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Abstract 

Subjective, multi-attribute choice decisions – such as whom to marry or which college to attend 

– play a substantial role in decision makers’ long-term well-being. However, the metacognition 

literature lacks tools for assessing metacognitive capacities in subjective decisions. We present 

three studies in which we propose and validate the Knowledge of Weights (KoW) paradigm, a 

novel method for assessing metacognitive knowledge of attribute weights in subjective, multi-

attribute choice decisions. In Study 1, we demonstrate the test-retest reliability of metrics 

generated by the KoW paradigm. In Study 2, we apply the KoW paradigm in four domains and 

show that it generates consistent results. In Study 3, we demonstrate that participants who 

perform better on the KoW paradigm make choices with which they are more satisfied, providing 

suggestive evidence of predictive validity. Use cases in cognitive psychology and beyond are 

discussed
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Introduction 

Imagine that you are at a car dealership, and a salesman asks: “What are you looking for 

in a car?” Your answer to this question critically influences the likelihood that you will end up 

with a car that you are happy with. For example, if you tell the salesman that your top priority is 

the ability to go off-roading, but really the most important thing to you is having a fuel-efficient 

vehicle, you’ll be quite unhappy when it costs you $100 to fill up your gas tank each week 

because you bought a Jeep.  

This example highlights a critical element of multi-attribute choice that is often 

overlooked: a decision maker’s explicit knowledge of how strongly various factors influence 

their choices. Decision makers who have this explicit metacognitive knowledge of their attribute 

weights can make choices that better align with their preferences and may be able to more 

accurately communicate their preferences to others, such as the car salesman. Currently, 

however, the metacognition literature lacks a validated method for assessing participants’ 

knowledge of the weights they place on various factors when making subjective decisions. This 

paper aims to fill that gap by introducing the Knowledge of Weights (KoW) paradigm. 

Metacognition 

Over the last half-century, a great deal of research has sought to evaluate the ways in 

which people understand and manipulate their own cognitive processes. This capacity to think 

about thinking is commonly referred to as metacognition (Brown, 1987; Flavell, 1979). Much of 

the extant literature in metacognition has focused on memory and learning (e.g., Aleven & 

Koedinger, 2002; Chua et al., 2009; Dodson et al., 2007; Hu et al., 2019; Perry et al., 2019; 

Zepeda et al., 2015). However, more recent research has also highlighted the importance of 

metacognition for a wide variety of cognitive processes, such as social cognition (Frith & Frith, 
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2012; Petty et al., 2007; Wright, 2002), belief updating (George & Mielicki, 2023; Stanovich & 

Toplak, 2023; van der Plas et al., 2022), self-regulation (Davis et al., 2010; Duckworth et al., 

2014), and, central to this paper, reasoning (Ackerman & Thompson, 2017, Koriat, 2015). 

In their seminal framework, Ackerman and Thompson (2017, p. 1) define metareasoning 

(i.e., metacognition in reasoning) as the “processes that monitor the progress of our reasoning 

and problem-solving activities and regulate the time and effort devoted to them.” Through 

metacognitive monitoring, reasoners can evaluate how confident they are in their reasoning 

processes (Ackerman, 2014; De Neys et al., 2011; Jackson et al., 2016, 2017; Pennycook et al., 

2017), assess the degree to which they intuitively feel like they have come to the right 

conclusions (Fernandez-Cruz et al., 2016; Gangemi et al., 2015; Thompson et al., 2011, 2013; 

Vega et al., 2021), and recognize when they have made reasoning errors (Fernandez-Cruz et al., 

2016). Through metacognitive control, reasoners can determine whether they are satisfied with 

their reasoning processes (Ackerman, 2014; Ackerman et al., 2020; De Neys et al., 2013), and, if 

they are not, switch to a different reasoning strategy (Ackerman & Thompson, 2017; Cary & 

Reder, 2002; Haddara & Rahnev, 2022; Lieder & Griffiths, 2017). Unsurprisingly, high levels of 

metareasoning skill are associated with better reasoning (Batha & Carroll, 2007; Fleming & 

Daw, 2017; Ghazal et al., 2014).  

Metareasoning skills are often assessed using one of a small set of paradigms that serve 

as analogues of the tasks used in the memory and learning literatures (for a detailed review of 

these paradigms, see Ackerman & Thompson, 2015, 2017). Metacognitive monitoring tasks 

typically compare participants’ judgments about their performance on a reasoning task to their 

actual performance on that task. For example, participants might be asked to judge how solvable 

they think a problem is (Ackerman & Beller, 2017; Topolinski et al., 2016), how confident they 
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are that they solved a puzzle correctly (Ackerman, 2014) or how strongly they feel that they 

arrived at a correct (or erroneous) solution (Fernandez-Cruz et al., 2016; Gangemi et al., 2015). 

These judgments are then compared to their actual performance and participants who provided 

more accurate judgments about their performance are said to have engaged in more effective 

metacognitive monitoring.  

Metareasoning control tasks require decision makers to make decisions about how to 

proceed to best achieve a goal. For example, participants might be asked to complete a series of 

puzzles and make strategic decisions such as when to quit one puzzle and move onto the next 

one (Law et al., 2022; Payne & Duggan, 2011), how much costly evidence to collect before 

providing a final answer to a puzzle (De Neys et al., 2013; Thompson et al., 2013), or when to 

switch reasoning strategies to optimize their performance (Karpicke, 2009; Macaluso et al., 

2022). Participants who engage in strategies (e.g., strategically allocating time) that allow them 

to more successfully achieve the goal (e.g., solving more puzzles) are then designated as having 

greater metareasoning control. 

 All of these paradigms share a common attribute: they require a correct or optimal 

performance measure (e.g., whether they solved the puzzle, how much time they wasted on an 

impossible task), to provide a straightforward means of assessing metacognitive performance. 

While these paradigms provide valuable insights into metareasoning, their dependence on 

objectively correct answers limits their functionality for assessing the role of metareasoning in 

subjective judgments and decisions, such as whom to marry, which house to purchase, which 

college to attend, or which medical treatment to undergo. 

Metareasoning in Subjective Decisions. 
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We define subjective decisions as any decision in which the optimal or selected choice is 

determined by an individual’s preferences, feelings, values, tastes, or beliefs, rather than fact or 

truth (e.g., Berman et al., 2018; Fishburn, 1981; Spiller & Belogolova, 2017; Weber & Federico, 

2012). Because subjective decisions lack objectively correct answers, assessing the accuracy of 

participants’ metacognitive judgments in such domains requires an entirely new set of 

methodological tools. Specifically, tools used to evaluate subjective metareasoning must assess 

the degree to which participants’ metacognitive judgments are consistent with their subjective 

preferences and goals, which can be difficult to measure. One way in which this can be achieved 

is by having participants complete a reasoning task, then asking them to explain their reasoning 

process. The degree to which the participant’s self-report aligns with their actual 

choice/judgment behavior reflects the degree of explicit, declarative metacognitive knowledge 

the participant has about their reasoning processes.  

In line with this approach, a great deal of classic Judgment and Decision Making (JDM) 

work evaluated participants’ knowledge of the factors that influenced their judgments and 

decisions. Much of this work relied on introspective verbal protocols (Ericsson & Simon, 1980) 

in which participants were asked to reflect on their decision-making processes and describe them 

to the researcher (e.g., Harte & Koele, 1995; Nisbett & Bellows, 1977; Wilson & Nisbett, 1978). 

This approach is perhaps best exemplified by a seminal series of studies in which Nisbett and 

Wilson (1977) found that participants were unable to provide accurate reports about the factors 

that influenced their judgments (e.g., film quality) or decisions (e.g., which socks to buy).  

Taking a more quantitative approach, other classic JDM research sought to understand 

whether participants could accurately report the weight they placed on various cues when 

making subjective judgments and decisions (see Slovic & Lichtenstein, 1971 for a review). 
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Importantly, these judgments and decisions were multi-attribute in nature (i.e., the alternatives 

were compared on multiple dimensions), thus requiring the decision maker to make tradeoffs 

between the various attributes and determine how important each attribute was to them (Keeney 

& Raiffa, 1976; Soman, 2004). In essence, these studies asked participants to make a series of 

judgments then asked them to state how heavily they had weighted various cues when making 

their judgments. The participants’ stated weights were then compared to objective weights 

estimated via linear regression (e.g., Hoepfl & Huber, 1970; Slovic, 1969; Slovic et al., 1972).  

The Current Approach. 

While these classic studies provided early insight into metareasoning in subjective 

decision making, they were limited to relatively simple methods that provided noisy estimates of 

participants’ decision-making processes. Few studies have sought to systematically build upon 

these approaches using modern statistical and methodological approaches. To fill this gap in the 

literature we present a novel method for assessing participants’ metacognitive knowledge of the 

cue weights they use when making subjective, multi-attribute choice decisions. 

Before discussing our paradigm, it is worth noting that the term metacognitive knowledge 

has most frequently been used in the learning literature, where it describes students’ knowledge 

of the strategies that they can use to learn most effectively (e.g., Pintrich, 2002; Vrugt & Oort, 

2008). However, we use metacognitive knowledge in the broader sense of knowledge about any 

cognition, including judgment and decision making. This usage of the term is in line with classic 

definitions by Flavell (1979, p. 907) – “Metacognitive knowledge consists primarily of 

knowledge or beliefs about what factors or variables act and interact in what ways to affect the 

course and outcome of cognitive enterprises” – and Dunlosky and Metcalfe (2009, p. 2) – 

“Metacognitive knowledge pertains to people’s declarative knowledge about cognition.” 
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Furthermore, the literature has demonstrated that metacognitive knowledge is a relevant 

construct in non-learning domains, including problem solving (Antonietti et al., 2010), creativity 

(Jia et al., 2019) and, most relevantly, decision making (Basu & Dixit, 2022; Colombo et al., 

2010). Using this framework, we contend that a decision maker’s knowledge about the cognitive 

processes underlying their subjective decision making falls under the umbrella of metacognitive 

knowledge. 

