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ABSTRACT: Robust quantification of predictive uncertainty is a critical addition needed for machine learning applied to
weather and climate problems to improve the understanding of what is driving prediction sensitivity. Ensembles of ma-
chine learning models provide predictive uncertainty estimates in a conceptually simple way but require multiple models
for training and prediction, increasing computational cost and latency. Parametric deep learning can estimate uncertainty
with one model by predicting the parameters of a probability distribution but does not account for epistemic uncertainty.
Evidential deep learning, a technique that extends parametric deep learning to higher-order distributions, can account for
both aleatoric and epistemic uncertainties with one model. This study compares the uncertainty derived from evidential
neural networks to that obtained from ensembles. Through applications of the classification of winter precipitation type
and regression of surface-layer fluxes, we show evidential deep learning models attaining predictive accuracy rivaling stan-
dard methods while robustly quantifying both sources of uncertainty. We evaluate the uncertainty in terms of how well the
predictions are calibrated and how well the uncertainty correlates with prediction error. Analyses of uncertainty in the
context of the inputs reveal sensitivities to underlying meteorological processes, facilitating interpretation of the models.
The conceptual simplicity, interpretability, and computational efficiency of evidential neural networks make them highly
extensible, offering a promising approach for reliable and practical uncertainty quantification in Earth system science
modeling. To encourage broader adoption of evidential deep learning, we have developed a new Python package, Machine
Integration and Learning for Earth Systems (MILES) group Generalized Uncertainty for Earth System Science (GUESS)
(MILES-GUESS) (https://github.com/ai2es/miles-guess), that enables users to train and evaluate both evidential and
ensemble deep learning.

SIGNIFICANCE STATEMENT: This study demonstrates a new technique, evidential deep learning, for robust and
computationally efficient uncertainty quantification in modeling the Earth system. The method integrates probabilistic
principles into deep neural networks, enabling the estimation of both aleatoric uncertainty from noisy data and episte-
mic uncertainty from model limitations using a single model. Our analyses reveal how decomposing these uncertainties
provides valuable insights into reliability, accuracy, and model shortcomings. We show that the approach can rival stan-
dard methods in classification and regression tasks within atmospheric science while offering practical advantages such
as computational efficiency. With further advances, evidential networks have the potential to enhance risk assessment
and decision-making across meteorology by improving uncertainty quantification, a longstanding challenge. This work
establishes a strong foundation and motivation for the broader adoption of evidential learning, where properly quanti-
fying uncertainties is critical yet lacking.
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1. Introduction

Uncertainty is an inherent aspect of any prediction (Abdar

et al. 2021), yet it is often overlooked or not communicated ef-
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0093.s1. . . . .
certainty estimates can be highly valuable, allowing users to un-
derstand the reliability (Rel) of predictions and make more
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2 ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS

Joslyn 2009; Kendall and Gal 2017). For model developers, ac-
curate predictive uncertainty estimates can help identify chal-
lenging cases and determine when a model may be operating
outside its training domain (Kendall and Gal 2017; Karpatne
et al. 2017). Additionally, by connecting uncertainty estimates
with other analysis tools, researchers can gain insights into the
input sensitivities that influence uncertainty levels, allowing a
better understanding of the factors that drive these uncertain-
ties (Herman and Schumacher 2018; Liu et al. 2020). In the
realm of machine learning (ML), various approaches have
emerged for quantifying total predictive uncertainty. These in-
clude well-established methods such as bagging (Breiman
1996), Gaussian processes (Rasmussen and Williams 2006),
quantile regression (Koenker 2005), and newer conformal
methods (Romano et al. 2019; Stankeviciute et al. 2021; Ange-
lopoulos and Bates 2022). However, it is essential to recognize
that existing methods often come with inherent limitations.
Conventional techniques, such as bagging, may encounter dif-
ficulties in capturing the full spectrum of uncertainty, particu-
larly when dealing with intricate, multimodal distributions.
Moreover, many established methods often lack the ability to
decompose predictive uncertainty into its underlying compo-
nents, hindering a deeper understanding of uncertainties. Addi-
tionally, handling custom probability distributions can be
challenging for some of these methods, limiting their adaptabil-
ity to specific problem domains.

Traditionally, uncertainty quantification (UQ) within the
Earth system science community has been pursued through
the development and enhancement of physics-based numerical
models, which generate probabilistic forecasts using ensembles
of deterministic forecasts that vary in initial conditions, bound-
ary conditions, or model specifications (Leith 1974). One nota-
ble advantage of these methods is their strong foundation in
the true physics of atmospheric/oceanic motion. However, de-
terministic numerical model ensembles come with consider-
able computational costs and often lack proper uncertainty
calibration (Vannitsem et al. 2018). To combat the computa-
tional expense and lack of calibration, UQ has been attempted
through statistical linking functions. Two prominent techni-
ques are ensemble model output statistics (Gneiting et al.
2005), in which a parametric distribution is prescribed and fit,
and Bayesian model averaging (Raftery et al. 2005), where the
UQ takes the form of a weighted mixture distribution.

