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Abstract: Climate change and rising sea levels pose significant threats to coastal regions, necessitating
accurate and timely forecasts. Current methods face limitations due to their inability to fully capture
nonlinear complexities, high computational costs, gaps in historical data, and bridging the gap
between short-term and long-term forecasting intervals. Our study addresses these challenges by
combining advanced machine learning techniques to provide region-specific sea level predictions in
the Mediterranean Sea. By integrating high-resolution sea surface temperature data spanning 40 years,
we employed a tailored k-means clustering technique to identify regions of high variance. Using these
clusters, we developed RNN-GRU models that integrate historical tide gauge data and sea surface
height data, offering regional sea level predictions on timescales ranging from one month to three
years. Our approach achieved the highest predictive accuracy, with correlation values ranging from
0.65 to 0.84 in regions with comprehensive datasets, demonstrating the model’s robustness. In areas
with fewer tide gauge stations or shorter time series, our models still performed moderately well, with
correlations between 0.51 and 0.70. However, prediction accuracy decreases in regions with complex
geomorphology. Yet, all regional models effectively captured sea level variability and trends. This
highlights the model’s versatility and capacity to adapt to different regional characteristics, making it
invaluable for regional planning and adaptation strategies. Our methodology offers a powerful tool
for identifying regions with similar variability and providing sub-regional scale predictions up to
three years in advance, ensuring more reliable and actionable sea level forecasts for Mediterranean
coastal communities.

Keywords: regional-scale ocean variability; sea level forecasting; machine learning; clustering
techniques; RNN-GRU models; Mediterranean Sea

1. Introduction

Ocean warming and sea level changes have significant impacts on regions all over
the world, influencing economies, societies, and human lives. These changes can lead
to increased flooding, loss of habitat for marine and coastal species, and damage to in-
frastructure [1]. Understanding and predicting these changes is crucial for developing
effective adaptation and mitigation strategies to protect vulnerable populations and sustain
economic stability. However, the drivers of sea level variability differ between global and
regional scales, resulting in distinct sea level trends. At the global scale, factors such as
thermal expansion and melting ice sheets play a major role, while regional trends can be
influenced by local ocean currents, land subsidence, and regional climate patterns [2]. In
particular, in the Mediterranean Sea, more than 30% of coastal areas are facing moderate to
high risks of erosion and coastal flooding [3]. Moreover, this basin is considered a hotspot
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in a warming climate, with projected annual and summer warming rates of 20% and 50%
faster than the global ocean average, respectively [4]. Additionally, the historical sea level
fluctuations in the Mediterranean Sea have exhibited significant spatial variability within
the basin, making a sub-basin exploration necessary [5]. Thus, the unique characteristics of
this semi-enclosed region demand more advanced tools to unveil and better understand
the complexities of Mediterranean climatology. This understanding is crucial for accurately
predicting near-future climate scenarios, including temperature fluctuations, and sea level
changes, which are vital for effective regional planning and management.

Tide gauge records have been one of the main sources that contribute to the under-
standing of sea level fluctuations. Nevertheless, their utility is often constrained due to
the lack of stations at some coastal locations and the presence of data gaps during cer-
tain periods [6]. In contrast, satellite altimetry and derived products provide a valuable
alternative, offering more extensive spatial insights. However, this resource’s data is only
accessible from 1993 onwards, and it can encounter challenges in coastal regions due to
shallower waters [7,8]. To overcome these problems, past studies combine both datasets
on the Mediterranean Sea, in some cases to provide sea level reconstructions [9,10]. Even
so, the temperature of the upper ocean layers, which reflect physical dynamical changes,
can offer new insights into the study of sea level drivers, allowing for the reconstruction
and prediction of future sea levels [11-14]. This approach is based on the premise that
changes in ocean temperature are inherently linked to thermal expansion, a significant
factor driving variations in sea levels [15,16]. Sea level in the Mediterranean Sea is, however,
also highly influenced by evaporation processes (due to high temperatures) and a deficit
of precipitation, which is reflected in an increase in water salinity [17]. This leads to high
density and variations in sea level [18]. In addition, there is also the influence of other
factors, such as vertical land motion and low elevation in some regions [3].