 Our paradigm – which we call the Knowledge Of Weights (KoW) paradigm – is rooted in 

Choice-Based Conjoint Analysis (CBC), a technique from the marketing literature (e.g., Allenby 

et al., 1995; Hein et al., 2020; Lenk et al., 1996; Louviere & Woodworth, 1983; Sawtooth 

Software, Inc., 2017, 2021) in which participants are asked to make a series of choices between 

different sets of alternatives (e.g., 3 schools) that vary across a pre-determined set of attributes 

(e.g. graduation rates, crime rates, extra-curricular opportunities, etc.). CBC allows for 

estimation of the weight that each participant places on each attribute based on a small number of 

multi-attribute choices. We then compare these CBC weight estimates to participants’ self-reports 

of the weights that they believe they used while making their choices. Importantly, these self-

report items instruct participants to retrospectively reflect on the weights they used during their 

decision-making processes, not to make novel judgments about the importance of each attribute. 

This distinction is critical for interpreting the KoW paradigm as a metacognitive measure. Higher 

calibration or resolution between the estimated and self-reported weights indicates greater 

metacognitive knowledge (Fleming & Lau, 2014).The KoW paradigm is highly inspired by the 

classic metareasoning work (e.g., Nisbett & Wilson, 1977; Slovic, 1969; Slovic & Lichtenstein, 

1971), but builds upon it in four ways:  
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First, CBC generates more precise estimates of participants’ preferences and attribute 

weights by implementing hierarchical Bayesian models that, unlike simple regressions, can 

accurately capture non-linear (and even non-monotonic) utility functions. Because of this, CBC 

can detect, for example, that a decision maker prefers a house that is not too small and not too 

large, rather than assuming that all participants prefer larger homes. Similarly, non-monotonicity 

allows CBC to accurately model the preference order for categorical variables, which are often 

important in subjective decision making. Classic studies often avoided this concern by using 

dichotomous variables (e.g., Slovic, 1969, 1972), thus limiting their design choices.  

Second, CBC only requires participants to make about a dozen choices – whereas the 

classic studies often required participants to complete more than 100 choice or judgment tasks 

(e.g., Slovic, 1969). Requiring participants to make so many choices likely reduced the 

ecological validity of the paradigms, induced fatigue, and pushed participants to use 

lexicographic strategies that may not be reflective of their typical decision-making processes 

(Bradley & Daly, 1994; Hirshleifer et al., 2019). Because CBC limits the number of choices 

participants are required to make, it is likely to generate more accurate estimates of their decision 

weights. 

Third, modern advances in computing allow CBC programs to generate more complex 

designs (i.e., more attribute x level combinations; unique choice sets for each participant) than 

classic studies. These complex designs allow for additional randomization and orthogonality 

across attributes, choices, and participants, thus reducing the risk of biased designs and limiting 

the correlations between variables in the alternatives presented to the participants. This level of 

randomization simply was not possible when studies were run on paper (Slovic, 1969; Slovic & 

Lichtenstein, 1971).  
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 Fourth, and perhaps most importantly, CBC allows the researcher to estimate weights at 

the individual level, rather than the sample level, even with a small number of data points from 

each participant (Allenby et al., 1995; Hein et al., 2020; Lenk et al., 1996; Louviere & 

Woodworth, 1983; Sawtooth Software, Inc., 2017, 2021). This is critical for assessing 

metacognitive knowledge, as averaging revealed weights across participants would make it 

impossible to assess the accuracy of individual participants’ stated decision weights. 

Furthermore, averaging across the sample is likely to cause errors to average out, making the 

sample appear more accurate than the individuals truly are (Surowiecki, 2004). Using CBC 

eliminates this issue. 

To demonstrate the utility of the present approach, we report the results of three studies. 

In Study 1, we show that the metrics generated by the KoW paradigm demonstrate test-retest 

reliability. In Study 2, we present evidence that the KoW paradigm generates similar results when 

applied across four distinct domains. And finally, in Study 3, we demonstrate that some of the 

metrics generated by the KoW paradigm are correlated with a decision maker’s ability to make 

choices they are happier with, thus providing suggestive evidence of the predictive validity of the 

paradigm.  

Study 1 

 The primary objective of Study 1 was to demonstrate the reliability of the novel KoW 

paradigm. To do so, participants completed the KoW paradigm and then completed the paradigm 

a second time 24-48 hours later. We then compared the results from the two phases to assess the 

test-retest reliability of the paradigm. 

Methods 

Participants 
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Simulations suggested that we needed a minimum of about 200 participants to complete 

both phases of the study to reliably estimate attribute weights. We recruited 275 Prolific 

participants to ensure that we would have sufficient data after accounting for attrition and 

incomplete responses. Of the 275 participants we recruited, 272 completed Phase 1 and were 

invited to complete Phase 2. 239 participants (87.9%) completed the second phase. 

Demographics of the sample are reported in the Supplemental Materials. The 12.1% of 

participants who attritted were statistically indistinguishable from the participants who 

completed both phases in terms of demographic characteristics (ps > .08, see Supplemental 

Materials). All participants in the final sample passed at least two out of four attention checks in 

Phase 1 (96.2% passed all four) and at least two out of three attention checks in Phase 2 (98.7% 

passed all three).  

In Phase 1, the first attention check required participants to choose their favorite season, 

then choose the holiday that occurs during the season they chose from a list of four options. The 

second attention check required participants to follow instructions and choose orange from a list 

of colors. The third attention check came after the CBC portion of the survey and asked 

participants to identify what kind of items (homes) they were picking between from a multiple-

choice list with four options. The fourth attention check was a five-point Likert scale asking 

participants how strongly they agreed with the statement that they were born in the year 1250 AD 

(Strongly Disagree and Disagree were treated as correct). Phase 2 repeated attention checks 2-4, 

except that colors were replaced with fruits in the second attention check and “in the year 1250 

AD” was replaced with “on Mars” in the fourth attention check.  

Procedures 
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 At the start of the survey, participants were informed that this was a two-phase study that 

required them to return the next day. After providing consent, participants completed a Choice 

Based Conjoint (CBC) survey in which they were instructed to imagine that they were looking to 

buy a house. Participants were given a brief description of six attributes that explained the scale 

on which each attribute was scored, listed the five possible levels of each attribute, and provided 

context regarding a typical score for that attribute in the real world (see Supplemental Materials 

for language). Participants were then shown 14 sets of three hypothetical homes and asked to 

pick which one they would be most interested in purchasing based on each home’s scores on the 

six attributes. An example of one of these choice tasks is provided in Figure 1.  

 After completing the CBC survey, participants were asked to describe the weight that 

they believed they had put on each attribute while making their choices during the CBC task. 

Participants were asked to retrospectively reflect on the choices they had made during the CBC 

task – not to state how important they felt the attributes were at the time of self-report. This 

distinction is necessary to interpret the KoW paradigm as a metacognitive task. 

Participants self-reported their attribute weights in two formats, presented in a random 

order. In one format, participants self-reported how important each attribute was to them on a 

scale of 1 (Not at All Important) to 9 (Extremely Important). We refer to these as Attribute 

Importance Ratings or AIRs. In the other format, participants self-reported the percentage of 

their decision-making process that was based on each attribute (i.e., weights). Their responses for 

the six attributes were required to sum to 100%, but otherwise could be allocated in any way they 

wanted – including putting 100% weight on one attribute. We refer to these as Stated Attribute 

Weights or SAWs. Notably, SAWs are compensatory in nature, while AIRs are not. Participants 

also self-reported their confidence that their SAWs and AIRs accurately reflected their decision-
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making process during the CBC task. These confidence judgments are meta-metacognitive 

judgments that provide some insight about participants’ beliefs about the accuracy of their own 

metacognitive judgments. Finally, participants completed a standard set of demographic 

questions, marking the completion of Phase 1. 

Twenty-four hours after the final participant completed Phase 1, participants were invited 

back to complete Phase 2. Participants were told that they had 24 hours to return for the second 

phase. We chose to use a relatively short delay of 24-48 hours to minimize attrition, which is 

critical because less-consistent participants are most likely to attrit, artificially inflating test-retest 

metrics in choice experiments with long delays (Rigby et al., 2016). A short delay was also 

beneficial because it is reasonable to expect that participants’ preferences may change over 

longer delays, making it difficult to assess reliability. Phase 2 was identical to Phase 1, except 

that it had one fewer attention check and did not include demographic questions. Participants 

also self-reported the extent to which they believed their attribute weights changed from Phase 1 

to Phase 2 on a scale of 1 (Stayed exactly the same) to 5 (Changed drastically). On average, 

participants self-reported that their weights changed very little (M = 1.99, sd = 0.89).  

Materials 

 In each phase, the homes were described in terms of the following six attributes: 1) 

Commute time (to work); 2) Home size; 3) Mortgage (cost as % of income); 4) School district 

quality; 5) Attractiveness of the home (as rated by buyers); and 6) Lot size. These attributes were 

selected to reflect the attributes of a home that can be identified on a home listing website, like 

Zillow. We based the Mortgage attribute on percent of income instead of absolute price to avoid 

confounds based on individual differences in wealth and regional costs of living. We did not 
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include pictures of the homes because pictures carry information about several different 

attributes, thus hindering our ability to isolate individual attributes. 