The use of modern ML for Earth system UQ has been the
focus of much recent research (McGovern et al. 2017; Haynes
et al. 2023), especially within the forecast postprocessing com-
munity (Haupt et al. 2021; Schulz and Lerch 2022; Vannitsem
et al. 2021). Popular techniques include parametric fitting
(Ghazvinian et al. 2021; Rasp and Lerch 2018; Chapman et al.
2022; Guillaumin and Zanna 2021; Barnes and Barnes 2021;
Foster et al. 2021; Delaunay and Christensen 2022; Gordon
and Barnes 2022), quantile-based probabilities transformed to
full predictive distributions (Scheuerer et al. 2020), or creating
direct approximations of the quantile function via regression
based on Bernstein polynomials (Bremnes 2020).

Many users of uncertainty rely on a single metric, such as
probability or ensemble spread, but decomposing uncertainty
into different components provides valuable insights into its
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sources and nature (Kendall and Gal 2017) and can help vali-
date how well a model captures the different uncertainty sources.
In statistics, the law of total variance decomposes uncertainty
into aleatoric, arising from inherent data randomness, and episte-
mic, arising from model limitations and insufficient training data
(Kendall and Gal 2017). High aleatoric uncertainty indicates the
lack of a clear relationship between the model inputs and the tar-
get and can only be reduced with the addition of more informa-
tive input variables (Herman and Schumacher 2018). High
epistemic uncertainty can be reduced by accumulating more data
in sparse areas of the input space or by reducing the complexity
or flexibility of the model. Such distinction aids in assessing
model learning capacity, generalization, and guiding hyperpara-
meter optimization (Karpatne et al. 2017). Advancing this field
requires techniques that efficiently decompose uncertainty while
achieving general predictive reliability.

While parametric probabilistic ML models, such as those
that predict the parameters of a categorical or Gaussian prob-
ability distribution, can express aleatoric uncertainty (Nix and
Weigend 1994), they do not account for epistemic uncertainty
(Amini et al. 2020). The predicted variance only accounts for
data variance, not model variance. Ensembles of deterministic
ML models (Lakshminarayanan et al. 2017) and sampling
methods, such as Monte Carlo dropout (Srivastava et al. 2014;
Gal and Ghahramani 2016), approximate epistemic uncer-
tainty by deriving their spread from model perturbations, but
if their predictions are single labels or values, then they are
not accounting for spread (aleatoric uncertainty) in the data.
On the other hand, Bayesian neural networks (Neal 2012),
which treat every weight as a random variable, can accurately
estimate both aleatoric and epistemic uncertainties but are
computationally demanding and challenging to implement for
complex architectures. Ensembles of parametric probabilistic
models can also be used to approximate aleatoric and epistemic
uncertainties (Delaunay and Christensen 2022) but only with a
sufficiently large ensemble size (Shaker and Hiillermeier 2020).

The recent rise of evidential neural networks (ENNs)
(Sensoy et al. 2018; Amini et al. 2020; Ulmer et al. 2021) of-
fers a promising solution that strikes a balance between effi-
ciency and accuracy while providing an effective approach to
estimate both sources of uncertainty. ENNs use a single deter-
ministic neural network (NN) while modifying the prediction
task to estimate the parameters of a higher-order evidential
distribution, which draws relevance from Bayesian data analy-
sis principles (Gelman et al. 2013). This distribution treats the
parameters of the target distribution as random variables and
models them with an assumed prior distribution (Sensoy et al.
2018; Amini et al. 2020). For multinomial (categorical) and
Gaussian distributions, analytical formulations of conjugate
prior distributions, such as the Dirichlet and normal inverse
gamma (Sensoy et al. 2018; Amini et al. 2020), enable the con-
struction of exact loss functions for NN training. These loss
functions consist of a negative log-likelihood component to
maximize the fit to the data and a regularizer term to mini-
mize evidence allocated to incorrect predictions and inflate
the conditional uncertainty (Sensoy et al. 2018).

In this work, we introduce the concept of evidential deep
learning (EDL) to the Earth system science community. EDL
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FIG. 1. (a)-(b) Example of temperature, dewpoint, and wind vertical atmospheric profiles, commonly referred to as a
sounding, along with (c)—(d) different predictive uncertainty representations for p type classification.

represents a relatively recent ML technique known for its
ability to provide predictive uncertainty estimates with practi-
cal advantages, as discussed in detail by Sensoy et al. (2020).
For example, uncertainty estimates are obtained using a single
model rather than with an ensemble of models. Our primary
focus is on the application of ENNs within the weather and
climate domain, where the accurate estimation of uncertainty
holds significance in decision-making, as highlighted in previ-
ous studies (Shepherd 2009; Bauer et al. 2015). To assess the
utility of ENNs, we employ them in both classification and re-
gression tasks. In the classification domain, we showcase an
ENN trained to predict winter precipitation type based on
simulated atmospheric temperature, dewpoint, and wind ver-
tical atmospheric profiles, commonly referred to as soundings.
In regression tasks, our evaluation centers on assessing the
model’s performance in estimating surface energy fluxes using
observed meteorological variables (McCandless et al. 2022).
In addition to practical applications, we have defined three
key objectives: 1) to quantitatively assess and compare the
predictive skill of evidential versus deterministic neural net-
works using essential metrics such as Brier skill score (BSS)
and root-mean-square error (RMSE). 2) To evaluate the cali-
bration of predicted uncertainties derived from evidential

models and ensembles through various analysis techniques.
3) To explore calibration tuning approaches tailored to
ENNs, including parameter adjustments such as a loss regu-
larization weight for regression and the fine-tuning of the
dropout rate for Monte Carlo (MC) ensembles. These ob-
jectives aim to provide a balanced understanding of the
potential of evidential architectures in generating uncer-
tainty estimates while maintaining accuracy and emphasize
the significance of uncertainties in assessing the limitations
of ML models.

