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Abstract 

Despite their ability to answer complex questions, it is unclear whether generative chatbots 

should be considered experts in any domain. There are several important cognitive and 

metacognitive differences that separate human experts from generative chatbots. First, human 

experts’ domain knowledge is deep, efficiently structured, adaptive, and intuitive – whereas 

generative chatbots’ knowledge is shallow and inflexible, leading to errors that human experts 

would rarely make. Second, generative chatbots lack access to critical metacognitive capacities 

that allow humans to detect errors in their own thinking and communicate this information to 

others. Though generative chatbots may surpass human experts in the future – for now, the nature 

of their knowledge structures and metacognition prevent them from reaching true expertise.   
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Generative Chatbots AIn’t Experts: Exploring Cognitive and Metacognitive 

Limitations that Hinder Expertise in Generative Chatbots. 

 

Generative AI chatbots built on Large Language Models – such as ChatGPT, Gemini, and Claude 

– burst onto the public scene in 2022. Since then, one key area of discussion is the extent to 

which generative chatbots think and learn like humans.  

Imundo et al. (2024) approach this question with a thoughtful review of the literature on the 

relationship between generative chatbots and expertise. They compare human expertise to 

artificial expertise, assess the benefits of generative chatbot usage for experts and non-experts, 

and evaluate the extent to which generative chatbots may enhance or inhibit the development of 

expertise among human users. One key distinction that was largely overlooked was the 

difference between the (meta-)cognitive capacities (what we know about what we know) of 

generative chatbots and human experts. We aim to fill this gap. First, we will discuss differences 

in how generative chatbots and humans develop and structure knowledge – and the implications 

for intuition and adaptability. Second, we will compare the metacognitive strategies that human 

experts and generative chatbots use to detect errors in their cognition and communicate the 

likelihood of errors to others. We argue that these differences are sufficiently stark that 

generative chatbots cannot be considered experts, at least not in their current forms.  

Developing Expertise 

For humans, developing expertise involves mastering a series of steps, each of which is 

necessary to master the subsequent step (Ericsson et al., 1993; Van De Pol et al., 2010). Consider 

a student learning to play piano. First, they learn how to play notes. Next, they learn how to play 



chords. Then they learn how to read sheet music. Then they apply these skills to increasingly 

complicated compositions, until one day they are playing Beethoven. Through deliberate practice 

(Ericsson et al., 1993), the student establishes a base of expertise that is built on a foundation of 

lower-level skills. For this reason, it would be surprising to meet a pianist who can play a sonata 

but can’t play a simple chord.  

This pattern can also be applied to declarative knowledge. When humans learn concepts, we 

integrate them into schemata – associative mental frameworks that connect related ideas (Derry, 

1996; Rawson & Van Overschelde, 2008). These schemata are often hierarchical, built on a base 

of lower-level knowledge that can be used to better explain and understand more complex, 

higher-level concepts (Ghosh & Gilboa, 2014; Rumelhart & Ortony, 1977). To develop effective 

schemata, however, the lower-level knowledge must be acquired first. It would be quite difficult 

to understand how diabetes works without knowing what insulin is. 

In contrast, generative chatbots do not develop expertise in a sequential fashion. They are built 

on large language models that simply form associative neural networks that reflect how often 

certain words or phrases co-occur in their training set (Wu et al., 2023). As such, generative 

chatbots may develop associative schema of how concepts are related (e.g., monkeys and 

bananas frequently co-occur) but are often missing foundational links within their schemata. This 

results in strange outcomes where generative chatbots can exceed at complex tasks but fail at 

simple ones. For example, ChatGPT can solve undergraduate math problems (Frieder et al., 

2023) but frequently fails when attempting to do simple addition (Cheng & Yu, 2023). 

To the extent that we consider deep, structural knowledge to be a criterion of expertise, this kind 

of error demonstrates that generative chatbots are not experts – but rather simulations that mimic 

what an expert might say in response to a question. True experts would rarely, if ever, fail at the 



most basic tasks within their field. As such, we believe that assessing the expertise of generative 

chatbots is best approached through a strategy presented by Shlomi Sher (2023): “Don’t focus on 

the most complex things the system can do. Instead, focus on the simplest things it can’t do.”  

Expertise and Intuition 

A second order effect of generative chatbots’ lack of deep structural knowledge is that – unlike 

human experts (Salas et al., 2010) – generative chatbots are unlikely to develop intuition about a 

domain. When humans develop expertise, cognitive processes that were formerly effortful 

become automatic (Salas et al., 2010; Samuels & Flor, 1997) and connections between concepts 

in schemata are reinforced, increasing the speed and efficiency with which relevant information 

can be recalled (Grabner et al., 2006; Huet & Mariné, 2005).  