We then created five discrete levels for each attribute, as CBC cannot use continuous 

variables. These levels were designed to reflect typical homes that would be found in American 

neighborhoods (see Supplemental Materials for details). We avoided extreme values so that no 

pairs would seem unreasonable when presented together (e.g., a 20,000 square foot home for 

10% of your income). Using these levels, we generated 300 versions of the CBC survey for each 

phase. Each version contained a unique set of 14 choices, each of which included three 

hypothetical homes that were random permutations of the possible levels of each attribute. Since 

we had more CBC versions than participants, each participant experienced a unique set of 

choices. Since CBCs were generated separately for each phase, participants made different sets 

of choices during each of the two phases – thus providing the most stringent test of the reliability 

of the KoW paradigm. We generated the CBC versions using Lighthouse Studio (Sawtooth 

Software, Inc., 2023), but many alternative software tools with similar functionalities exist, 

including Conjointly (Analytics Simplified Pty Ltd, 2023), and the R package cbcTools 

(Helveston, 2023). Study 1 was not pre-registered, but all data, materials, and code have been 

made publicly available on OSF: 

https://osf.io/uzqk5/?view_only=2c37ad40b8ad4b0c8be6a0982ca655a6 

Analysis & Results 

Estimating Revealed Attribute Weights (RAWs) 

 Before we could assess participants’ metacognitive knowledge of their attribute weights, 

we first had to estimate the weights revealed by their choices on the CBC task – which we will 

refer to as Revealed Attribute Weights, or RAWs. The first step in calculating RAWs was to 
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estimate the part-worth utility (henceforth, just utility) that each participant placed on each level 

of each attribute. We did so using Hierarchical Bayes (HB) estimation, which is considered the 

gold standard for analyzing CBC data (Eggers et al., 2022; Hein et al., 2020; Orme, 2002). We 

estimated the utilities using only the data from participants who completed both phases of the 

study (n = 239). Because we used a standard HB procedure, we provide only a brief plain-

language overview here. For a detailed technical overview, see Sawtooth Software, Inc. (2021). 

The HB model begins with the assumption that nothing is known about the utility of each 

level of each attribute (i.e., all utilities are set to 0). The model then generates a new set of 

utilities (as well as variances and covariances) for each level of each attribute for each participant 

and estimates how likely it was that each participant would have made the choices that they did 

if they had used the old or new utility sets. If their choices are more likely under the new set of 

utilities than the prior set of utilities, then the new utilities are retained as the current estimate 

and used to inform the next set of utilities. This continuous updating process – known as a Monte 

Carlo Markov Chain – leads the model to eventually converge on accurate utility estimates. For 

this study, we allowed the model to generate 20,000 iterations, the first 10,000 of which were 

used to calibrate the model and the remaining 10,000 of which were averaged to generate point 

estimates of utilities. Importantly, the strength of HB arises from the fact that its upper-model 

uses sample-level mean utility estimates to inform individual-level utility estimates, which are 

then applied at the lower-level to estimate the likelihood of participants’ choices given a 

provided set of utilities. This hierarchical procedure allows for precise utility estimates with 

relatively little data.   

When the HB process is complete, it produces point estimates of the utility of each level 

of each attribute for each participant (6 attributes x 5 levels = 30 utilities for each participant). 
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These utilities must then be converted into a single RAW for each attribute. In adherence to 

standard CBC practice (e.g., Eggers et al., 2022; Orme, 2002), we do so using the following 

equation, where Uj   is a vector containing the utility values for the five levels of attribute j (the 

attribute for which the RAW is being calculated), Ui  is a vector containing the utility values for 

the five levels of attribute i, and the set from which attribute i is pulled includes all six attributes 

from the CBC, including j: 

𝑅𝐴𝑊𝑗 = 100 ∗ 
max(𝑈𝑗) − min(𝑈𝑗)

∑ (max(𝑈𝑖) − min(𝑈𝑖))𝑁
𝑖=1

 

 

RAWs are estimated separately for each participant, thus allowing participants to have 

varying preferences regarding the highest- and lowest-utility level of each attribute. Notably, this 

method of estimating RAWs only considers the highest- and lowest-utility levels of each 

attribute, and thus disregards the shape of the utility function between those two points (e.g., 

Eggers et al., 2022; Orme, 2002). This could be considered a limitation because it simplifies 

participants’ preferences and limits the insights that can be made about the value placed on each 

level of each attribute but could also be considered a strength because it eliminates the need to 

make assumptions about the shape of the utility function. For this study, both the HB estimation 

and RAW calculations were conducted using Lighthouse Studio (Sawtooth Software, Inc., 2023). 

We  provide a detailed, step-by-step walk-through of the process for converting utilities into 

RAWs in the Supplemental Materials. 

Predicting Choices Using RAWs and SAWs 

To ensure that the estimated RAWs were accurately capturing participants’ attribute 

weights, we sought to assess how frequently they could predict participants’ actual choices. To 

do so, we analyzed each CBC task that each participant completed (n = 3,346 tasks) and 
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estimated the utility that they would have assigned to each of the three homes by multiplying 

their RAW for each attribute by the level of the attribute (scored as 1-5) and summing across the 

six attributes. The attribute level scores were transformed to match each participant’s rank-order 

preferences for the five levels of each attribute, with their lowest-utility level being scored as a 1 

and their highest-utility level being scored as a 5, assuming a linear utility function between the 

levels of each attribute.1 This process was conducted for Phase 1 and Phase 2. We found that 

Phase 1 RAWs accurately predicted 92.89% (κ = .89) of participants’ actual choices from Phase 

1 and Phase 2 RAWs accurately predicted 93.37% (κ = .90) of participants’ actual choices from 

Phase 2, suggesting that RAWs are a good estimate of participants’ true decision weights. We 

then made cross-phase comparisons, testing the ability of RAWs from one phase to predict 

choices from the other phase. We found that Phase 1 RAWs accurately predicted 83.56% of 

Phase 2 choices (κ = .75) and Phase 2 RAWs accurately predicted 83.14% of Phase 1 choices (κ 

= .75). Unsurprisingly, Phase 1 RAWs, X2(1, Ns = 3,346) = 139.12, p <.001, and Phase 2 RAWs, 

X2(1, Ns = 3,346) = 167.63, p <.001, were significantly less-accurate predictors of cross-phase 

(i.e., out-of-sample) choices than within-phase (i.e., in-sample) choices. 

We also repeated this process using SAWs as decision weights instead of RAWs. Phase 1 

SAWs accurately predicted 82.45% (κ = .74) of choices from Phase 1 and Phase 2 SAWs 

accurately predicted 83.01% (κ = .75) of choices from Phase 2. Unsurprisingly, the proportion of 

within-phase accurate predictions was significantly higher for RAWs than SAWs in both Phase 1, 

X2(1, Ns = 3,265 – 3,346) = 166.28, p <.001, and Phase 2, X2(1, Ns = 3,267 – 3,346) = 169.88, p 

<.001. We then evaluated cross-phase predictions. Phase 1 SAWs accurately predicted 81.52% of 

 
1For the choice predictions, we chose to assume linearity across levels instead of using the utility values we 

estimated for each level so that we could test how accurate the RAWs were without additional information. This 

allowed us to more fairly compare the accuracy of RAWs and SAWs, which were only collected for each attribute, 

not each level. As noted earlier, RAWs themselves were estimated without linearity/monotonicity assumptions. 
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Phase 2 choices (κ = .72) and Phase 2 SAWs accurately predicted 80.76% of Phase 1 choices (κ 

= .71). Both Phase 1 SAWs, X2(1, Ns = 3,274 – 3,346) = 4.65, p =.03, and Phase 2 SAWs, X2(1, 

Ns = 3,270 – 3,346) = 6.18, p =.01, were less accurate in making cross-phase choice predictions 

than their respective RAWs. However, the predictive power of RAWs was much closer to the 

predictive power of SAWs when making out-of-sample predictions than in-sample predictions, 

an unsurprising finding given that RAWs are directly estimated from in-sample choices. 

Compositional Transformation 

We next sought to evaluate the reliability of our three measures of participants’ attribute 

weights. Before we could do so, however, we had to address the statistical challenge that 

decision weights – such as RAWs and SAWs, but not AIRs – are compositional in nature, 

meaning that all values for a single participant are constrained to sum to a constant value (e.g., 

all RAWs add to 100%). Because of this, weights for an individual participant are not 

independent of one another. This dependency can induce spurious relationships between weights, 

particularly when comparing one set of weights to another (Aitchison, 1982; Smithson & 

Broomell, 2024).  

Here, we mitigate these dependencies by transforming the weights into numbers that exist 

in unrestricted Euclidean space. There are multiple ways to achieve this, but we will follow the 

Centered Log-Ratio Transformation Method, as described by Smithson & Broomell (2024). For 

our case, we will separately transform RAWs and SAWs using a four-step process: 

1) Divide weights by 100 to place them on a 0-1 scale; 

2) Replace weights of 0 and 1 with 0.01 and 0.99, respectively, to avoid logs that are zero or 

undefined (i.e., the simple replacement method);  

3) Calculate the log of each weight; 
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4) Subtract the mean of the six log-transformed weights from each log-transformed weight.   

The remainder from Step 4 is the transformed weight for each attribute. We will use these 

transformed weights – which we call tRAWs and tSAWs – in place of their non-transformed 

counterparts in all analyses in which we compare two sets of weights. We provide a step-by-step 

walkthrough (with examples) of the Centered Log-Ratio Transformation Method in the 

Supplemental Materials. It is worth noting that non-transformed RAWs and SAWs will still be 

used whenever the analyses do not compare two sets of weights (e.g., when making choice 

predictions).  

Reliability of tRAWs, tSAWs, and AIRs. 

 Having completed the compositional transformation, we could now evaluate the 

reliability of our three measures of participants’ attribute weights – tRAWs, tSAWs, and AIRs. To 

do so, we evaluated the correlations between individual participants’ tRAWs, tSAWs, and AIRs 

across the two phases. Higher correlations indicate greater reliability. Attribute-level correlations 

between Phase 1 tSAWs and Phase 2 tSAWs ranged from r = .52 - .89, with an average of r = 

.76. Participants’ confidence in the accuracy of their SAWs was high in both phases (see Table 1) 

and highly correlated across timepoints (r = .81, p < .001). Attribute-level correlations between 

Phase 1 AIRs and Phase 2 AIRs ranged from r = .70 - .88, with an average of r = .78. 

Participants’ confidence in the accuracy of their AIRs was also high in both phases (see Table 1) 

and highly correlated across timepoints (r = .77, p < .001). These results suggest that tSAWs, 

AIRs, and both confidence metrics were reliable across phases. 

Attribute-level correlations between Phase 1 tRAWs and Phase 2 tRAWs ranged from r = 

.33 - .60, with an average correlation of r = .47. While this average falls well below the typical 

reliability threshold of r = .70, it is  not far below reliability metrics for other behavioral 
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measures commonly used in the decision sciences, including the Columbia Card Task (r = .57; 

Buelow & Barnhart, 2018) and the Domain Specific Risk-Taking Scale (subscale rs = .42 - .80, 

Mean r ~ .61; Weber et al., 2002).  