Over the past few years, machine learning (ML) techniques have emerged as a pow-
erful tool to delve into the intricacies of climate scenarios and other underlying factors
affecting sea level variability and change (see, e.g., [19]). These algorithms are capable of
dealing with complex, highly-dimensional datasets and of establishing non-linear relation-
ships between the variables involved at a low computational cost, in contrast to traditional
models. Traditional methods like hydrodynamic models often require significant time and
resources, whereas ML techniques can offer faster and robust solutions in complex scenar-
ios. Moreover, ML techniques can also be evaluated for accuracy and reliability through
various validation methods and metrics appropriate to the method used [20]. Addition-
ally, ML models have the capability to continuously learn and adapt from large datasets,
updating their predictions in real time and improving accuracy as they process more data.
Among the ML techniques, methods like Random Forest (RF), Gaussian Process (GP),
and Support Vector Machine (SVM), as well as neural networks such as Recurrent Neural
Network (RNN) and Multi-Layer Perceptron (MLP), have successfully been applied to pre-
dict changes in ocean physical variables such as temperature, salinity, or sea level [21-23].
Coastal vulnerability has also been analyzed in the Mediterranean Sea, comparing the
performance of various ML algorithms, including Artificial Neural Networks (ANNSs),
trained with several predictors such as sea level rise, geomorphology, or tidal range, as
explored in [24]. More recently, unsupervised learning techniques, such as clustering
algorithms, have proven effective in detecting underlying regional patterns related to local
dynamics (such as the influence of gyres/eddies or currents) or climatic traits [17,25]. These
techniques highlight areas with similar variability, also linked to coastal sea level changes
and conventional climate modes in different parts of the world’s oceans [11]. Although
there have been advancements in this research field, accurately identifying sub-regions of
climatic interest in the Mediterranean Sea and providing automated, precise local sea level
forecasts continues to be a challenge, underscoring the need for advanced methodologies.

Our study presents a unique approach that has never been tested in the Mediterranean,
or anywhere else, bridging significant gaps in the literature. The scope of the present work
is to offer regional solutions to forecast near-future (from 1 month to 3 years) sea levels
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using an approach that combines a clustering technique with neural networks in the coastal
regions of the Mediterranean Sea. First, we automatically identify regions of high variance
using k-means applied to sea surface temperature data, following the methodology of [11].
Based on the spatial patterns revealed, we provide predictions of future coastal sea levels for
each region using gated RNNs, which represent a significant improvement by incorporating
mechanisms to better manage long-term dependencies, with historical tide gauge data and
reanalysis of sea surface height, as discussed later. Our main contributions include the
innovative integration of high-resolution sea surface temperature (SST) data with advanced
ML techniques, offering unprecedented insights into regional sea level variability. This
research is crucial as it addresses the urgent need for precise and actionable sea level
forecasts, facilitating effective regional planning and adaptation strategies in the face of
climate change.

2. Data and Methods
2.1. Data Sources and Preprocessing Steps

Several products (discussed below) were used to develop this study, incorporating
information from sea surface temperature to water levels from tide gauge (TG) stations and
sea surface height (SSH) data.

For the automated identification of the high-variance regions in the Mediterranean
basin, we used The Operational Sea Surface Temperature and Ice Analysis (OSTIA) dataset
that combines in situ and satellite data to provide daily, high-resolution SST measurements
(https:/ /data.marine.copernicus.eu/product/SST_GLO_SST_L4_REP_OBSERVATIONS_01
0_011/description, accessed on 12 February 2024). This dataset features a 0.05-degree spa-
tial resolution, covers the period from 1981 to 2022, and is based on a mean climatological
field from 1955 to 2017. It includes pixel-uncertainty estimates, which helped filter in-
accurate SST data in coastal regions such as the Aegean and Adriatic Seas, where land
features and shallow waters can distort satellite measurements (Figure 1) [26]. For the
study’s experimental purposes, the SSTs were detrended to help isolate the natural, internal
SST patterns.
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Figure 1. Map of the analysis uncertainty estimates for the OSTIA SST optimal interpolation product.
Each SST value includes an uncertainty estimate, known as analysis error (https://catalogue.marine.
copernicus.eu/documents/QUID/CMEMS-SST-QUID-010-011.pdf, accessed on 22 February 2024).
We used a threshold of 0.45 K to discard values from our study.

