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Abstract
Subjective, multi-attribute choice decisions — such as whom to marry or which college to attend
— play a substantial role in decision makers’ long-term well-being. However, the metacognition
literature lacks tools for assessing metacognitive capacities in subjective decisions. We present
three studies in which we propose and validate the Knowledge of Weights (KoW) paradigm, a
novel method for assessing metacognitive knowledge of attribute weights in subjective, multi-
attribute choice decisions. In Study 1, we demonstrate the test-retest reliability of metrics
generated by the KoW paradigm. In Study 2, we apply the KoW paradigm in four domains and
show that it generates consistent results. In Study 3, we demonstrate that participants who
perform better on the KoW paradigm make choices with which they are more satisfied, providing
suggestive evidence of predictive validity. Use cases in cognitive psychology and beyond are

discussed



Introduction

Imagine that you are at a car dealership, and a salesman asks: “What are you looking for
in a car?” Your answer to this question critically influences the likelihood that you will end up
with a car that you are happy with. For example, if you tell the salesman that your top priority is
the ability to go off-roading, but really the most important thing to you is having a fuel-efficient
vehicle, you’ll be quite unhappy when it costs you $100 to fill up your gas tank each week
because you bought a Jeep.

This example highlights a critical element of multi-attribute choice that is often
overlooked: a decision maker’s explicit knowledge of how strongly various factors influence
their choices. Decision makers who have this explicit metacognitive knowledge of their attribute
weights can make choices that better align with their preferences and may be able to more
accurately communicate their preferences to others, such as the car salesman. Currently,
however, the metacognition literature lacks a validated method for assessing participants’
knowledge of the weights they place on various factors when making subjective decisions. This
paper aims to fill that gap by introducing the Knowledge of Weights (KoW) paradigm.
Metacognition

Over the last half-century, a great deal of research has sought to evaluate the ways in
which people understand and manipulate their own cognitive processes. This capacity to think
about thinking is commonly referred to as metacognition (Brown, 1987; Flavell, 1979). Much of
the extant literature in metacognition has focused on memory and learning (e.g., Aleven &
Koedinger, 2002; Chua et al., 2009; Dodson et al., 2007; Hu et al., 2019; Perry et al., 2019;
Zepeda et al., 2015). However, more recent research has also highlighted the importance of

metacognition for a wide variety of cognitive processes, such as social cognition (Frith & Frith,



2012; Petty et al., 2007; Wright, 2002), belief updating (George & Mielicki, 2023; Stanovich &
Toplak, 2023; van der Plas et al., 2022), self-regulation (Davis et al., 2010; Duckworth et al.,
2014), and, central to this paper, reasoning (Ackerman & Thompson, 2017, Koriat, 2015).

In their seminal framework, Ackerman and Thompson (2017, p. 1) define metareasoning
(i.e., metacognition in reasoning) as the “processes that monitor the progress of our reasoning
and problem-solving activities and regulate the time and effort devoted to them.” Through
metacognitive monitoring, reasoners can evaluate how confident they are in their reasoning
processes (Ackerman, 2014; De Neys et al., 2011; Jackson et al., 2016, 2017; Pennycook et al.,
2017), assess the degree to which they intuitively feel like they have come to the right
conclusions (Fernandez-Cruz et al., 2016; Gangemi et al., 2015; Thompson et al., 2011, 2013;
Vega et al., 2021), and recognize when they have made reasoning errors (Fernandez-Cruz et al.,
2016). Through metacognitive control, reasoners can determine whether they are satisfied with
their reasoning processes (Ackerman, 2014; Ackerman et al., 2020; De Neys et al., 2013), and, if
they are not, switch to a different reasoning strategy (Ackerman & Thompson, 2017; Cary &
Reder, 2002; Haddara & Rahnev, 2022; Lieder & Griffiths, 2017). Unsurprisingly, high levels of
metareasoning skill are associated with better reasoning (Batha & Carroll, 2007; Fleming &
Daw, 2017; Ghazal et al., 2014).

Metareasoning skills are often assessed using one of a small set of paradigms that serve
as analogues of the tasks used in the memory and learning literatures (for a detailed review of
these paradigms, see Ackerman & Thompson, 2015, 2017). Metacognitive monitoring tasks
typically compare participants’ judgments about their performance on a reasoning task to their
actual performance on that task. For example, participants might be asked to judge how solvable

they think a problem is (Ackerman & Beller, 2017; Topolinski et al., 2016), how confident they



are that they solved a puzzle correctly (Ackerman, 2014) or how strongly they feel that they
arrived at a correct (or erroneous) solution (Fernandez-Cruz et al., 2016; Gangemi et al., 2015).
These judgments are then compared to their actual performance and participants who provided
more accurate judgments about their performance are said to have engaged in more effective
metacognitive monitoring.

Metareasoning control tasks require decision makers to make decisions about how to
proceed to best achieve a goal. For example, participants might be asked to complete a series of
puzzles and make strategic decisions such as when to quit one puzzle and move onto the next
one (Law et al., 2022; Payne & Duggan, 2011), how much costly evidence to collect before
providing a final answer to a puzzle (De Neys et al., 2013; Thompson et al., 2013), or when to
switch reasoning strategies to optimize their performance (Karpicke, 2009; Macaluso et al.,
2022). Participants who engage in strategies (e.g., strategically allocating time) that allow them
to more successfully achieve the goal (e.g., solving more puzzles) are then designated as having
greater metareasoning control.

All of these paradigms share a common attribute: they require a correct or optimal
performance measure (e.g., whether they solved the puzzle, how much time they wasted on an
impossible task), to provide a straightforward means of assessing metacognitive performance.
While these paradigms provide valuable insights into metareasoning, their dependence on
objectively correct answers limits their functionality for assessing the role of metareasoning in
subjective judgments and decisions, such as whom to marry, which house to purchase, which
college to attend, or which medical treatment to undergo.

Metareasoning in Subjective Decisions.



We define subjective decisions as any decision in which the optimal or selected choice is
determined by an individual’s preferences, feelings, values, tastes, or beliefs, rather than fact or
truth (e.g., Berman et al., 2018; Fishburn, 1981; Spiller & Belogolova, 2017; Weber & Federico,
2012). Because subjective decisions lack objectively correct answers, assessing the accuracy of
participants’ metacognitive judgments in such domains requires an entirely new set of
methodological tools. Specifically, tools used to evaluate subjective metareasoning must assess
the degree to which participants’ metacognitive judgments are consistent with their subjective
preferences and goals, which can be difficult to measure. One way in which this can be achieved
is by having participants complete a reasoning task, then asking them to explain their reasoning
process. The degree to which the participant’s self-report aligns with their actual
choice/judgment behavior reflects the degree of explicit, declarative metacognitive knowledge
the participant has about their reasoning processes.

In line with this approach, a great deal of classic Judgment and Decision Making (JDM)
work evaluated participants’ knowledge of the factors that influenced their judgments and
decisions. Much of this work relied on introspective verbal protocols (Ericsson & Simon, 1980)
in which participants were asked to reflect on their decision-making processes and describe them
to the researcher (e.g., Harte & Koele, 1995; Nisbett & Bellows, 1977; Wilson & Nisbett, 1978).
This approach is perhaps best exemplified by a seminal series of studies in which Nisbett and
Wilson (1977) found that participants were unable to provide accurate reports about the factors
that influenced their judgments (e.g., film quality) or decisions (e.g., which socks to buy).

Taking a more quantitative approach, other classic JDM research sought to understand
whether participants could accurately report the weight they placed on various cues when

making subjective judgments and decisions (see Slovic & Lichtenstein, 1971 for a review).



Importantly, these judgments and decisions were multi-attribute in nature (i.e., the alternatives
were compared on multiple dimensions), thus requiring the decision maker to make tradeoffs
between the various attributes and determine how important each attribute was to them (Keeney
& Raiffa, 1976; Soman, 2004). In essence, these studies asked participants to make a series of
judgments then asked them to state how heavily they had weighted various cues when making
their judgments. The participants’ stated weights were then compared to objective weights
estimated via linear regression (e.g., Hoepfl & Huber, 1970; Slovic, 1969; Slovic et al., 1972).
The Current Approach.

While these classic studies provided early insight into metareasoning in subjective
decision making, they were limited to relatively simple methods that provided noisy estimates of
participants’ decision-making processes. Few studies have sought to systematically build upon
these approaches using modern statistical and methodological approaches. To fill this gap in the
literature we present a novel method for assessing participants’ metacognitive knowledge of the
cue weights they use when making subjective, multi-attribute choice decisions.

Before discussing our paradigm, it is worth noting that the term metacognitive knowledge
has most frequently been used in the learning literature, where it describes students’ knowledge
of the strategies that they can use to learn most effectively (e.g., Pintrich, 2002; Vrugt & Oort,
2008). However, we use metacognitive knowledge in the broader sense of knowledge about any
cognition, including judgment and decision making. This usage of the term is in line with classic
definitions by Flavell (1979, p. 907) — “Metacognitive knowledge consists primarily of
knowledge or beliefs about what factors or variables act and interact in what ways to affect the
course and outcome of cognitive enterprises” — and Dunlosky and Metcalfe (2009, p. 2) —

“Metacognitive knowledge pertains to people’s declarative knowledge about cognition.”



Furthermore, the literature has demonstrated that metacognitive knowledge is a relevant
construct in non-learning domains, including problem solving (Antonietti et al., 2010), creativity
(Jia et al., 2019) and, most relevantly, decision making (Basu & Dixit, 2022; Colombo et al.,
2010). Using this framework, we contend that a decision maker’s knowledge about the cognitive
processes underlying their subjective decision making falls under the umbrella of metacognitive
knowledge.

