)) - -A({m(l)): g'n(t) —&m (t)>Hdt + E ”E(Cn(t)) - E(§n1 (t))llzgz(HQ,H) dt
Hea ) = & (), [SEa(0) = (@) ]dw2()),,
< cllgn(®) = En @7, dt + (6a(®) = G (0. [Z (@) = Z(@n () ]dwC (1)),
5.4

Due to (2.3) we have

N

E sup / (60(") = G (). [E @) = @) ]dw2 1))y,

se[0,¢]

0
1
2

t
<cE /n:n(s)—cm(s%ds <L E sup 16,6) = a1
0

1
4 00

t
+¢ [ENGu(s) = tn(9)13, ds.
0

Thus, if we first integrate both sides in (5.4) with respect to time, and then take the
supremum and the expectation, we get

t

2
ot = et +e [EIo) = tm)lBds.
0

E sup [16a(s) = L ()13, <
s€[0,7]

and the Gronwall’s inequality gives

E sup [1gn(s) = Gn ()17, < €

2
0 0
gn - Cm ” k] t Z Oﬂ
s€[0,1] H

for some constant c. In particular, this implies that the sequence {¢, },en is Cauchy in
the space L>($2; C([0, T1; H)), so there exists a limit ¢ € L2(2; C([0, T]; H)). It is
easy to see that the limit ¢ does not depend on the choice of the sequence {{,?} C Hi,
which implies the uniqueness of generalized solutions. Finally, by using a similar
argument as above, we obtain (5.2). O

Remark 5.3 When ¢° € H;, the unique generalized solution ¢, of Eq. (5.1) coincides
with its unique classical solution.
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5.2 Generalized Solutions for System (3.1)

Due to Hypothesis 2, it is immediate to check that z,, = (u,, v,) is a generalized
solution to (3.1), with initial condition 39 = (ug, vo), ifand only if ¢, = (”w v+
glu,)/ ﬁ) is a generalized solution for system (5.1), with initial condition £, (0) =
(1o, /100 + g(up)//1). In this case, we have

1
u, =, v, = ;( —guy) + Jﬁnzgu), w > 0. (5.5

Thus, as a consequence of Lemma 5.2 and Remark 5.3, we have the following
result.

Proposition 5.4 Fix (ugp, vg) € H and assume Hypotheses 1,2 and 3. Then, for every
w, T > 0 there exists a unique generalized solution z,, € LZ(Q; C([0,T]; H)) for
system (3.1).

5.3 Existence of Invariant Measures for System (3.1)

We are proving now that, for every fixed u > 0, system (3.1) admits an invariant
measure v?f in H, which is supported on H;.

Proposition 5.5 Assume Hypotheses 1,2 and 3. Then, for every . > 0, the semigroup
P/ M admits an invariant measure v?f in 'H, with supp (vz;[) C Hi.

Proof First, if zf’j and zf’f are generalized solutions to system (3.1), with initial con-
ditions 31, 32 € H, respectively, then due to (5.2) and (5.5), it is easy to see that for
every t >0

E |23 @) = 220)],, < cu® l31 = 32ll9¢

for some ¢, (1) > 0. This means that the transition semigroup P/* " i Feller on H.
Now, for every 3 € H we introduce the following family of measures on ‘H

1
1
F[M(Z’ ') = ; /(PIM’H)*Sz dt, r > 0,
0

and for every R > 0 we define the set

Bri={s€ M1 sl = R.

Then, from (6.1) and (6.2) with = 1, we have

1
1
(0, BS) = ;fp( Hzg(s)HHl > R)ds < %, 1>0, R>0,
0

@ Springer



7 Page180f48 Applied Mathematics & Optimization (2024) 90:7

and, due to the compactness of the embedding of | into H, this implies that the family
of measures {T"¥*(0, -)},>0 is tight in {. By the Prokhorov theorem, there exists some
sequence t, 1 oo such that FZ (0, -) converges weakly, as n — +00, to a probability

measure UM that is invariant for Pt . MOreOVer, since
H/pc ¢
<
v, (BR) 5 R >0,

it follows that supp (v]f) C H;. O

Remark 5.6 Since supp (vZf) C H; and B(H;) C B(H), we have that vZf is also
a probability measure on H;. In what follows, it will be convenient to denote the

.. H H
restriction of v, to H; by v, L

6 Some Uniform Bounds for System (3.1)

We have seen that for every u > 0 Eq. (3.1) has an invariant measure. In this section
we will prove some uniform bounds for the moments of such family of invariant
measures. To this purpose, we need to start with suitable uniform bounds for the
solution (u,, v,) of system (3.1). Some of them have been already proved in [10,
Proposition 4.2, Remark 4.3]. In what follows, we show how those bounds depend on
time and on random initial conditions in L2($2; H;).

Lemma 6.1 Assume Hypotheses 1, 2 and 3, and fix (&,n) € L*(2; H1). For every
w, T >0, let (uy,v,) € L2(Q; C([0, T1; H1)) be the unique solution to system (3.1)
with initial conditions (&, n). Then there exist two constants g € (0, 1) and ¢ > 0,
independent of T > 0, such that for every u € (0, uo) and t € [0, T]

t
B sup [, ) + 1B sup o)+ [ E oo} ds
s€[0,1] s€[0,1] o (6 1)

t
. (; + 1> e (BIER, +nElnl3,).,

and

t

B sup i, )} + [ B (o) ds
s€(0,t] o

<c (L+1+E Nl +RE NN + 1 Elnl). 6.2)

Proof Let (ug, vo) € L?(;Hy) and let (u,,v,) € L*(; C([0, T1; H1)) be the
unique solution to system (3.1). By proceeding as in the proof of [10, Lemma 4.2],
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we have for every u € (0, 1)

t

2 sup Juu o) [+ 1% sup [, + [ B o) ds
s€l0,¢] s€l0,¢]

0
6.3)

t

t
st (1 +EI£]15,, + 1E ||n||%,) +/E ()| 3, ds
0

Moreover, by proceeding as in the proof of [10, Lemma 4.1], we have P-a.s.