To investigate the potential of forecasting water levels using the Recurrent Neural
Network-Gated Recurrent Unit (RNN-GRU) in the identified regions, two different sea
level datasets were employed. On the one hand, we accessed monthly TG records from
the Permanent Service for Mean Sea Level (PSMSL, https://psmsl.org/data/, accessed on
30 January 2024) [27]. In particular, we used the Revised Local Reference (RLR) dataset,
standardizing all station measurements to a common datum (https://psmsl.org/data/
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obtaining/psmsl.hel, accessed on 30 January 2024) for accuracy. It is important to note that
the Mediterranean TG network is unevenly distributed, with the majority of long-term
records concentrated along European shorelines, which impacts the overall geographical
distribution representation of the data [28]. Moreover, considering that long records are
restricted to a few coastal locations, we strategically selected 82 stations from 1993 to
the present for consistency among datasets. Instead of relying on individual TG stations,
our approach involved creating a regional unified signal (Figure 2), leveraging the ob-
served regional coherence among sea level patterns [13,29] within the regions identified in
Section 2.2.1. Individual stations were first interpolated using the modified Akima cubic
Hermite interpolation to address short gaps and then averaged to obtain the regional
unified signal for each region [30]. This unified TG signal serves two purposes: it provides
consistent data for the model to learn more robust and generalized patterns of variability
during the training process, enhancing the robustness and continuity of the dataset, and it
acts as a reference benchmark for further validation using a separate testing dataset. On the
other hand, we also used GLORYS12V1 SSH data as an input into the model, specifically
utilizing median regional values for each region, to enhance the accuracy and reliability of
TG predictions by complementing the information from different sources, thus providing a
more comprehensive understanding of sea level variations. Incorporating extensive histori-
cal regional data is crucial for improving the model’s performance in detecting oscillations
related to sea level changes on a regional scale. GLORYS12V1 is an eddy-resolving global
ocean reanalysis product offering monthly SSH data from 1993 to 2020 with a 1/12-degree
spatial resolution. (https://data.marine.copernicus.eu/product/ GLOBAL_MULTIYEAR _
PHY_001_030/description, accessed on 6 March 2024). Detrending was applied to all
regional time series datasets (TG, SSH) prior to running the models to also emphasize
natural internal variability associated with ocean/climate processes [22].
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Figure 2. A comparison of the time series of the individual and unified TG signals with SSH data
for the Cluster 18 region in the west Mediterranean Sea. Individual stations are represented in light
blue, the unified signal as a blue solid line, and SSH as a black line. The regional consistency in the
variability patterns is evident despite the differences between tide gauges and satellite altimetry in
measuring sea levels (as well as their regional scope) and the presence of local factors, especially
considering that satellite altimetry faces challenges in accurately measuring sea level data within
approximately 10 km from the coast [31].

2.2. Proposed Hybrid Methodology

The hybrid approach presented in this study allowed us to pinpoint variability regions
and generate sea level predictions by leveraging a combination of two ML techniques.
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2.2.1. Climatic Region Identification in the Mediterranean through SST Clustering

In the Mediterranean basin context, we used the k-means technique, a widely em-
ployed unsupervised method for clustering and pattern recognition, to identify predom-
inant regions of similarity within the extensive 40-year high-resolution SST dataset (de-
scribed in the previous section).

The technique works by iteratively assigning data points to randomly initialized cluster
centroids, maximizing inter-variance, and minimizing intra-variance among groups [32].
This approach unveils structures within complex datasets. In our study, we recalculated
those centroids by taking the median of all centroid solutions, ensuring robust and reliable
clustering results. Following [11], we used the correlation distance, 15 replicates, and
20 repetitions to build a robust model. The optimal number of clusters (i.e., k = 22 in this
case) was found by exploring a wide range (between 5 and 25) and ensuring consistency
with well-known dynamical regions [17,25]. In contrast to using the coarse subsurface
temperature Levitus data [33] to explore the ocean depth layers (as in [11]), or the SSH data
with a shorter temporal coverage of the entire water column, we opted for the long-term,
high-resolution SST product. This choice provided a more refined regional definition of
clusters and was sufficient to capture the more active regions.

This approach allowed for a more detailed representation of regional variability, as
illustrated in the resulting clustering map (Figure 3), which highlights the distinct clusters
identified across the Mediterranean.
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Figure 3. A representation of the 22 sub-regions identified through k-means clustering, following the
methodology process indicated in [11]), using monthly SST data spanning 40 years (1981-2022). The
selected TG stations are shown by red symbols.