The sub-optimal reliability of the tRAWs could arise from two distinct sources: 

measurement error or participants applying their preferences inconsistently across the two 

timepoints, which could be a result of the very metacognitive errors we are trying to capture. To 

disentangle these explanations, we used participants’ utilities from Phase 1 to calculate the utility 

of each alternative they evaluated during Phase 2. We then estimated what each participant’s 

Phase 2 tRAWs would have been if they had always chosen the alternatives that maximized their 

Phase 1 utilities. The correlation between these predicted Phase 2 tRAWs and the Phase 1 tRAWs 

for each attribute ranged from r = .64 - .85 (ps < .001), with an average of r = .75. These high 

correlations suggest that the KoW paradigm itself generates reliable tRAW estimates and that a 

great deal of the sub-optimal reliability of tRAWs (the gap between r = .48 and r = .75) can be 

attributed to participants’ limited ability to apply their preferences consistently across phases. 

This provides greater confidence in the reliability of the KoW paradigm. 

The reliability metrics for tRAWs, tSAWs, AIRs, and each confidence measure are 

summarized in Table 1. Attribute-level means and cross-phase correlations for tRAWs, tSAWs, 

and AIRs are reported in the Supplemental Materials. Reliability metrics for the non-transformed 

RAWs and SAWs are also reported in the Supplemental Materials. 

Assessment of Metacognitive Knowledge 

In this section, we will present 4 metrics that can be used to assess participants’ 

metacognitive knowledge of the attributes weights they used. Our first measure is the correlation 

between tRAWs and tSAWs (henceforth, tRAW-tSAW Correlations). Higher correlations 
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indicate greater metacognitive calibration (Fleming & Lau, 2014), and therefore greater 

metacognitive knowledge. Like all correlations, tRAW-tSAW correlations are theoretically 

bounded at -1 and +1. Decisions makers choosing randomly would be theoretically expected to 

achieve average correlations of about 0, assuming the attributes are independent of one another. 

In Phase 1 of this study, tRAW-tSAW correlations for each attribute ranged from r = .34 - .64 and 

the average of the six correlations was r = .54. In Phase 2, tRAW-tSAW correlations for each 

attribute ranged from r = .42 - .60 and the average of the six correlations was r = .53. The 

average tRAW-tSAW correlations from Phase 1 and Phase 2 were not significantly different (z = 

0.10, p = .92).  

Our second metric is the correlation between tRAWs and AIRs (henceforth, tRAW-AIR 

Correlations). Again, higher correlations indicate greater metacognitive calibration (Fleming & 

Lau, 2014), and therefore greater metacognitive knowledge. tRAW-AIR correlations are also 

theoretically bounded at -1 and +1 and decision makers choosing randomly would be 

theoretically expected to achieve average correlations of about 0, assuming the attributes are 

independent of one another. In Phase 1 of this study, tRAW-AIR Correlations for each attribute 

ranged from r = .22 - .66 and the average of the six correlations was r = .50. In Phase 2, tRAW-

AIR correlations for each attribute ranged from r = .43 - .62 and the average of the six 

correlations was r = .52. The average tRAW-AIR correlations from Phase 1 and Phase 2 were 

also not significantly different from one another(z = -0.32, p = .75). These results suggest that 

performance does not improve when the paradigm is completed a second time (i.e., no evidence 

of practice effects). Attribute-level comparisons of tRAW-tSAW and tRAW-AIR correlations 

across phases are reported in the Supplemental Materials. 
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Our third metric is the Euclidean distance between each participant’s tRAWs and tSAWs. 

Following Smithson & Broomell (2024), we calculated these Euclidean distances according to 

the following formula, where D denotes an individual’s Euclidean distance, i refers to the 

different attributes in the set, and K refers to the total number of attributes: 

𝐷 =
1

𝐾
√∑(𝑡𝑅𝐴𝑊𝑖 − 𝑡𝑆𝐴𝑊𝑖)2

𝐾

𝑖=1

 

 

Lower Euclidean distances indicate greater metacognitive resolution (Fleming & Lau, 

2014), and therefore greater metacognitive knowledge. The theoretical lower bound for 

Euclidean distances is zero, but there is no theoretical upper bound (Smithson & Broomell, 

2024). Simulations presented in Study 2 demonstrate that participants making random choices 

across four domains achieve mean Euclidean distances of 0.42 - 0.46, which can be interpreted 

as a benchmark range akin to chance. However, this benchmark is likely to be sensitive to the 

parameters of the task, such as the number of attributes used. 

In this study, a paired t-test indicated that there was no significant difference between the 

mean Euclidean distances from Phase 1 (M = 0.34, sd = 0.14) and Phase 2 (M = 0.36, sd = 0.15, 

t(238) = -1.78, p = .08), again providing no evidence of practice effects. The correlation between 

participants’ Euclidean distances from Phase 1 and Phase 2 was r = .59, which falls below the 

standard threshold of reliability (r = .70). This is unsurprising, given that the reliability of 

Euclidean distances is functionally bounded by the reliability of two other metrics (tRAWs and 

tSAWs), one of which (tRAWs) has sub-optimal reliability due to participants’ inconsistent 

application of preferences. While our evidence does not indicate that the Euclidean distances 

metric is highly reliable, we contend that it is still a meaningful metric, as a correlation of r = .59 
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suggests that we are capturing some – admittedly noisy – individual differences in metacognitive 

knowledge.  

Our fourth and final metric is the percentage of CBC task for which RAWs and SAWs 

would predict different choices (see Predicting Choices Using RAWs & SAWs). Lower 

percentages indicate greater metacognitive calibration of outcomes, and therefore metacognitive 

knowledge. Values for this metric are theoretically bounded at 0% and 100% but, accounting for 

chance, RAWs and SAWs would be theoretically expected to make different predictions only 

66.67% (κ = 0) of the time for a decision maker behaving randomly. In this study, we found that 

RAWs and SAWs predicted different choices in 15.72% of Phase 1 choice tasks (κ = .76) and 

16.16% of Phase 2 choice tasks (κ = .76). These proportions were not significantly different from 

one another, X2(1, Ns = 3,264 – 3,267) = 0.21, p = .65, providing no evidence of practice effects. 

The reliability of each of the metacognitive metrics is summarized in Table 1.  

Study 1 Discussion 

 At the individual level, Study 1 demonstrated that the KoW paradigm produces reliable 

estimates of participants’ self-reported attribute weights (tSAWs and AIRs). Participants’ 

revealed weights (tRAWs) were less reliable (r = .47) than their self-reported weights, but this 

sub-optimal reliability largely arose from participants’ inconsistent application of their 

preferences across phases, not measurement error. The Euclidean distance metric was only 

marginally reliable (r = .59), suggesting that it is a noisy – albeit potentially useful – individual 

differences metric.  

At the sample level, Study 1 demonstrated that the KoW paradigm’s four key 

metacognitive metrics – tRAW-tSAW correlations, tRAW-AIR correlations, mean Euclidean 

distances, and the percentage of tasks for which RAWs and SAWs would predict different 
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choices – were highly consistent across timepoints, providing no evidence of improvement in 

performance from repeated exposure to the task (i.e., practice effects). In all, the primary 

conclusion of Study 1 is that the KoW paradigm is a fairly reliable tool for assessing 

metacognitive knowledge of attribute weights in subjective domains, though its reliability is 

hindered by participants’ inconsistent behaviors and metacognitive limitations. We also 

encourage future researchers to consider that test-retest reliability may not be an appropriate 

assessment of the KoW paradigm over long periods of time or in domains where preferences 

change frequently. Tastes and preferences are often unstable, and metacognitive knowledge of 

those tastes and preferences may be as well.  

 

Study 2 

 In Study 1, we explored the KoW paradigm in one domain: homebuying. In Study 2, we 

explore whether the KoW paradigm generates similar results across other subjective domains 

that, like homebuying, are highly familiar and often thought about in terms of tradeoffs across 

attributes. We do so by randomly assigning participants to complete the KoW paradigm in one of 

four domains (Homebuying, Dating, College Choice, Job Selection) and comparing sample-level 

metacognitive metrics across the domains. Our pre-registered hypothesis was that participants 

would have similar levels of metacognitive knowledge in each domain – which should be 

reflected in the metrics generated by the KoW paradigm. If this prediction holds, it would further 

support the conclusion that the KoW paradigm is a valid and consistent measure of participants’ 

metacognitive knowledge. This study and its analyses were pre-registered on OSF: 

https://osf.io/mw3qg/?view_only=92e94f752db440beb2f563b674495cda 

Methods 
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Participants 

As in Study 1, simulations suggested that we needed a minimum of about 200 

participants per domain to reliably estimate their attribute weights. We recruited 850 Prolific 

participants to ensure that we would have sufficient data after accounting for incomplete 

responses. 825 participants completed the study and were randomly assigned to complete the 

KoW paradigm in one of four domains: Job Selection (i.e., Jobs; n = 202), Homebuying (i.e., 

Homes; n = 214), Romantic Partner Selection (i.e., Dating; n = 196) or College Choice (i.e., 

Colleges; n = 213). Demographics of each sample are reported in the Supplemental Materials. 

Participants in the four domains were statistically indistinguishable in terms of gender, age, race, 

ethnicity, income, and education (ps > .22; see Supplemental Materials for descriptives and 

significance tests). We used the same attention checks as in Phase 1 of Study 1. All participants 

correctly answered the attention check (which also functioned as a manipulation check) asking 

what type of items (e.g., homes, romantic partners) they picked between during the CBC task 

and passed at least two out of the three other attention checks (97.1% passed all three).  