t
? lu 7= ¢ (113 + 12 Inl3) + 1 o, 0], + u/ |vu()], ds
0

t

‘ '
_/ ””u(s)”i{l ds—I—/(F(uﬂ(s)),uﬂ(s))Hds+/(uﬂ(s),a(uﬂ(s))de(s»H.
0 0 0

Due to (2.9), for every § > 0 we have

N

t
1
E sup /(F(uu(r)),uu(r»Hdr < 0{—1(LfJF(S)/IE||MM(s)|}iIl ds + cst.
0

s€[0,t

Moreover, due to (2.2) we have

N

E sup /(uu(r),o(uu(r))dwg(r)>H

sel0,7]
0

t t
2 ) 2
<c|E [ llupg®lyds| < . E [l (6|5 dt + cs.
0 0

According to (2.7), we can fix § > 0 such that

1
o (Ly+28) <1,
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and this yields

t

E sup |\L¢,L(s)|ﬁ,JF/JEUMM(S)H?,1 ds
s€[0,1] 0

(6.4)
<c(1+r+ BNl +wE il ) + e’ B sup o0
sel0,t

t
+eu [E| vﬂ(s)”il ds.
0

Thus (6.2) holds by combining (6.4) with (6.3). Finally, by combining (6.2) with
(6.3), we complete the proof of (6.1). O

Lemma 6.2 Let {(§,, n)}ue0,1) C L?(2; H1) be a family of random variables such
that

sup E( 150+ w [mall} ) <o 65
ne(0,1)

If (uy,vy,) € L2(Q; C([0, T1; Hy)) is the solution to system (3.1) with initial
condition (&, ny), then there exist ur € (0, uo) and cy > 0 such that for every
n € (O, ur)

2 2 cr 2 2
B s ()l +u ol ) =T+ (Blely +uB Il ). 66
Proof 1If for every u € (0, o) and ¢ € [0, T], we define

L@ i= @ 3+ 1 [ou® 5 = (1650 + 1 Il )-
then (6.6) is equivalent to

VRE sup L,(t) <ecr, we (0, nr), (6.7)
tel0,T]

for some constants w7 € (0, 1) and ¢ > 0.
Now, if we assume (6.7) is not true, there exists a sequence (ux)xen C (0, to)
converging to 0, as k — 00, such that

lim /uxE sup L, (1) = +oo. (6.8)
k=00 1€[0,T]

For every k € N, the mapping ¢ — L, () is continuous [P-a.s., so that there exists
arandom time 7 € [0, T'] such that

Ly, (tx) = sup Ly, (1).
tel0,T]
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As a consequence of Itd’s formula, we have

1
@ (I @30 + 1 o O117)

1
= ((F(u//.(t)a U/L(I»H - <V(uu([))v//.([), UM(I»H + ﬁ”a(uu(l‘))”%jz(ﬂgyy)) dt
+ (U (), 0 (up ()dw? (1))

2
< (c (lup N3 +1) — ?nvu(t)n%, + ‘%) dt + (v (1), o (uy (0)dw? () p.

Hence, if s is any random time such that P(s < #;) = 1, we have

1,
) k

Ly (1) — Ly (5) < %(tk —5)+ C/ (l + g | )dr + 2(My (1) — Mi(s)),

s

where

t

M (t) == /(vuk(r),a(uuk(r))de(r))H.

0

If we define

T
U= [ @l dic M= sup (o),
0 te[0,T]

this implies that there exists some constant A > 0, independent of &, such that
A
Ly, (t) — Ly, (s) < E(’k —8) + Ur + 4Mq, (6.9)

and since L, (0) = 0, if we take s = 0 we get

Mk 4O
o2 B (L0 - U — 4m) = B2

Now, on the set Ej := {Gk > 0}, we fix an arbitrary s € [tk — 1k Ok /(21), tk]. Since
tr — s < uxbr/(21), by using again (6.9) and recalling the definition of 6, we have

1 1
L, (s) > Ly, (%) — 59" — Uy —4M; = 59" > 0. (6.10)
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Hence, if we define

T

I = /L;k (s)ds,

0

due to (6.10) we have

73
I > / Ly, (s)ds > %9,3, on Ey,

so that
Mk o
E(lx; Ex) > E(Hek; Ek). (6.11)
Now, according to (6.1), (6.2) and (6.5)

EUx < o(1+T +E [} + B (8|50 + 13E |nuclyy ) < er.

and
z 1
E My §c(/E||vM(t)||§1dt>2
0
T 2 2\ ? 12
<c(14 4Bl +mElnal}) <er(1+ )"
so that

lim sup /ux (EUy +4E M) < 4o00.

k—o00

Thanks to (6.8) this gives
kli)nolo\/WE(Ok) = 400,
and hence
kli)n;o\/E]E(é‘k; Ep) = +oo. (6.12)
Now, according to (6.11), we have

Mk 2 Mk 2
E(lx; Ex) > —E(67; E) > — (E6; E ,
Ik k)_4k(k %) 4/\((1{ )
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and due to (6.12), this implies
lim E(l; Er) = +o0.
k—o00

However, as a consequence of (6.1), (6.2) and (6.5), we have
T

sup El, < sup /E|Luk(s)|ds
keN keN 0

< er sup (14 T+ E g [0 + 4% |y ) < +oo,
€

and this gives a contradiction, since E(I;; Ex) < E(/ly) for every k € N. In particular,
this means that claim (6.7) is true, and (6.6) holds. O

Lemma 6.3 For every u > 0, if vZf € P(H) is any invariant measure for P} o

supported in Hy, then vzt—l' € P(Hy) is invariant for P,“’H'. Moreover,

sup /(||u||§1,1 +u||n||§,)vfjl(du, dv) < o0. (6.13)
p,e(O,l)H
1

Proof First, we show the invariance of vZfl for Pt“ T . Due to the invariance of v?f in
'H, for every ¢ € Cp(H) we have

/ Pl oG]t (dy) = / PGV (d3).
H H
Thus, since supp (v?f) C Hi and B(H1) C B(H), for every ¢ € Cp(H) we get
/ Pl Mo dy) = / PGV (d3).
Hl Hl
If (é;)ien C H; is an orthonormal basis of H, for every n € N we denote by I1,,
the projection of H onto H(n) := span(éy, ..., é,). We have that IT,, : H — H; is
continuous and

l7nhllz, < cnllhllyg, he ™,  lim |[Ih—hlly, =0, heH.
n— o0

Hence, if for any ¢ € Cp(H;) and n € N, we define ¢, := ¢ o I1,, we have
on € Cp(H) and

lim |p,(h) — ()| =0, h e H,.
n—oo
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Foreveryn € N, we have sup,, .y |04 llooc < ll¢ll o0, and the dominated convergence
theorem implies that for any given u > 0 and ¢ € Cp(H1)

Tim P g,) = lim Egu(2()) =Ee(zh0) = P""oG). 3eHi, 120,
In particular, by taking the limit as n goes to infinity in both sides of
/ Pl Mol (ds) = / PnGVIT(d3), ¢ € Cp(Hy),
Hi Hi
we conclude that

/ Pl oG]t (d3) = f G, (). ¢ e CoH),
Hi H,

and this implies the invariance of vz;[l .

