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ABSTRACT: Hailstorms cause billions of dollars in damage across the United States each year. Part of this cost could be
reduced by increasing warning lead times. To contribute to this effort, we developed a nowcasting machine learning model
that uses a 3D U-Net to produce gridded severe hail nowcasts for up to 40 min in advance. The three U-Net dimensions
uniquely incorporate one temporal and two spatial dimensions. Our predictors consist of a combination of output from the
National Severe Storms Laboratory Warn-on-Forecast System (WoFS) numerical weather prediction ensemble and re-
mote sensing observations from Vaisala’s National Lightning Detection Network (NLDN). Ground truth for prediction
was derived from the maximum expected size of hail calculated from the gridded NEXRAD WSR-88D radar (GridRad)
dataset. Our U-Net was evaluated by comparing its test set performance against rigorous hail nowcasting baselines. These
baselines included WoFS ensemble Hail and Cloud Growth Model (HAILCAST) and a logistic regression model trained
on WoFS 2–5-km updraft helicity. The 3D U-Net outperformed both these baselines for all forecast period time steps. Its
predictions yielded a neighborhood maximum critical success index (max CSI) of ;0.48 and ;0.30 at forecast minutes 20
and 40, respectively. These max CSIs exceeded the ensemble HAILCAST max CSIs by as much as;0.35. The NLDN ob-
servations were found to increase the U-Net performance by more than a factor of 4 at some time steps. This system has
shown success when nowcasting hail during complex severe weather events, and if used in an operational environment,
may prove valuable.
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1. Introduction

Hailstorms cause billions of dollars in damage each year in
the United States (Gunturi and Tippett 2017). For example,
on 28 April 2021, a single hailstorm passing over Norman,
Oklahoma, caused one billion U.S. dollars in damage (NSSL
2021). The accurate forecasting of hail is important for in-
creasing warning lead time, which can in turn give the popu-
lace time to anticipate the hazard, shelter, and protect
vulnerable property. In particular, advancements to the near-
term forecasting of hail may play a significant role in decreas-
ing hail damage. This near-term (0–3 h) forecasting is referred
to as nowcasting (American Meteorological Society 2022).
Specifically, the present study aims to develop a model for the
probabilistic nowcasting of severe hail (hail with diameter$ 1 in.)
as hail larger than this threshold is the most hazardous and
destructive.

Nowcasting hail is a challenging topic (e.g., Foster and
Bates 1956; Brimelow et al. 2002; Adams-Selin and Ziegler

2016; Gagne et al. 2017; Adams-Selin et al. 2019). One diffi-
culty is that the definition of a successful hail model itself is in-
conclusive in the hail community (Adams-Selin et al. 2023).
Comparing models must be done with extra care and consid-
eration due to this complication. Another difficulty is that the
exact physical processes behind hail formation and growth
continue to be an area of exploration for leading hail experts
(Allen et al. 2020). What is generally accepted is that hail for-
mation begins with the development of a hail embryo that
subsequently moves through a storm updraft. Eventual hail
diameter is a function of the time this embryo spends within
the growth region on the periphery of the storm updraft and
the availability of supercooled water (Nelson 1983; Dennis
and Kumjian 2017; Kumjian and Lombardo 2020). These con-
cepts are well summarized in Allen et al. (2020).

Hail processes are typically encapsulated within a set of
complex interactions referred to as microphysics (Labriola
et al. 2019; Allen et al. 2020; Morrison et al. 2020). These
physical processes are in constant competition with one an-
other, and their relative contributions to hail growth are in-
completely known given the lack of direct observations
(Morrison et al. 2020). Microphysical processes occur at scalesCorresponding author: Tobias G. Schmidt, tgschmidt@shaw.ca
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far less than 1 m. However, computational limits keep opera-
tional numerical weather prediction (NWP) model grid cells
at the scale of a few kilometers at their smallest (Hong and
Dudhia 2012; Yano et al. 2018). This greatly exceeds the scale
necessary to resolve these microphysical processes. As such,
most current methods for the forecasting/nowcasting of hail
must use a statistics-based or physical surrogate of these pro-
cesses at the scale of a single NWP model grid cell (Milbrandt
and Yau 2005; Stensrud et al. 2009, 2013; Labriola et al. 2019;
Heinselman et al. 2024).

Many different statistical and physics-based hail models
have found limited success in forecasting/nowcasting hail for
various lead times (Adams-Selin et al. 2023). Some methods
are exclusively based on environmental variables (e.g., Gensini
et al. 2021), while other methods use storm variables within
ongoing convection in model simulations (Adams-Selin and
Ziegler 2016; Gagne et al. 2019). Producing methods based ex-
clusively on environmental variables is limiting since our un-
derstanding of how these variables impact hail microphysics is
incomplete (Allen et al. 2020). This has resulted in a wide
spread of different physics-based approaches to hail forecasting/
nowcasting using environmental variables (e.g., Thompson et al.
2003; Allen et al. 2011; Mohr and Kunz 2013; Johnson and
Sugden 2014; Tuovinen et al. 2015; Taszarek et al. 2020).

One such physics-based approach that has shown more success
is the Hail and Cloud Growth Model (HAILCAST) (Brimelow
et al. 2002; Jewell and Brimelow 2009; Adams-Selin and Ziegler
2016). In particular, the version that often runs in convection-
allowing models is known as Weather Research and Forecasting
(WRF)-HAILCAST (Adams-Selin and Ziegler 2016). This ver-
sion works by first examining the directly simulated updrafts pro-
duced within the WRF Model simulation (Skamarock et al.
2008). Provided these updrafts are persistent (.15 min) and suf-
ficiently strong, the WRF column properties are one-way cou-
pled to the time-dependent WRF-HAILCAST. It then creates a
one-dimensional simulation where five embryos are injected and
allowed to rise, fall, and grow before being returned in terms of a
maximum hail diameter and standard deviation. Versions of
HAILCAST have seen extensive use, including in real-time op-
erations (e.g., Jewell and Brimelow 2009; Adams-Selin and
Ziegler 2016; Dyson et al. 2021; Malečić et al. 2022; Adams-Selin
et al. 2023). Despite being one of the more popular hail predic-
tion models, it is still constrained by the aforementioned grid size
limitations and incomplete physical understanding of hail growth.