Procedures 

 All procedures were identical to the first phase of Study 1, except that Study 2 had no 

longitudinal component and participants were randomly assigned to make choices in one of four 

different domains (Jobs, Homes, Dating, Colleges). In each domain, participants were given a 

brief prompt asking them to imagine that they were actively choosing between different domain-

relevant alternatives (e.g., in the dating domain, participants were told to imagine that they were 

single and had recently downloaded a dating app like Tinder). The full text for these prompts is 

provided in the Supplemental Materials. As in Study 1, participants then completed tasks that 

measured their RAWs, SAWs, AIRs, and confidence. 
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Materials 

 For each domain, the alternatives presented during the CBC task were described in terms 

of six attributes. For the Homes domain, the attribute set was the same as Study 1. For Jobs, the 

attribute set was inspired by the information that might be found on a job listing (e.g., company 

size, commute time) or a company review site, like Glassdoor.com (e.g., a rating of company 

culture). For the Dating domain, the attribute set was inspired by the information available on 

dating apps like Tinder or Bumble (e.g., education level, political affiliation). Finally, for the 

Colleges domain, the attributes were inspired by the information that might be found on college 

ranking websites, like U.S. News & World Report (e.g., number of students, ranking). As in 

Study 1, we created five discrete levels for each attribute that were used to randomly generate the 

alternatives for the CBC task. The full list of attributes and levels used for each domain and the 

language used to describe them to participants is provided in the Supplemental Materials. 

Analysis & Results 

Deviation from Pre-Registration 

The pre-registration for Study 2 stated that we would use metrics based on non-

transformed RAWs and SAWs in all our analyses. However, reviewers pointed out that these pre-

registered analyses were not always ideal given the compositional nature of our data. As such, 

we chose to report results using tRAWs, tSAWs, and Euclidean distances in place of their non-

transformed equivalents when doing so is more statistically appropriate (i.e., when comparing 

two sets of weights). We believe that this deviation from our pre-registration will increase the 

validity of our inferences, thus making it justifiable (Lakens, 2024). For completeness and in the 

interest of transparency and open science, the pre-registered analyses using the non-transformed 

values (RAWs, SAWs, and RAW-SAW Differences) are reported in the online supplement. 
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Regardless of which strategy is used, the results are qualitatively similar, and the inferences and 

conclusions that we draw are substantively the same. 

Calculating Metrics 

 RAWs and RAW/SAW Choice Predictions were calculated in the same way as in Study 1. 

Full descriptives for RAWs, SAWs, AIRs, SAW/AIR Confidence and RAW/SAW Choice 

Predictions are reported in the Supplemental Materials. RAWs and SAWs were once again 

transformed into tRAWs and tSAWs using the Centered Log-Ratio Transformation Method, and 

Euclidean distances were calculated using the same procedure described in Study 1. 

RAW/SAW Choice Prediction Accuracy  

To ensure that our RAWs were accurately capturing participants’ attribute weights, we 

first evaluated the accuracy of the RAW and SAW Choice Predictions. In each domain, RAWs 

accurately predicted between 91.90 – 93.93% of participants’ actual choices (κs = .88 - .91), 

whereas SAWs only accurately predicted between 81.66 – 84.11% (κs = .72 - .76) of 

participants’ choices. Two-sample tests for equality of proportions (which were not pre-

registered) indicated that, as expected, RAWs were significantly better predictors of participants’ 

choices than SAWs for all domains, Xs2(1, Ns = 2,689 – 2,996) > 88.46, ps < .001. This finding 

gave us confidence that the RAWs were accurately estimating participants’ attribute weights. 

Confidence Across Domains 

We next sought to evaluate whether participants had similar confidence in the accuracy of 

their SAWs and AIRs across domains. All analyses in this section were pre-registered. 

Participants’ average confidence in the accuracy of their SAWs (Ms = 78.49 – 81.92) and AIRs 

(Ms = 80.28 – 83.72) was high in all domains. There were no significant differences across 

domains in SAW confidence, F(3, 820) = 2.16, p = .09, or AIR confidence, F(3, 821) = 2.26, p = 
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.08. The two confidence measures were highly correlated in all domains (rs = .71-.86, ps < .001). 

These results indicate that participants had similar levels of perceived familiarity with their 

weights across the domains, giving further reason to believe that the metacognitive knowledge 

metrics should be similar across domains. 

Metacognitive Metrics Across Domains 

 We then compared the metacognitive metrics generated by the KoW paradigm across 

domains. All analyses in this section were pre-registered, with the caveat that RAWs and SAWs 

were replaced with tRAWs and tSAWs when comparing multiple sets of weights. 

In each domain, the average tRAW-tSAW correlation was between r = .48 - .51 (see 

Figure 2). Pairwise fisher’s r to z tests indicated no significant differences in average tRAW-

tSAW correlations across domains (ns = 196-214; zs < 0.29, ps > .77). Average tRAW-AIR 

correlations for each domain ranged from r = .45 - .50 (see Figure 2). Pairwise fisher’s r to z tests 

indicated that there were no significant differences in average tRAW-AIR correlations across 

domains (ns = 196-214; zs < 0.59, ps > .56). Average tRAW-AIR correlations were not 

significantly different than Average tRAW-tSAW correlations in any domain (ns = 196-214; zs < 

0.62, ps > .54)2.  

Average Euclidean distances ranged from 0.31 – 0.37 across domains. An omnibus 

ANOVA indicated that there were significant differences in average Euclidean distances across 

domains, F(3, 821) = 6.94, p < .001. Post-hoc pairwise comparisons using Tukey’s HSDs 

indicated that the Jobs domain (M = 0.31, sd = 0.13) had a significantly lower average Euclidean 

distance than the Dating (M = 0.37, sd = 0.14, p < .001), College (M = 0.35, sd = 0.13, p = .02), 

 
2 Attribute-level tRAW-AIR, tRAW-tSAW, and tSAW-AIR correlations are reported in the Supplemental Materials. 
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and Homes domains (M = 0.36, sd = 0.15, p = .001). All other pairwise comparisons were non-

significant (ps > .65; see Figure 2). 

RAWs and SAWs predicted different choices in 14.39 – 17.34% (κs = .74 - .78) of CBC 

tasks across domains (see Figure 2). An omnibus four-sample test of equality of proportions 

indicated that these proportions were significantly different from one another, X2(3, Ns = 2,690 – 

2,942) = 9.82, p = .02. Post-hoc pairwise tests of equality of proportions using Bonferroni 

corrections indicated that RAWs and SAWs made different predictions for a smaller proportion 

of choices in the College domain (14.39%) than the Homes domain (17.34%, p = .01). All other 

pairwise comparisons were non-significant (ps > .24).  

Optimal Metacognition Simulations 

As a check of the sensitivity of the KoW paradigm, we investigated how participants’ 

metacognitive knowledge metrics would have changed if participants had optimal metacognitive 

knowledge of their attribute weights. To do so, we created new versions of the CBC survey for 

each domain and completed one CBC survey (14 choices) for each human participant, simulating 

which alternative each participant would have chosen if they had used their SAWs as their true 

decision weights. These simulations were conducted using the same procedure as the RAW/SAW 

Choice Prediction analyses. The predicted choices were entered into Lighthouse Studio 

(Sawtooth Software, Inc., 2023) by research assistants. We then estimated the RAWs and tRAWs 

for each simulated optimal participant and calculated the three SAW/tSAW-based metacognitive 

metrics for the simulated optimal respondents. Optimal tRAW-AIR correlations could not be 

meaningfully calculated because there is no objectively optimal mapping between RAWs and 

AIRs.  
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 The average tRAW-tSAW correlation for the simulated optimal respondents in each 

domain ranged from r = .59 - .65. These correlations were greater than the average tRAW-tSAW 

correlations for the human participants in all domains, but the difference was only significant in 

the Homes domain (n = 214, z = 2.47, p = .01; ps for other domains = .08 - .22). The mean 

Euclidean distance for the simulated optimal respondents in each domain ranged from 0.27 – 

0.33. These means were significantly lower than the mean Euclidean distances for human 

participants in all domains (ts = 2.32 - 4.86, dfs = 388.65 - 425.99, ps < .02). Across domains, 

RAWs and SAWs predicted different choices in 5.98 – 7.31% (κs = .89 - .91) of choice tasks 

completed by the optimal simulated respondents. These proportions were significantly lower 

than the proportions for human participants in all domains, Xs2(1, Ns = 2,690 – 2,959) > 103.23, 

ps < .001. These results indicated that when participants have better (in this case perfect) 

metacognitive knowledge, the metacognitive knowledge metrics improve as well, suggesting that 

they are sensitive measures of metacognitive knowledge. Notably, however, the tRAW-tSAW 

correlation metric was not as sensitive as the other metrics. Attribute-level tRAW-tSAW 

correlations for the simulated optimal respondents are reported in the Supplemental Materials. 

Random Simulations 

 Finally, we conducted similar simulations for each domain in which simulated 

respondents made completely random choices – thus reflecting zero metacognitive knowledge. 

The random responses were generated via Lighthouse Studio (Sawtooth Software, Inc., 2023). 

We then estimated RAWs and tRAWs for these simulated participants and paired each simulated 

respondent’s RAWs and tRAWs with a randomly selected human respondent’s SAWs, tSAWs 

and AIRs, and calculated the four metacognitive metrics. The tRAW-tSAW correlation, tRAW-

AIR correlation, and RAW/SAW Different Choice Prediction metrics have clear theoretical 
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predictions for a random agent (r = 0, r = 0, and 66.67%, respectively), so these simulations can 

be interpreted as sanity checks. For the Euclidean distance metric, the theoretical prediction is 

not self-evident, so these simulations were useful for establishing an empirical standard of 

comparison for human performance. These random simulations were not pre-registered. 

As expected, Average tRAW-tSAW (rs = -.01 - .04) and tRAW-AIR correlations (rs = -

.01 - .04) for each domain were effectively zero. These correlations were significantly lower than 

the correlations achieved by human participants (ns = 196-214, zs < -4.74, ps < .001). RAWs and 

SAWs predicted different choices in 66.06 – 67.09% (κs = -.01 - .01) of choice tasks. These 

proportions were significantly greater than the proportions for human participants in all domains, 

Xs2(1, Ns = 2,690 – 2,943) > 1386.70, ps < .001. Average Euclidean distances for the simulated 

random participants ranged from 0.42 – 0.46. These means were significantly higher than the 

means for human participants in each domain (ts = 3.49 - 8.23, dfs = 366.47 - 401.59, ps < .001). 