Next, in order to prove (6.13), we consider the Kolmogorov operator associated to
PIM’H] in Hj

1
Nug(u,0) = 2 5T (0 0) (0 () 0)* Dy, 0] + o, Dugtu 0))

1
—l—;(Au — y(Wo 4 F(u), Dyg(u, b)),

If, with the notations of Sect.2, we define
1 1
o) = 5 (Wl + oty ) = [ v utndr = 5 (1l + ol ) = A,
1)

due to (2.10) and to the fact that ||u||%11 = ((—A)u, u) g, we have

Dugu(u,0) = (—Au— f(u), Dogu(u,0) =pnv, Digu(u,v)=pnly.
Then, we have

Nu@u(u, 0)

1 " 1 1
- ﬂTrH[(o(u)Q)«r(u)Q) [+ loou= T F), + lAv =y @0+ F, o),
(6.14)

1 1
= — o7, a1y, 1y + (0, —Au— F@W),, + —{Au— ywo + F(w), no),
21 2(Hg,H) H w

1
2 2 2
W ”a(u)”llz(HQ,H) - (y(u)n, U)H = 42,“« ”a(u)”llz(HQ,H) — Y0 HU”H
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By the invariance of vz;t‘ in H, we have

/ Nougu(u, 0) v (du, dv) =0,
Hi

and thus, due to (6.14) and (2.2),

sup /L/ ||U||H I(du, dv) < oo. (6.15)
ne (0,1) i
1

Next, we consider the function
V0 o= 3 (s iy + ) + ol ).
We have

Dyy(u,0) = p(=Au+y) (gw) +unv),
Dor(u,0) = p (g(w) + o), D2y(u,v) = u? Iy,

so that

1
Nt 0) = STrg[ (0@ Q)@ W Q)] + fo. ku+ (=A™ y W) + u(=A) ™y @l .

+—({Au—y o+ Fu), 1*v + pngw),,

y ()

1
"
1
= 5 10 @,y + elo —Au+ = =g +y o)y,

+HAu — y(Wo + F(w), po + gw),
1
= 5 oI, g, 1y — (¥ OV Vu), + (. o), + (F@). gy
Note that for every § > 0 and u € (0, 1)
1|(Fw, o), | < wIF)lig lolly < 8(1+ llull3, ) +cs u” ol .

and

1
(Fw. g@),| < (Leyi+8) Iullf +cs < a—l(Lfm +8) llull?, + cs,
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so that, due to the invariance of v?f, we have

Y0 / llull?,: v (du, dv)
Hy

2
< 9%
-2

L .
+< ;y‘ +25) [ w0 v (du, do) + c5 +65M2/ lollZ; vyt (du, o).
1
Hy H

Thanks to (2.7), this implies that we can take § > 0 sufficiently small so that

Ly
o]

+26§ < v,

and then

f i, V2 (du, do) < e | 1+ 2 f loli3; vi (du, dv) | pe (0, 1).
Hl Hl
By combining this with (6.15), we complete the proof of (6.13). O

Remark 6.4 1. In Proposition 5.5, we have seen that for every u > 0 the semigroup
P,” H admits an invariant measure. Thanks to Lemma 6.3, this implies that for

every i > 0 the transition semigroup P/ 1 admits an invariant measure in H;.
2. As aconsequence of (6.13), we have

sup / (||u||§1,1 +u ||n||2H) v (du, dv) < oo. (6.16)
e (0,1)H

7 The Limiting Equation
As we have mentioned in the Introduction, in order to study the limiting problem

2y2(u(t, x))

+o (u(t, ) wo(t, x) (7.1)

yu(t,x))ou(t, x) = Au(t,x) + f(x,u(t, x)) — E lo(u(t,-)) Qe; (x)\z
i=1
u(0, x) = up(x), ult, ')|aO ’

we consider first the following quasilinear stochastic parabolic equation

Bp(t,x) = div(b(p(t, V)V p(t, 1)) + folx, p(t. 1)) + g (p(t, NAWO, x()7, )
p(0.x) =t0@).  p(t. a0 =0, '
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where for every r € Randx € O

b(r) := fex,r) == fx, 87 (1)),

1
y(gtr)’
and forevery h € H
og(h) =0 (g " oh).

The rationale behind this approach stems from the inherent advantage of initially
establishing the small-mass limit of g (1) to p, alongside their stationary counterparts,
before moving back to the original problem involving u, and u. As explained in [10],
due to a generalized It6’s formula, the solutions u and p of Eqgs. (7.1) and (7.2),
respectively, are related by

p@t) =g @), >0, to:=gup). (7.3)

From Hypothesis 2, we know

Moreover, if we define
Fg(h)(x) := fo(x, h(x)), xe O,

due to Hypotheses 1, 2 and 3, and due to (6.14), for every k1, ho € H we have

L
| Fg(h1) — F(hz)llHls\/_HF(hl) Fe(ho)l|,, < afyo Ay = hallg

and
”"g(hl) - ‘Tg(h2)||z:2(HQ H-)
ViLs
h h < hy—nh .
\/— ||0g( l) Gg( 2)||£2(HQ H) = \/0(_])/0 ” 1 2||H
Moreover, for every § > 0
L 1 /L
|(Fo(h), h),,| < (V—g +8) Il + e < o (y—(’)‘ ) Whl2, +cs, heH',
(7.4)

and
1 1 /L
(Fy(h), h) i | < o [Fe®) IRl < o (y—g +8> Ihl3 +cs. heH.(15)
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Finally, thanks to (2.2) we have

los zyap. iy <00r € H. (71.6)

7.1 Well-Posedness of Eq. (7.2) in H

Throughout this subsection we will not need to assume condition (2.7) in Hypothesis
3. Namely, we will just assume that the mapping f : O x R — R is measurable, with

Suplf(x70)|<oov Sup'f(xar)_f(-x9s)|§C|r_s|s r,SER. (77)
xeO xe O

As a consequence of the limiting result proved in [10], the well-posedness of Eq.
(7.2) has been established when the initial condition tg € H!. Here we want to prove
the existence and uniqueness of the solution of (7.2) when to € L*(Q; H).