2.2.2. Advanced Neural Network Models for Region-Specific Coastal Sea Level
Change Prediction

With the identified regions, we delve here into the RNN-GRU methodology [13]
adopted to predict sea level variability at the respective Mediterranean coasts for each
region. Recognizing the non-linear nature of this problem, the use of RNNs was an appro-
priate choice, given their utility for similar purposes [22,34]. In our proposed configuration,
RNN cells have two inputs: the state from the previous steps, implemented using sliding
windows of different sizes, and the current observation, so the previous information is
passed to the next cell at each step. We used backward sliding windows ranging from
1 month to 36 months, incremented every 3 months, to capture broader temporal depen-
dencies for all clusters. The GRU is particularly effective in managing time dependencies,
as it uses two gates: the reset, which controls the flow of new information, and the update
gate, which determines what information should be retained. This architecture helps
maintain consistent values for the hidden state, ensuring that relevant past information
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is preserved [34]. The RNN-GRU enabled the development of more complex models to
predict regional coastal sea levels using past information.

More specifically, the architecture is built using five layers: the sequence input layer
(the normalized time-series data fed into the RNN), a GRU layer, a dropout layer to
prevent overfitting with a 20% dropout rate, a fully connected layer (that connects every
neuron to each neuron in the next layer), and a regression output layer (that predicts
continuous values). After testing a wide range of neurons (between 2 and 150), we found
that 80 neurons are an optimal number for our experiments, based on the outcome metrics
for all clusters, but there might be other suitable options. Additionally, we used the
Adam optimizer with an initial learning rate of 0.0001. The network was trained with a
batch size of 128 and an early stopping criterion, which involved validating the model
at each run (i.e., with a validation frequency of 1) and halting the training process if the
loss function did not show any improvement for 75 iterations (epochs). This approach
helps to mitigate overfitting, by ensuring that the model does not continue to train on
the data once it stops making meaningful progress in reducing the loss. These decisions
were based on tests and similarities with previous studies [13], with the present study
selecting a train/validation/test split of 85-5-10% to ensure the preservation of temporal
dependencies. The test was conducted using the last part of the time series, which was not
seen by the model during the training process, covering 16 to 33 months depending on
the length of the record. For each cluster, forecasting time, and sliding window, the model
underwent five repetitions to ensure robust results, with the median of these repetitions
being evaluated. This process resulted in a total of 3640 experiments.

The metric used to evaluate the prediction was the correlation coefficient (R), indicating
how strong the relation is between the predicted and expected output.

2
Zi'vzl (!/i - l/i)

N2
N
i=1 (yi - y)

Here, y; and y; represent the observed unified signal from TG data and the model pre-
diction, respectively. This formula, directly related to the mean squared error (MSE) loss
function inherent from the regression analysis, ensures that the closer the R value is to 1,
the stronger the correlation between the predicted and observed data [22]. While we have
also included the root mean squared error (RMSE) in the results, it is important to note that
because we use inputs from various sources that may differ in magnitude, exact matches
to sea levels are not anticipated. Our focus is on capturing variations and understanding
the percentage of variability explained by the model, represented by the coefficient of
determination (R?).

This approach allows us to provide customized local solutions for each region, en-
suring that our predictions are tailored to the unique characteristics and dynamics of
individual coastal areas (see Figure 4 for details).

R= |1- (1)
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Figure 4. This figure presents the main overview of the proposed hybrid ML methodology to forecast
regional sea level changes in the Mediterranean Sea. The process begins with high-resolution SST
data collection, followed by k-means clustering to identify regions of high variance (as seen in Cluster
18 in the embedded map). Next, regional unified TG signals (in solid black line) and median SSH
data (discontinuous black dash line) are integrated (post-detrending) into our RNN-GRU approach.
The RNN-GRU model is then trained and validated using the identified clusters and historical data,
concluding with the TG prediction of regional sea level changes (blue line) as depicted in the bottom
plot. The time series in the left panel, highlighting the prediction against observations, is shown after
smoothing was applied using a 6-month window for enhanced visualization. Although illustrative,
this figure is based on the main results discussed later (in particular using a backward sliding window
of 12 months and a forecasting time of 36 months). On the right, a flowchart details the steps of the
methodology, accompanied by a diagram depicting the GRU process. Units are in meters.