The results of these random simulations provided confidence that our metacognitive knowledge 

metrics were functioning as expected and demonstrated that human participants were, as 

expected, outperforming random agents. Attribute-level tRAW-tSAW correlations and tRAW-

tAIR correlations for the simulated random respondents are reported in the Supplemental 

Materials.  

Study 2 Discussion 

 The primary conclusion from Study 2 is that the KoW paradigm generates similar results 

in four distinct multi-attribute choice domains. While there were some differences across 

domains on two of the metacognitive knowledge metrics, the effects were scattered across 

different domains, therefore providing little evidence that overall metacognitive knowledge was 

consistently greater or worse in any particular domain. Study 2 also demonstrated that the KoW 
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paradigm is sensitive to changes in metacognitive knowledge by showing that simulated 

participants with optimal metacognitive knowledge do in fact score better on the KoW 

paradigm’s metrics than (sub-optimal) human participants. Furthermore, Study 2 demonstrated 

that, as expected, human participants’ metacognitive knowledge was greater than would be 

expected if they had made random choices during the CBC task. Taken together, these results 

provide further evidence that the KoW paradigm is an effective tool for measuring participants’ 

metacognitive knowledge of attribute weights in subjective decisions. Future research should 

seek to test the KoW paradigm in other domains that are qualitatively different from those tested 

here – such as decisions that are not typically thought about in terms of tradeoffs across attributes 

(e.g., which friend to hang out with).  

Study 3 

Having shown that the KoW paradigm is reliable (Study 1) and produces consistent 

results across distinct domains (Study 2), we now turn our attention to the validity of the 

paradigm. One way to test the validity of the paradigm is to demonstrate that measures generated 

by the paradigm are predictive of outcomes of functional importance (i.e., predictive validity). 

One important metric for evaluating subjective decisions is whether a participant’s choices 

achieve their personal goals. Study 3 will focus on music choices, which are a convenient 

domain in that nearly every music consumer has the same goal: personal enjoyment. Study 3 

seeks to determine whether individual differences in performance on the KoW paradigm – 

operationalized as Euclidean distances – predict whether participants can effectively choose 

music that maximizes their personal enjoyment.  

Methods 

Participants 
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 To ensure that we would have at least 200 usable observations, we recruited 220 Prolific 

participants to complete a version of the KoW paradigm about songs. All 220 participants 

completed the study and passed at least two out of four attention checks (93.2% passed all four). 

We used the same attention checks as Phase 1 of Study 1. Demographics of the sample are 

reported in the Supplemental Materials  

Procedures 

 The procedure for Study 3 was largely the same as for the previous two studies, except 

that the domain was song choices. During the CBC portion of study, participants made 15 

choices between three hypothetical pop songs, each of which was described in terms of six 

attributes that could take one of five discrete levels (see Materials below). Participants were 

asked “which of these songs do you think you would most enjoy listening to.” As in Studies 1 

and 2, the first 14 choices were randomly generated permutations of the possible levels of the six 

attributes. The 15th choice, however, was a fixed task, meaning that all participants saw the same 

three songs, which aligned with three real songs. 

After completing the SAW and AIR tasks, participants listened to all three songs that 

corresponded to the songs presented in the Fixed Task, presented in a random order. After 

listening to each song, participants rated how much they enjoyed the song on a scale of 0 (Did 

not enjoy at all) to 100 (Enjoyed greatly) and self-reported whether they had heard the song 

before. After listening to all three songs, participants completed a multiple-choice item indicating 

which song they enjoyed listening to most. Participants then answered demographic questions. 

This study and its analyses were pre-registered on AsPredicted: 

https://aspredicted.org/V9W_T4V 

Materials 
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In the CBC task, each song was described in terms of the following six attributes: 1) 

Acousticness (how acoustic or electric a song is); 2) Danceability (how easy it is to dance to a 

song); 3) Tempo; 4) Length; 5) Decade Released; and 6) Artist Type (group composition and 

singer gender). The first three attributes came from Spotify, which evaluates the audio features of 

every song in their library and makes the data public through their API, Spotify for Developers 

(Spotify, Inc., 2023). These attributes were selected over other possible Spotify attributes 

because they captured qualitatively different elements of songs and are not strongly correlated 

with one another (see Supplemental Materials). Spotify describes Acousticness and Danceability 

on a 0-1 scale, but we multiplied the scale by 10 for ease of participant interpretation. Length 

was chosen because online participants are highly sensitive to how long they spend completing a 

task. The last two attributes were selected based on suggestions from participants in generative 

pilot tests. In a final pilot test, participants self-reported average SAWs between 10% - 22% for 

each attribute, suggesting no attribute was dominant or irrelevant (see Supplemental Materials). 

The instructions used to describe the attributes and their levels to participants are provided in the 

Supplemental Materials. 

We pilot tested 8 songs (see Supplemental Materials) to be used in the fixed task. Our 

goal was to identify three songs that 1) Scored very differently on the six focal attributes, 

maximizing variation; 2) Were not well-known by pilot participants; and 3) Were similarly 

enjoyed by pilot participants. Based on these criteria, we chose First Day of Summer, by Jesse 

Ruben (2018), Prisoner of Love, by Miami Sound Machine (1984), and Seasons, by Grace Slick 

(1980). A screenshot of the Fixed Task is provided in Figure 3.  

Analysis and Results. 

Deviation from Pre-Registration 
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As in Study 2, the pre-registration for Study 3 stated that we would use metrics based on 

non-transformed RAWs and SAWs in all our analyses. However, we have chosen to report 

results using tRAWs, tSAWs, and Euclidean distances in place of their non-transformed 

equivalents when doing so is more statistically appropriate (i.e., when comparing two sets of 

weights). The pre-registered analyses using the non-transformed values are reported in the online 

supplement. The results are qualitatively similar regardless of strategy.  

Metacognitive Knowledge Metrics 

 RAWs, tRAWs, tSAWs, RAW/SAW Choice Predictions, and our four metacognitive 

knowledge metrics were calculated using the same procedures as in Study 1 and Study 2. 

Following CBC convention, RAWs were estimated based only on the 14 random tasks. Cross-

domain comparisons of these metrics to the same metrics from Study 2 are provided in the 

Supplemental Materials. All analyses in this section were pre-registered as exploratory. 

Attribute-level tRAW-tSAW correlations ranged from r = .23 - .57, with an average of r = 

.39. Participant confidence in the accuracy of their SAWs was high (M = 78.00, sd = 19.15). 

Attribute-level tRAW-AIR correlations ranged from r = .18 - .52, with an average of r = .32. 

Participant confidence in the accuracy of their AIRs was also high (M = 78.21, sd = 20.19). The 

mean Euclidean distance was 0.34 (sd = 0.14). RAWs accurately predicted 93.47% of choice 

tasks (κ = .90), whereas SAWs accurately predicted only 81.96% of choice tasks (κ = .73). 

RAWs and SAWs predicted different choices in 16.45% of choice tasks (κ = .75). 

Choice Satisfaction 

 We next evaluated whether participants with greater metacognitive knowledge of their 

attribute weights made choices on the fixed CBC task that better aligned with their actual 
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enjoyment of the songs. Descriptives regarding participants’ choices on the fixed CBC task and 

their enjoyment of each song are provided in Table 2.  

We first explored whether participants who gave the highest enjoyment rating to the song 

that they chose during the CBC task had lower Euclidean distances than participants who did not. 

Thirteen participants had a two- or three-way tie for the song they rated as most enjoyable, so 

they were excluded from these analyses. 40.1% of participants rated the song they chose during 

the CBC task as most enjoyable. 

Participants who rated the song they chose during the CBC task as most enjoyable had 

slightly lower Euclidean distances (M = 0.33) than those who didn’t (M = 0.35), but a t-test 

indicated that the effect was not significant (t(181.33) =  1.28, p = .20). Excluding participants 

who had heard any of the songs before (t(157.39) = 1.01, p = .31) did not meaningfully alter the 

results. Additional robustness analyses reported in the Supplemental Materials show similar 

patterns. Though we initially hypothesized that participants whose CBC choices were consistent 

with their enjoyment ratings would have lower Euclidean distances – thus reflecting the benefit 

of greater metacognitive knowledge – in retrospect the lack of effect is unsurprising, given the 

limited power of assessing a single binary outcome (success/failure). 

We next turned our attention to the nearly 60% of participants who did not rate the song 

they chose during the CBC task as most enjoyable. Using this sample, we explored whether 

participants with greater metacognitive knowledge made smaller errors than participants with 

worse metacognitive knowledge. To do so, we calculated the difference in enjoyment between 

the song the participant rated as most enjoyable and the song they chose during the CBC task. 

This metric – which we will refer to as error magnitude – captures how much enjoyment the 

participant would have lost by listening to the song they chose during the CBC task, rather than 
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the song they enjoyed most. Excluding participants who had ties in their ratings (n = 13), the 

mean error magnitude among participants who made an error was 26.69 points (sd = 20.09). A 

simple linear regression (Model 1) indicated that participants with greater Euclidean distances 

had greater error magnitudes (B = 30.44, SE = 12.14, p = 0.01), though the correlation was weak 

(r = .22; see Figure 4). This suggests that greater metacognitive knowledge as measured by the 

KoW paradigm is associated with making choices that result in greater utility maximization. 

Our pre-registration did not specify that this analysis would look only at the participants 

who made errors, so we ran several robustness checks to demonstrate that the effect holds under 

other specifications. First, we re-ran the regression excluding participants who had heard any of 

the three songs before (Model 2). The effect persisted and remained significant (B = 29.83, SE = 

13.11, p = 0.02, r = .21). Next, we re-ran the regression controlling for age, college education, 

hours spent listening to music each day, and whether the participant likes pop music (Model 3). 