Definition 7.1 Let vy € L?(2; H). An adapted process p € L*(Q; C([0, T1; H) N
L?(0, T; H')) is a solution of Eq. (7.2) if for every ¢ € C5°(O)

t

(o). ¢}, = (t0. @), — / b(p(s)V o (5). V), ds

0
(7.8)

t

1
+ / (Fe(0(s)), ¢) s + f (0. 06 (p()dwO(s)),,. P-as.
0 0

In order to study Eq. (7.2), we first consider the following approximating problem

dpS(t, x) = div(b(p® (1, X))V p<(t, x))
—€A?pS (1, x) + f(x, p(t, X)) + 0 (p(s, NFwWC (. %), (7.9)

p(0,x) =9, p(t,)]so =0,

with 0 < € << 1 (for a similar approach see e.g. [14]).
Lemma 7.2 Assume Hypotheses 1 and 2 and condition (7.7). Then, for everye, T > 0
and every py € L%(Q; H), Eq. (7.9) admits a unique solution

pe € L*(Q; C(10, TT; H) N L*(0, T; H)).

Moreover, there exists some ct > 0 sueh that for every € > 0

E sup [Ip(0)I5 + — [ EIVe<(s)I%ds
te[0,T] Y1 0

t

+2€ /E||Ap€(s)||%,ds <ecr (1 +E ||ro||§,) ) (7.10)
0
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Proof The uniqueness and the existence of solutions for Eq. (7.9) can be proven by

proceeding as in the proof of [18, Theorem 5.1].

In order to prove the energy estimate (7.10), we apply 1t6’s formula and we get

t

1 1
3 o€ (O3 = 3 ol + / (div (b(p () VS (9)) . p°(5)) yds

0

t
—e [(A2p%(s), p€(9)) yds

0

t

t
1
—i—/(Fg(,Oé(s)),pE(s))Hds-}-5/ ||ag(p€(s))||%:2(HQ’H)ds
0

0
t
+ [ (€ (), 34 (0 (s))dw? (s))
0

t t
1 1
<5 ol — ;f IV o< ()13, ds —e/ | Ap ()13 ds
0

t
+e /( + 10 )% ds+2/ P (s), g (0 () dwl(s)) ..
0 0

Note that

N 1

E sup /(pf(r),Og(pe(r))de(r))H EC/EIIpe(S)II%;derCT,

s€[0,1]
0 0

and hence

E sup [Ip°)I1% + Efnw (s>||Hds+2eEf||Ap ()11%,ds

s€[0,1]

t

<Ellvol? + c/Enpf(s)n%, ds + cr.
0

Therefore, the Gronwall lemma gives (7.10).

m}

Proposition 7.3 Assume Hypotheses 1,2 and condition (7.7), and fix vo € L*(Q; H).

Then, for every T > 0, there exists a unique solution

p e L*(Q; C(0,T]; H)) N L*(0, T; H')),
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of Eq. (7.2). Moreover, there exists some constant ct > 0 such that

E sup [lp(®)ll7 +E/||Vp(s>||%ds5cr (1+ERol}). @b
t€[0,T]

Proof By proceeding as in [11, Theorem 6.2], we can show that equation (7.2) admits
at most one solution in L2(2; C([0, T'1; H)) N L2(0, T; HY)). Hence, if we show that
there exists a probabilistically weak solution

(Q7 ﬁv {ﬁ}tv ]IADV ﬁ)Qa 15)1

such that p € LZ(Q; C([0,T1; H)) N L*(0, T; H')), the existence and uniqueness
of a probabilistically strong solution for Eq. (7.2) follows.

Step 1 There exists a filtered probability space (€, F, {}' },,]P’) a cylindrical
Wiener process w¥ associated with {]—"}, and a process p € L2(Q; L0, T; H)) N
L?(0, T; H")) such that

(p(1). ¢)y = (v0. ¢)y /.b(ﬁ(s))V,é(s),V(p)Hds
0

t

+ f (Fe(5(s)). @) s + / (0. 04 (H)NdDO(s),. Pras.,
0

0

for every ¢ € C3°(0).
Proof of Step 1. According to Proposition 7.2, we know that for every € > 0 there
exists a unique solution p, to Eq. (7.9), and

sup (B swp 1o 01 +E [ 1 @ldr | <00 @12
€€ (0,1) 1€[0,71]

Forevery h € (0,T)andt € [0, T — h] we have

t+h t+h

o) = g0 = [ div (bt )V ) ds —e [ 25 rds

1 t

t+h t+h

4
+/Fg(pe(s))ds—i—/ag(pé(s))dwg(s) =:lef(t,h).
k=1

t t
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We have
1+h 172
sup  |IIf(t, W)llg—1 <c Sup. / 0 ()l 1 ds < ¢ (/ lo° ()13, ) n'2.
te[0,T—h]
(7.13)
For I5 (¢, h),if € € (0, 1) we have
sup L5 (¢, h) | g3
te[0,T—h]
t+h 172 (7.14)

= dw /np ®lgrds <c /np Ol ds | h'2

and for I5 (¢, h) we have

sup |15 (¢, h)llm
t€[0,T—h]

t+h (7.15)
<c sup / (L+1p°®)lim) ds <cr (1 + sup ||/0€(S)||H> h.
te[0,T—h] ’ te[0,T]

Finally, for [ j (t, h), by using a factorization argument as in [13, Theorems 5.11,
5.15], due to the boundedness of o, in L£2(Hg, H) we obtain that for some 6 € (0, 1)

sup E ||I§(t, h)”Cg([O,T];H) < Q. (716)
€€ (0,1)

Therefore, by putting together (7.13), (7.14), (7.15) and (7.16), thanks to (7.12) we
conclude

sup (1St +h) = p< Dl <ch*, he[0,7),
te[0,T—h]

and together with the bound

sup E sup o)l < oo,
ec(0,1) t€[0,T]

due to [30, Theorem 7] this implies that {p®}cc (0,1 is tight in L*°(0, T; H™%), for
every o > 0. Moreover, since for every € (—3, 1) we have