3. Results and Discussion

In this section, we present the findings from our comprehensive analysis of regional
sea level variability using advanced machine learning techniques (discussed in Section 2.2),
with the goal of identifying areas with unique regional ocean/climate variability patterns
and anticipating future changes.

The clustering obtained through k-means using SST (Figure 3) revealed regions consis-
tent with known underlying ocean/climate physics. For example, in the central-northern
Mediterranean where most TG stations are located, the dynamics of Atlantic water that
flows into the basin through the Strait of Gibraltar, creating gyres, could be represented in
Cluster 21. This inflow influences regional circulation patterns and water properties signifi-
cantly [17]. Cluster 7 might represent the Gulf of Lion region, catheterized by well-defined
physical characteristics influenced by the inflow of Atlantic water and the Levantine In-
termediate water [35]. Similarly, Cluster 5 in the Adriatic Sea, which is defined by the
Adriatic Gyre, the inflow of Levantine Intermediate water, and the discharge of the Po
River, exhibits distinct characteristics [36]. Climatic features in the Gulf of Lion include
strong wind-driven upwelling and significant seasonal temperature variability, while the
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Adriatic Sea experiences pronounced seasonal changes and riverine input impacts. Clusters
3 and 18 are regions well separated, highlighted for their elevated temperature and salinity
trends [17,37]. Cluster 3, in the Tyrrhenian sub-basin, has climatic characteristics of high
evaporation rates and limited freshwater input, while Cluster 18, in the Levantine sub-basin,
is influenced by high insolation and minimal precipitation, leading to higher temperatures
and salinity. The Western Mediterranean Deep Water affects the ocean properties of the
water column in the region of Cluster 14 [38]. This comprehensive analysis is somewhat
comparable with other clustering studies, such as the one conducted by [17] or [25]. While
their approach differs, and the number of extracted clusters is much lower, the resulting
spatial clustering (for monthly SST or mean sea level anomalies (SLAs) data) reveals some
similar spatial patterns, thereby reinforcing our results. The similarities suggest that our
method is reliable and effectively captures the essential features of the region’s ocean
dynamics. This analysis helps in the local study of different sub-regions in this basin,
considered a hotspot, to make predictions on regional scales.

For this purpose and knowing that spatial extension substantially influences the study
of ocean/climate variability, we applied our RNN-GRU models (as in Section 2.2.2) to each
clustered region with the unified regional TG signal based on information from neighboring
stations and SSH as input variables. This strategy helps ensure that our model is well
calibrated for diverse regional characteristics across the entire coastline rather than relying
on just one individual station [13]. We present the results for three distinct regions in the
east, center, and west of the Mediterranean Sea as examples, corresponding to Cluster 18,
Cluster 3, and Cluster 14, respectively (Figures 5-7). It is worth noting that Clusters 14 and
18, with 7 and 12 TG stations, respectively, have 28 years of historical data for the average
signal computation. In contrast, Cluster 3 has only four stations and 20 years of data, which
affects the prediction results, as shown in Figure 5. The differences in data availability and
station density likely contribute to the varying accuracy of predictions across these clusters.
In particular, Cluster 3 shows consistent moderate agreement between observed and
predicted values with correlation coefficients ranging from 0.51 to 0.57 across all forecasting
intervals (from 1 to 36 months). Cluster 14 exhibits the highest correlation coefficients,
ranging from 0.76 to 0.82, highlighting a strong predictive capability (Figure 6). Similarly,
Cluster 18 shows strong correlation coefficients between 0.69 and 0.77 (Figure 7). The high
correlation values in Clusters 14 and 18 suggest that our model performs exceptionally
well in regions with more comprehensive datasets. The analysis of additional clusters in
surrounding coastal areas is shown in the Supplementary Materials.