Another approach to hail nowcasting is to use machine
learning. One advantage of machine learning is that it is excel-
lent at finding complex relationships necessary for sol-
ving large-data problems without the need to pre-engineer
any physical process into the model. Not requiring this engi-
neering implies that these methods can potentially help
circumvent some of the limitations posed by the various
physics-based approaches to hail growth. Indeed, in recent
years, machine learning has become a popular method for
solving severe weather problems including hail forecasting
(Gagne et al. 2017; McGovern et al. 2017; Czernecki et al.
2019; Gagne et al. 2019; Flora et al. 2021; McGovern et al.
2023). It has likewise seen a growth in use throughout the
broader meteorological community (Chase et al. 2022). Some

examples of successful machine learning uses in hail forecast-
ing/nowcasting include using random forests, logistic regres-
sion, and k-means clustering for all-hazard severe weather
prediction (McGovern et al. 2017), next-day hail forecasting
using random forests trained on NWP models (Gagne et al.
2017), and using convolutional neural networks to predict hail
from convection-allowing NWP models for an hour-long
period (Gagne et al. 2019).

The generation of machine learning forecasts for hail re-
quires a high-quality dataset to provide predictive informa-
tion. A source for such information is the rapidly available
short-term forecast ensemble known as the Warn-on-Forecast
System (WoFS) (Stensrud et al. 2009, 2013; Gallo 2017; Gallo
et al. 2022, 2024; Heinselman et al. 2024). This system has
shown skill in providing probabilistic severe weather guidance
to the National Weather Service and has been leveraged in
prior studies by the application of random forests (Flora et al.
2021). WoFS includes a rapidly refreshed data assimilation
system which increases model performance, especially at the
shortest lead times (Hu and Xue 2007; Stensrud et al. 2013).
By rapidly assimilating radar and satellite data, the WoFS can
generate accurate predictions of individual thunderstorms, es-
pecially storms that are preexisting and persistent (Stensrud
et al. 2009; Guerra et al. 2022).

WoFS is designed for high-resolution severe weather now-
casting purposes and thus provides a useful source of model
input. To best leverage these inputs, we elected to use U-Nets,
which are a type of neural network (Ronneberger et al. 2015;
Çiçek et al. 2016; Huang et al. 2020). These models have also
been shown to perform well in many recent thunderstorm
tasks (Lagerquist et al. 2020; McGovern et al. 2023) as well as
other atmospheric applications (Justin et al. 2023). They have
an advantage over more traditional machine learning methods
such as random forests as they do not treat each point of data
(or grid point) as independent from one another. Rather, they
use small filters known as kernels to translate adjacent spatial
features (e.g., a spatial wind field gradient) into numbers inter-
pretable by machine learning. Additionally, U-Nets use gridded
data for both input and output, implying additional postprocess-
ing is not required to convert the model output to the gridded
format necessary for visualization in most operational meteorol-
ogy applications.

One further advantage of machine learning over physics-
based methods is that machine learning is capable of combin-
ing inputs from traditionally disparate sources together to find
useful relationships. We looked to exploit this advantage with
a combination of real-time observations and the WoFS pre-
dictors. Some severe weather nowcasting/forecasting studies
have found success in exclusively using real-time observations
as the input predictors for a machine learning model (e.g.,
Billet et al. 1997; Huang et al. 2019). Others have exclusively
used NWP model output to create their input datasets (e.g.,
Gagne et al. 2017; Flora et al. 2021; Gensini et al. 2021;
McGovern et al. 2023), and some researchers combine both
these methods together, yielding stronger results than what
is obtainable solely using real-time observations or numerical
weather prediction data (e.g., Czernecki et al. 2019; Lagerquist
et al. 2020; Scarino et al. 2023). This hybrid approach is attractive
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as it theoretically exploits the accuracy of real-time observations,
while using variables from NWP models that do not necessarily
require surrogates for microphysics (e.g., nonconvection varia-
bles). An additional advantage of a hybrid approach is that it can
compensate for the delays in forecast availability that occur due
to data assimilation, model integration, and forecast output post-
processing. As such, we implemented a hybrid approach using, as
input, a combination of high-resolution U.S. lightning observa-
tions from Vaisala’s National Lightning Detection Network
(NLDN) dataset (Murphy et al. 2021) and WoFS output. We
theorized that the use of a U-Net along with hybrid NWP/light-
ning observation predictors could provide an effective and novel
hail nowcasting model.

2. Methods

a. Datasets

1) WARN-ON-FORECAST SYSTEM (NWP)

Our machine learning–based nowcasting solution adopts
the hybrid NWP/observation approach to selecting predictors.
Our chosen NWP source was the WoFS ensemble. Operation-
ally, these forecasts are initialized every 30 min, with output
every 5 min. Each 5-min interval is included as input for our
U-Net. Radar and satellite data are assimilated into WoFS ev-
ery 15 min, and conventional observations are assimilated ev-
ery hour. This high rate of data assimilation allows for
detailed convective information to enter WoFS in a timely
manner, which is essential in convection time scales. The
WoFS ensemble is made up of 18 members, each with a hori-
zontal grid resolution of 3 km. All of our data are sampled
from the storm events in 2017–21 that were covered simulta-
neously by WoFS, the observations, and our labels. The
WoFS domain had 300 3 300 grid points in 2019–21 and
2503 250 grid points in 2017–18.

For all machine learning models examined in this study,
WoFS predictors were produced using a member-agnostic ap-
proach to the 18-member ensemble, where all ensemble mem-
bers are treated the same and converted to bulk samples
without an additional data channel. For example, a single

WoFS run produces 18 separate results from all 18 ensemble
members, and when using a member-agnostic approach,
18 samples are produced for this single run as opposed to
1 sample with 18 sets of features. This approach was done so
the AI could better generalize to WoFS output. Both the
models with lightning observations included and those with-
out are trained with this approach. For comparison purposes,
several of the NWP-only machine learning models are used to
independently make test set predictions on each WoFS en-
semble member before taking an ensemble average of their
outputs. This was used to examine the advantages of exploiting
an ensemble-based NWP product such as WoFS for machine
learning predictors.