S
lullgs < Dl s el
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and the bound

T

sup f E | p¢()II3,1 ds < oo,
€€ (0,1) 0

holds, thanks again to [30, Theorem 7], we have that the family {p}cc (0,1) is tight
also in the space L8/(3+ﬁ)(0, T: HP), for every B € (=3, 1).
In what follows, for every « > 0 and 8 € (—3, 1) we denote

Xop(T) i= [, T3 H™) 0 LYCH 0,73 HP)] x €(0. T U),

where U is any Hilbert space such that the embedding Hp < U is Hilbert—Schmidt.
Due to the tightness of {p€, wQ}ge(oyl) in X, g(T), there exists a sequence €, | 0
such that £(p, w?) is weakly convergent in Xo,p(T). Due to Skorohod’s Theorem

this implies that there exists a probability space (., F, P),a sequence of Xy g(T)-
valued random variables ),, = (0, zi)nQ) and a X, g(T)-valued random variable ) =
(p, 2), all defined on the probability space (fz, F, 13), such that

L) = Lo, w?), (7.17)
and

Jim (IIﬁn — Pllizoe,1: -y + 150 — DllLssc+m 0.7 ey + D2 — ﬁ)Q”C([O,T]:U))
=0,P—as. (7.18)

Now, we have

t

1
f (div (B(on () Vou(s)) . @) s = — f (b(on ()Y 5). Vo) s
0

0

/V(B(pn(s)) Vo), =/ (B(fn (), Ag)yds,
0 0

and thanks to (7.17) and (7.18), this gives for every ¢ € C3°(O),

t

<Ian(t)’ ‘P)H = <t0» @)H +/(B()5n(s))a A@)Hds - En/(,an(s), Az@)yds
0 0

t

+/(F (Pn (). @) ds+/ (0. 0 (Bu()dDL(5)) ;.-

0 0
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Thus, by using the general argument introduced in [14, proof of Theorem 4.1],
thanks to (7.18) we can take the limit as n — oo of both sides in the equality
above, and we obtain that o satisfies (7.8), with w? replaced by w€. Moreover,
p e L2(S; L™®(0, T; H))NL%(0, T; H'")) and satisfies (7.11), with E replaced by E.

Step 2 We have that there exists a unique solution p € L? (2;C(0, T]; H)y N
L2(0, T; H")) that satisfies (7.11).

Proof of Step 2 Due to what we have seen above, there exists a unique solution

pe L*(Q; L0, T; HYNL*(0,T; HY),

that satisfies (7.11). It only remains to prove that p € C([0, T']; H), P-a.s. By pro-
ceeding as in [14, Sect. 4.3] we consider the problem

&t x) = AE(1, x) + a5 (p(t, N w(t, x),

£(0,x) =v(x), & o =0,
whose unique solution & belongs to L>(2; C([0, T1; H)NL?(0, T; H')). Then, if we

denote n(t) := p(t) — &(t), we have that n € L*°(0, T; H) N L%, T; H"), P-as.,
and solves

an(t, x) = div(b(p(t, x)Vn(t, x)) + div[(b(p(r, x)) — DVEE, x)] + fo(x, p(t, x)), o
(7.19)
n(0,x) =0, n(t, )0 = 0.

Now, if we denote by U (z,s) the evolution family associated with the time-
dependent differential operator

Lipx) =div[b(p(t,x))Ve(x)], xe O,

we have that

t

ﬂ(t,X)=/U(t,S) [div[b(p(r, ) = I1VE(s, ) + fo -, p(s, D] (x) ds,

0

and since & € L2(O, T; Hl) and p € L*(0,T; H), P-as., we get that n €
C([0, T]; H), P-a.s. In particular, p = 1 + & belongs to C([0, T']; H), P-a.s. O

7.2 Well-Posedness of Eq. (7.1) in H

From the well-posedness of the quasilinear stochastic parabolic Eq. (7.2), we get the
well-poseness of Eq. (7.1) in H. By proceeding as in the proof of [10, Theorem 7.1],
we can show that u € L2(Q; C([0, T]; H)NL?([0, T]; H')) is a solution to Eq. (7.1)
with initial condition ug € L*(Q; H) if and only if p := g(u) is a weak solution to
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equation (7.2) with initial value vo = g(ugp) € L?(2; H). Moreover, as a consequence
of the Lipschitz continuity of g and g~! on R, we have the following result.

Proposition 7.4 Assume Hypotheses 1, 2 and condition (7.7). For every T > 0 and
everyug € L*(Q; H), there exists a unique weak solution u € L*(2; C([0, T]; H) N
L*(0,T; HY), to Eq. (7.1) such that

T
E sup ||u<r>||%{+Ef||u(r>||i,l dr < er (14 Eluoly ) -
te[0,T]

0

In what follows, we shall denote
Plow) :=Epw"(r), uweH, >0,

for every ¢ € Bp(H).

7.3 Some Bounds for p and u

Once established the existence of a unique weak solution in L?(€2; C([0, T]; H) N
L2([0, T1; HYY), both for (7.1) and (7.2), we prove some bounds for their solutions &
and p.

Lemma 7.5 Under Hypotheses 1, 2 and 3, there exist some . > 0 and ¢ > 0, such
that for everyt > 0

t
Elol = (1+¢Ell). E [ oo ds < (r+Elulf).
0
(7.20)

Proof We apply It6’s formula to the process p(z) and the function K (t) = ||t||%{ and
we get

L 2 <yt 2 di+(F drt L 2 d
5 loOly = —vi lle@®ll l+( g(p(f)),p(l)>H l+5|}0g(p(f))}|£2(HQ,H> t

+(p(1), ag(p(1)dwe () i

Then thanks to (7.4) and (2.7), together with 7.6, we can find some constant A > 0
such that

d

TE Lol +AE o3, <.

and this allows we complete the proof. O
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Due to estimates (7.20) and the Lipschitz continuity of g and g~! on R, estimates
analogous to (7.20) holds for the solution u.