2. Problems of interest
a. Precipitation-type classification

In the realm of supervised learning, an NN is employed to
predict the most likely label or outcome based on a given set
of input predictor variables. Figure 1 provides an illustration
of model inputs and outputs for a classification problem to
identify winter precipitation types. The inputs are shown in
Figs. 1a and 1b and are listed in Table 1. They include tempera-
ture, dewpoint temperature, zonal, and meridional wind, at
equally spaced heights in the atmosphere. The output is a winter
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TABLE 1. Summary of the winter precipitation classification and surface layer energy flux regression datasets, including input
variables, output variables, and details on the training/validation/testing data splits.

Dataset Input variables

Output variable (s) Data splitting

Precip (classification) Temp (7, °C)
Dewpoint temperature (7gew, “C)
Zonal wind (U, ms™ )

Meridional wind (V, m s~ 1)

Wind speed (10 m; m s~ 1)

Potential temp gradient (10 m to
skin; K m™")

Bulk Richardson number (10 m
to skin; none)

Water vapor mixing ratio
gradient (2 m to skin;

gkg 'm™)

Surface layer (regression)

Rain 2015-July 2020: randomly
Snow grouped by day, split into
Sleet training (90%) and validation

Freezing rain (10%) sets. Post July 2020
withheld for testing (which is
about half the size of the
training data).

Randomly split Cabauw dataset
from 2003 to 2016 into training
(11 years) and validation (2
years) sets, 2015 and 2016 were
removed for testing.

Friction velocity (m s~ ')
Sensible heat flux (K m s~ ')

Latent heat flux (kg m s~ ')

precipitation-type label derived from a set of precipitation-type
prObabﬂities:p = (praim Psnows Psleets pfrzrain) (Flg 1C)

The contrast between the two modeling approaches investi-
gated here (ensemble vs evidential) when predicting the
“sleet” label is illustrated in Fig. 1c. In the case of the ENN,
the predictions are represented by a smooth curve, offering a
continuous and comprehensive quantification of possible out-
comes. Conversely, an ensemble approach such as k-fold cross
validation (CV), where the training data are divided into k
smaller sets, or MC sampling provides discrete point esti-
mates, as seen in the figure, which are obtained by collecting
multiple model predictions. It is important to note that these
point estimates require an ensemble of a fixed size to approxi-
mate the continuous probabilistic insights provided directly
by the ENN. This distinction highlights the effectiveness of
the ENN in capturing the full spectrum of uncertainty for the
full set of labels, as opposed to the more discrete and ensemble-
based representation of uncertainty.

The input training data are simulations of atmospheric pro-
files from the NOAA Rapid Refresh numerical weather pre-
diction model every 250 m from 0 to 5 km above ground level,
and the observed outcome is a series of crowd-sourced obser-
vations from NOAA'’s Meteorological Phenomena Identifica-
tion Near the Ground (mPING) project, occurring within a
given volume (13 km) and time frame (1 h) (see Table 1).
Within a given volume, we aggregated reports and selected
the p type that was the most reported. While this approach
captures the dominant precipitation type within a volume, it
does not fully account for potential subgrid-scale variability
due to meteorological and societal factors influencing the
crowd-sourced observations. However, aggregating the most
frequently reported precipitation type provides a reasonable
representation of the overall conditions for the modeled vol-
ume. A small percentage of cases had physically inconsistent
precipitation reports, which were filtered out based on criteria
involving the wet-bulb temperature and other conditions.
Figure 2a shows the multilayer perceptron (MLP) architec-
ture for predicting p type class probabilities.

b. Surface layer energy flux regression

This problem aims to train an ML parameterization of the
surface layer energy flux (friction velocity, sensible heat, and
latent heat) from near-surface atmospheric conditions to re-
place existing parameterizations in weather and climate mod-
els (McCandless et al. 2022; Muioz-Esparza et al. 2022).
Figure 2b depicts the MLP architecture for this regression
scenario. The surface layer energy flux problem uses flux
tower data from 2003 to 2017 at the KNMI Cabauw site in the
Netherlands (Bosveld et al. 2020), which has been used for
validating surface layer parameterizations and land surface
models since 1972. Details on the inputs and outputs to the
model and dataset splitting are provided in Table 1.

3. Methods

In classification problems, ML models output a number as-
sociated with each of K known classes for an event. Although
predictions cover the volume of an event, the single-point lo-
calized observations used for verification may not fully cap-
ture the spatial and temporal variability present within a
given precipitation/weather event. To model the potential
variability in observed outcomes for an event, we can use the
multinomial distribution, which generalizes the categorical
distribution to the outcomes of m repeated observations
under the same event conditions. Formally, given K outcome
categories, m observations, and categorical probabilities

P = {p1, ---, Pk}, the probability of observing the histogram
y = {y1, ..., yx}, where yy is the number of times category k
was observed, is
| K
p(ylm, p, K) = Km' [1p (1)
1—[ yk! k=1
k=1