Our WoFS input is comprised of 17 fields (Table 1). The
fields we chose to use from WoFS can be broken into five
categories: updraft and thermodynamic variables, WoFS hail/
severe weather composites, kinematic variables, a humidity
variable, and storm altitude information. Derived fields were
chosen over raw fields because these variables reduce dimen-
sionality for the U-Net, which in turn may lessen the amount
of physical understanding the U-Net must learn. We theorized
that this would make it easier for the U-Net to learn the rela-
tionships needed for hail nowcasting. Using these fields also
helped control the collinearity that may have occurred across
the numerous raw fields that would be required in place of a
smaller number of derived variables.

One WoFS field of particular importance is the HAIL-
CAST field (Adams-Selin and Ziegler 2016). HAILCAST is
used both as a predictor and as a baseline for evaluating our
model. We make the WoFS HAILCAST baseline (not the
predictor) probabilistic by taking the fraction of all 18 ensem-
ble members with forecast hail greater than 1 in. in diameter.
This was done so a more direct comparison could be made to
our U-Net’s probabilistic output. As discussed, our U-Net was
trained using a member-agnostic approach to its WoFS pre-
dictors and therefore uses deterministic input (without accom-
panying ensemble statistics) to produce its own probabilistic
output. Due to this, when averaged across the test set, the
HAILCAST baseline gains a performance advantage over the
member-agnostic (deterministic) U-Net. The HAILCAST

TABLE 1. Machine learning data sources summarized. W-up refers to updraft speed in the upward direction. CAPE is convective
available potential energy. CIN is convective inhibition. MU stands for most unstable. SFC means surface based. SCP is the supercell
composite parameter. SRH is storm relative helicity. The U direction is longitudinal, and the V direction is latitudinal. The term Td is
the dewpoint temperature. LFC refers to the level of free convection. LCL is the lifting condensation level.

NWP predictors (Warn-on-Forecast System)

Updraft and thermodynamics Severe weather composites Kinematics Humidity Storm alt

W-up Hail (WRF graupel) UH 2–5 km Td (2 m) Freezing level
MU CAPE HAILCAST SRH 0–1 km } MU LFC
MU CIN SCP SRH 0–3 km } MU LCL
SFC CAPE } V shear 0–6 km } }

SFC CIN } U shear 0–6 km } }

Observation predictors (Vaisala lightning network)
Lightning event count per 3 3 3 km bin

GridRad truth labels
MESH
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baseline needs to use the complete ensemble distribution
when we convert it to a probabilistic product and thus does
have access to these ensemble statistics. This is an important
consideration when evaluating the test set results shown later.

2) VAISALA LIGHTNING (OBSERVATIONS)

WoFS forecasts do not become available until;20 min after
WoFS initialization due to the time required for data assimila-
tion, model integration, and forecast output postprocessing.
To address this, additional lightning observations were used to
assist in bridging this gap in the early stages of the forecast.
Twenty minutes of observations were available from this wait
time and were fed into the U-Net. As this WoFS forecast is ini-
tialized 20 min before it becomes available, 20 min of WoFS
hindcasting is also available to be set alongside the lightning
data. Our machine learning forecast can begin after these
20 min have passed, so our machine learning forecast begins
20 min after WoFS initialization time (called machine learning
forecast minute 0). In summary, before machine learning fore-
cast minute 0, the input data are made up of 20 min of light-
ning and WoFS hindcasting data, while after machine learning
minute 0, it is only made up of future WoFS data.

Although NWP can offer some amount of forecast skill to
the U-Net on its own, the inclusion of observations should
allow for a further boost to the U-Net’s performance. In par-
ticular, radar, satellite, and other observations have been
shown to add considerable skill to machine learning models
used for nowcasting (Czernecki et al. 2019; Scarino et al.
2023). Vaisala’s NLDN dataset was chosen to be the observa-
tions used in this study (Murphy et al. 2021). The primary rea-
son for this selection was because Vaisala’s NLDN dataset
has a global counterpart of similar quality, ideally allowing for
future versions of our model to be scaled to the global do-
main. Including other observations such as radar or satellite
data would limit future versions to the CONUS domain and
as such were withheld for this particular study. Vaisala’s data-
set also has high resolution and scalability, making it ideal for
hail applications. In general, this dataset appeared optimal be-
cause of the strong relationship between lightning activity and
hail formation (Changnon 1992; Feng et al. 2007). A binning
algorithm was used to group lightning counts together into a
gridded product. Specifically, the number of lightning events
that occur over a 5-min period in each 3 3 3 km grid point
was used as a predictor. Twenty minutes of these data were
used for every forecast run to align with the estimated WoFS
latency time.

3) GRIDRAD MAXIMUM EXPECTED SIZE OF HAIL

(TRUTH LABELS)

Our truth labels were extracted from the gridded NEXRAD
WSR-88D radar (GridRad) dataset (Murillo and Homeyer
2019; Murillo et al. 2021; School of Meteorology/University of
Oklahoma 2021). Specifically, we used the maximum expected
size of hail (MESH) (Witt et al. 1998) calculated from the
GridRad-severe distribution of this product, which used ver-
sion 4.2 of the GridRad algorithm (Murphy et al. 2023).
MESH is a hail size estimate that is drawn directly from radar

observations. It has data for every 5 min across CONUS in
1-km grid cells. MESH was originally created by fitting hail
size from hail reports to the severe hail index (SHI) (Witt et al.
1998) via a power law. MESH is known to struggle with hail
size characterization at the smallest and largest diameters
(Cintineo et al. 2012; Ortega 2018). However, recent updates
to MESH using GridRad with larger training samples have
shown improvements in performance (Murillo and Homeyer
2019).