Proposition 7.6 Assume Hypotheses 1, 2 and 3. For every T > 0 and every uy €
L%(Q; H), there exists a unique u € L*(Q; C([0, T1; H) N L%(0, T; H")) which
solves Eq. (7.1) in the following sense

t

W) ) u = (w0, ¥) —[<V”(S) > /< ( ).wm w> ds
e R J ey’ J Y (@(s)) Y e
t
Fluls)) Y (u(s)) .
+/<y<u<s)> v, o 0/<2y(u( » Zl(a(”(”)Qe’) "”> »

H
o w(s))
ou(s
dw?(s), ,
+0/<y(u(s)> wee) W>H

for any ¢ € Ci°(O). Moreover, for every t > 0
Eu@l} < e (14 Eluol}). E/ w3 ds < ¢ (1 +E fluoll})

7.4 Well-Posedness of Eq. (7.2) in H~1

Here, we will use the results we have just mentioned about the well-posedness of Eq.
(7.2) in H, to study its well-posedness in H .

Definition 7.7 For every fixed vgo € H~' and T > 0, an adapted process p €
L2(S2%; L2%(0, T; H)) is a solution of Eq. (7.2) with initial condition py if for every
9 € C5°(0)

(o), ) = (v, ¢H+/ B(p(s)), Ag) ds+f (Fe(p(9)), 9),d
0

0

t
+ / (0. 05 (p()dw?(s)),,.
0

P-a.s., where

r

B(r) = /b(s)ds, reR.

0
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Proposition 7.8 Assume Hypotheses 1,2, 3 and 4. Then, for every g € H™" and every
T > 0, there exists a unique solution

p% € L2(Q; C([0, T]; H) N L*(0, T; H)),

to Eq. (7.2). Moreover, there exist ¢, > > 0 independent of T > 0 such that for every
te[0,T]

Ep @ <c(1+e ™ Elol-).

t
E/ [o* )|, ds < c(z+E||to||%,_]). (7.21)
0

Proof We fix an arbitrary sequence {tc}e~o C H converging to tg strongly in H -1
as € — 0. Thanks to Proposition 7.3, for each ¢ > 0 there exists a solution pe €
L%(Q; C([0, T]; H) N L%([0, T]; H')) for problem (7.2) with initial condition t.. If
for every €, § > 0 we define

Ves(t) == pe(t) — ps(r), 1€ [0,T],

we have

1 2
Lalesl,

= —(B(pe(1)) — B(ps(1)), Ve.5(1)) ydt + (Fg(pe (1)) — Fg(p5(1)), De.5(1)) -1 dt

1
5 [0 0e ) = 04 s | 2 1 -1, 41+ (95 0). [0 1)) = 5 (ps1) Jdw 1)) 1.

Since
r r 1
B(r)=/b(s)ds=/—ds,
y(g=1(s))
0 0
we have
1 2
(B(r1) — B(r2))(r1 —r2) > " lr1 —ral®,  ri,rneR,
so that
Lal 2 < 9 2 d
2 I &5(’)HH—1 <o e,a(l)”H t (7.22)

+HOe,5(1), [0 (pe (1)) = 0 (ps (1)) [dw 2 (1)) 1,
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where

last inequality following from (2.11).
Hence, if we first integrate both sides in (7.22) with respect to time and then take
the expectation, we get

T

sup E [[9e5()] % +2c0[E |95 ds < Ellte — 51,1,
s€[0,7T] 0

and this implies that the sequence (pc) is Cauchy in C([0, T]; L*(Q2; H™ ') N
L?(2: L%(0, T H))).Inparticular, it converges to some o in C ([0, T]; L?(:; H-H)N
Lz(Q; LZ(O, T; H))),as e — 0. Forevery e > 0and ¢ € CSO(O) we have

t
(0 (), @)y = (cc, @), + / (B0 (), Ag)y, + (Fy(pe(s)), 0),,) ds
0

t
+ f (0. 05 (pe()dw?(s)),,.
0

Then, due to the Lipschitz continuity of B, F, and oy, we can take the limit in both
sides of the identity above, as ¢ — 0, and we get that p is a solution for (7.2).

To prove the uniqueness, assume that p1, p2 are two solutions to (7.2). By proceed-
ing as above, we have

T

sup E llp1(t) — o203, + co / E o1 (1) — pa(0Il3 di <0,
te[0,7T]
0

which gives p; = p».
Next, we prove that p € L*(Q; C([0, T1; H~) N L?(0, T; H))). We apply Itd’s
formula to ||,0||§1_] and we get
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1 1
zd”P(U”éffzz|k&(pUD”ZﬂHQH75d1_(B(PanypO»Hdt

HFe(p (1)), p(0)) y-rdt + (p(1), 05 (p(1)dw (1)) -1
<c—y eI dt + (Fg(p®), p(1)),-1dt + (p(1), o (0(1)dw (1)) 1.

Due to (2.7) there exists § > 0 such that

1 Lp+$

cl = > 0,

T ain

so that, thanks to (7.5) we have

1
54 o5 < ¢ —cillp®lly dt + (o), og(p(t)dw? (1)) g1 (1:23)

Now, since we have

s

E SI[JOP] /(p(t),Ug(p(t))de(t))H—l <
se[0,t
0

1
—E sup |lo)% - +ec,
4 ser0.n e

if we integrate both sides in (7.23) and then take the supremum with respect to time
and the expectation, we get

T

E sup ||,0(f)||§_,4+/]E||p(s)||%1dSSCT (14 o).
te[0,7] 0

which, in particular implies that p € Lz(Q; L0, T: H Hn LZ(O, T; H))). More-
over, since p solves equation (7.2), it belongs to C ([0, T']; H_l), P-a.s.

Finally, in order to prove (7.21), we take the expectation of both sides of (7.23) and
we get

d
—E o3, + 21 E o)l ds < c,

and this implies that there exist some ¢, A > 0 such that (7.21) holds. O

8 Ergodic Behavior of the Limiting Equation

. . . . -1
We first study the existence of a unique invariant measure for R/ and R/, and then
we show how this implies the existence of a unique invariant measure for P/,
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8.1 Ergodicity of Eq. (7.2)

In what follows, we denote by RtH "' the transition semigroup associated to Eq. (7.2)
on H~!

R o(t) :=Ep(p* (1)), teH™'. 120

for every ¢ € By(H™"). Similarly, we denote by R! the transition semigroup asso-
ciated to equation (7.2) on H,

Rl'o(t) :=Ep(p* (1)), veH, 1>0,
for every ¢ € By(H). Clearly, if t € H and ¢ € B,(H™!), then
R =RE g, 120

For every A € B(H™') we have that AN H € B(H). Thus, if v € P(H), we can
define its extension v € P(H~!) by setting

V(A) = v(AN H), AeBHY.