Using this developed intuition, human experts often make accurate inferences on far fewer data 

points than a generative chatbot requires (Salas et al., 2010; Wu et al., 2023). This allows humans 

to operate relatively efficiently in low-information environments (Ahn et al., 1992; Shanteau, 

1992) and apply existing knowledge structures to solve novel problems (Christopher & Müller, 

2014). For example, imagine that an expert chess player and an AI tool were asked to play an 

altered version of chess where the King can move two spaces (instead of one, as in standard 

chess). The human expert would be able to adapt their existing knowledge to accommodate this 

rule change, while the generative chatbot would likely struggle because this version of chess 

does not exist in their training set. 

This limitation of generative chatbots is well-highlighted by tests that are used to detect bots, 

including generative chatbots. For example, Rodriguez and Oppenheimer (2024) demonstrated 

that when bots are shown a picture of a snow sculpture depicting feet and asked what would 



happen to the feet on a warm day, they respond as if the feet were human feet – often stating that 

they will sweat. This is likely because most feet in their training set belonged to humans, so the 

association they make is warmth + feet = sweat. In contrast, humans can use their adaptive 

knowledge of the world to recognize that the image does not depict human feet, but rather snow. 

As this demonstrates, bots lack the cognitive flexibility to interpret abnormal and unexpected 

inputs. 

Generative chatbots will almost certainly overcome these specific tests in the near future. For 

this reason, computer scientists are actively working to develop tests that can more effectively 

detect generative chatbots (e.g., Deng et al., 2024). Regardless, the fact remains that bot-

detection strategies highlight the difference between human expertise – which is flexible and 

adaptive – and AI expertise, which is relatively inflexible and dependent on its specific training 

set.  

Error Monitoring  

Of course, this is not to say that human intuition is flawless or that humans are infinitely 

adaptable. Experts, like all humans, are prone to overconfidence (McKenzie et al., 2008) and 

often make erroneous judgments that are worse than those that would be made by a simple 

algorithm (Dawes et al., 1989). However, one sign of expertise is the ability to detect when you 

have made an error in your cognitive processing – known in the metacognition literature as error 

monitoring (Patel et al., 2011; Yeung & Summerfield, 2012) 

The first line of defense in error monitoring is passive. When engaging in any sort of cognition, 

humans subconsciously evaluate several experiential factors about their cognitive process – such 

as how easy it was to retrieve the necessary information (Thompson et al., 2013), how easily 



they were able to perceive the relevant stimuli  (Reber & Schwarz, 1999), or how familiar 

aspects of the task felt (Alter & Oppenheimer, 2008). These cues generate a sense of fluency, a 

subjective experience of how easy it was to engage in the task (Alter & Oppenheimer, 2009; 

Oppenheimer, 2008). When fluency is low, humans can often tell that something just doesn’t feel 

right. 

Of course, fluency is not always an accurate cue. For example, there is evidence that learners use 

fluency as a signal that that they have learned material well, even when fluency is not actually 

predictive of performance (Ackerman & Zalmanov, 2012; Finn & Tauber, 2015). However, there 

are many cases in which disfluency can be a meaningful signal that something has gone awry 

and that additional consideration is needed (Ackerman & Zalmanov, 2012; Thompson et al., 

2011).   

Fluency may be a particularly useful cue for experts who have automatized a given task – and 

therefore expect high levels of fluency (Jiang & Hong, 2014; Schwarz, 2004). When a task feels 

disfluent and therefore violates their expectations, the expert will recognize that something is 

amiss (Roese & Sherman, 2007). Similarly, experts are likely to notice when a typically familiar 

task feels unfamiliar – thus inducing disfluency (Whittlesea & Williams, 1998). In contrast, a 

novice will likely not notice these sources of disfluency because they anticipate the task feeling 

disfluent due to their lack of expertise (Jiang & Hong, 2014). Relatedly, novices may be 

particularly likely to misinterpret incidental fluency as a signal that they have more expertise 

than they actually do (Finn & Tauber, 2015). Therefore, fluency provides a mechanism by which 

experts may be better at error monitoring than novices.  