GridRad includes two separate hail-to-SHI power-law fits:
one to the 75th percentile of the hail distribution (MESH75)
and the other to the 95th percentile (MESH95) (Murillo and
Homeyer 2019). Several studies have tested the relationship
between observed MESH and hail sizes at the ground and
found that thresholds around 30 mm for severe hail and
51 mm for significant severe hail were ideal (Murillo and
Homeyer 2019; Wendt and Jirak 2021; Murillo et al. 2021).
For the applications here, MESH95 was chosen, as it is
focused on the characterization of larger hail. This power-law
fit was used as the basis for our severe hail truth labels, and
subsequently, all grid points with MESH95 . 25.4 mm (.1 in.
for severe hail) were labeled as positive, while all other grid
points were labeled as negative.

One motivation for choosing GridRad MESH is that a
radar-based product does not have human bias, as opposed to
using a confirmation-based source such as storm reports
(Murillo et al. 2021). Another is that its gridded format means
no major interpolation or preprocessing is required to ensure
it can be used in pixelwise evaluations (such as what would be
required when using storm reports). Resampling is done to
convert its 1-km grid cells to the 3-km grid used in WoFS so
that direct evaluations are possible.

b. Machine learning architecture (U-Net)

The particular variant of U-Net we selected for this study
was a three-dimensional U-Net 31 (Ronneberger et al. 2015;
Çiçek et al. 2016; Huang et al. 2020). Three-dimensional
U-Nets were originally created for the detection of unhealthy
tissue within medical imaging. Most commonly, they were
used to label unhealthy pixels in spatial three-dimensional im-
ages of human brains. Three-dimensional U-Nets were opti-
mal for this task as their gradient-detecting kernels would
ensure that complete biological structures (such as a tumor)
were resolved by the model rather than treating each pixel as
independent data points. In meteorology, it is possible they
could also be used successfully when labeling pixels of a spa-
tial dataset, for example, when labeling different structures of
a three-dimensional snapshot of a supercell.

For a nowcasting task, it was decided that the time dimen-
sion was of greater importance than a third spatial dimension.
This is because, in nowcasting, the state of future meteorolog-
ical variables is heavily dependent on their values in the pro-
ceeding minutes. As such, we elected to populate our three-
dimensional U-Net with meteorological data made up of two
horizontal spatial dimensions and the temporal dimension.
With this system, the gradient-detecting kernels can find adja-
cency relationships across both space and time rather than
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being constrained to only space. More traditionally, a now-
casting task would use a two-dimensional U-Net with the time
dimension relegated to additional feature channels; however,
this does not offer the same built-in kernel advantages as
what would be present in our system. It has been shown
that this method of using the third U-Net dimension for
time can provide increased model skill over the standard
two-dimensional U-Net method (e.g., Bansal et al. 2022). In
particular, it was hypothesized that a 3D U-Net with a time
dimension would produce better hail predictions than a
standard 2D U-Net since hail growth is very temporally
dependent.

This temporal dimension also allowed the simultaneous
output of multiple forecasted time steps without the need for
multiple machine learning models or a more complex archi-
tecture. Each data sample comprised a sequence of twelve
64 3 64 patches valid at 5-min increments. Thus, each sample
spanned 60 min, the latter 40 min of which was forecast time.
The U-Net was trained with 3368 training samples and 846
validation samples (which with all 12 time steps comprised
40 416 and 10 152 patches, respectively). Finally, the 31 vari-
ant of U-Net was selected because the characteristic skip con-
nections present in this variant assist in reducing model
overfitting issues and increase the quality of feature process-
ing (Huang et al. 2020). The detailed structure of our U-Net is
given in Fig. 1. The set of hyperparameters used in our final
model is displayed in Table A1. These hyperparameters were
found using a grid search.

For operational environment considerations, training took
;3 days (with a complete hyperparameter search) on four
NVIDIA A100 graphics processing units (GPUs) and the pre-
diction step took;74 s for one complete WoFS domain on an

Intel Xeon E5-2670 V3 2.6-GHz CPU. Note that this num-
ber is only the prediction time itself, and it does not include
the time required for preprocessing tasks such as minimum–

maximum normalization, data slicing, data filtering, and
patch creation.

c. Dataset preprocessing and evaluation metrics

To prepare our data for partitioning into training, valida-
tion, and test sets, we clustered samples from the 2017–21 pe-
riod together by storm event using the density-based
clustering algorithm known as density-based spatial clustering
of applications with noise (DBSCAN) (Birant and Kut 2007).
A storm event is defined as a set of samples with WoFS initial-
ization times that are less than 6 h apart. In total, 68 storm
events were produced, with each containing hundreds to thou-
sands of patches. 20% of these events were then randomly se-
lected to produce the test set, which was set aside for the final
model evaluation. The training and validation sets were then
produced using stratified grouped fivefold cross validation
(Stone 1974) from the remaining storm events. To enforce
partition independence, grouping was used to ensure samples
from the same storm event could not be present across the
partitions. The stratification ensured similar base rates of se-
vere hail across the training and validation sets so that the
training set performance would be more representative of the
validation set performance.

Each sample was then created with all 18 predictors across
12 time steps for different WoFS initialization times. In real-
world applications, the lightning data would only be available
up to the time when the U-Net is run, which occurs 20 min af-
ter WoFS initialization due to the discussed WoFS latency.
Therefore, we placed these observations exclusively in the

FIG. 1. Schematic diagram of the architecture for our best model. Note that all convolutional layers are 3D. There
are two convolutional layers per network level and skip connections at each level (the latter is a defining characteristic
of the U-Net11/U-Net 31 variant). Each convolutional layer has batch normalization and a ReLU activation func-
tion. From the top, each network level has 8, 16, and 24 5 3 5 3 5 kernels, respectively. All hyperparameters for this
model are available in Table A1 in the appendix.
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first few time steps of each sample (prior to the defined fore-
cast period start of “minute 0”). In total, for each sample,
there were 17 WoFS features with 12 time steps (60 min) and
1 lightning observation feature with 4 time steps (20 min).
Since U-Nets require that all input predictors have the same
dimensions, the lightning observations must have the same
number of time steps as the WoFS predictors. This issue was
resolved by copying forward the final time step of the
lightning data throughout the remaining 40 min. This method
was chosen to encourage the U-Net to use the lightning obser-
vations in all time steps of the forecast period, not just in the
first few steps resolved by the size of the U-Net’s kernel. This
was deemed particularly important as observation predictors
could provide predictive value in all time steps of the short
time period covered in a nowcasting problem. The layout of
each sample is visualized in Fig. 2.