Given a covariate vector x, we train an ML model to estimate

p(x) by predicting p(x) = {p,(x), ..., p (X)}. We construct a
N
n=1’

training dataset & = {x,y,} where N is the number of
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FIG. 2. (a) Deterministic and evidential MLP architectures for predicting class probabilities in the precipitation-
type categorical dataset. (b) Architectures for predicting parameters in the surface layer regression dataset, including
Gaussian (u, 0°) and normal-inverse-gamma (7, v, a, B) distributions. In both architecture diagrams, the NN is repre-

sented by f,,, where w are the trainable parameters.

data points, that we then input into the ML model repeatedly
in order to adjust the parameters (weights) w of the ML
model to maximize their likelihood given the training data.
This statistical optimization process, called the maximum like-
lihood estimation, involves the model ingesting the inputs and
predicting outputs y to minimize the negative log-likelihood
loss function:

1 N K
FWZ) =5 2 2y, b, . (%)) @

z|

where w are the model parameters, y, , is a binary indicator
for whether the nth sample belongs to class k, and p, ,(x,) is
the predicted probability of the nth sample belonging to class
k. Maximum likelihood estimation assumes that we are seek-
ing one fixed set of w that best explains our data due to its ori-
gins in frequentist statistics (MacKay 2003). Thus, these
predicted probabilities only account for aleatoric uncertainty
from the variation in the outcome for each input and motivate
the exploration of other methods to account for epistemic
uncertainty.

a. Model ensembles

A variety of ensemble methods can be used to obtain un-
certainty estimates such as repeating the maximum likelihood
estimation process with different random initializations (deep
ensembles) or by resampling the training data. Both these
approaches can produce ensembles of probabilistic ML models
(Lakshminarayanan et al. 2017; Gal and Ghahramani 2016;
Dietterich 2000). Another approach is the Bayesian NN
(Neal 2012), which treats the weights of the NN as random
variables, each represented by a parametric probability

distribution. Both ensemble and Bayesian approaches allow
for estimating aleatoric and epistemic uncertainties, extend-
ing the model’s ability to capture and express uncertainty in
predictions. While ensembles are straightforward to train,
they may require a large number of members or repeated
samples to produce robust uncertainty estimates. On the
other hand, Bayesian NNs require more weights per model
compared to standard NNs and are less likely to converge
to results that perform well deterministically and produce
robust uncertainty estimates.

We use three ensemble generation methods: CV (k-fold =
20), deep ensembles (ensembles of size 20), and MC dropout
(Nmc = 20). The ensemble size of 20 was chosen because we
observed comparable characterization of uncertainty relative
to larger ensembles. For CV, the dataset was divided into
folds (subsets), with each fold serving as the validation set for
a different model instance. Deep ensembles involved training
multiple instances of the same network with different random
initializations (Lakshminarayanan et al. 2017), resulting in
variations in model performance once training completes. MC
dropout randomly deactivated neurons during the training
and inference, leading to ensemble predictions (Gal and
Ghahramani 2016). A large ensemble size was not required
for CV and deep ensembles, so for a fair comparison, Ny
was also set to 20. We apply these ensemble techniques to
both classification and regression tasks.

b. Evidential classification

The recent EDL approaches aim to find a middle ground
between ensemble methods and Bayesian NNs (Sensoy et al.
2018; Amini et al. 2020; Meinert and Lavin 2021; Oh and Shin
2022; Meinert et al. 2023). Instead of using fixed weights for
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the NN, EDL predicts the parameters for a higher-order pos-
terior distribution. This higher-order distribution describes
the space of possible lower-order distributions that could only
be partially sampled by ensemble techniques. By taking this
approach, EDL tries to combine the benefits of ensembles
and Bayesian NNs. In Bayesian inference, prior information
is combined with the observed data using Bayes’ theorem to
update our beliefs and obtain the posterior distribution. Re-
call that Bayes’ theorem states that the posterior probability
of a parameter given the data is proportional to the product
of the prior probability and the likelihood of the data given
the parameter: posterior ~ prior X likelihood. By including a
prior distribution in our inference process, we can define the
space of possible models and thus include the epistemic un-
certainty. However, in order to make the inference problem
tractable, we must pick a prior distribution that can be analyt-
ically related to our posterior distribution.

Given these constraints, the best choice of prior for our
multinomial/categorical target distribution is the Dirichlet dis-
tribution (Murphy 2007; Hoffman et al. 2013). It is described
by parameters & = (o, g, ..., ag), wWhich intuitively are
“pseudocounts” or the strength of evidence for outcome k.
The higher o is relative to the other a’s, the higher the prob-
ability of distributions p, where p; is relatively large. The
probability density function is

K
1 K 1 Hr(ak)
- L _ k=1
fple) = { Bl Lpx forP &S Ble) =y,
r Zak
k=1
0 otherwise,
3)

where Sk is the set of all K-dimensional vectors p with entries
summing to 1 and each entry greater than or equal to 0. The
variable B(«) is the K-dimensional multinomial beta function
(Kotz et al. 2004). Note the similar form to Eq. (1). The ex-
pected probability for the kth outcome is the mean of the
Dirichlet posterior distribution:

Elp,] = b, = ¢ 4)

Here, § = Zleak. The Dirichlet is chosen because it is the
conjugate prior to the multinomial, meaning that the posterior
when the Dirichlet prior is combined with a multinomial likeli-
hood is also a Dirichlet. This drastically simplifies the updating
process during Bayesian inference because each posterior «y can
be computed by summing the prior «; with each observed or pre-
dicted y,. For example, with the four precipitation types, if our
prior is @ = [1, 1, 1, 1] and we observe outcomes y = [10, 5, 2, 3],
our posterior becomes a = [11, 6, 3, 4], reflecting updated beliefs
about each precipitation type based on the evidence.