With this definition, supp (v') C H. Indeed, if we denote by By (t, R) the closed
ball in H centered at vt € H with radius R > 0, then By, (xr, R) € B(H), so that

li "(BS,(0, R) = i B¢, (0, R)) =0,
R—1>TOOV( H( ) R—l>l:Ii-loov( H( )

which implies that supp (v') C H.

Proposition 8.1 Assume Hypotheses 1, 2, 3 and 4, and define a(x, s) := [t — s|y-1.
Then, there exist some positive constant Ly, to and c¢ such that

We (BRI o1, (RETY 1) < ce ™ Wonv), 1210, B

-1 Lo . -1 -1
Moreover, R has a unique invariant measure v such that supp W) c H!

and

Wa (RFSe v ) < e (L4 liellg-r) e, 120, veH™'. 82)

Proof Let p'!, p*2 be two solutions of (7.2), with initial conditions vj,t, € H™!,
respectively. By proceeding as in the proof of Proposition 7.8, we have

E[o"0) = p" ()]} < e Ml =l 120,
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for some constant A > (. In particular, the semigroup R,H ' is Feller in H~! and for
every ¢ € Lipb(H_l) andty,vp € H!

—1 -1 _
R o) = R 0| < [@luip, ., e et —wallg-1,  1=0.(83)

As shown e.g. in [21, Theorem 2.5], (8.3) implies (8.1). Moreover, it implies that

-1 . .
R has at most one invariant measure.
If for every R > 0 and ¢ > 0 we denote

t
1 _
Bri={ee H el <R}, T = ;/(R,H H* sodr.
0

Then, thanks to (7.20), for every R > 0 and ¢ > 0 we have

t

=t oo, - Ry

0

C
= (8.4)

Since By is compactly embedded in H~!, this implies that the family of measures
{T;}i>0, is tight in H ~1. Then, by Prokhorov’s Theorem, there exists #, 1 oo such
that I';, converges weakly to some probability measure in P(H ~1) which is invariant

-1 . . . .

for RtH and, due to what we have seen above, such measure is the unique invariant
-1 -1 .

measure v of R,H . Moreover, (8.4) gives

-1 L c
v (Bg) < liminf ', (BR) < . R> 0,

so that supp (W) ¢ H!.
Finally, in order to prove (8.2), we first notice that due to the invariance of v -
and (7.21)

2 H! . 2 H-!
f el v (@) < limin f (el A R) v )
H-! H-!

.. -1
:I}in)loléf/ (]E ||p‘(r)||§{,1/\R) v (dv)

H-!

sclire [ @
H-1

@ Springer



Applied Mathematics & Optimization (2024) 90:7 Page 41 of 48 7

Thus, if we take 7 > 0 such that ce™* = 1/2, we get

[ lel2,- v ) < c. 8.5)
H—I
Then, in view of (8.3), for every ¢ € Lipb(H_l) we have

W (R o) < R g = [ o0 o)

H-!
S /

RI o) = R ()| v (ds)

H-!
_ —1
< gl o e [ Fe sl @),
H-1
and (8.5) allows to obtain (8.2), with Lo = A /2. m]

Remark 8.2 Based on the fact that B(H) C B(H ") and the fact that supp (v 71) C
H', we have that v e P(H ") is also a probability measure on H. In what follows,
it will be convenient to distinguish the restriction of v " to H from v¥ " itself and
for this reason we will denote it by v/,

Proposition 8.3 The probability measure v¥ is the unique invariant measure for the
transition semigroup RH. Moreover, supp W) Cc H Vand

/ eI, v (de) < oc. 8.6)
H

Proof By proceeding as in the proof of Lemma 6.3, it is possible to show that v/ is
invariant for R/, and from Proposition 8.1 we get that supp(v?) c H'.
To prove its uniqueness, we notice that if v € P(H) is any invariant measure for
R,H , then its extension v/ € P(H _1), with the support in H, is invariant for RtH _1.
H-

.. 1
From Proposition 8.1, we have v/ = v , and hence

V(A) = v'(A) = v (A) = v (A), A eBH),

which implies that v = v,

Finally, in order to prove (8.6), we consider the Komolgov operator associated to
R

1 X .
No(t) = ETrH[(ag(t)Q)(ag(c)Q) Dz(p(’c)] + (div(b(t) Ve) + Fg(v), Do(v)),,-
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We consider the function ¢(t) := ||t||%1 /2, then
1 2
No(r) = 5 g () ||£2(HQ,H) — (b Ve, Vt)H
HFe (), 1), < 202 — v M IVEIZ, + (Fo(0). 1),

so thanks to (7.4) and (2.7), by the invariance of v/ on H we have

/ lell3, v (dr) < o0.
H

Remark 8.4 As a direct consequence of (8.6), we have

-1
/ el vH ™ (o) < oo ®.7)
Hfl

8.2 Ergodicity for Eq. (7.1)

Now, we recall that we denoted by P,H the transition semigroup associated to the
limiting problem (7.1)

PHow) :=Egu“(t), wuweH, >0,
for every ¢ € By(H). Forevery tv,u € H andt > 0 we have
g ) =u VW), p @) =u ).
Hence, if we define the operator T : Cp(H) — Cp(H) by
[Topl(w) = p(g(w), ueH,
we have Tg_l = Tg—l,

/[Tgwl(u) (vog)(du) = /(p(t) v(dv), (8.8)
H

H
and for every ¢ € Cp(H)

RE @) =E@(p" (1)) = E[T,ol®  ©@) = PH[T,0l(s"' (), > 0(8.9)

1

Lemma 8.5 v € P(H) is invariant for P,H ifand only v o g~ is invariant for R,H. In

particular, v o g is the unique invariant measure for P,H .
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Proof Assume v € P(H) is invariant for P,H . Then, thanks to (8.9) and (8.8), for
every ¢ € Cp(H) and t > 0 we have

/ RIp() (vog"dr) = / R p(g(w) v(du) = / P [Typ](w) v(du)

H H H

_ / [T, 1) v(du) = / () (v o g~)(dv).
H

H

This implies that v o g~! is invariant for RtH . In the same way, if A € P(H) is
invariant for R,H , then A o g is invariant for P[H . Hence, we can conclude due to (9.1).