The average correlation value (for all studied coastal clusters totaling 12 clusters and
all forecasting intervals) is 0.63. The regions where the model is capable of providing
more accurate predictions are in the east and west Mediterranean Sea (Clusters 14, 15,
17, 18, and 21) with a correlation value ranging from 0.65 to 0.84. In other regions, such
as Clusters 3, 6, 9, or 11, located around the south of Italy and the Balearic Islands, the
performance ranges from moderate to moderately strong (0.51 to 0.70). This demonstrates
the model’s versatility and its capacity to adapt to different regional characteristics. In
complex areas such as the Gulf of Lion, Adriatic, and Aegean sub-basins, the accuracy
decreases due to unique bathymetry and challenging topography which pose a challenge
to satellite altimetry in measuring SSH with high precision [39,40]. This discrepancy is
particularly pronounced in the Gulf of Lion (see Cluster 7 in Supplementary Materials)
with the steep and complex topography of the canyon systems along the coast. Therefore,
in this particular case, we only used the TG stations to make predictions. Additionally, in
regions where the number of TG stations is limited, there are regional discrepancies and
occasional outliers, particularly in areas with extensive gaps (like for Cluster 8 and Cluster
16), the analysis was simply not possible. Except for these excluded cases, our models
were always capable of mimicking sea level variability. This highlights the model’s overall
robustness, even in challenging regions. It is important to note that while the correlation
values inform us about the strength of the relationship between predicted and observed
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data, our primary aim is to capture the variability to inform about changes in the tendency
(increase or decrease in the following months/years) rather than the absolute magnitude.
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Figure 5. Time series of sea level historical data and predictions for Cluster 3 for each forecasting
interval (F =1, 12, 24, and 36 months), covering the final years of the record. Here, F = 1 indicates
that the forecast for each given time in the plot was made 1 month prior to the actual observed value,
while F = 12, 24, and 36 correspond to forecasts made 12, 24, and 36 months in advance, respectively.
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The embedded correlation coefficient values (R, which correspond to the median of all repetitions)

indicate the strength of the relationship between observed (TG, solid black line) and predicted values

(TG Pred, blue line). SSH is also shown (black dash line). These results correspond to the following

sliding windows for each forecasting time (in months): 12, 0, 21, and 36. These backward sliding

windows were chosen to yield the best results, as determined by the model’s performance near the

median R value. The RMSE is also included. Units are in m.
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Figure 6. As in Figure 5, but for Cluster 14. These results correspond to the following sliding windows

for each forecasting time (in months): 27, 12, 33, and 33.
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Figure 7. As in Figure 5, but for Cluster 18. These results correspond to the following sliding windows

for each forecasting time (in months): 12, 30, 18, and 12.

Overall, this methodology is a powerful tool that can effectively identify regions

with similar variability and provide sub-regional-scale predictions up to three years in

advance. The ability to forecast sea level changes accurately at a sub-regional scale is crucial

for local planning and adaptation strategies, making this approach highly valuable for

policymakers and researchers alike. By leveraging this approach as more data becomes
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available, decision-makers can better prepare for and mitigate the impacts of ocean/climate
variability on coastal communities.

4. Conclusions

This study presents a comprehensive approach to capturing sea level variability and
providing near-future predictions by leveraging advanced machine learning techniques.
The combination of clustering and RNN-GRU models has demonstrated significant promise
in forecasting regional sea level changes in the Mediterranean Sea, addressing a critical need
for short-term, localized predictions. This was achieved by first identifying regions of high
variance through k-means clustering, revealing distinct sub-regions consistent with known
oceanographic and climatic patterns. These clusters, derived from a 40-year high-resolution
SST dataset, provided a robust foundation for further analysis and prediction.

The integration of historical TG data and SSH data into the RNN-GRU models enabled
accurate predictions of sea level changes for different regions. Our results indicate strong
correlation coefficients in areas with comprehensive datasets, while regions with fewer
TG stations or shorter time series showed moderate agreement. The average correlation
value for all studied coastal clusters and forecasting intervals was 0.63, with the most
accurate predictions observed in the east and west Mediterranean Sea, reaching values
between 0.65 and 0.84 (averaging 0.76). In regions with the confluence of complex local
factors, such as unique shelf topography, the prediction accuracy declines. Despite these
variations, the model’s overall performance was robust, capturing sea level variability and
trends effectively.

In summary, this methodology offers a powerful tool for identifying regions with
similar variability and providing sub-regional scale predictions up to three years in ad-
vance. By capturing the variability and providing insights into future trends, our approach
supports effective regional planning and adaptation strategies. The ability to forecast sea
level changes accurately at a sub-regional scale is crucial for mitigating the impacts of
ocean/climate variability on coastal communities. As more data become available, this
approach can be refined and expanded, providing valuable insights for policymakers and
researchers to better prepare for and address the challenges posed by sea level changes.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cli12080127/s1, the time series analysis of RNN-GRU-based sea
level predictions for additional clustered regions in the Mediterranean Sea.
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