To our knowledge, there is no empirical evidence that generative chatbots experience 

(dis)fluency. On the surface, it seems reasonable to conclude that because generative chatbots do 



not have feelings – which they readily admit when asked – they would not be able to experience 

fluency or disfluency in the way that humans do1. This lack of metacognitive feedback is a key 

difference between human experts and generative chatbots. While humans may overlook smaller 

errors that generative chatbots are good at detecting (e.g., typos), metacognitive disfluency 

allows humans to sense when something is just not right with the information that they are 

processing (Alter & Oppenheimer, 2009; Oppenheimer, 2008). For example, imagine analyzing 

an experimental dataset in which every participant gave the same response to a question. A 

generative chatbot would be unlikely to notice that anything was amiss, whereas an expert 

human analyst would notice that something was fishy (c.f. Simonsohn et al., 2024). In this sense, 

disfluency acts as a sort of backstop for human experts that generative chatbots lack.     

Generating Metacognitive Judgments 

While metacognitive judgments are rarely perfectly aligned with objective measures of  

performance, there is often a substantial correlation. For example, experimental participants are 

more likely to accurately solve problems they judge as more solvable (Burton et al., 2023), more 

likely to recall items that they judge as having learned better (De Bruin et al., 2007; Nelson & 

Dunlosky, 1991) and more often correct when their confidence is higher (Han & Dunning, 2024).  

In many cases, experts make more accurate metacognitive judgments than novices. For example, 

high-performing students more accurately predict their performance on tests than low-achieving 

students (Hacker et al., 2000), expert chess players generate more accurate judgments of learning 

about opponents’ strategies than novices (De Bruin et al., 2007), and content experts in the 

 
1 It is possible that generative chatbots, like humans, could experience disfluency when it takes longer to process 

information (Ackerman & Zalmanov, 2012). Despite this, there is no reason to believe that this disfluency would be 

associated with worse performance, thus making it a meaningless cue. 



domains of climate science, statistics, and investment display less overconfidence than non-

experts, as well as greater metacognitive knowledge (Han & Dunning, 2024). Of course, experts 

are still subject to common human biases, such as overconfidence (Einhorn & Hogarth, 1978), 

and there are domains in which experts’ metacognitive judgments are no more accurate (but 

rarely less accurate) than those of novices (Cash & Oppenheimer, 2024; Han & Dunning, 2024; 

Lichtenstein & Fischhoff, 1977).  However, on average there is a positive relationship between 

expertise and accuracy of metacognitive judgments.  

To date, there is limited empirical evidence regarding the capacity of generative chatbots to make 

meaningful metacognitive judgments.  That said, extant theory predicts the extent to which 

generative chatbots can use the types of cues that inform humans’ metacognitive judgments. 

Koriat’s (1997) cue-utilization approach distinguishes between three types of metacognitive 

cues: intrinsic cues derived from characteristics of the task itself (e.g., difficulty); extrinsic cues 

about the environment in which the task is presented (e.g., time limits); and mnemonic cues that 

reflect the individual’s subjective, metacognitive experience (e.g., fluency).  

Out of the three types of metacognitive cues, generative chatbots are best equipped to evaluate 

intrinsic cues for two reasons. First, intrinsic cues do not require any sort of introspection or self-

awareness, which generative chatbots currently lack (Long, 2023). Second, intrinsic cues largely 

depend on statistical regularities that exist in the world – such as longer anagrams being harder to 

solve (Kaplan & Carvellas, 1968). Generative chatbots can learn these statistical relationships 

through their training set or can be explicitly trained to recognize these patterns. They can then 

use this knowledge to generate more accurate metacognitive judgments. In fact, generative 

chatbots may even be better than humans at detecting these statistical patterns and interpreting 

them as metacognitive cues. 



Extrinsic cues are a more interesting case. On one hand, generative chatbots are unlikely to be 

impacted by many of the environmental factors that serve as cues for humans’ metacognitive 

judgments, such as temporal delays (Nelson & Dunlosky, 1991) and prior experience (De Bruin 

et al., 2007; Han & Dunning, 2024). On the other hand, it is possible that generative chatbots 

could be aware of constraints that the environment places on their performance, such as time or 

word limits. This is particularly relevant given that OpenAI recently released a new generative 

chatbot – called OpenAI o1 – that purportedly spends more time thinking before providing an 

answer, with the goal of improving response quality.  

Finally, as described in the section on fluency, it is unlikely that generative chatbots experience 

the metacognitive feelings necessary to base their metacognitive judgments on mnemonic cues.  