After our dataset was partitioned using cross validation and
the samples were generated, normalization was applied using
the minimum–maximum scaler:

xscaled 5
x 2 xmin

xmax 2 xmin
: (1)

Finally, a Gaussian expansion (Earnest et al. 2023) was ap-
plied exclusively to the training set. This expansion worked by
converting isolated hail labels (or 1 values) to Gaussian distri-
butions of 1 values surrounded by rings of 0.66 values which
were in turn surrounded by rings of 0.33 values (Fig. A1).
This expansion was applied to both the space and time dimen-
sions. The objective was to train the model to accommodate
modest phase errors in the hail predictions. This phase error
tolerance was expected to be particularly useful for this study
given the highly localized nature of severe hail when com-
pared to the gridcell size and due to the displacement of
U-Net predicted cells relative to GridRad cells, owing to
model predictions not necessarily matching observation loca-
tions with increasing lead time.

After this preprocessing was concluded, training was per-
formed with a hyperparameter grid search. Once a trained
U-Net was selected from the search, predictions were gener-
ated for all patches in the test set. For the case studies, a full
set of patches was necessary to fill in each complete WoFS

domain. However, if no action is taken, there would be erro-
neous predictions present along the boundaries of the
stitched-together patches that make up each domain. This is
corrected by first producing three additional domains for each
case study. These domains are made up of patches shifted by
32 grid points to the east, south, and southeast, respectively.
All four domains are then averaged together to remove the
noise that would normally exist along the internal patch bound-
aries of the original domain. This process would also most likely
be required when running this U-Net operationally.

The primary metric used for forecast evaluation in this
study was the critical success index (CSI). The equation for
CSI is given in Eq. (2), where TP is the true positives, FN is
the false negatives, and FP is the false positives. CSI ranges
from 0 to 1. Zero CSI indicates no events are correctly pre-
dicted, while 1.0 CSI indicates that all events are correctly
predicted. The CSI is calculated as follows:

CSI 5
TP

TP 1 FN 1 FP
: (2)

Both pixelwise and neighborhood CSIs are used in this
study. Neighborhood CSI includes a 6-km radius tolerance for
forecast hits. It is produced by expanding the truth labels by
6 km for exclusively the true-positive and false-positive calcu-
lations. The true and false negatives were not expanded to
avoid double counting. To calculate the contingency table sta-
tistics for CSI, the probabilistic output from the U-Net must
be binarized. The maximum CSI (max CSI) is calculated by
taking the maximum CSI across all possible probability
thresholds for this binarization. Max CSI is often displayed in
performance diagrams (as seen in later figures).

3. Results

a. Performance evaluation

To evaluate the U-Net, we compared its test set perfor-
mance to multiple baselines throughout the 40-min forecast
period (Fig. 3). To consider multiple tolerances, we examined
both pixelwise and neighborhood maximum CSI derived for a
variety of model configurations and optimizations. Across all
predictive time steps and in both metrics, we found that the
U-Net with lightning observations included outperformed the
baselines by a sizable margin. For the higher tolerance 6-km
radius neighborhood max CSI, this margin was as high as
;0.50, ;0.25, and ;0.15 at 0, 20, and 40 min, respectively.
For both metrics, the U-Net with lightning outperformed all
baselines by at least a factor of 2 and by more than a factor of
4 prior to minute 15. In the earlier forecast time steps, the
larger performance margin over baselines observed with the
lightning-containing U-Net was likely because this U-Net had
access to real-time observations at the start, while the WoFS-
based methods did not.

As there is considerable overlap between the 95% confi-
dence intervals of the no-lightning U-Nets and the best logis-
tic regression baseline, it is clear that the architecture is not
the primary driver of the model’s increased performance. The
lightning observations are responsible for the majority of this

FIG. 2. Diagram outlining the timing of the two datasets used in
each sample. Note that the lightning data are copied forward to fill
out the forecast period.
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performance increase. The improvement due to the lightning
observations drops off rapidly as the forecast proceeds. This
rapid performance drop-off may be the result of regular NWP
forecast quality decay present in the WoFS predictors
(Guerra et al. 2022), or it may indicate that the model over-
weights the lightning observations in later forecast time steps.
It may also indicate that the forward copying of the last light-
ning observations is an inadequate system. Some combination

of these three issues is also a possibility. This concept is dis-
cussed further in the conclusions.

Evaluation of the models with performance diagrams fur-
ther reinforces the lightning-containing U-Net’s skill (Fig. 4).
This U-Net shows a performance lead over the NWP-only
U-Nets and all baselines for both forecast time steps. These
results also highlight that although the NWP-only models
include ensemble-derived output, the purely deterministic

FIG. 3. Max CSI of U-Nets and several baselines for each time step of the test set’s forecast period. Black indicates
the various baselines, red indicates the U-Nets without lightning observations, and the blue line indicates the U-Net
with lightning observations. Triangle markers indicate models that use the complete ensemble distribution of WoFS,
circle markers indicate models that only use members of the WoFS ensemble deterministically, and square markers
indicate the probabilistic WoFS HAILCAST that uses the complete ensemble. The shaded regions indicate 95% con-
fidence intervals for the top model in each category (baselines, no lightning U-Nets, and lightning U-Net). (left) Max
CSI time series with 6-km radius neighborhooding to allow for some tolerance. (right) Exact pixelwise max CSI with
only the best models shown to reduce clutter.

FIG. 4. Pixelwise performance diagrams at minutes 20 and 40 of the test set forecast period. The term POD5 tp/(tp 1 fn),
where tp is the number of TPs and fn is the number of FNs. The term SR 5 tp/(tp 1 fp), where fp is the number of
FPs. (left) The performance at minute 20. All data sources that used the entire WoFS ensemble are indicated with
solid lines, while purely deterministic sources are indicated with dashed lines. The logistic regression sources are
shown in yellow, HAILCAST is shown in black, the U-Nets without lightning observations are shown in red, and the
U-Net with the observations is shown in blue. The max CSI values are marked with x values for each curve. (right)
As in (left), but at minute 40.
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lightning-including U-Net still outperforms them at each time step.
Furthermore, these results indicate that this U-Net outperforms
the baselines across nearly the entire success ratio (SR) 3 POD
space and not just for the maximum CSIs. Therefore, regard-
less of the binarization probability thresholds chosen for the
CSI, the lightning-including U-Net will outperform the baselines.
However, despite the indicated model skill, these results also reveal
a consistent overforecasting bias. An evaluation of model reliability
across additional time steps is required to examine this further.