Our statement can be rephrased by saying that there exists a unique invariant mea-
sure for R if and only is there exists a unique invariant measure for P/. Therefore,
since we have shown in Corollary 8.3 that v/ is the unique invariant measure for R/,
we obtain that v¥ o g is the unique invariant measure for PtH . O

9 Proof of Theorem 3.2

Due to Hypothesis 2, with an abuse of notation in this section we will look at g and

g~ ! as mappings on H

[eM](x) = gh(x)), [¢7'WIx) =g '(h(x)), x€O, heH.

For every probability measure v € P(H ), we define probability measures v o g and
vog !l eP(H)by

(vog)(A) :=v(g(A), (vog ")(A) :=v(g ' (A), AeB(H).
Clearly, we have

1

(oglog 'l=@wog Hog=r. (9.1)

We notice that Theorem 3.2 is proved once we can show that if (v]f) u>0 C P(H)

is a family of invariant measures for the transition semigroups P/* ’H, such that
supp(ij) C Hi, then

lim W, ([(nw]j) ° g_l]/ : vH‘) -0, 9.2)

where v¥ " is the unique invariant measure for R TinHL
Actually, in view of (6.16), the family of probability measures (I1; vff) we,1) 18

-
tight in H‘S, for every 6 < 1. If v is any weak limit of H]UZ{ in H,as u — 0, we
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1

have (Hlvzf) o g~ ! converges weakly to v o g~! on H. Due to the continuity of the

embedding of H ~linto H,
I
[(l'[lvzl) o g_l] —(vo g_l)/, as u — 0,

as measures on H~'. On the other hand, according to (9.2) we have that

(M) o gil]/ converges weakly to v~ in H~!, so that (v o g=!) = v¥ ' in

H~!. This implies that v o g~! = v# € P(H), and thus v = v/ 0 g € P(H). Since
this holds for every weak limit v of IT; v;", we conclude that IT; vZf converges weakly

to ve o gin H, as 4 — 0, and, due to Lemma 8.5, v o g is the unique invariant
measure for PIH .

9.1 Proof of (9.2)

Due to the invariance of vZ’l and v ! , we have
We ([(nlvff) o5 v”") < W, ([m((P,”'*‘)*vf) og 'R (M) og“]/)

+ W ((R,HA)* [(l'hv,?f) o gil], , (R,Hi])*vIrl) .

According to (8.1), we have
-1 11 -1 —1
We ((R,H )*[(Hlvﬁ>og 1] (RI >

/ _
<ce MW, ([(HIVZ[) 08_1] o 1) ,

and then, if we pick 7 > 0 such that ce ot < 1/2, we obtain

(o))
<2W, ([(nl((P;‘*”Yv,?}) og” | kY[ (M) o gl]/> '

Now, if we fix a Fp-measurable H-valued random variable 9, := (§,, n,), dis-
tributed as the invariant measure v?f, the Kantorovich—Rubinstein identity (3.3) gives
forevery t > 0

wa ([ e iy [(mf) or '] )
< Ea(g (1)), p*E0)).
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Thus, (9.2) follows once we prove that for every ¢ > 0 large enough
lim Ea(g(u, (1)), p (1)) = lim Elg(u,” (1) — o2& (1) g1 = 0. (9.3)
n—0 u—0

According to (6.16) we have that ¥, € L%(Q; H,y), for every u € (0, 1). Hence,

if we denote p,(f) := g(uZ"“ (1)), by proceeding as in [10, Sect. 5], we can rewrite
equation (3.1) in the following way

t

pu(6) + mvp (1) = g(&) + oy + / ALB(py(s))ds
0

t t
+f Fo(pu(s)ds + ng(Pu(S))de(S),
0 0

where the identity holds in H~! sense. Since p&¢+) solves Eq. (7.2) with initial
condition g(&,) € L?(2; H) in H™! sense, we have

pu0) = pE & (0) + vl (1) = + | A[Bou(s) = B (5] ds

oY _

t t
# [ (Feloutsn = Felo# @ 60) ds + [ (0060, = 0305 51) du (o)
0 0

If we define 9, (t) := p,(t) — p¥ € (1), as a consequence of [t6’s formula, we
have
V() = put) —p 8E1) (1), as a consequence of Itd’s formula, we have

1 ¥
5 B0 + v (Ol

t

1

= S W EInulf —E / (B(pu()) = B(p%%) (), 2, (5) + p v () s
0

t

+E f (Fe(pu(9) = Fe(p* (), 9, (5) + v (5)) -1l
0

t
1
43 [ 100050 = 00 S DI, gy 1,
0
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so that

t
E 19, (0) + pvp O < 12E |n][ 31 — 20 E / (B(pu()) = B(p*E(5)). vji" (5)) s
0

t

1
+2uE / (Fy (0 () — Fe(pG0(5)), v (), 1ds — o E [ 12 () 113 ds.
0 0

where

Since B has linear growth, thanks to (6.1) and (6.2) for every u € (0, o) we have

t

[ (B(pu(9)) = B(p* & (5)), v, (5)) ,ds
0

w-E

: AV 3
u
<c (/ <1 +E ||p“(t)||i’ +E ”pg(s,n(t)”%{) d,) (/ HE vy (;)||§1dt)

0 0

1 1
sc(V++E|gulin +w2EInally )" (we+ i + i Elgal 3 + 0B [n]3,)°

o=

<¢ (1 + / (ull2, + 1 o) v (s, dn))
H

1
2

(u + 02 [ (Iul30 + wlloll3;) vit s, dn))
H

<aVit (1+/(nuu§,1 + e llol) vt du, dn)).

H
Similarly, thanks to the linear growth of F, we have for every u € (0, uo)

t

n-E / (Fo(0u(9)) = F (0% (5)), vp (5)) 1 ds
0

< e [ 1+ [ (Il + s ol ) vl o)
H
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Moreover, due to (6.16) we know the family of random variable ¢,, satisfies (6.5).
Then, from (6.6) we obtain that for every u € (0, u¢)

B 2 2
W 0 O3 = e/l + e (B3 + 0 E [n])
=aii+en [ (Il +loly) vl du. do),
H
Therefore, from (2.11) and once again (6.16), we conclude that for every u €
0, 1)
LB o) - p#&0 1) 2
2 pM P H-!
0 o
(Ellou@ = p#E0 @) + o O, + 2Bl 01,

IA

IA

cmﬁ1+f@wg+uw@ﬁ%mﬁm,
H

and (9.3) follows.
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