Sensoy et al. (2018) also motivated the use of the Dirichlet
posterior distribution through the Dempster—-Shafer theory
(DST) of evidence, which is an extension of Bayesian statistics
(Dempster 1968) to decision-making with uncertain evidence.
Evidence in the DST classification context is represented as a
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nonnegative number e, with higher values indicating stronger
evidence for a particular outcome. The uninformed evidence
prior is that each outcome has evidence of 1, so summing
the prior evidence with how much evidence is observed for
each outcome from data or a predictive model, we receive a
posterior o = e, + 1 and the total amount of evidence
S= zk:l(ek +1). The « values can then be plugged into
a Dirichlet distribution to derive probabilities for each
outcome.

DST is extended for decision-making in classification prob-
lems through subjective logic (Jgsang 2018). Subjective logic,
as a formal framework for modeling uncertainty and subjec-
tive beliefs, utilizes belief masses to quantify belief strength
and enables the nuanced representation of subjective confi-
dence levels. Within this framework, a belief mass by is the
amount of evidence assigned to a particular outcome, and un-
certainty mass u is the amount of evidence not allocated to
any outcome or “I do not know,”

by

“lx e

. ®)

<
Il

(©)

The variable K is usually defined as the number of outcomes, as-
suming no prior evidence for any outcome. Belief masses look simi-
lar to probabilities but only have to sum to 1 when  is included:

K
u+ 2 b, =1 (7
k=1

The color bar in Fig. 1d illustrates the belief masses plus u for
a precipitation-type ENN. In the integration of DST and sub-
jective logic, the Dirichlet distribution offers a natural way to
model belief masses by encoding prior probabilities that re-
flect the initial expectations or assumptions about the likeli-
hood of different events occurring.

Figure 2a(ii) shows an MLP architecture employing the
“evidential” categorical model. The parametric neural net-
work parameterized by w, and given an input sample x,,, it
now predicts the evidence vector e, represented by f(x,|w),
hence the name assignment “evidential MLP.” Compared to
a deterministic classifier, the only architectural difference is the
output activation function, which is taken to be ReLU following
Sensoy et al. (2018) rather than softmax, to filter negative evi-
dence. Accordingly, the Dirichlet distribution corresponding with
this evidence has parameters «,, = f(x,|w) + 1. The predicted ex-
pected probabilities for the classes are then computed as o/S.

Sensoy et al. (2018) proposed several loss functions aimed
at training NNs to form multinomial opinions or Dirichlet dis-
tributions for classification tasks. We focus on the one recom-
mended by Sensoy et al. (2018):

1 K 4 a1
1_[ pn,k dpn’ (8)

¥ (w):f ly, - p,I?
n 5 n n B(an)kZI

2 ﬁn,k(l _i)n.k)
S+1

M=

= (yn.k - IA’n,k) )

k=1
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In this equation, the subscript n refers to the sample index
such that e, represents the full Dirichlet parameter vector
(atn1s 2, ..., ay i) predicted by the network for the nth sam-
ple. Similarly, y, refers to a one-hot vector encoding the
ground-truth class, p, is the corresponding vector of class
probabilities induced by the Dirichlet distribution, for sample
n,andp, , is as defined in Eq. (4). One arrives at Eq. (9) from
Eq. (8) via a standard conjugate prior integration. Without us-
ing conjugate pairs, one cannot arrive at a closed form expres-
sion as in Eq. (9).

Equation (9) decomposes the mean-squared error and
Dirichlet variance. This decomposition allows the network
to update its Dirichlet parameters to simultaneously reduce
misclassification error and uncertainty during training. It
encourages the network to generate higher Dirichlet para-
meters (more evidence) for correct class labels while avoiding
excessive misleading evidence for incorrect classes, prioritizing
data fit over variance estimation. Theoretically, it exhibits
learned loss attenuation, preventing arbitrarily high evidence
masses for unexplainable samples. The overall batch loss is
the sum of sample-wise losses.

However, a limited number of counterexamples may lead to
an increased overall loss when decreasing the magnitude of evi-
dence, resulting in potentially misleading evidence for incorrect
labels. For example, imagine an NN consistently assigning high
probabilities to the rain class after encountering numerous in-
stances of rainy weather patterns. Yet, when encountering a few
instances of sleet events with similar atmospheric characteristics,
reducing the evidence assigned to rain might initially increase the
overall loss due to the scarcity of counterexamples.