The reliability diagram in Fig. 5 reveals a consistent trend
across time steps. Again, earlier time steps tend to overforecast
hail, while later time steps tend closer to greater reliability.
However, later time steps lose forecast confidence relative to
starting magnitudes. Some of this confidence loss can be ex-
plained by the natural NWP quality decay of the WoFS predic-
tors expected in later time steps. However, this can also be at
least partially explained as an artifact of the U-Net structure. At
the edge of each dimension resolved by a U-Net, the kernel in-
corporates fewer data since it is unable to view nonexistent ad-
jacent grid points outside the patch domain. U-Nets therefore
tend to produce poorer results near patch edges. In our U-Net,
which includes the time dimension, the first and last time steps
have cutoff issues where less desirable output is produced. The
first time steps in the forecast period do not correspond with
the first steps of the U-Net’s time dimension (see Fig. 2), so this
artifact is only observed in the last time steps. This problem is
believed to also partially explain the weaker probabilities seen
in the last time steps of the case studies shown in the following
section. The receiver operating characteristic (ROC) curves
(Fig. 5) show the expected decay of forecast skill with time. It
should be noted that both the reliability diagram and ROC
curves use pixelwise comparisons, and therefore, they show an
evaluation with no tolerance.

b. Case studies

Bulk performance metrics can be misleading, so a view into
model behavior through an interface resembling what might

be used in an operational environment may be beneficial. Sev-
eral case studies were selected from the test set for further
evaluation. To highlight the full capacity of the model, each
case study was chosen such that both success and failure cases
could be considered. A success case is defined as when the
U-Net predicts severe hail within close proximity to grid points
of GridRad MESH . 1 in. A failure case is either when there
are grid points of MESH . 1 in. without any nearby predicted
severe hail contours from the U-Net or if there are contours of
predicted severe hail without any grid points of MESH . 1 in.
nearby. These cases can also be interpreted as nonbinary with
ranging degrees of success or failure. This range is defined by
how much spatial overlap occurs between the U-Net predic-
tion contours and the GridRad MESH . 1 grid points. It is
also defined by the magnitude of the probabilities of severe
hail from the U-Net at each forecast time step.

1) 18 MAY 2017 1915 UTC

The first case study was selected to showcase a scenario
filled mostly with success cases, but which also contained a
few failure cases (Fig. 6). This was to highlight that the U-Net
could perform well, but still have some limitations during a
single severe weather event. During the forecast period start-
ing at 1915 UTC, three isolated storms near the southwestern
corner of Oklahoma produced many severe and significant se-
vere hail reports. These storms are labeled B, C, and D. The
U-Net generally shows good skill in predicting higher severe
hail probabilities in the vicinity of these hail-producing
storms. However, these results also show that the evolution of
severe hail for storms B and C was not predicted correctly by
the U-Net and that these predictions display considerable spa-
tial displacement error by the end-of-forecast period. This
arises from the differences between storm motion in reality
(which produces the MESH labeling) versus the U-Net pre-
dictions driven by WoFS storm motion and an extrapolation
of the lightning observations. These two storms are examples

FIG. 5. (left) Test set pixelwise reliability color coded by forecast time step. The solid black vertical and horizontal
lines represent the lines of climatology and no resolution, respectively. The dashed black line indicates the Briar skill
score “no skill” line. True-positive rate 5 number of TPs/total number of positives. False-positive rate 5 number of
FPs/total number of negatives. Reliability curves closer to the solid black diagonal line indicate greater reliability.
(right) Test set pixelwise ROC curves color coded by forecast time step. Curves closer to the top left of the graph are
more desirable. Areas under the curve (AUCs) are displayed in the legend.
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of partial success cases, while the other isolated storm was a
strong success case.

These results additionally suggest that the U-Net mostly
avoids overpredicting hail in areas of reflectivity not associ-
ated with hail reports or GridRad MESH. In general, the
U-Net’s severe hail predictions align more accurately with
MESH severe hail occurrences when compared to the ensem-
ble WoFS HAILCAST product. In the north, storm A, which
produced a severe hail report, does not have any hail forecast
by the U-Net. This seems to indicate a possible failure case;
however, only a small amount of severe hail was estimated by
the GridRad MESH at this location. Alternatively, it is possi-
ble that MESH spuriously produces a weak signal for this
storm due to its distance from the nearest radar site (i.e., is
still a false negative).

The storms that develop during the course of the forecast
period to the north of storm B are not well forecasted by the
U-Net. At minute 20, these cells do not have much MESH as-
sociated with them; however, at minute 40, they do have a
considerable MESH signal. It should be noted that these
storms do not include storm reports so it is possible MESH
may be overestimating severe hail in this area. Assuming

MESH is accurate, this highlights how the U-Net can under-
predict storms that develop late into the forecast period be-
cause they do not have strong lightning activity during the
earlier 20-min observation time. Ideally, the U-Net would
gain more information from the WoFS predictors at this late
stage so it could predict more severe hail with these late de-
veloping cells.