Our paradigm — which we call the Knowledge Of Weights (KoW) paradigm — is rooted in
Choice-Based Conjoint Analysis (CBC), a technique from the marketing literature (e.g., Allenby
et al., 1995; Hein et al., 2020; Lenk et al., 1996; Louviere & Woodworth, 1983; Sawtooth
Software, Inc., 2017, 2021) in which participants are asked to make a series of choices between
different sets of alternatives (e.g., 3 schools) that vary across a pre-determined set of attributes
(e.g. graduation rates, crime rates, extra-curricular opportunities, etc.). CBC allows for
estimation of the weight that each participant places on each attribute based on a small number of
multi-attribute choices. We then compare these CBC weight estimates to participants’ self-reports
of the weights that they believe they used while making their choices. Importantly, these self-
report items instruct participants to retrospectively reflect on the weights they used during their
decision-making processes, not to make novel judgments about the importance of each attribute.
This distinction is critical for interpreting the KoW paradigm as a metacognitive measure. Higher
calibration or resolution between the estimated and self-reported weights indicates greater
metacognitive knowledge (Fleming & Lau, 2014).The KoW paradigm is highly inspired by the
classic metareasoning work (e.g., Nisbett & Wilson, 1977; Slovic, 1969; Slovic & Lichtenstein,

1971), but builds upon it in four ways:



First, CBC generates more precise estimates of participants’ preferences and attribute
weights by implementing hierarchical Bayesian models that, unlike simple regressions, can
accurately capture non-linear (and even non-monotonic) utility functions. Because of this, CBC
can detect, for example, that a decision maker prefers a house that is not too small and not too
large, rather than assuming that all participants prefer larger homes. Similarly, non-monotonicity
allows CBC to accurately model the preference order for categorical variables, which are often
important in subjective decision making. Classic studies often avoided this concern by using
dichotomous variables (e.g., Slovic, 1969, 1972), thus limiting their design choices.

Second, CBC only requires participants to make about a dozen choices — whereas the
classic studies often required participants to complete more than 100 choice or judgment tasks
(e.g., Slovic, 1969). Requiring participants to make so many choices likely reduced the
ecological validity of the paradigms, induced fatigue, and pushed participants to use
lexicographic strategies that may not be reflective of their typical decision-making processes
(Bradley & Daly, 1994; Hirshleifer et al., 2019). Because CBC limits the number of choices
participants are required to make, it is likely to generate more accurate estimates of their decision
weights.

Third, modern advances in computing allow CBC programs to generate more complex
designs (i.e., more attribute x level combinations; unique choice sets for each participant) than
classic studies. These complex designs allow for additional randomization and orthogonality
across attributes, choices, and participants, thus reducing the risk of biased designs and limiting
the correlations between variables in the alternatives presented to the participants. This level of
randomization simply was not possible when studies were run on paper (Slovic, 1969; Slovic &

Lichtenstein, 1971).
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Fourth, and perhaps most importantly, CBC allows the researcher to estimate weights at
the individual level, rather than the sample level, even with a small number of data points from
each participant (Allenby et al., 1995; Hein et al., 2020; Lenk et al., 1996; Louviere &
Woodworth, 1983; Sawtooth Software, Inc., 2017, 2021). This is critical for assessing
metacognitive knowledge, as averaging revealed weights across participants would make it
impossible to assess the accuracy of individual participants’ stated decision weights.
Furthermore, averaging across the sample is likely to cause errors to average out, making the
sample appear more accurate than the individuals truly are (Surowiecki, 2004). Using CBC
eliminates this issue.

To demonstrate the utility of the present approach, we report the results of three studies.
In Study 1, we show that the metrics generated by the Kol paradigm demonstrate test-retest
reliability. In Study 2, we present evidence that the KoW paradigm generates similar results when
applied across four distinct domains. And finally, in Study 3, we demonstrate that some of the
metrics generated by the Kol paradigm are correlated with a decision maker’s ability to make
choices they are happier with, thus providing suggestive evidence of the predictive validity of the
paradigm.

Study 1

The primary objective of Study 1 was to demonstrate the reliability of the novel KoW
paradigm. To do so, participants completed the KoW paradigm and then completed the paradigm
a second time 24-48 hours later. We then compared the results from the two phases to assess the
test-retest reliability of the paradigm.
Methods

Participants
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Simulations suggested that we needed a minimum of about 200 participants to complete
both phases of the study to reliably estimate attribute weights. We recruited 275 Prolific
participants to ensure that we would have sufficient data after accounting for attrition and
incomplete responses. Of the 275 participants we recruited, 272 completed Phase 1 and were
invited to complete Phase 2. 239 participants (87.9%) completed the second phase.
Demographics of the sample are reported in the Supplemental Materials. The 12.1% of
participants who attritted were statistically indistinguishable from the participants who
completed both phases in terms of demographic characteristics (ps > .08, see Supplemental
Materials). All participants in the final sample passed at least two out of four attention checks in
Phase 1 (96.2% passed all four) and at least two out of three attention checks in Phase 2 (98.7%
passed all three).

In Phase 1, the first attention check required participants to choose their favorite season,
then choose the holiday that occurs during the season they chose from a list of four options. The
second attention check required participants to follow instructions and choose orange from a list
of colors. The third attention check came after the CBC portion of the survey and asked
participants to identify what kind of items (homes) they were picking between from a multiple-
choice list with four options. The fourth attention check was a five-point Likert scale asking
participants how strongly they agreed with the statement that they were born in the year 1250 AD
(Strongly Disagree and Disagree were treated as correct). Phase 2 repeated attention checks 2-4,
except that colors were replaced with fruits in the second attention check and “in the year 1250
AD” was replaced with “on Mars” in the fourth attention check.

Procedures
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At the start of the survey, participants were informed that this was a two-phase study that
required them to return the next day. After providing consent, participants completed a Choice
Based Conjoint (CBC) survey in which they were instructed to imagine that they were looking to
buy a house. Participants were given a brief description of six attributes that explained the scale
on which each attribute was scored, listed the five possible levels of each attribute, and provided
context regarding a typical score for that attribute in the real world (see Supplemental Materials
for language). Participants were then shown 14 sets of three hypothetical homes and asked to
pick which one they would be most interested in purchasing based on each home’s scores on the
six attributes. An example of one of these choice tasks is provided in Figure 1.

After completing the CBC survey, participants were asked to describe the weight that
they believed they had put on each attribute while making their choices during the CBC task.
Participants were asked to retrospectively reflect on the choices they had made during the CBC
task — not to state how important they felt the attributes were at the time of self-report. This
distinction is necessary to interpret the KoW paradigm as a metacognitive task.

Participants self-reported their attribute weights in two formats, presented in a random
order. In one format, participants self-reported how important each attribute was to them on a
scale of 1 (Not at All Important) to 9 (Extremely Important). We refer to these as Attribute
Importance Ratings or AIRs. In the other format, participants self-reported the percentage of
their decision-making process that was based on each attribute (i.e., weights). Their responses for
the six attributes were required to sum to 100%, but otherwise could be allocated in any way they
wanted — including putting 100% weight on one attribute. We refer to these as Stated Attribute
Weights or SAWs. Notably, SAWs are compensatory in nature, while AIRs are not. Participants

also self-reported their confidence that their SAWs and AIRs accurately reflected their decision-
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making process during the CBC task. These confidence judgments are meta-metacognitive
judgments that provide some insight about participants’ beliefs about the accuracy of their own
metacognitive judgments. Finally, participants completed a standard set of demographic
questions, marking the completion of Phase 1.

Twenty-four hours after the final participant completed Phase 1, participants were invited
back to complete Phase 2. Participants were told that they had 24 hours to return for the second
phase. We chose to use a relatively short delay of 24-48 hours to minimize attrition, which is
critical because less-consistent participants are most likely to attrit, artificially inflating test-retest
metrics in choice experiments with long delays (Rigby et al., 2016). A short delay was also
beneficial because it is reasonable to expect that participants’ preferences may change over
longer delays, making it difficult to assess reliability. Phase 2 was identical to Phase 1, except
that it had one fewer attention check and did not include demographic questions. Participants
also self-reported the extent to which they believed their attribute weights changed from Phase 1
to Phase 2 on a scale of 1 (Stayed exactly the same) to 5 (Changed drastically). On average,
participants self-reported that their weights changed very little (M = 1.99, sd = 0.89).

Materials

In each phase, the homes were described in terms of the following six attributes: 1)
Commute time (to work); 2) Home size; 3) Mortgage (cost as % of income); 4) School district
quality; 5) Attractiveness of the home (as rated by buyers); and 6) Lot size. These attributes were
selected to reflect the attributes of a home that can be identified on a home listing website, like
Zillow. We based the Mortgage attribute on percent of income instead of absolute price to avoid

confounds based on individual differences in wealth and regional costs of living. We did not
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include pictures of the homes because pictures carry information about several different
attributes, thus hindering our ability to isolate individual attributes.

We then created five discrete levels for each attribute, as CBC cannot use continuous
variables. These levels were designed to reflect typical homes that would be found in American
neighborhoods (see Supplemental Materials for details). We avoided extreme values so that no
pairs would seem unreasonable when presented together (e.g., a 20,000 square foot home for
10% of your income). Using these levels, we generated 300 versions of the CBC survey for each
phase. Each version contained a unique set of 14 choices, each of which included three
hypothetical homes that were random permutations of the possible levels of each attribute. Since
we had more CBC versions than participants, each participant experienced a unique set of
choices. Since CBCs were generated separately for each phase, participants made different sets
of choices during each of the two phases — thus providing the most stringent test of the reliability
of the KoW paradigm. We generated the CBC versions using Lighthouse Studio (Sawtooth
Software, Inc., 2023), but many alternative software tools with similar functionalities exist,
including Conjointly (Analytics Simplified Pty Ltd, 2023), and the R package cbcTools
(Helveston, 2023). Study 1 was not pre-registered, but all data, materials, and code have been
made publicly available on OSF:
https://osf.io/uzqk5/?view_only=2c37ad40b8ad4b0c8be6a0982ca655a6
Analysis & Results
Estimating Revealed Attribute Weights (RAWs)

Before we could assess participants’ metacognitive knowledge of their attribute weights,
we first had to estimate the weights revealed by their choices on the CBC task — which we will

refer to as Revealed Attribute Weights, or RAWSs. The first step in calculating RAWs was to
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estimate the part-worth utility (henceforth, just utility) that each participant placed on each level
of each attribute. We did so using Hierarchical Bayes (HB) estimation, which is considered the
gold standard for analyzing CBC data (Eggers et al., 2022; Hein et al., 2020; Orme, 2002). We
estimated the utilities using only the data from participants who completed both phases of the
study (n = 239). Because we used a standard HB procedure, we provide only a brief plain-
language overview here. For a detailed technical overview, see Sawtooth Software, Inc. (2021).