The positive relationship between Euclidean distance and error magnitude remained significant 

(B = 30.08, SE = 12.56, p = .02). None of the covariates were significant predictors of error 

magnitude (ps > 0.37). Next, we re-ran the regression, this time excluding participants whose 

error magnitudes were more than three standard deviations above the mean (n = 2; Model 4). The 

positive relationship between Euclidean distance and error magnitude remained significant (B = 

22.56, SE = 11.30, p = .048, r = .18). Finally, we re-ran the regression including participants who 

successfully rated the song they chose during the CBC as most enjoyable, assigning them an 

error magnitude of 0 (Model 5). The positive relationship between Euclidean distance and error 

magnitude persisted (B = 26.81, SE = 9.70, p = .01, r = .19). Full regressions and additional 

robustness checks are reported in the Supplemental Materials. 
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As another robustness check, we calculated a separate multiple choice error magnitude 

by taking the difference between the enjoyment rating for the song chosen during the post-

listening multiple choice task and the enjoyment rating for the song chosen during the CBC task. 

Excluding participants who made the same choice both times, the average multiple choice error 

magnitude was 24.54 (sd = 23.12). Notably, this included nine participants who enjoyed the song 

they chose during the multiple-choice task less than the song they chose during the CBC task, 

resulting in a negative multiple-choice error magnitude. Excluding these participants, the mean 

rose to 27.88 (sd = 20.09). Regardless of whether these participants were included (B = 42.69, SE 

= 14.01, p = .002, r = .26) or excluded (B = 31.36, SE = 12.64, p = .01, r = .23), simple linear 

regressions indicated that participants with greater Euclidean distances had greater multiple 

choice error magnitudes, further supporting our hypothesis that individuals with greater 

metacognitive knowledge make choices that they are happier with. This effect also held when 

participants who made the same choice both times (multiple choice error magnitude = 0) were 

included in the regression (B = 27.99, SE = 10.04, p = .01, r = .19). 

Study 3 Discussion   

The primary finding from Study 3 was that participants with better metacognitive 

knowledge – as measured by the KoW paradigm – make choices that they are happier with. 

While our results were insufficiently powered to demonstrate that participants with greater 

metacognitive knowledge were more likely to make the best possible choice, we demonstrated 

that decision makers with greater metacognitive knowledge made smaller errors, thus 

minimizing the reduction in utility they experience from making a mistake. In all, Study 3 

highlights the importance of metacognition in subjective decision making and provides 

suggestive evidence of  the predictive validity of the KoW paradigm. However, given that this 
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conclusion was built partially on exploratory findings, the results may be considered weaker than 

the results from Studies 1 and 2. As such, we encourage future researchers to replicate this study 

and further assess the predictive validity of the KoW paradigm.  

 

General Discussion 

 Many of the most important decisions that we make – such as whom to marry, which 

home to purchase, and which college to attend – are subjective and multi-attribute in nature. To 

make these choices effectively, it is critical for decision makers to know how important the 

various attributes by which the alternatives vary are to them. Having this knowledge allows 

decision makers to weight the attributes appropriately in their decision-making processes 

(Keeney & Raiffa, 1976; Soman, 2004) and accurately communicate their preferences to others 

(e.g., Slovic & Lichtenstein, 1971; Nisbett & Wilson, 1977). Developing and maintaining this 

explicit knowledge requires a decision maker to actively monitor their beliefs, values, and 

decision-making processes, and thus can be considered a metacognitive task (Dunlosky & 

Metcalfe, 2009; Flavell, 1979; McCormick, 2003). However, the extant metareasoning literature 

has largely focused on objective decisions, not subjective choices (Ackerman & Thompson, 

2017) and therefore lacks methods for assessing metacognitive knowledge of attribute weights in 

subjective decisions. 

To fill this gap in the literature, we created the novel KoW paradigm that allows for the 

assessment of metacognitive knowledge in subjective, multi-attribute choice. In the studies 

presented here, we demonstrated that the KoW paradigm generates measures of metacognitive 

knowledge that are reliable (Study 1), resistant to practice effects (Study 1), consistent across 

domains (Study 2), sensitive to known increases in metacognitive knowledge (Study 2) and 
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predictive of choice satisfaction (Study 3), though the evidence for predictive validity was 

weaker than the evidence for reliability and consistency across domains. Together, these results 

provide evidence that the KoW paradigm is a reliable and reasonably valid method of assessing 

metacognitive knowledge in subjective multi-attribute choice. The KoW paradigm thus 

represents a useful methodological addition to the metacognitive toolkit. 

Comparison to Existing Approaches 

 Though the KoW paradigm fills a novel experimental niche, it shares similarities to other 

empirical approaches that are pervasive in the literature. Here, we will discuss some of these 

similar approaches and highlight the novelty of the KoW paradigm. The most obvious point of 

comparison for the KoW paradigm is the line of scholarship – primarily in decision science, 

economics, and marketing – demonstrating that individuals’ preferences are inconsistent across 

measurement modalities (e.g., Borcherding et al., 1991; Pöyhöyen & Hämäläinen, 2001; Suk & 

Yoon, 2012). One common finding in this literature is that individuals’ stated preferences are 

inconsistent with their revealed preferences (e.g., Barlas, 2003; Harte & Koele; 1995; Heeler et 

al., 1979; Riquelme, 2001). While the KoW paradigm inherently relies on comparisons of stated 

and revealed preferences (measured via decision weights), it is unique from the existing literature 

in that it does not seek to elicit multiple distinct measures of participants’ decision weights, but 

rather explicitly instructs participants to articulate the weights that they believe reflect their 

choice behavior (i.e., their revealed weights). This nuance transforms the approach from a 

measure of behavioral (in)consistency to a measure of participants’ explicit knowledge of how 

they made their choices. This unique emphasis on decision makers’ explicit knowledge of their 

own decision processes is what makes KoW a novel metacognitive paradigm (Dunlosky & 

Metcalfe, 2009; Flavell, 1979; McCormick, 2003). 
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 The KoW paradigm also shares similarities to psychological lens model paradigms that 

compare judges’ weighting of cues (i.e., cue utilization) to the true validity of each cue as a 

predictor of an underlying construct (Brunswik, 1952; Hammond 1955; Karelaia & Hogarth, 

2008; Nestler & Back, 2013). However, unlike the lens model which compares cue utilization to 

cue validity, the KoW paradigm compares participants’ beliefs about their cue utilization to their 

revealed cue utilization. As such, the KoW paradigm can be thought of as a metacognitive variant 

of the lens model in which both sides of the model are generated by the judge and alignment is 

driven by metacognitive knowledge (Dunlosky & Metcalfe, 2009; Flavell, 1979; McCormick, 

2003) 

In a similar vein, a recent paper by Ackerman (2023) introduced the BEVoCI method, a 

lens model-based approach that compares the influence that various factors have on participants’ 

task performance to the influence that the same factors have on their metacognitive judgments. 

BEVoCI is similar to the KoW paradigm in that it uses cue weights to evaluate participants’ 

metacognitive judgments, but the two paradigms have very different goals and approaches. 

BEVoCI leverages within-participant variability in success and confidence (or other 

metacognitive judgments) across similar items, with the goal of untangling various potential 

sources of bias. In contrast, The KoW paradigm leverages differences in stated and revealed cue 

weights generated by individual participants to quantify each participant’s knowledge of how 

they make multi-attribute choices. While the two paradigms have clear synergies, they each 

provide distinct contributions to the metareasoning literature. 

Another related empirical strategy that is commonly used in the metacognition literature 

is cue integration. In this approach, multiple unique cues are experimentally manipulated to  

assess whether and to what extent each cue affects participants’ performance and their 
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metacognitive judgments (e.g., Jang & Nelson, 20005; Koriat, 1997; Undorf et al., 2018, 2020). 

For example, in a study of word learning, Undorf et al. (2018) systematically manipulated 

different factors (e.g., repetitions, font size) to assess which factors affected participants’ 

performance and Judgments of Learning (JoLs). Like KoW, the cue integration approach can be 

used to compare the cues that affect participants’ behavior (performance for JoLs, choice for 

KoW) to a metacognitive judgment about those cues. However, KoW differs from cue integration 

in that it asks participants to explicitly describe their beliefs about how the cues affected their 

behavior, rather than using variation in the cues to predict an intermediary metacognitive 

judgment, such as JoLs. This is necessary because KoW is designed to be implemented for 

subjective decisions, which do not have objective performance metrics to which typical 

metacognitive judgments, such as JoLs, can be compared. Cue integration and KoW should be 

considered as complementary methods. 

Use Cases for the KoW Paradigm 

To inspire future scholars to adopt the KoW paradigm, we will now highlight several 

ways in which the KoW paradigm can be used to better understand how decision makers engage 

in metareasoning. First, we can use the KoW paradigm to identify characteristics of individuals 

or groups that are predictive of metacognitive knowledge. For example, developmental 

psychologists may use the KoW paradigm to explore the development of metacognitive 

knowledge throughout the lifespan (Metcalfe et al., 2010) or political psychologists may use the 

KoW paradigm to compare the metacognitive knowledge of Republicans and Democrats in 

voting contexts (Anson, 2018). The KoW paradigm may also be used to evaluate how 

metacognitive knowledge covaries with other individual difference metrics, such as intelligence 

(Ohtani & Hisasaka, 2018), need for cognition (Coutinho et al., 2005), creativity (Kaufman et al., 
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2016), or personality traits (Bidjerano & Dai, 2007). We believe it will be of particular interest 

for future research to investigate the ability of the KoW paradigm to discriminate between 

general intelligence and metacognitive knowledge. 

Second, the KoW paradigm can be used to explore how metacognitive knowledge varies 

across decision making domains. For example, marketers may use the KoW paradigm to compare 

consumers’ metacognitive knowledge across categories of goods and services (Schwarz, 2004). 

Scholars may also be interested in diving deeply into individual domains that are of substantial 

individual or societal importance. For example, public policy scholars may be interested in using 

the KoW paradigm to study how metacognitive knowledge of voting preferences influences 

election outcomes (Rollwage et al., 2018) or finance scholars may use the KoW paradigm to 

assess how metacognitive knowledge influences household budgeting (Sunderaraman et al., 

2020).  