2) 28 MAY 2019 2245 UTC (SOUTHERN DOMAIN)

The second case study was selected to highlight a scenario
where all storms were obvious severe hail producers (Fig. 7).
The two cells of significance in this case study both presented
success cases for the U-Net by minute 20; however, the U-
Net’s predicted location of the northern storm’s hail lagged to
the southwest by minute 40. This northern storm can still be
considered a weak success case in minute 40 as the U-Net predic-
tions partially cover the grid points of GridRad MESH. 1 in. at
this time step. This lagging behavior appears similar to the behav-
ior observed in the first case study where the predictions of more
northern hail have considerable spatial error by the end of the
forecast. This is likely due to the NWP forecast decay in the

FIG. 6. Case study of 18 May 2017 with U-Net forecast start time at 1915 UTC. On all plots, the black contour lines
indicate the U-Net output. Greater probabilities of hail are represented with increasing opacity. (top) U-Net forecast
contours overlaid onto GridRad composite reflectivity observations for reference. (bottom) U-Net forecast contours
overlaid on blue shaded contours that indicate the WoFS ensemble HAILCAST forecast and red grid points where
GridRad MESH . 1 in. (left) 20 min into the forecast period. (right) 40 min into the forecast period. Severe and sig-
nificant severe hail reports are labeled with black dots and stars, respectively. Each storm cell cluster of note is labeled
with a letter for identification needed in discussion.
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WoFS predictors, the end-of-forecast cutoff issues experi-
enced by our U-Nets, or it may be associated with the in-
creased difficulty of forecasting hail in storms experiencing
interactions with the outflow of the neighboring storms to
the south.

Despite the issues with the northern storm’s U-Net fore-
cast, this area of severe hail was not predicted whatsoever by
WoFS HAILCAST. Additionally, the U-Net accurately pre-
dicted the severe hail associated with the lagging behind, emerg-
ing cell to the southwest of the southern storm. This smaller
area of severe hail was missed by the WoFS HAILCAST prod-
uct, again highlighting the improvement offered using the
U-Net prediction model.

3) 28 MAY 2019 2245 UTC (NORTHERN DOMAIN)

The final case study was chosen to analyze a noisy and
widespread severe weather event (Fig. 8). Overall, the U-Net
performs well for this case but with more mixed success. All
storms except those labeled “H” and “J” are mostly well pre-
dicted throughout the forecast period. The eastern of these
two storms has limited coverage of GridRad MESH . 1 in.
with some MESH grid points present at minute 20 of the

forecast; however, these dissipate by minute 40. This MESH
trend aligns with the steady decay in reflectivity observed in
this area during the same period. Despite this limited cover-
age, the U-Net produced confident severe hail predictions for
this location, which could be considered a possible false posi-
tive. The western storm H is a clearer failure case. GridRad
MESH . 1 in. persists for this small cell throughout the fore-
cast period despite very limited forecasting from the U-Net.
The storm was given a ;0.06 probability of severe hail by the
U-Net exclusively at minute 20. It is possible the U-Net failed
to deliver a more confident forecast for this storm because
such a small cell may have produced only small quantities of
lightning in the early portions of the forecast period.

In general, relative to their starting values, the probabilities
reveal a trend to smaller magnitudes in the final time steps
(especially minute 40) of all three case studies. This appears
to be further evidence of the U-Net cutoff issue discussed pre-
viously; however, this again must be balanced with consider-
ation for the effect of natural NWP quality decay present in
the WoFS predictors. Finally, the U-Net produced a false pos-
itive in the northeastern portion of the domain where there
was no GridRad MESH . 1 in., limited reflectivity, and no
hail reports. One possible explanation for this false positive is

FIG. 7. As in Fig. 6, but for the southern half of the WoFS domain on 28 May 2019. The U-Net forecast start time was
at 2245 UTC.
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a brief occurrence of lightning activity in its vicinity at the start of
the forecast period without subsequent storm intensification.

4. Conclusions and future work

In this study, we developed a severe hail nowcasting ma-
chine learning model for real-time applications, aimed at the
0–1-h time frame. Through the development of this model, we
have reiterated the importance of incorporating real-time ob-
servations for nowcasting problems and augmenting NWP
data. Our benchmarks for evaluation were the Warn-on-
Forecast System (WoFS) HAILCAST ensemble-derived prob-
abilistic severe hail and the probability of severe hail sourced
from updraft helicity (UH)-based logistic regression. These
were used for a comparison of physics-based and machine
learning methods, respectively. Our model outperformed both
benchmarks for all time steps in the forecast period (Fig. 3).

Many studies have found varying degrees of success when
using traditional physics-based approaches to hail modeling
(e.g., Thompson et al. 2003; Jewell and Brimelow 2009; Allen
et al. 2011; Mohr and Kunz 2013; Johnson and Sugden 2014;
Tuovinen et al. 2015; Adams-Selin and Ziegler 2016; Taszarek
et al. 2020). HAILCAST in particular has been popular for
some time as a primary means of hail nowcasting/forecasting
(e.g., Jewell and Brimelow 2009; Adams-Selin and Ziegler
2016; Trapp et al. 2019; Dyson et al. 2021; Malečić et al. 2022).
The U-Net outperformed the WoFS HAILCAST both with
and without the lightning observations. This highlights the value
of a machine learning solution to this problem, even without the
additional observation-based predictor considerations.

Other studies have explored some of these machine learn-
ing solutions to the hail forecasting/nowcasting problem (e.g.,

Gagne et al. 2017; McGovern et al. 2017; Gagne et al. 2019; Flora
et al. 2021). Flora et al. (2021) in particular usedWoFS predictors
and machine learning methods that differed from U-Nets in a
nongridded solution. Our U-Net outperformed the logistic re-
gression benchmark representing less complex machine learning
models using WoFS predictors and while keeping all data
gridded. This allowed for useful nowcasting data that are immedi-
ately verifiable in the gridded format often used in an operational
environment without needing additional postprocessing.

Another approach that may offer a more skillful forecast is
to use an advanced machine learning model such as a vision
transformer. These results highlighting a positive trend in per-
formance across progressively more modern models support
the validity of this approach. It is possible transformers would
offer a skill increase without needing to change any of the
predictors. Additionally, transformers offer an enticing alter-
native to U-Nets as they have recurrent logic built into their
architecture, rendering additional modifications so the model
can resolve temporal trends in weather (such as what was
done with our third U-Net dimension) unnecessary.

Last, the vast increase in performance observed when adding
the Vaisala lightning observations to our predictors provides ev-
idence supporting the claim that observations are critical to
nowcasting problems. This lightning predictor multiplied the
model’s max CSI by as much as ;3 times early in the nowcast-
ing period (compared to the nonobservation using U-Net). The
benefits of incorporating observational predictors have been
demonstrated in several other studies (Czernecki et al. 2019;
Leinonen et al. 2022). One such example is the model produced
for Czernecki et al. (2019), where CSI performance values
nearly doubled when radar observations and ERA5 reanalysis
were combined for use in a large hail machine learning model.