Moreover, generative chatbots would likely lack sufficient self-awareness to engage in the level 

of self-reflection necessary to interpret these cues (Long, 2023). As such, mnemonic cues are 

unlikely to have any impact on generative chatbots’ metacognitive judgments. 

The fact that generative chatbots have access to only a subset of the metacognitive cues that 

humans have access to leads to certain theoretical predictions. For example, generative chatbots 

should have relatively better metacognition for predictions involving aleatory uncertainty (i.e., 

uncertainty derived from inherent stochasticity) than predictions involving epistemic uncertainty 

(i.e., uncertainty derived by lack of knowledge, including knowledge about oneself; Fox & 

Ülkümen, 2011). This is because aleatory uncertainty is often reduced via instrinsic and extrinsic 

cues, whereas epistemic uncertainty is often reduced via mnemonic cues. 

Indeed, Cash et al. (2024) recently conducted a study in which they asked humans and generative 

chatbots to make predictions about future events (e.g., football games and awards shows) then 

judge their confidence in those predictions. Because these events were in the future, uncertainty 



about the outcomes of the events was inherently aleatory (Fox & Ülkümen, 2011). Generative 

chatbots’ confidence judgments were as accurate as – and in some cases, more accurate than – 

those of humans. This aligns with predictions from the cue utilization model (Koriat, 1997), as 

both human participants and the generative chatbots were likely able to base their metacognitive 

judgments on instrinsic cues, such as how similar the records of the two football teams were. 

However, Cash et al. (2024) also demonstrated that generative chatbots, especially Gemini, 

struggled when asked to make confidence judgments about their own performance in a game of 

Pictionary – a task relying more heavily on epistemic (i.e., ”How confused am I when I look at 

this drawing?”) rather than aleatory uncertainty. Participants made both prospective (how well 

they will perform in the future) and retrospective (how well they performed in the past) 

confidence judgments. This distinction is critical because, relative to prospective judgments, 

retrospective judgments rely more heavily on mnemonic cues (i.e., how hard did the task feel). 

As one might predict from the cue utilization model (Koriat, 1997), ChatGPT and Gemini’s 

retrospective judgments were less accurate than their prospective judgments, while humans’ 

retrospective judgments were more accurate than their prospective judgments.  

These results effectively demonstrate that generative chatbots are as good as humans at making 

metacognitive judgments that rely on their ability to interpret information (i.e., intrinsic cues) to 

reduce aleatory uncertainty, but not particularly capable of updating these judgments based on 

experiential factors (i.e., mnemonic cues) that reduce epistemic uncertainty. Humans, on the 

other hand, are adept at interpreting mnemonic cues. It is worth noting, however, that the 

participants in Cash et al.’s (2024) studies were Prolific participants, not experts. As such, it is 

unclear how the accuracy of the generative chatbots’ metacognitive judgments would stack up to 



those of human experts (although if anything, one would expect experts to do better than 

novices, and thus also outperform the generative chatbots). 

One additional challenge in assessing generative chatbots’ metacognitive judgments is that they 

only provide these judgments when explicitly asked to do so (as in Cash et al., 2024). This is in 

stark contrast to humans, who have constant metacognitive experiences, even when they are not 

consciously attempting to engage in metacognition (Oppenheimer, 2008). However, computer 

scientists are currently working to design large language models (on which generative chatbots 

are built) that implement metacognitive strategies, with or without human prompting (Tan et al., 

2024). As such, it is plausible to believe that spontaneous metacognition is right around the 

corner for generative chatbots, which could lessen the (meta-)cognitive gap between generative 

chatbots and human experts. 

Conclusion 

It is clear that generative chatbots and human experts approach cognition and metacognition in 

very different ways. Human experts develop knowledge over time, structure the knowledge into 

schemata, and develop intuitive understandings about how ideas within their domain of expertise 

are connected, allowing them to make sense of complex information, solve novel problems, and 

easily answer simple questions. Human experts then rely on a variety of metacognitive cues to 

recognize when they are likely to have made errors. 

In contrast, generative chatbots are trained on a pre-determined set of inputs and structure their 

knowledge of the world based on this training set. As such, their knowledge is purely associative 

with no room for intuition. The rigid nature of generative chatbots’ knowledge makes them prone 

to errors that human experts would not make, and they lack many of the metacognitive cues that 



human experts use to detect errors when they happen. Given these limitations, it is hard to 

consider generative chatbots experts in nearly any domain. However, generative chatbots are still 

in their infancy – and may someday be telling us psychologists that we lack the cognitive and 

metacognitive skills to be considered experts.  
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