Third, the KoW paradigm can be used to explore contextual factors that influence 

decision makers’ metacognitive knowledge. For example, educational psychologists may use the 

KoW paradigm to study how classroom environments influence the development of 

metacognitive knowledge among students (Callender et al., 2016) or decision scientists may use 

it to evaluate how aspects of the decision environment, such as the number of alternatives, 

impact metacognitive knowledge (Hadar et al., 2014). Scholars can also use the KoW paradigm 

to assess the efficacy of various interventions – such as mindfulness (Vickery & Dorjee, 2016) 

and numeracy interventions (Muncer et al., 2022) – that may improve metacognitive knowledge.  

Fourth, the KoW paradigm can be used to study the interplay between individual 

differences and the decision environment. For example, social scientists may use the KoW 

paradigm to study how metacognitive knowledge covaries with participants’ domain-specific 
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motivation to make a good decision (Efklides, 2001). Experimenters could also manipulate 

motivation using incentives (Miller & Geraci, 2011). Similarly, scholars may be interested in 

evaluating how familiarity with or expertise in a domain (Veenman & Elshout, 1999) may 

correlate with metacognitive knowledge. As an example, a recent paper using a preliminary 

version of the KoW paradigm demonstrated that parents of high-school aged children had no 

greater metacognitive knowledge of the weights they placed on various attributes when 

comparing highs schools than a convenience sample of parents and non-parents, suggesting that 

familiarity with a domain is not necessarily associated with greater metacognitive knowledge, at 

least in the domain of school choice (Cash & Oppenheimer, 2024). Researchers could also 

experimentally manipulate participant expertise through training (Batha & Carroll, 2007). 

Studies of this nature will help us to better understand the sensitivity of the KoW paradigm.   

Fifth and finally, the KoW paradigm can be used to explore the psychological 

mechanisms underlying metacognitive knowledge. For example, the KoW paradigm could be 

systematically altered to answer theoretical questions about the role of metacognitive monitoring 

(Ackerman, 2014; De Neys et al., 2011), metacognitive control (Ackerman et al., 2020; De Neys 

et al., 2013), and top-down knowledge (Sherman et al., 2015) in the development and 

deployment of metacognitive knowledge. These examples highlight only a small subset of the 

potential empirical questions that could be explored using the KoW paradigm, but we hope that 

they inspire creative applications of the paradigm in a wide variety of domains. 

Limitations  

 One limitation of the KoW paradigm is that it is forced to estimate weights for each 

attribute, and thus may generate less-accurate RAWs for participants who put most or all of their 

weight on one attribute (e.g., Newell & Shanks, 2003). The primary concern is that, 
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mathematically, RAWs tend to be condensed away from extremely high (e.g., 100%) and 

extremely low (e.g., 0%) weights because the underlying utilities are estimated using Bayesian 

models that treat sample mean utilities as priors. Across studies, the lowest RAW estimated for 

any attribute was 0.53% and the highest RAW was 70.18%. This concern is unlikely to be 

problematic in the present studies, as only 8.14% of participants in the studies presented here 

reported a SAW of greater than 70% for any attribute, suggesting that strong non-compensatory 

strategies were relatively uncommon. However, future researchers using the KoW paradigm 

should consider methods for better assessing non-compensatory strategies. One potentially 

fruitful avenue for doing so is to increase the number of choices participants make to boost the 

amount of evidence available to update away from sample mean priors. 

 A second and related limitation of the KoW paradigm is that it assumes that decision 

makers are using weights at all, which is not necessarily true of all participants. Some decision 

makers may use non-weight-based decision strategies. For example, participants may use fast-

and-frugal heuristic-based strategies (Gigerenzer et al., 1999; but see Krefeld-Schwalb et al, 

2019; Oppenheimer, 2003 for criticisms of this approach), lexicographic decision rules 

(Fishburn, 1974) or other satisficing approaches (Simon, 1956). Participants may also make 

decisions based on more idiosyncratic factors  – such as intuitive reactions to familiar 

alternatives (Klein, 1993; 2015), holistic judgments about each alternative (Arkes et al., 2010), or 

unique preferences about combinations of attributes (e.g., I will accept a small house if it has a 

big yard). The first concern raised by the possibility of participants using non-weight-based 

strategies is that the KoW paradigm may not generate RAWs that accurately reflect these 

decision makers’ choices. However, we consistently found that RAWs were able to predict more 

than 90% of participants’ choices. This suggests that most participants made choices that could 
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be described using weights – even if that’s not necessarily how they thought they were making 

their choices. 

 Another concern related to this limitation is that participants who made non-weight-based 

decisions may have had metacognitive knowledge of how they made their choices, but struggled 

to provide meaningful SAWs because they were not thinking in terms of weights. It is certainly 

possible that some participants had this challenge, but two pieces of evidence suggest that it was 

not a widespread problem. First, we consistently found that average tRAW-tSAW correlations 

were about the same as average tRAW-AIR correlations. If participants were engaging in non-

weight-based decision strategies, the non-weight-based AIRs should be easier to accurately self-

report than the weight-based SAWs. Second, participants were highly confident in the accuracy 

of their SAWs. If participants were completely blindsided by the concept of decision weights, 

they would likely report very low confidence in the accuracy of their SAWs.  

 In general, this evidence suggests that participants in our studies were using weight-based 

strategies – or at least were able to approximately translate the strategies they were using into 

weights. This is consistent with the extant JDM literature, which shows that participants often do 

make multi-attribute choices using decision weights (Huber, 1974; Keeney & Raiffa, 1976; 

Soman, 2004; Weiss et al., 2010). However, we strongly encourage future researchers to adapt 

the KoW paradigm to better identify and account for participants who use non-weight-based 

strategies, especially in contexts in which non-weighting strategies are known to be more 

prevalent, such as when participants are under time pressure (Böckenholt & Kroeger, 1993), 

experiencing a high cognitive load (Deck & Jahedi, 2015), or are in affective states that 

discourage deliberation (Lewinsohn & Mano, 1993). It may also be worth exploring whether 

simply warning participants that they will be asked to self-report decisions weights or allowing 
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participants to complete a free response item describing their decision process might influence 

how well KoW captures cue weighting.  

Conclusion 

 Across three studies, we presented and validated the KoW paradigm, a novel method for 

assessing metacognitive knowledge of attribute weights in subjective, multi-attribute choice 

decisions. Evidence for reliability and consistency across domains was strong, while evidence of 

predictive validity was slightly weaker. The KoW paradigm is unique from existing 

metareasoning paradigms in that it does not require participants’ metacognitive judgments to be 

compared to an objectively correct answer, thus opening the door to metareasoning research in 

subjective decision domains. Given the prevalence of such decisions in our daily lives, these 

domains have significant impacts on our overall well-being and are worthy of study. The KoW 

paradigm has numerous applications for studying metareasoning across a wide variety of 

domains. When you judge how interesting this paper is, take a minute to think… do you really 

know what makes a paper interesting to you? If you don’t think this paper is interesting, then 

maybe it’s time to reconsider your weights. 
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Table 1: Summary of Reliability Metrics 

1Calculated via Fisher’s r-to-z test; 2Calculated via paired t-test; 3Calculated via 2-sample test 

for equality of proportions; 4Calculated via correlation test; 5Averaged across attributes.

Sample-Level Metrics Phase 1 Phase 2 p 

(Difference) 

Average tRAW-tSAW Correlation5 r = .54 r = .53 .921 

Average tRAW-AIR Correlation5 r = .50 r = .52 .751 

Confidence in SAWs M = 80.46 

sd = 17.00 

M = 80.60 

sd = 16.99 

.842 

Confidence in AIRs M = 83.20 

sd = 15.38 

M = 83.09 

sd = 15.05 

.872 

Different Choices Predicted by RAWs 

and SAWs (% of Tasks) 

15.72% 16.16% .653 

Euclidean Distance M = 0.34 

sd = 0.14 

M = 0.36 

sd = 0.15 

.082 

Participant-Level Metrics Correlation Between Phase 1 

and Phase 2 

p 

(Correlation) 

tSAWs5 .76 < .0014 

AIRs5 .78 < .0014 

tRAWs5 .47 < .0014 

Confidence in SAWs .81 < .0014 

Confidence in AIRs .77 < .0014 

Euclidean Distances .59 < .0014 
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Table 2: Participant Song Ratings and Song Choices 

Note. 1Participants who reported two songs as being tied for most enjoyable were excluded from 

this calculation. 

 First Day of 

Summer 

Prisoner of Love Seasons 

Chosen During CBC Task 

(% of participants) 

 

35.5% 

 

 

34.5% 30.0% 

Average Enjoyment Rating 

(sd) 

 

57.85 (29.76) 

 

 

56.85 (26.92) 47.81 (28.82) 

Given Highest Enjoyment 

Rating (% of participants)1 

 

42.5% 34.8% 22.7% 

Chosen as Most Enjoyable 

on Multiple Choice Item 

(% of participants) 

 

41.8% 34.1% 24.1% 
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Figure 1: Sample CBC Task 
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Figure 2 (Panel A): Average Metacognitive Knowledge Correlations Across Domains 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



72 
 

Figure 2 (Panel B): Average Euclidean Distances and RAW/SAW Different Choice 

Prediction Proportions Across Domains 
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Figure 3: Fixed Song Choice Task 

 
 



74 
 

Figure 4: Error Magnitude by Euclidean Distance  
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Figure Captions (List Format) 

Figure 1: Sample CBC Task 

No Caption 

Figure 2 (Panel A): Average Metacognitive Knowledge Correlations Across Domains 

Note. Errors bars reflect 95% confidence intervals. *p < .05; **p < .01; ***p < .001 

Figure 2 (Panel B): Average Euclidean Distances and RAW/SAW Different Choice 

Prediction Proportions Across Domains 

 

Note. Errors bars reflect 95% confidence intervals. *p < .05; **p < .01; ***p < .001 

Figure 3: Fixed Song Choice Task 

The song on the left is First Day of Summer by Jesse Ruben (2018); the song in the middle is 

Prisoner of Love by Miami Sound Machine (1984); the song on the right is Seasons by Grace 

Slick (1980).  

 

Figure 4: Error Magnitude by Euclidean Distance  

In correspondence with Model 1, this scatterplot does not include participants who had an error 

magnitude of zero.  

 

 