The HB model begins with the assumption that nothing is known about the utility of each
level of each attribute (i.e., all utilities are set to 0). The model then generates a new set of
utilities (as well as variances and covariances) for each level of each attribute for each participant
and estimates how likely it was that each participant would have made the choices that they did
if they had used the old or new utility sets. If their choices are more likely under the new set of
utilities than the prior set of utilities, then the new utilities are retained as the current estimate
and used to inform the next set of utilities. This continuous updating process — known as a Monte
Carlo Markov Chain — leads the model to eventually converge on accurate utility estimates. For
this study, we allowed the model to generate 20,000 iterations, the first 10,000 of which were
used to calibrate the model and the remaining 10,000 of which were averaged to generate point
estimates of utilities. Importantly, the strength of HB arises from the fact that its upper-model
uses sample-level mean utility estimates to inform individual-level utility estimates, which are
then applied at the lower-level to estimate the likelihood of participants’ choices given a
provided set of utilities. This hierarchical procedure allows for precise utility estimates with
relatively little data.

When the HB process is complete, it produces point estimates of the utility of each level

of each attribute for each participant (6 attributes x 5 levels = 30 utilities for each participant).
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These utilities must then be converted into a single RAW for each attribute. In adherence to
standard CBC practice (e.g., Eggers et al., 2022; Orme, 2002), we do so using the following
equation, where U; is a vector containing the utility values for the five levels of attribute j (the
attribute for which the RAW is being calculated), U; is a vector containing the utility values for
the five levels of attribute 7, and the set from which attribute i is pulled includes all six attributes
from the CBC, including j:

max(Uj) — min(Uj)
N (max(U;) — min(U;))

RAWJ- =100 *

RAWs are estimated separately for each participant, thus allowing participants to have
varying preferences regarding the highest- and lowest-utility level of each attribute. Notably, this
method of estimating RAWSs only considers the highest- and lowest-utility levels of each
attribute, and thus disregards the shape of the utility function between those two points (e.g.,
Eggers et al., 2022; Orme, 2002). This could be considered a limitation because it simplifies
participants’ preferences and limits the insights that can be made about the value placed on each
level of each attribute but could also be considered a strength because it eliminates the need to
make assumptions about the shape of the utility function. For this study, both the HB estimation
and RAW calculations were conducted using Lighthouse Studio (Sawtooth Software, Inc., 2023).
We provide a detailed, step-by-step walk-through of the process for converting utilities into
RAWs in the Supplemental Materials.

Predicting Choices Using RAWs and SAWs

To ensure that the estimated RAWs were accurately capturing participants’ attribute

weights, we sought to assess how frequently they could predict participants’ actual choices. To

do so, we analyzed each CBC task that each participant completed (n» = 3,346 tasks) and
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estimated the utility that they would have assigned to each of the three homes by multiplying
their RAW for each attribute by the level of the attribute (scored as 1-5) and summing across the
six attributes. The attribute level scores were transformed to match each participant’s rank-order
preferences for the five levels of each attribute, with their lowest-utility level being scored as a 1
and their highest-utility level being scored as a 5, assuming a linear utility function between the
levels of each attribute.! This process was conducted for Phase 1 and Phase 2. We found that
Phase 1 RAWs accurately predicted 92.89% (k = .89) of participants’ actual choices from Phase
1 and Phase 2 RAWs accurately predicted 93.37% (x = .90) of participants’ actual choices from
Phase 2, suggesting that RAWs are a good estimate of participants’ true decision weights. We
then made cross-phase comparisons, testing the ability of RAWs from one phase to predict
choices from the other phase. We found that Phase 1 RAWs accurately predicted 83.56% of
Phase 2 choices (k =.75) and Phase 2 RAWs accurately predicted 83.14% of Phase 1 choices (k
=.75). Unsurprisingly, Phase 1 RAWSs, X?(1, Ns = 3,346) = 139.12, p <.001, and Phase 2 RAWs,
X2(1, Ns = 3,346) = 167.63, p <.001, were significantly less-accurate predictors of cross-phase
(i.e., out-of-sample) choices than within-phase (i.e., in-sample) choices.

We also repeated this process using SAWs as decision weights instead of RAWSs. Phase 1
SAWs accurately predicted 82.45% (k = .74) of choices from Phase 1 and Phase 2 SAWs
accurately predicted 83.01% (kx = .75) of choices from Phase 2. Unsurprisingly, the proportion of
within-phase accurate predictions was significantly higher for RAWs than SAWs in both Phase 1,
X2(1, Ns = 3,265 — 3,346) = 166.28, p <.001, and Phase 2, X°(1, Ns = 3,267 — 3,346) = 169.88, p

<.001. We then evaluated cross-phase predictions. Phase 1 SAWs accurately predicted 81.52% of

'For the choice predictions, we chose to assume linearity across levels instead of using the utility values we
estimated for each level so that we could test how accurate the RAWs were without additional information. This
allowed us to more fairly compare the accuracy of RAWs and SAWSs, which were only collected for each attribute,
not each level. As noted earlier, RAWs themselves were estimated without linearity/monotonicity assumptions.
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Phase 2 choices (k =.72) and Phase 2 SAWs accurately predicted 80.76% of Phase 1 choices (k
=.71). Both Phase 1 SAWs, X?(1, Ns = 3,274 — 3,346) = 4.65, p =.03, and Phase 2 SAWs, X*(1,
Ns=3,270-3,346) = 6.18, p =.01, were less accurate in making cross-phase choice predictions
than their respective RAWs. However, the predictive power of RAWs was much closer to the
predictive power of SAWs when making out-of-sample predictions than in-sample predictions,
an unsurprising finding given that RAWs are directly estimated from in-sample choices.
Compositional Transformation

We next sought to evaluate the reliability of our three measures of participants’ attribute
weights. Before we could do so, however, we had to address the statistical challenge that
decision weights — such as RAWs and SAWs, but not AIRs — are compositional in nature,
meaning that all values for a single participant are constrained to sum to a constant value (e.g.,
all RAWs add to 100%). Because of this, weights for an individual participant are not
independent of one another. This dependency can induce spurious relationships between weights,
particularly when comparing one set of weights to another (Aitchison, 1982; Smithson &
Broomell, 2024).

Here, we mitigate these dependencies by transforming the weights into numbers that exist
in unrestricted Euclidean space. There are multiple ways to achieve this, but we will follow the
Centered Log-Ratio Transformation Method, as described by Smithson & Broomell (2024). For
our case, we will separately transform RAWs and SAWs using a four-step process:

1) Divide weights by 100 to place them on a 0-1 scale;
2) Replace weights of 0 and 1 with 0.01 and 0.99, respectively, to avoid logs that are zero or
undefined (i.e., the simple replacement method);

3) Calculate the log of each weight;
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4) Subtract the mean of the six log-transformed weights from each log-transformed weight.

The remainder from Step 4 is the transformed weight for each attribute. We will use these
transformed weights — which we call tRAWs and tSAWSs — in place of their non-transformed
counterparts in all analyses in which we compare two sets of weights. We provide a step-by-step
walkthrough (with examples) of the Centered Log-Ratio Transformation Method in the
Supplemental Materials. It is worth noting that non-transformed RAWs and SAWs will still be
used whenever the analyses do not compare two sets of weights (e.g., when making choice
predictions).

Reliability of tRAWSs, tSAWs, and AIRs.

Having completed the compositional transformation, we could now evaluate the
reliability of our three measures of participants’ attribute weights — tRAWs, tSAWs, and AIRs. To
do so, we evaluated the correlations between individual participants’ tRAWs, tSAWs, and AIRs
across the two phases. Higher correlations indicate greater reliability. Attribute-level correlations
between Phase 1 tSAWSs and Phase 2 tSAWSs ranged from » = .52 - .89, with an average of r =
.76. Participants’ confidence in the accuracy of their SAWs was high in both phases (see Table 1)
and highly correlated across timepoints (» = .81, p <.001). Attribute-level correlations between
Phase 1 AIRs and Phase 2 AIRs ranged from » = .70 - .88, with an average of » = .78.
Participants’ confidence in the accuracy of their AIRs was also high in both phases (see Table 1)
and highly correlated across timepoints (» = .77, p < .001). These results suggest that tSAWs,
AlRs, and both confidence metrics were reliable across phases.

Attribute-level correlations between Phase 1 tRAWs and Phase 2 tRAWs ranged from r =
.33 - .60, with an average correlation of » = .47. While this average falls well below the typical

reliability threshold of » = .70, it is not far below reliability metrics for other behavioral
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measures commonly used in the decision sciences, including the Columbia Card Task (r = .57;
Buelow & Barnhart, 2018) and the Domain Specific Risk-Taking Scale (subscale rs = .42 - .80,
Mean r ~ .61; Weber et al., 2002).