FIG. 8. As in Fig. 6, but for the northern half of the WoFS domain on 28 May 2019. The U-Net forecast start time
was at 2245 UTC.
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In general, our model performance is similar to what has been
observed in other machine learning studies, especially studies
which use similar forms of neural networks (Gagne et al. 2019;
Flora et al. 2021).

Despite the successes of our model, we must note several
limitations that may be addressable in future studies. Most is-
sues relate to the decay in model performance late in the fore-
cast period observed in the results. These issues must all be
balanced with a consideration for the natural decay in forecast
quality we would expect from numerical model forecast data,
a property seen in WoFS forecasts (Guerra et al. 2022). How-
ever, since several limitations have been identified that are re-
lated to the U-Net end-of-forecast quality, it is plausible at
least some of the U-Net quality decay can be explained by
them. One explanation for this decay is what was referred to
as the cutoff issue. This was caused by the U-Net’s kernel be-
ing unable to resolve data past the edges of each patch, thus
causing quality drop-offs along the boundaries of all three di-
mensions, including time. A possible solution to this is extend-
ing the forecast period by increasing the size of the U-Net’s
time dimension. This might not require much additional effort
as U-Nets are highly scalable and would have the added bene-
fit of a deeper U-Net. A deeper U-Net may learn more com-
plex relationships between the predictors and the potential
for severe hail. The last few time steps of the expanded U-Net
could be simply discarded to avoid their reduced quality with-
out sacrificing earlier desired forecast time steps.

Another explanation for the forecast decay may be found
in the U-Net’s relationship with its NWP (WoFS) predictors.
It has been observed that the U-Net overrelies on the light-
ning observations predictor in later forecast time steps
(Schmidt 2023). A more optimized U-Net would value the
WoFS forecasted predictors in later time steps over the light-
ning observations. One way to address this limitation would
be to train the U-Net on WoFS predictors made up of the
ensemble mean and standard deviation as opposed to the
member-agnostic approach. These predictors generally repre-
sent higher-quality forecasts (over what is produced by the indi-
vidual members). Therefore, it is probable the U-Net would
value them to a greater degree and use them more in later time
steps. Introducing a more refined loss function to the U-Net
may be a further solution. This loss function could weigh predic-
tors differently depending on the time step and therefore may
encourage greater NWP predictor use for later time steps.

The explanation for why the WoFS predictors are less relied
on may also be simpler. The forward copying of the lightning
observations to fill out the U-Net’s time dimension may en-
courage the U-Net to overrely on them in the later time steps.
The dimension had to be entirely filled by all predictors, even
the predictors which were only available in the first few time
steps. The motivation for copying was to ensure the
U-Net did not ignore the value of the observations completely
in the last few time steps, but this compensation may have
been overly strong. Instead, a solution may be to fill the re-
maining lightning time steps with zeros or decreasing weighted
probabilities to discourage overuse in later forecast time steps.

Another future task may be to increase the use of lightning
observations in later WoFS forecast time steps. The most up-

to-date lightning observations could be included in later time
steps to simulate the updating of an older WoFS run with
newer observations. This may be prudent to maximize the ad-
vantages of the lightning observations for every possible fore-
cast use scenario. Alternatively, consideration could be given
to other observation predictors. This study used the Vaisala
NLDN dataset exclusively (without secondary observations)
to evaluate the NLDN data’s contribution to the forecast skill
in isolation. This was to ensure our model could be scaled to a
global domain using Vaisala’s comparable global lightning da-
taset, without being limited by the domains of other observa-
tional products. Using GridRad MESH as a predictor is an
obvious step to immediately improve the forecast quality;
however, it would change the scope of the problem we set out
to solve to one focused on CONUS. In a separate study, adding
GridRad MESH itself as a predictor may be prudent insofar as
extra care is taken to ensure time steps evaluated against the
MESH labels do not overlap with the observation time steps.
Additionally, adding satellite or radar products such as cloud
cover or reflectivity may offer an additional boost to model per-
formance; however, as these data sources are assimilated as
part of WoFS, this may cause a double counting issue depend-
ing on how they are used. With the success of the NLDN data-
set’s use in our framework, we envision that our severe hail
nowcasting U-Net could be applied outside the CONUS once
paired with other regional (or even global) convection-allowing
models or ensembles. It is possible that using a U-Net/lightning
predictor framework similar to ours could produce an opera-
tional worldwide severe hail nowcasting model with similar per-
formance to what has been illustrated herein.
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APPENDIX

Label Expansions and Hyperparameters

Figure A1 and Table A1 show the Gaussian label expansion
method and a summary of all hyperparameters used, respec-
tively. The Gaussian expansion system described in Fig. A1 is
used to address the sparseness of hail labels. Table A1 lists
all optimal, found hyperparameters for the best performing
U-Net.

FIG. A1. Overview of how a Gaussian expansion of our labels is
performed in both space and time across adjacent pixels. Time “t”
indicates the time step at which the original label occurs.

TABLE A1. Optimal found, hyperparameters of best-performing 3D U-Net, and their search spaces. The symbol * means it had to be
3 because of 3D U-Net 31 and sample dimension constraints.

U-Net hyperparameters

Name Search space Chosen

Convolutional layers 1, 2, 3 2
Kernel size 3, 5, 7 5 (5 3 5 3 5)
Activation ELU, ReLU ReLU
Number of kernels 4, 8, 16, 32 8
Depth 3* 3
Optimizer Adam, Adagrad, SGD, RMSprop SGD
Batch norm Yes, no Yes
3 plus Yes, no Yes
Batch size 32, 64, 128, 256 32
Learning rate 0.01, 0.001 0.001
L2 regularization 0.1, 0.05, 0.01, 0.005, 0.001, 0.0001, 0.000 01 0.01
L1 regularization 0.1, 0.05, 0.01, 0.005, 0.001, 0.0001, 0.000 01 0.001
Loss Binary cross entropy Binary cross entropy
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