To address this limitation, a Kullback-Leibler (KL) diver-
gence term is incorporated into the loss function as a regular-
izer, penalizing divergences from total uncertainty (the
uniform distribution) and guiding the network toward a more
balanced distribution of probabilities:

N N
Zw) = L 7, + v, L KLs[D(p,|&,)ID@p,V], - (10)

where v, is an annealing coefficient, D(p,[1) is a uniform
Dirichlet distribution, and &, =y, + (1 —y;) © e, represents
the Dirichlet parameter vector after removing the nonmislead-
ing evidence from the original e, for sample n. The KL term
prevents early convergence to the uniform distribution for
misclassified samples by gradually increasing its impact via v,,
allowing the network to explore the parameter space. The
term reduces to an exact expression given by

K
r = &n.k K
Ki + (&n,k - 1)

KL[D(p,|&,)ID(p,1)] = log =
F(K)k]j1 I@,,)|

X

(11)

K
W&, ) = w(}Zl &, ,)}

where i represents the digamma function and I' is the Gamma
function.
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c¢. Evidential regression

The concept of an “I don’t know” outcome is not explicitly
defined for regression tasks with continuous target variables
since the range of possible outcomes is unbounded. Subjective
logic is primarily designed for handling uncertainty in categor-
ical or discrete scenarios. Amini et al. (2020) approached re-
gression similarly to Sensoy et al. (2018) but adjusted the
formulation to handle continuous outcomes by changing the
target distribution and loss function. For a regression dataset
g = {xl.,yi}ﬁi | With ii.d. targets y drawn from a Gaussian dis-
tribution with unknown mean y and variance o, Amini et al.
(2020)’s evidential regression assumes p is drawn from a
Gaussian distribution, while o* follows an inverse-gamma dis-
tribution, which is conjugate to a Gaussian, that allows the es-
timation of epistemic uncertainty, in contrast to traditional
regression models that treat u and o” as fixed and determinis-
tic when using maximum likelihood estimation:

Wy = A (Yo 070, ),

n

(12)

oy ~ T (e, B,). (13)
wherem, = (y,,v,, o, B,), v, €R,v,>0,a,>1,and B, > 0.
This formulation results in a higher-order distribution referred to
as the “evidential distribution,” denoted as p(u,,, oZ|m), which can
be represented by a normal-inverse-gamma distribution:

o 1 a,+1
Oy, v, - B ( )
Pl Ol v e B) = 50y

o
28, + v, (1, = v,)
X exp| — e (14)
1+
= St[yn, CACRRN 2an], (15)
n-n

where St is the Student’s ¢ distribution evaluated with location
Yn» scale B,(1+ v, )/v,a,, and 2a, degrees of freedom. For
multitask models, there are four parameters for each model
target, as is shown in Fig. 2b(iii). By learning the parameters
m through training, regressive ENN models define full distri-
butions over the likelihood parameters (u,, o2), allowing for
a comprehensive representation of uncertainty in the model’s
predictions. The loss used to train a parametric neural net-
work for predicting m is computed by taking the negative log-
arithm of Eq. (14):

; 1 T 1
L (w) = z1og(v—) ~ a, log(Q),) + (an + i)log[(yn — 5P,

ey
rfe, +3)|

where , = 28,(1 + v,). Following the approach employed
by Sensoy et al. (2018), Amini et al. (2020) included an addi-
tional regularizer term to suppress evidence (or raise the un-
certainty) in support of incorrect predictions:

+Q,] + log (16)
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Znw) =y, = v,l2v, + a,), (17)
where the first term represents the model error, while the sec-
ond term is proportional to the total evidence accumulated by
the learned posterior. The total loss used during training is
finally

Z,(w) = LN (w) + A LR (w), (18)
where the parameter A is selected to best calibrate the model.
If A is too small, the model tends to overfit the data, while
overly large values of A lead to uncertainty overinflation (Sol-
eimany et al. 2021). As we show in the results section, cru-
cially, the evidential regression model’s uncertainty estimates
are reliant on the tuning of the A parameter. Calibrating A re-
quires a separate validation dataset or prior assumptions de-
rived from similar data.

d. Law of total variance

The law of total variance (LoTV; Casella and Berger 2002)
states that for two random variables X and Y on the same
probability space, the variance of variable Y may be decom-
posed as

Var(Y) = E[Var(Y|X)] + Var(E[Y]|X]), (19)
where Var(Y) represents the total variance of the random vari-
able Y, E[Var(Y]|X)] denotes the expected value of the condi-
tional variance of Y given X, and Var(E[Y|X]) represents the
variance of the conditional mean of Y given X. The first term is
often referred to as the “aleatoric” uncertainty or “uncertainty
in the data,” while the latter represents the “epistemic” uncer-
tainty or “uncertainty in the model’s predictions.”

For the Dirichlet distribution, these quantities can be com-
puted as

E[Var(y, [p, )] = Elp,,(1 = p, )], (20)
—_—
Aleatoric
an‘k (1 an,k)
— %k _ Yk : S S (21)
S S S+1 ’
Var(E[yn1k|pnvk]) = Var(pn‘k), (22)
N
Epistemic
%k nk
3 1 _
ey
RS T @)

See section SIII in the online supplemental material for a full
derivation. The epistemic uncertainty computed with the LoTV
and the quantity « from DST do not have the same form.
Similarly, application of the LoTV to the normal-inverse
gamma distribution results in
Blw,] =,. 24
—n "

prediction

VOLUME 3
__B
Blo}) = o (25)
—————
aleatoric
Var(u ) = L (26)
n v, (a, — 1)
epistemic

See section SIV in the online supplemental material for the
derivation. Note the relationship between the two uncertainty
quantities: the epistemic uncertainty is the aleatoric uncer-
tainty divided by parameter v,, which is interpreted as a
“virtual observation count” that controls how strongly the
prior influences the posterior relative to the evidence. As v,
increases, the prior dominates, so the data must be very per-
suasive to move the posterior away from the prior prediction
v, With lower v,, the data readily override the prior, allow-
ing the posterior to diverge from v,,. So, v,, modulates the im-
pact of the data versus the prior, rather than literally counting
observations.