The sub-optimal reliability of the tRAWs could arise from two distinct sources:
measurement error or participants applying their preferences inconsistently across the two
timepoints, which could be a result of the very metacognitive errors we are trying to capture. To
disentangle these explanations, we used participants’ utilities from Phase 1 to calculate the utility
of each alternative they evaluated during Phase 2. We then estimated what each participant’s
Phase 2 tRAWs would have been if they had always chosen the alternatives that maximized their
Phase 1 utilities. The correlation between these predicted Phase 2 tRAWs and the Phase 1 tRAWSs
for each attribute ranged from r = .64 - .85 (ps < .001), with an average of » = .75. These high
correlations suggest that the KoW paradigm itself generates reliable tRAW estimates and that a
great deal of the sub-optimal reliability of tRAWs (the gap between r = .48 and » = .75) can be
attributed to participants’ limited ability to apply their preferences consistently across phases.
This provides greater confidence in the reliability of the Kol paradigm.

The reliability metrics for tRAWs, tSAWs, AIRs, and each confidence measure are
summarized in Table 1. Attribute-level means and cross-phase correlations for tRAWs, tSAWs,
and AIRs are reported in the Supplemental Materials. Reliability metrics for the non-transformed
RAWs and SAWs are also reported in the Supplemental Materials.

Assessment of Metacognitive Knowledge

In this section, we will present 4 metrics that can be used to assess participants’

metacognitive knowledge of the attributes weights they used. Our first measure is the correlation

between tRAWSs and tSAWs (henceforth, tRAW-tSAW Correlations). Higher correlations
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indicate greater metacognitive calibration (Fleming & Lau, 2014), and therefore greater
metacognitive knowledge. Like all correlations, tRAW-tSAW correlations are theoretically
bounded at -1 and +1. Decisions makers choosing randomly would be theoretically expected to
achieve average correlations of about 0, assuming the attributes are independent of one another.
In Phase 1 of this study, tRAW-tSAW correlations for each attribute ranged from » = .34 - .64 and
the average of the six correlations was » = .54. In Phase 2, tRAW-tSAW correlations for each
attribute ranged from » = .42 - .60 and the average of the six correlations was » = .53. The
average tRAW-tSAW correlations from Phase 1 and Phase 2 were not significantly different (z =
0.10, p =.92).

Our second metric is the correlation between tRAWs and AIRs (henceforth, tRAW-AIR
Correlations). Again, higher correlations indicate greater metacognitive calibration (Fleming &
Lau, 2014), and therefore greater metacognitive knowledge. tRAW-AIR correlations are also
theoretically bounded at -1 and +1 and decision makers choosing randomly would be
theoretically expected to achieve average correlations of about 0, assuming the attributes are
independent of one another. In Phase 1 of this study, tRAW-AIR Correlations for each attribute
ranged from » = .22 - .66 and the average of the six correlations was » = .50. In Phase 2, tRAW-
AIR correlations for each attribute ranged from » = .43 - .62 and the average of the six
correlations was » = .52. The average tRAW-AIR correlations from Phase 1 and Phase 2 were
also not significantly different from one another(z = -0.32, p =.75). These results suggest that
performance does not improve when the paradigm is completed a second time (i.e., no evidence
of practice effects). Attribute-level comparisons of tRAW-tSAW and tRAW-AIR correlations

across phases are reported in the Supplemental Materials.
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Our third metric is the Euclidean distance between each participant’s tRAWs and tSAWs.
Following Smithson & Broomell (2024), we calculated these Euclidean distances according to
the following formula, where D denotes an individual’s Euclidean distance, i refers to the

different attributes in the set, and K refers to the total number of attributes:

K
1
D= Z(tRAWi — tSAW;)?

i=1

Lower Euclidean distances indicate greater metacognitive resolution (Fleming & Lau,
2014), and therefore greater metacognitive knowledge. The theoretical lower bound for
Euclidean distances is zero, but there is no theoretical upper bound (Smithson & Broomell,
2024). Simulations presented in Study 2 demonstrate that participants making random choices
across four domains achieve mean Euclidean distances of 0.42 - 0.46, which can be interpreted
as a benchmark range akin to chance. However, this benchmark is likely to be sensitive to the
parameters of the task, such as the number of attributes used.

In this study, a paired t-test indicated that there was no significant difference between the
mean Euclidean distances from Phase 1 (M = 0.34, sd = 0.14) and Phase 2 (M = 0.36, sd = 0.15,
#238) =-1.78, p = .08), again providing no evidence of practice effects. The correlation between
participants’ Euclidean distances from Phase 1 and Phase 2 was » = .59, which falls below the
standard threshold of reliability (» = .70). This is unsurprising, given that the reliability of
Euclidean distances is functionally bounded by the reliability of two other metrics (tRAWs and
tSAWs), one of which (tRAWs) has sub-optimal reliability due to participants’ inconsistent
application of preferences. While our evidence does not indicate that the Euclidean distances

metric is highly reliable, we contend that it is still a meaningful metric, as a correlation of » = .59
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suggests that we are capturing some — admittedly noisy — individual differences in metacognitive
knowledge.

Our fourth and final metric is the percentage of CBC task for which RAWs and SAWs
would predict different choices (see Predicting Choices Using RAWs & SAWs). Lower
percentages indicate greater metacognitive calibration of outcomes, and therefore metacognitive
knowledge. Values for this metric are theoretically bounded at 0% and 100% but, accounting for
chance, RAWs and SAWs would be theoretically expected to make different predictions only
66.67% (k = 0) of the time for a decision maker behaving randomly. In this study, we found that
RAWSs and SAWs predicted different choices in 15.72% of Phase 1 choice tasks (k =.76) and
16.16% of Phase 2 choice tasks (k =.76). These proportions were not significantly different from
one another, X(1, Ns = 3,264 — 3,267) = 0.21, p = .65, providing no evidence of practice effects.
The reliability of each of the metacognitive metrics is summarized in Table 1.

Study 1 Discussion

At the individual level, Study 1 demonstrated that the Kol paradigm produces reliable
estimates of participants’ self-reported attribute weights (tSAWs and AIRs). Participants’
revealed weights (tRAWs) were less reliable (r = .47) than their self-reported weights, but this
sub-optimal reliability largely arose from participants’ inconsistent application of their
preferences across phases, not measurement error. The Euclidean distance metric was only
marginally reliable (r = .59), suggesting that it is a noisy — albeit potentially useful — individual
differences metric.

At the sample level, Study 1 demonstrated that the KoW paradigm’s four key
metacognitive metrics — tRAW-tSAW correlations, tRAW-AIR correlations, mean Euclidean

distances, and the percentage of tasks for which RAWs and SAWs would predict different
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choices — were highly consistent across timepoints, providing no evidence of improvement in
performance from repeated exposure to the task (i.e., practice effects). In all, the primary
conclusion of Study 1 is that the Kol paradigm is a fairly reliable tool for assessing
metacognitive knowledge of attribute weights in subjective domains, though its reliability is
hindered by participants’ inconsistent behaviors and metacognitive limitations. We also
encourage future researchers to consider that test-retest reliability may not be an appropriate
assessment of the KoW paradigm over long periods of time or in domains where preferences
change frequently. Tastes and preferences are often unstable, and metacognitive knowledge of

those tastes and preferences may be as well.

Study 2

In Study 1, we explored the KoW paradigm in one domain: homebuying. In Study 2, we
explore whether the Kol paradigm generates similar results across other subjective domains
that, like homebuying, are highly familiar and often thought about in terms of tradeoffs across
attributes. We do so by randomly assigning participants to complete the KoW paradigm in one of
four domains (Homebuying, Dating, College Choice, Job Selection) and comparing sample-level
metacognitive metrics across the domains. Our pre-registered hypothesis was that participants
would have similar levels of metacognitive knowledge in each domain — which should be
reflected in the metrics generated by the KoW paradigm. If this prediction holds, it would further
support the conclusion that the Kol paradigm is a valid and consistent measure of participants’
metacognitive knowledge. This study and its analyses were pre-registered on OSF:

https://osf.io/mw3qg/?view_only=92e941752db440beb2f563b674495cda

Methods
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Participants

As in Study 1, simulations suggested that we needed a minimum of about 200
participants per domain to reliably estimate their attribute weights. We recruited 850 Prolific
participants to ensure that we would have sufficient data after accounting for incomplete
responses. 825 participants completed the study and were randomly assigned to complete the
KoW paradigm in one of four domains: Job Selection (i.e., Jobs; n = 202), Homebuying (i.e.,
Homes; n = 214), Romantic Partner Selection (i.e., Dating; n = 196) or College Choice (i.e.,
Colleges; n = 213). Demographics of each sample are reported in the Supplemental Materials.
Participants in the four domains were statistically indistinguishable in terms of gender, age, race,
ethnicity, income, and education (ps > .22; see Supplemental Materials for descriptives and
significance tests). We used the same attention checks as in Phase 1 of Study 1. All participants
correctly answered the attention check (which also functioned as a manipulation check) asking
what type of items (e.g., homes, romantic partners) they picked between during the CBC task

and passed at least two out of the three other attention checks (97.1% passed all three).

Procedures

All procedures were identical to the first phase of Study 1, except that Study 2 had no
longitudinal component and participants were randomly assigned to make choices in one of four
different domains (Jobs, Homes, Dating, Colleges). In each domain, participants were given a
brief prompt asking them to imagine that they were actively choosing between different domain-
relevant alternatives (e.g., in the dating domain, participants were told to imagine that they were
single and had recently downloaded a dating app like Tinder). The full text for these prompts is
provided in the Supplemental Materials. As in Study 1, participants then completed tasks that

measured their RAWs, SAWs, AIRs, and confidence.
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Materials

For each domain, the alternatives presented during the CBC task were described in terms
of six attributes. For the Homes domain, the attribute set was the same as Study 1. For Jobs, the
attribute set was inspired by the information that might be found on a job listing (e.g., company
size, commute time) or a company review site, like Glassdoor.com (e.g., a rating of company
culture). For the Dating domain, the attribute set was inspired by the information available on
dating apps like Tinder or Bumble (e.g., education level, political affiliation). Finally, for the
Colleges domain, the attributes were inspired by the information that might be found on college
ranking websites, like U.S. News & World Report (e.g., number of students, ranking). As in
Study 1, we created five discrete levels for each attribute that were used to randomly generate the
alternatives for the CBC task. The full list of attributes and levels used for each domain and the

language used to describe them to participants is provided in the Supplemental Materials.

Analysis & Results
Deviation from Pre-Registration

The pre-registration for Study 2 stated that we would use metrics based on non-
transformed RAWs and SAWs in all our analyses. However, reviewers pointed out that these pre-
registered analyses were not always ideal given the compositional nature of our data. As such,
we chose to report results using tRAWs, tSAWs, and Euclidean distances in place of their non-
transformed equivalents when doing so is more statistically appropriate (i.e., when comparing
two sets of weights). We believe that this deviation from our pre-registration will increase the
validity of our inferences, thus making it justifiable (Lakens, 2024). For completeness and in the
interest of transparency and open science, the pre-registered analyses using the non-transformed

values (RAWs, SAWs, and RAW-SAW Differences) are reported in the online supplement.
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Regardless of which strategy is used, the results are qualitatively similar, and the inferences and
conclusions that we draw are substantively the same.
Calculating Metrics

RAWs and RAW/SAW Choice Predictions were calculated in the same way as in Study 1.
Full descriptives for RAWs, SAWs, AIRs, SAW/AIR Confidence and RAW/SAW Choice
Predictions are reported in the Supplemental Materials. RAWs and SAWs were once again
transformed into tRAWSs and tSAWs using the Centered Log-Ratio Transformation Method, and
Euclidean distances were calculated using the same procedure described in Study 1.
RAW/SAW Choice Prediction Accuracy

To ensure that our RAWs were accurately capturing participants’ attribute weights, we
first evaluated the accuracy of the RAW and SAW Choice Predictions. In each domain, RAWs
accurately predicted between 91.90 — 93.93% of participants’ actual choices (ks = .88 - .91),
whereas SAWs only accurately predicted between 81.66 — 84.11% (ks = .72 - .76) of
participants’ choices. Two-sample tests for equality of proportions (which were not pre-
registered) indicated that, as expected, RAWs were significantly better predictors of participants’
choices than SAWs for all domains, Xs’(1, Ns = 2,689 — 2,996) > 88.46, ps < .001. This finding
gave us confidence that the RAWs were accurately estimating participants’ attribute weights.
Confidence Across Domains

We next sought to evaluate whether participants had similar confidence in the accuracy of
their SAWs and AIRs across domains. All analyses in this section were pre-registered.
Participants’ average confidence in the accuracy of their SAWs (Ms = 78.49 — 81.92) and AIRs
(Ms = 80.28 — 83.72) was high in all domains. There were no significant differences across

domains in SAW confidence, F(3, 820) = 2.16, p = .09, or AIR confidence, F(3, 821) =2.26,p =
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.08. The two confidence measures were highly correlated in all domains (rs =.71-.86, ps <.001).
These results indicate that participants had similar levels of perceived familiarity with their
weights across the domains, giving further reason to believe that the metacognitive knowledge
metrics should be similar across domains.

Metacognitive Metrics Across Domains

We then compared the metacognitive metrics generated by the KoW paradigm across
domains. All analyses in this section were pre-registered, with the caveat that RAWs and SAWs
were replaced with tRAWs and tSAWs when comparing multiple sets of weights.

In each domain, the average tRAW-tSAW correlation was between » = .48 - .51 (see
Figure 2). Pairwise fisher’s r to z tests indicated no significant differences in average tRAW-
tSAW correlations across domains (ns = 196-214; zs < 0.29, ps > .77). Average tRAW-AIR
correlations for each domain ranged from » = .45 - .50 (see Figure 2). Pairwise fisher’s r to z tests
indicated that there were no significant differences in average tRAW-AIR correlations across
domains (ns = 196-214; zs < 0.59, ps > .56). Average tRAW-AIR correlations were not
significantly different than Average tRAW-tSAW correlations in any domain (ns = 196-214; zs <
0.62, ps > .54).

Average Euclidean distances ranged from 0.31 — 0.37 across domains. An omnibus
ANOVA indicated that there were significant differences in average Euclidean distances across
domains, F(3, 821) = 6.94, p <.001. Post-hoc pairwise comparisons using Tukey’s HSDs
indicated that the Jobs domain (M = 0.31, sd = 0.13) had a significantly lower average Euclidean

distance than the Dating (M = 0.37, sd = 0.14, p <.001), College (M = 0.35, sd = 0.13, p = .02),

2 Attribute-level tRAW-AIR, tRAW-tSAW, and tSAW-AIR correlations are reported in the Supplemental Materials.
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and Homes domains (M = 0.36, sd = 0.15, p = .001). All other pairwise comparisons were non-
significant (ps > .65; see Figure 2).

RAWSs and SAWs predicted different choices in 14.39 — 17.34% (ks = .74 - .78) of CBC
tasks across domains (see Figure 2). An omnibus four-sample test of equality of proportions
indicated that these proportions were significantly different from one another, X°(3, Ns = 2,690 —
2,942)=9.82, p = .02. Post-hoc pairwise tests of equality of proportions using Bonferroni
corrections indicated that RAWs and SAWs made different predictions for a smaller proportion
of choices in the College domain (14.39%) than the Homes domain (17.34%, p = .01). All other
pairwise comparisons were non-significant (ps > .24).

Optimal Metacognition Simulations

As a check of the sensitivity of the KoW paradigm, we investigated how participants’
metacognitive knowledge metrics would have changed if participants had optimal metacognitive
knowledge of their attribute weights. To do so, we created new versions of the CBC survey for
each domain and completed one CBC survey (14 choices) for each human participant, simulating
which alternative each participant would have chosen if they had used their SAWs as their true
decision weights. These simulations were conducted using the same procedure as the RAW/SAW
Choice Prediction analyses. The predicted choices were entered into Lighthouse Studio
(Sawtooth Software, Inc., 2023) by research assistants. We then estimated the RAWs and tRAWs
for each simulated optimal participant and calculated the three SAW/tSAW-based metacognitive
metrics for the simulated optimal respondents. Optimal tRAW-AIR correlations could not be
meaningfully calculated because there is no objectively optimal mapping between RAWs and

AlRs.
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The average tRAW-tSAW correlation for the simulated optimal respondents in each
domain ranged from r = .59 - .65. These correlations were greater than the average tRAW-tSAW
correlations for the human participants in all domains, but the difference was only significant in
the Homes domain (n =214, z=2.47, p = .01; ps for other domains = .08 - .22). The mean
Euclidean distance for the simulated optimal respondents in each domain ranged from 0.27 —
0.33. These means were significantly lower than the mean Euclidean distances for human
participants in all domains (s =2.32 - 4.86, dfs = 388.65 - 425.99, ps <.02). Across domains,
RAWSs and SAWs predicted different choices in 5.98 — 7.31% (ks = .89 - .91) of choice tasks
completed by the optimal simulated respondents. These proportions were significantly lower
than the proportions for human participants in all domains, Xs°(1, Ns = 2,690 — 2,959) > 103.23,
ps <.001. These results indicated that when participants have better (in this case perfect)
metacognitive knowledge, the metacognitive knowledge metrics improve as well, suggesting that
they are sensitive measures of metacognitive knowledge. Notably, however, the tRAW-tSAW
correlation metric was not as sensitive as the other metrics. Attribute-level tRAW-tSAW
correlations for the simulated optimal respondents are reported in the Supplemental Materials.
Random Simulations

Finally, we conducted similar simulations for each domain in which simulated
respondents made completely random choices — thus reflecting zero metacognitive knowledge.
The random responses were generated via Lighthouse Studio (Sawtooth Software, Inc., 2023).
We then estimated RAWs and tRAWs for these simulated participants and paired each simulated
respondent’s RAWs and tRAWSs with a randomly selected human respondent’s SAWs, tSAWs
and AIRs, and calculated the four metacognitive metrics. The tRAW-tSAW correlation, tRAW-

AIR correlation, and RAW/SAW Different Choice Prediction metrics have clear theoretical
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predictions for a random agent (» = 0, » =0, and 66.67%, respectively), so these simulations can
be interpreted as sanity checks. For the Euclidean distance metric, the theoretical prediction is
not self-evident, so these simulations were useful for establishing an empirical standard of
comparison for human performance. These random simulations were not pre-registered.