The LoTV is not limited to stochastic models; it can also be
applied to ensembles of probabilistic models. For instance, in
the case of a Gaussian parametric model that predicts (w,,, oﬁ),
an ensemble can be created using various approaches discussed
below. Conversely, in a categorical problem, the variance can
be estimated directly from the predicted probabilities and the
true labels, as shown in Eq. (S5) in the online supplemental
material. Given an input x,, to the ensemble of trained models,
the output consists of a list of predicted means and variances.
By using Eq. (19), we can compute the aleatoric and epistemic
components.

e. Performance evaluation metrics

For classification problems, we use the Brier score (BS)
(Brier 1950) to measure the mean-squared difference between
the observed labels and predicted probabilities, defined as

1 N K
BS =2 2 (v — Pui) @7)

where lower BS is better, with 0 being a perfect score. The BSS com-
pares the BS to climatology: BSS =1 — (BS;,.../BS Climawbgy),
where BSgyecast 1S the Brier score of the predicted forecast,
while BSjimatology 1S the Brier score of the climatological fore-
cast, which is the mean-squared difference between the ob-
served frequency of the event and the predicted probability of
the event based on climatology (the long-term historical fre-
quency of the event). BSS ranges from — to 1, with 1 indicat-
ing a perfect forecast.
For regression problems, we use the RMSE, defined as

N

_ 1 a2
RMSE = N;(y,» 9.

(28)

where y; are the true labels and J, are the predictions. Lower
RMSE indicates better performance. Both BS and RMSE,
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visualized through the attribute diagram, help to gauge how
well each model produces an accurate and calibrated mean
forecast. Note that these attribute diagrams do not tell us if
the model’s predicted uncertainty is calibrated.

For that, we follow the methodology outlined by Haynes
et al. (2023). For regression problems, we calculate the depen-
dency of the RMSE on the predicted spread (o). This ap-
proach, depicted in the spread—skill diagram, offers a way to
normalize model performance against a baseline and provides
insights into the relationship between RMSE and forecast
spread. A 1-1 relationship in the spread-skill diagram indi-
cates that the model is calibrated according to its uncertainty
estimates.

Additionally, we also assess the calibration of uncertainty
estimates using the probability integral transform (PIT) plot
and the discard fraction plot. For the regression problem, the
PIT represents the quantile of the predicted distribution at
which the observed value occurs, calculated by approximating
the cumulative distribution function of the predicted distribu-
tion and evaluating it with the observed value. A uniform PIT
histogram indicates a perfectly calibrated model. The PIT de-
viation (PITD) score quantifies the deviation from uniformity:

(29)

Here, M is the number of bins, Ny, is the count of samples in
each bin, and N is the total number of samples. Lower PITD
is better, with O indicating perfect calibration. However,
PITD is sensitive to the number of bins, so we evaluate the
PITD skill score relative to the worst-case scenario:

__PITD
PITD, .’

worst

PITD skill score = 1 (30)

where PITDy,o represents the worst possible PITD score,
which assumes that all the forecasts end up in one of the
bounding bins of the PIT histogram. Higher PITD skill scores
(up to 1) indicate better calibration relative to the worst case.
Finally, for both classifier and regression problems, we in-
vestigate discrimination performance using the discard frac-
tion plot, which shows how the model’s ability to differentiate
between outcomes improves as prediction confidence grows.
It involves sorting the data by uncertainty and progressively
removing data points with higher uncertainties to assess any
improvement in model performance. The discard improve-
ment (DI) score is a measure of performance improvement
when certain percentiles of the uncertainty metric are dis-
carded. Higher values indicate a better DI. The discard frac-
tion provides insights into the correlation between prediction
error and uncertainty and is valuable for setting model spread
thresholds for operational use. During deployment, predictions
above this uncertainty threshold can be discarded or considered
“out of confidence” to avoid outputting potentially misleading
results in uncertain situations. The threshold for model spread
can be set manually based on specific application require-
ments or according to predefined specifications; for instance,
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a common approach involves using a 95% threshold for ac-
ceptance in other applications.

4. Results
a. Winter precipitation type

Figure 3 compares reliability and resolution (Res) between
a deterministic and an ENN (the confusion matrix for each
model can be found in the supplemental material). Both attri-
bute diagrams show similar calibration trends and reasonable
performance, with the most notable deviation being the slight
overprediction of sleet at higher probabilities. The ENN
showed slightly better results for rain and snow, whereas the
deterministic model performed marginally better for sleet and
freezing rain. The main takeaway for this example is that evi-
dential models offer comparable probabilistic predictions to
deterministic models and can provide deeper insights about
the sources of uncertainty.

To assess the quality of the predicted uncertainties, Fig. 4
demonstrates the discard curves using the BS, where zero rep-
resents a perfect model. Although the discard test may not be
a true calibration metric, the overall negative and higher
slopes for the most uncertain data bins indicate reasonably
well-calibrated uncertainty for all classes for both model
types. It is worth noting that the ENN and the CV ensemble
perform comparably, with the ENN performing slightly better
in most cases according to the discard improvement score.
These well-calibrated uncertainties were achieved without ex-
tensive hyperparameter tuning. While hyperparameters such
as dropout rate (for the CV ensemble of deterministic MLPs,
see Fig. S2) and the loss weight on the KL divergence term
(for the evidential model) can be used to fine-tune calibration
to some extent, their influence is limited. In fact, for the evi-
dential model, the uncertainties are predominantly well-
calibrated through model optimization on the F1 score alone
(see section SVI in the online supplemental material for train-
ing and optimization details).