As expected, Average tRAW-tSAW (rs =-.01 - .04) and tRAW-AIR correlations (s = -
.01 - .04) for each domain were effectively zero. These correlations were significantly lower than
the correlations achieved by human participants (ns = 196-214, zs < -4.74, ps <.001). RAWs and
SAWs predicted different choices in 66.06 — 67.09% (ks =-.01 - .01) of choice tasks. These
proportions were significantly greater than the proportions for human participants in all domains,
Xs?(1, Ns = 2,690 — 2,943) > 1386.70, ps < .001. Average Euclidean distances for the simulated
random participants ranged from 0.42 — 0.46. These means were significantly higher than the
means for human participants in each domain (¢s = 3.49 - 8.23, dfs =366.47 - 401.59, ps <.001).
The results of these random simulations provided confidence that our metacognitive knowledge
metrics were functioning as expected and demonstrated that human participants were, as
expected, outperforming random agents. Attribute-level tRAW-tSAW correlations and tRAW-
tAIR correlations for the simulated random respondents are reported in the Supplemental
Materials.
Study 2 Discussion

The primary conclusion from Study 2 is that the KoW paradigm generates similar results
in four distinct multi-attribute choice domains. While there were some differences across
domains on two of the metacognitive knowledge metrics, the effects were scattered across
different domains, therefore providing little evidence that overall metacognitive knowledge was

consistently greater or worse in any particular domain. Study 2 also demonstrated that the KoW
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paradigm is sensitive to changes in metacognitive knowledge by showing that simulated
participants with optimal metacognitive knowledge do in fact score better on the KoW
paradigm’s metrics than (sub-optimal) human participants. Furthermore, Study 2 demonstrated
that, as expected, human participants’ metacognitive knowledge was greater than would be
expected if they had made random choices during the CBC task. Taken together, these results
provide further evidence that the KoW paradigm is an effective tool for measuring participants’
metacognitive knowledge of attribute weights in subjective decisions. Future research should
seek to test the Kol paradigm in other domains that are qualitatively different from those tested
here — such as decisions that are not typically thought about in terms of tradeoffs across attributes
(e.g., which friend to hang out with).
Study 3

Having shown that the KoW paradigm is reliable (Study 1) and produces consistent
results across distinct domains (Study 2), we now turn our attention to the validity of the
paradigm. One way to test the validity of the paradigm is to demonstrate that measures generated
by the paradigm are predictive of outcomes of functional importance (i.e., predictive validity).
One important metric for evaluating subjective decisions is whether a participant’s choices
achieve their personal goals. Study 3 will focus on music choices, which are a convenient
domain in that nearly every music consumer has the same goal: personal enjoyment. Study 3
seeks to determine whether individual differences in performance on the KoW paradigm —
operationalized as Euclidean distances — predict whether participants can effectively choose
music that maximizes their personal enjoyment.
Methods

Participants
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To ensure that we would have at least 200 usable observations, we recruited 220 Prolific
participants to complete a version of the Kol paradigm about songs. All 220 participants
completed the study and passed at least two out of four attention checks (93.2% passed all four).
We used the same attention checks as Phase 1 of Study 1. Demographics of the sample are
reported in the Supplemental Materials
Procedures

The procedure for Study 3 was largely the same as for the previous two studies, except
that the domain was song choices. During the CBC portion of study, participants made 15
choices between three hypothetical pop songs, each of which was described in terms of six
attributes that could take one of five discrete levels (see Materials below). Participants were
asked “which of these songs do you think you would most enjoy listening to.” As in Studies 1
and 2, the first 14 choices were randomly generated permutations of the possible levels of the six
attributes. The 15™ choice, however, was a fixed task, meaning that all participants saw the same
three songs, which aligned with three real songs.

After completing the SAW and AIR tasks, participants listened to all three songs that
corresponded to the songs presented in the Fixed Task, presented in a random order. After
listening to each song, participants rated how much they enjoyed the song on a scale of 0 (Did
not enjoy at all) to 100 (Enjoyed greatly) and self-reported whether they had heard the song
before. After listening to all three songs, participants completed a multiple-choice item indicating
which song they enjoyed listening to most. Participants then answered demographic questions.
This study and its analyses were pre-registered on AsPredicted:
https://aspredicted.org/VOW_T4V

Materials
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In the CBC task, each song was described in terms of the following six attributes: 1)
Acousticness (how acoustic or electric a song is); 2) Danceability (how easy it is to dance to a
song); 3) Tempo; 4) Length; 5) Decade Released; and 6) Artist Type (group composition and
singer gender). The first three attributes came from Spotify, which evaluates the audio features of
every song in their library and makes the data public through their API, Spotify for Developers
(Spotify, Inc., 2023). These attributes were selected over other possible Spotify attributes
because they captured qualitatively different elements of songs and are not strongly correlated
with one another (see Supplemental Materials). Spotify describes Acousticness and Danceability
on a 0-1 scale, but we multiplied the scale by 10 for ease of participant interpretation. Length
was chosen because online participants are highly sensitive to how long they spend completing a
task. The last two attributes were selected based on suggestions from participants in generative
pilot tests. In a final pilot test, participants self-reported average SAWs between 10% - 22% for
each attribute, suggesting no attribute was dominant or irrelevant (see Supplemental Materials).
The instructions used to describe the attributes and their levels to participants are provided in the
Supplemental Materials.

We pilot tested 8 songs (see Supplemental Materials) to be used in the fixed task. Our
goal was to identify three songs that 1) Scored very differently on the six focal attributes,
maximizing variation; 2) Were not well-known by pilot participants; and 3) Were similarly
enjoyed by pilot participants. Based on these criteria, we chose First Day of Summer, by Jesse
Ruben (2018), Prisoner of Love, by Miami Sound Machine (1984), and Seasons, by Grace Slick
(1980). A screenshot of the Fixed Task is provided in Figure 3.

Analysis and Results.

Deviation from Pre-Registration
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As in Study 2, the pre-registration for Study 3 stated that we would use metrics based on
non-transformed RAWs and SAWs in all our analyses. However, we have chosen to report
results using tRAWSs, tSAWs, and Euclidean distances in place of their non-transformed
equivalents when doing so is more statistically appropriate (i.e., when comparing two sets of
weights). The pre-registered analyses using the non-transformed values are reported in the online
supplement. The results are qualitatively similar regardless of strategy.

Metacognitive Knowledge Metrics

RAWSs, tRAWs, tSAWs, RAW/SAW Choice Predictions, and our four metacognitive
knowledge metrics were calculated using the same procedures as in Study 1 and Study 2.
Following CBC convention, RAWs were estimated based only on the 14 random tasks. Cross-
domain comparisons of these metrics to the same metrics from Study 2 are provided in the
Supplemental Materials. All analyses in this section were pre-registered as exploratory.

Attribute-level tRAW-tSAW correlations ranged from » = .23 - .57, with an average of r =
.39. Participant confidence in the accuracy of their SAWs was high (M = 78.00, sd = 19.15).
Attribute-level tRAW-AIR correlations ranged from » = .18 - .52, with an average of r = .32.
Participant confidence in the accuracy of their AIRs was also high (M = 78.21, sd = 20.19). The
mean Euclidean distance was 0.34 (sd = 0.14). RAWs accurately predicted 93.47% of choice
tasks (k =.90), whereas SAWs accurately predicted only 81.96% of choice tasks (k =.73).
RAWSs and SAWs predicted different choices in 16.45% of choice tasks (k = .75).

Choice Satisfaction
We next evaluated whether participants with greater metacognitive knowledge of their

attribute weights made choices on the fixed CBC task that better aligned with their actual
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enjoyment of the songs. Descriptives regarding participants’ choices on the fixed CBC task and
their enjoyment of each song are provided in Table 2.

We first explored whether participants who gave the highest enjoyment rating to the song
that they chose during the CBC task had lower Euclidean distances than participants who did not.
Thirteen participants had a two- or three-way tie for the song they rated as most enjoyable, so
they were excluded from these analyses. 40.1% of participants rated the song they chose during
the CBC task as most enjoyable.

Participants who rated the song they chose during the CBC task as most enjoyable had
slightly lower Euclidean distances (M = 0.33) than those who didn’t (M = 0.35), but a t-test
indicated that the effect was not significant (#(181.33) = 1.28, p = .20). Excluding participants
who had heard any of the songs before (#(157.39) = 1.01, p = .31) did not meaningfully alter the
results. Additional robustness analyses reported in the Supplemental Materials show similar
patterns. Though we initially hypothesized that participants whose CBC choices were consistent
with their enjoyment ratings would have lower Euclidean distances — thus reflecting the benefit
of greater metacognitive knowledge — in retrospect the lack of effect is unsurprising, given the
limited power of assessing a single binary outcome (success/failure).

We next turned our attention to the nearly 60% of participants who did not rate the song
they chose during the CBC task as most enjoyable. Using this sample, we explored whether
participants with greater metacognitive knowledge made smaller errors than participants with
worse metacognitive knowledge. To do so, we calculated the difference in enjoyment between
the song the participant rated as most enjoyable and the song they chose during the CBC task.
This metric — which we will refer to as error magnitude — captures how much enjoyment the

participant would have lost by listening to the song they chose during the CBC task, rather than
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the song they enjoyed most. Excluding participants who had ties in their ratings (n = 13), the
mean error magnitude among participants who made an error was 26.69 points (sd = 20.09). A
simple linear regression (Model 1) indicated that participants with greater Euclidean distances
had greater error magnitudes (B = 30.44, SE = 12.14, p = 0.01), though the correlation was weak
(r=.22; see Figure 4). This suggests that greater metacognitive knowledge as measured by the
KoW paradigm is associated with making choices that result in greater utility maximization.

Our pre-registration did not specify that this analysis would look only at the participants
who made errors, so we ran several robustness checks to demonstrate that the effect holds under
other specifications. First, we re-ran the regression excluding participants who had heard any of
the three songs before (Model 2). The effect persisted and remained significant (B =29.83, SE =
13.11, p = 0.02, » = .21). Next, we re-ran the regression controlling for age, college education,
hours spent listening to music each day, and whether the participant likes pop music (Model 3).
The positive relationship between Euclidean distance and error magnitude remained significant
(B=130.08, SE=12.56, p =.02). None of the covariates were significant predictors of error
magnitude (ps > 0.37). Next, we re-ran the regression, this time excluding participants whose
error magnitudes were more than three standard deviations above the mean (n = 2; Model 4). The
positive relationship between Euclidean distance and error magnitude remained significant (B =
22.56, SE =11.30, p = .048, r = .18). Finally, we re-ran the regression including participants who
successfully rated the song they chose during the CBC as most enjoyable, assigning them an
error magnitude of 0 (Model 5). The positive relationship between Euclidean distance and error
magnitude persisted (B = 26.81, SE =9.70, p = .01, r = .19). Full regressions and additional

robustness checks are reported in the Supplemental Materials.
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As another robustness check, we calculated a separate multiple choice error magnitude
by taking the difference between the enjoyment rating for the song chosen during the post-
listening multiple choice task and the enjoyment rating for the song chosen during the CBC task.
Excluding participants who made the same choice both times, the average multiple choice error
magnitude was 24.54 (sd = 23.12). Notably, this included nine participants who enjoyed the song
they chose during the multiple-choice task /ess than the song they chose during the CBC task,
resulting in a negative multiple-choice error magnitude. Excluding these participants, the mean
rose to 27.88 (sd = 20.09). Regardless of whether these participants were included (B = 42.69, SE
=14.01, p=.002, » =.26) or excluded (B =31.36, SE=12.64, p = .01, r = .23), simple linear
regressions indicated that participants with greater Euclidean distances had greater multiple
choice error magnitudes, further supporting our hypothesis that individuals with greater
metacognitive knowledge make choices that they are happier with. This effect also held when
participants who made the same choice both times (multiple choice error magnitude = 0) were
included in the regression (B =27.99, SE = 10.04, p = .01, » =.19).

Study 3 Discussion

The primary finding from Study 3 was that participants with better metacognitive
knowledge — as measured by the Kol paradigm — make choices that they are happier with.
While our results were insufficiently powered to demonstrate that participants with greater
metacognitive knowledge were more likely to make the best possible choice, we demonstrated
that decision makers with greater metacognitive knowledge made smaller errors, thus
minimizing the reduction in utility they experience from making a mistake. In all, Study 3
highlights the importance of metacognition in subjective decision making and provides

suggestive evidence of the predictive validity of the KoW paradigm. However, given that this
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conclusion was built partially on exploratory findings, the results may be considered weaker than
the results from Studies 1 and 2. As such, we encourage future researchers to replicate this study

and further assess the predictive validity of the KoW paradigm.

General Discussion

Many of the most important decisions that we make — such as whom to marry, which
home to purchase, and which college to attend — are subjective and multi-attribute in nature. To
make these choices effectively, it is critical for decision makers to know how important the
various attributes by which the alternatives vary are to them. Having this knowledge allows
decision makers to weight the attributes appropriately in their decision-making processes
(Keeney & Raiffa, 1976; Soman, 2004) and accurately communicate their preferences to others
(e.g., Slovic & Lichtenstein, 1971; Nisbett & Wilson, 1977). Developing and maintaining this
explicit knowledge requires a decision maker to actively monitor their beliefs, values, and
decision-making processes, and thus can be considered a metacognitive task (Dunlosky &
Metcalfe, 2009; Flavell, 1979; McCormick, 2003). However, the extant metareasoning literature
has largely focused on objective decisions, not subjective choices (Ackerman & Thompson,
2017) and therefore lacks methods for assessing metacognitive knowledge of attribute weights in
subjective decisions.

To fill this gap in the literature, we created the novel Kol paradigm that allows for the
assessment of metacognitive knowledge in subjective, multi-attribute choice. In the studies
presented here, we demonstrated that the KoW paradigm generates measures of metacognitive
knowledge that are reliable (Study 1), resistant to practice effects (Study 1), consistent across

domains (Study 2), sensitive to known increases in metacognitive knowledge (Study 2) and
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predictive of choice satisfaction (Study 3), though the evidence for predictive validity was
weaker than the evidence for reliability and consistency across domains. Together, these results
provide evidence that the Kol paradigm is a reliable and reasonably valid method of assessing
metacognitive knowledge in subjective multi-attribute choice. The Ko W paradigm thus
represents a useful methodological addition to the metacognitive toolkit.
Comparison to Existing Approaches

Though the KoW paradigm fills a novel experimental niche, it shares similarities to other
empirical approaches that are pervasive in the literature. Here, we will discuss some of these
similar approaches and highlight the novelty of the Kol paradigm. The most obvious point of
comparison for the KoW paradigm is the line of scholarship — primarily in decision science,
economics, and marketing — demonstrating that individuals’ preferences are inconsistent across
measurement modalities (e.g., Borcherding et al., 1991; Poyhdyen & Hadméldinen, 2001; Suk &
Yoon, 2012). One common finding in this literature is that individuals’ stated preferences are
inconsistent with their revealed preferences (e.g., Barlas, 2003; Harte & Koele; 1995; Heeler et
al., 1979; Riquelme, 2001). While the KoW paradigm inherently relies on comparisons of stated
and revealed preferences (measured via decision weights), it is unique from the existing literature
in that it does not seek to elicit multiple distinct measures of participants’ decision weights, but
rather explicitly instructs participants to articulate the weights that they believe reflect their
choice behavior (i.e., their revealed weights). This nuance transforms the approach from a
measure of behavioral (in)consistency to a measure of participants’ explicit knowledge of how
they made their choices. This unique emphasis on decision makers’ explicit knowledge of their
own decision processes is what makes KoW a novel metacognitive paradigm (Dunlosky &

Metcalfe, 2009; Flavell, 1979; McCormick, 2003).
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The KoW paradigm also shares similarities to psychological lens model paradigms that
compare judges’ weighting of cues (i.e., cue utilization) to the true validity of each cue as a
predictor of an underlying construct (Brunswik, 1952; Hammond 1955; Karelaia & Hogarth,
2008; Nestler & Back, 2013). However, unlike the lens model which compares cue utilization to
cue validity, the KoW paradigm compares participants’ beliefs about their cue utilization to their
revealed cue utilization. As such, the KoW paradigm can be thought of as a metacognitive variant
of the lens model in which both sides of the model are generated by the judge and alignment is
driven by metacognitive knowledge (Dunlosky & Metcalfe, 2009; Flavell, 1979; McCormick,
2003)

In a similar vein, a recent paper by Ackerman (2023) introduced the BEVoCI method, a
lens model-based approach that compares the influence that various factors have on participants’
task performance to the influence that the same factors have on their metacognitive judgments.
BEVoC(l is similar to the KoW paradigm in that it uses cue weights to evaluate participants’
metacognitive judgments, but the two paradigms have very different goals and approaches.
BEVoClI leverages within-participant variability in success and confidence (or other
metacognitive judgments) across similar items, with the goal of untangling various potential
sources of bias. In contrast, The Kol paradigm leverages differences in stated and revealed cue
weights generated by individual participants to quantify each participant’s knowledge of how
they make multi-attribute choices. While the two paradigms have clear synergies, they each
provide distinct contributions to the metareasoning literature.

Another related empirical strategy that is commonly used in the metacognition literature
is cue integration. In this approach, multiple unique cues are experimentally manipulated to

assess whether and to what extent each cue affects participants’ performance and their
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metacognitive judgments (e.g., Jang & Nelson, 20005; Koriat, 1997; Undorf et al., 2018, 2020).
For example, in a study of word learning, Undorf et al. (2018) systematically manipulated
different factors (e.g., repetitions, font size) to assess which factors affected participants’
performance and Judgments of Learning (JoLs). Like KoW, the cue integration approach can be
used to compare the cues that affect participants’ behavior (performance for JoLs, choice for
KoW) to a metacognitive judgment about those cues. However, KoW differs from cue integration
in that it asks participants to explicitly describe their beliefs about how the cues affected their
behavior, rather than using variation in the cues to predict an intermediary metacognitive
judgment, such as JoLs. This is necessary because Kol is designed to be implemented for
subjective decisions, which do not have objective performance metrics to which typical
metacognitive judgments, such as JoLs, can be compared. Cue integration and Ko W should be
considered as complementary methods.
Use Cases for the KoW Paradigm

To inspire future scholars to adopt the KoW paradigm, we will now highlight several
ways in which the KoW paradigm can be used to better understand how decision makers engage
in metareasoning. First, we can use the Kol paradigm to identify characteristics of individuals
or groups that are predictive of metacognitive knowledge. For example, developmental
psychologists may use the KoW paradigm to explore the development of metacognitive
knowledge throughout the lifespan (Metcalfe et al., 2010) or political psychologists may use the
KoW paradigm to compare the metacognitive knowledge of Republicans and Democrats in
voting contexts (Anson, 2018). The KoW paradigm may also be used to evaluate how
metacognitive knowledge covaries with other individual difference metrics, such as intelligence

(Ohtani & Hisasaka, 2018), need for cognition (Coutinho et al., 2005), creativity (Kaufman et al.,
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2016), or personality traits (Bidjerano & Dai, 2007). We believe it will be of particular interest
for future research to investigate the ability of the KoW paradigm to discriminate between
general intelligence and metacognitive knowledge.

Second, the KoW paradigm can be used to explore how metacognitive knowledge varies
across decision making domains. For example, marketers may use the Kol paradigm to compare
consumers’ metacognitive knowledge across categories of goods and services (Schwarz, 2004).
Scholars may also be interested in diving deeply into individual domains that are of substantial
individual or societal importance. For example, public policy scholars may be interested in using
the KoW paradigm to study how metacognitive knowledge of voting preferences influences
election outcomes (Rollwage et al., 2018) or finance scholars may use the KoW paradigm to
assess how metacognitive knowledge influences household budgeting (Sunderaraman et al.,
2020).

Third, the KoW paradigm can be used to explore contextual factors that influence
decision makers’ metacognitive knowledge. For example, educational psychologists may use the
KoW paradigm to study how classroom environments influence the development of
metacognitive knowledge among students (Callender et al., 2016) or decision scientists may use
it to evaluate how aspects of the decision environment, such as the number of alternatives,
impact metacognitive knowledge (Hadar et al., 2014). Scholars can also use the KoW paradigm
to assess the efficacy of various interventions — such as mindfulness (Vickery & Dorjee, 2016)
and numeracy interventions (Muncer et al., 2022) — that may improve metacognitive knowledge.

Fourth, the KoW paradigm can be used to study the interplay between individual
differences and the decision environment. For example, social scientists may use the KoW

paradigm to study how metacognitive knowledge covaries with participants’ domain-specific
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motivation to make a good decision (Efklides, 2001). Experimenters could also manipulate
motivation using incentives (Miller & Geraci, 2011). Similarly, scholars may be interested in
evaluating how familiarity with or expertise in a domain (Veenman & Elshout, 1999) may
correlate with metacognitive knowledge. As an example, a recent paper using a preliminary
version of the KoW paradigm demonstrated that parents of high-school aged children had no
greater metacognitive knowledge of the weights they placed on various attributes when
comparing highs schools than a convenience sample of parents and non-parents, suggesting that
familiarity with a domain is not necessarily associated with greater metacognitive knowledge, at
least in the domain of school choice (Cash & Oppenheimer, 2024). Researchers could also
experimentally manipulate participant expertise through training (Batha & Carroll, 2007).
Studies of this nature will help us to better understand the sensitivity of the KoW paradigm.

Fifth and finally, the KoW paradigm can be used to explore the psychological
mechanisms underlying metacognitive knowledge. For example, the KoW paradigm could be
systematically altered to answer theoretical questions about the role of metacognitive monitoring
(Ackerman, 2014; De Neys et al., 2011), metacognitive control (Ackerman et al., 2020; De Neys
et al., 2013), and top-down knowledge (Sherman et al., 2015) in the development and
deployment of metacognitive knowledge. These examples highlight only a small subset of the
potential empirical questions that could be explored using the KoW paradigm, but we hope that
they inspire creative applications of the paradigm in a wide variety of domains.

Limitations

One limitation of the KoW paradigm is that it is forced to estimate weights for each

attribute, and thus may generate less-accurate RAWSs for participants who put most or all of their

weight on one attribute (e.g., Newell & Shanks, 2003). The primary concern is that,
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mathematically, RAWs tend to be condensed away from extremely high (e.g., 100%) and
extremely low (e.g., 0%) weights because the underlying utilities are estimated using Bayesian
models that treat sample mean utilities as priors. Across studies, the lowest RAW estimated for
any attribute was 0.53% and the highest RAW was 70.18%. This concern is unlikely to be
problematic in the present studies, as only 8.14% of participants in the studies presented here
reported a SAW of greater than 70% for any attribute, suggesting that strong non-compensatory
strategies were relatively uncommon. However, future researchers using the Kol paradigm
should consider methods for better assessing non-compensatory strategies. One potentially
fruitful avenue for doing so is to increase the number of choices participants make to boost the
amount of evidence available to update away from sample mean priors.

A second and related limitation of the KoW paradigm is that it assumes that decision
makers are using weights at all, which is not necessarily true of all participants. Some decision
makers may use non-weight-based decision strategies. For example, participants may use fast-
and-frugal heuristic-based strategies (Gigerenzer et al., 1999; but see Krefeld-Schwalb et al,
2019; Oppenheimer, 2003 for criticisms of this approach), lexicographic decision rules
(Fishburn, 1974) or other satisficing approaches (Simon, 1956). Participants may also make
decisions based on more idiosyncratic factors — such as intuitive reactions to familiar
alternatives (Klein, 1993; 2015), holistic judgments about each alternative (Arkes et al., 2010), or
unique preferences about combinations of attributes (e.g., I will accept a small house if it has a
big yard). The first concern raised by the possibility of participants using non-weight-based
strategies is that the KoW paradigm may not generate RAWSs that accurately reflect these
decision makers’ choices. However, we consistently found that RAWs were able to predict more

than 90% of participants’ choices. This suggests that most participants made choices that could
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be described using weights — even if that’s not necessarily how they thought they were making
their choices.

Another concern related to this limitation is that participants who made non-weight-based
decisions may have had metacognitive knowledge of how they made their choices, but struggled
to provide meaningful SAWs because they were not thinking in terms of weights. It is certainly
possible that some participants had this challenge, but two pieces of evidence suggest that it was
not a widespread problem. First, we consistently found that average tRAW-tSAW correlations
were about the same as average tRAW-AIR correlations. If participants were engaging in non-
weight-based decision strategies, the non-weight-based AIRs should be easier to accurately self-
report than the weight-based SAWs. Second, participants were highly confident in the accuracy
of their SAWs. If participants were completely blindsided by the concept of decision weights,
they would likely report very low confidence in the accuracy of their SAWs.

In general, this evidence suggests that participants in our studies were using weight-based
strategies — or at least were able to approximately translate the strategies they were using into
weights. This is consistent with the extant JDM literature, which shows that participants often do
make multi-attribute choices using decision weights (Huber, 1974; Keeney & Raiffa, 1976;
Soman, 2004; Weiss et al., 2010). However, we strongly encourage future researchers to adapt
the Kol paradigm to better identify and account for participants who use non-weight-based
strategies, especially in contexts in which non-weighting strategies are known to be more
prevalent, such as when participants are under time pressure (Bockenholt & Kroeger, 1993),
experiencing a high cognitive load (Deck & Jahedi, 2015), or are in affective states that
discourage deliberation (Lewinsohn & Mano, 1993). It may also be worth exploring whether

simply warning participants that they will be asked to self-report decisions weights or allowing
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participants to complete a free response item describing their decision process might influence
how well KoW captures cue weighting.
Conclusion

Across three studies, we presented and validated the Kol paradigm, a novel method for
assessing metacognitive knowledge of attribute weights in subjective, multi-attribute choice
decisions. Evidence for reliability and consistency across domains was strong, while evidence of
predictive validity was slightly weaker. The KoW paradigm is unique from existing
metareasoning paradigms in that it does not require participants’ metacognitive judgments to be
compared to an objectively correct answer, thus opening the door to metareasoning research in
subjective decision domains. Given the prevalence of such decisions in our daily lives, these
domains have significant impacts on our overall well-being and are worthy of study. The KoW
paradigm has numerous applications for studying metareasoning across a wide variety of
domains. When you judge how interesting this paper is, take a minute to think... do you really
know what makes a paper interesting to you? If you don’t think this paper is interesting, then

maybe it’s time to reconsider your weights.
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Table 1: Summary of Reliability Metrics
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Sample-Level Metrics Phase 1 Phase 2 )
(Difference)
Average tRAW-tSAW Correlation® r=.54 r=.53 92!
Average tRAW-AIR Correlation® r=.50 r=.52 75!
Confidence in SAWs M =80.46 M =80.60 842
sd=17.00 sd=16.99
Confidence in AIRs M=83.20 M=83.09 .87?
sd=15.38 sd =15.05
Different Choices Predicted by RAWSs 15.72% 16.16% .65°
and SAWs (% of Tasks)
Euclidean Distance M=0.34 M=0.36 .08?
sd=0.14 sd=0.15
Participant-Level Metrics Correlation Between Phase 1 p
and Phase 2 (Correlation)
tSAWs® .76 <.001*
AIRs’ 78 <.001*
tRAWS® 47 <.001*
Confidence in SAWs .81 <.001%
Confidence in AIRs 77 <.001%
Euclidean Distances .59 <.001%

ICalculated via Fisher's r-to-z test; *Calculated via paired t-test; >Calculated via 2-sample test
for equality of proportions; *Calculated via correlation test; >Averaged across attributes.
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Table 2: Participant Song Ratings and Song Choices

Chosen During CBC Task
(% of participants)

35.5%

34.5%

30.0%

Average Enjoyment Rating

(sd)

57.85 (29.76)

56.85 (26.92)

47.81 (28.82)

on Multiple Choice Item
(% of participants)

Given Highest Enjoyment 42.5% 34.8% 22.7%
Rating (% of participants)'
Chosen as Most Enjoyable 41.8% 34.1% 24.1%

Note. ! Participants who reported two songs as being tied for most enjoyable were excluded from

this calculation.




Figure 1: Sample CBC Task
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(1 of 14)

Commute
Time

Home Size

Mortgage (%
of income)

School
District
Quality

Attractiveness
Rating

Lot Size

20 Minutes

2,000 sqft

35%

3.0

1/2 Acre (21,780 sqft)

Select

Which of these homes would you be most interested in buying?

10 Minutes

3,000 sqgft

30%

3.9

3/4 Acre (32,670 sgft)

Select

40 Minutes

2,500 sqgft

40%

4.8

1/10 Acre (4,356 sqft)

Select
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Figure 2 (Panel A): Average Metacognitive Knowledge Correlations Across Domains
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Figure 2 (Panel B): Average Euclidean Distances and RAW/SAW Different Choice
Prediction Proportions Across Domains
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Figure 3: Fixed Song Choice Task
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(15 of 15)

Decade
Released

Tempo
Length

Artist Type

Acousticness

Danceability

20105

Slow

Short (2.5 - 3 Mins)

Solo Male Performer

Very Electronic

Extremely Danceable

Select

1980s

Very Fast

Long (3.5-4 Mins)

Band with Female Lead
Singer

Very Electronic

Very Danceable

Select

Which of these songs do you think you would most enjoy listening to?

19803

Very Slow

Average (3-3.5 Mins)

Solo Female Performer

Moderately Acoustic

Barely Danceable

Select




Figure 4: Error Magnitude by Euclidean Distance
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Figure Captions (List Format)

Figure 1: Sample CBC Task

No Caption

Figure 2 (Panel A): Average Metacognitive Knowledge Correlations Across Domains

Note. Errors bars reflect 95% confidence intervals. *p < .05; **p < .01; ***p < .001

Figure 2 (Panel B): Average Euclidean Distances and RAW/SAW Different Choice
Prediction Proportions Across Domains

Note. Errors bars reflect 95% confidence intervals. *p < .05; **p < .01; ***p < .001

Figure 3: Fixed Song Choice Task

The song on the left is First Day of Summer by Jesse Ruben (2018), the song in the middle is
Prisoner of Love by Miami Sound Machine (1984),; the song on the right is Seasons by Grace
Slick (1980).

Figure 4: Error Magnitude by Euclidean Distance

In correspondence with Model 1, this scatterplot does not include participants who had an error
magnitude of zero.