In operational use, consider the rain class with a BS thresh-
old of 0.02, where any prediction with a BS value smaller than
0.02 would be accepted. Since the uncertainty was used to
order the dataset in Fig. 4, this BS threshold corresponds
to a discard threshold («*) for DST uncertainty. Any pre-
diction with uncertainty u > u* would be considered too
uncertain. For rain, using this discard threshold based on
uncertainty would allow around 90% of the rain examples
to be automatically processed without requiring human
intervention.

To illustrate the capabilities of the ENN in a real-world sce-
nario, Fig. 5 presents a case study of a severe winter weather
event that impacted the central United States on 17 December
2016. The ENN predicts the p type over the locations where
the numerical weather prediction model predicts any kind of
precipitation, with the model predicting the probability of
each precipitation type conditioned on precipitation occurring.
All four precipitation types are predicted over the central
United States (Fig. 5a), and the various uncertainty estimates
(Figs. 5b—d) are also provided. Aleatoric uncertainty (Fig. S5b)
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FIG. 3. Attribute diagrams for (a) the evidential model and (b) a deterministic NN model. The columns show the result for each precipi-
tation type. In each subpanel, the diagonal, horizontal, and vertical dashed lines indicate the perfect Rel line, no-Res line, and climatology
line. Red-shaded rectangles illustrate the Rel of each model in predicting each class. The legend in each panel displays the BSS, along with
the Rel and Res components of the BS divided by the uncertainty component (Murphy 1973). Rel describes the deviation of the predicted
probability from the observed relative frequency (lower is better) and Res describes the average difference in the predicted probabilities
from climatology, related to sharpness where higher values are better. The blue-shaded area indicates where Res = Rel. Points in this re-

gion contribute to a positive BSS.

is highlighted primarily where we would expect it, in the tran-
sition zones between p types, where soundings could exist that
even experienced forecasters would likely have some uncer-
tainty in their assessment of precipitation type. Also notable is
the previously noted very strong relationship between DST u
(Fig. 5¢) and LoTV (Fig. 5d); however, the magnitude of total
uncertainty via LoTV is generally much lower. Unlike alea-
toric uncertainty, DST u and epistemic uncertainty are most
elevated in the center of the freezing rain region and are lower
elsewhere, which may be related to a sounding profile that is
less frequent in the data.

Last in Fig. 6, we sort the predictions by various uncertainty
thresholds and plot composites of the temperature profile to
verify that the UQ estimates are physically consistent with
meteorological understanding. We expect to see the more cer-
tain composites constrained to physically relevant areas of the
temperature plane. For example, we would expect the most
certain snow composites to have the coldest temperatures
throughout the profile and the opposite to be true for rain.
For sleet, we would expect there to be a shallower, cooler
warm nose (area of the profile above freezing) and a larger
near-surface freezing area that would give ample time for the
water to refreeze. We used various UQ estimates for sorting

[columns (Figs. 6a—)], which all show expected directional
trends with uncertainty.

b. Surface-layer flux

In this section, we present a similar evaluation of an eviden-
tial regression model trained on the surface layer data from a
flux tower to predict energy flux. The key point of compari-
son, detailed below, is that while the evidential regression
model provides a solution for modeling uncertainties like the
categorical approach, its calibration is much more sensitive to
the weight A multiplying the KL term in Eq. (18) during train-
ing. Furthermore, we observe the regression model infre-
quently producing unrealistic uncertainties, even when
calibrated, potentially posing operational challenges. In addi-
tion to the evidential regression results, we also present re-
sults from ensembles created using CV and deep ensembles
and MC dropout for comparison.

We initially address the issue of model calibration by exam-
ining Fig. 7a, which displays the PITD skill score as a function
of the KL weight A for a three-task model that predicts frac-
tion velocity, latent heat, and sensible heat. The dataset’s
characteristics prevent the model from achieving the maxi-
mum PITD skill score at the same A value for all three tasks,
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FIG. 4. Discard-test diagrams show the fraction of data points removed from the test set vs the BS computed on the remaining subset.
Dashed lines illustrate the ensemble model, while solid lines show the evidential model. The legend in each panel shows the DI score.
Solid and dashed lines show the ENN and the CV ensemble results, respectively.

and none of the tasks approached a perfect skill score of one.  determine the optimal A values (illustrated in the figure), and
To further explore this relationship, we analyze Fig. 7b, which ~ furthermore, the values differ relative to the three-task model
depicts the same dependency computed using three single- shown in Fig. 7a. Recall that a flat PIT histogram (PITD equal
task models. Effective utilization of the evidential regression  to zero) does not necessarily guarantee calibration (Chapman
model on the SL dataset requires three single-task models to et al. 2022; Haynes et al. 2023; Hamill 2001).

Evidential Precipitation Type Uncertainties Valid 2016-12-17-0000 UTC
(@) Predicted Precipitation Type (b) Total Aleatoric o

Snow

Sleet

Freezing
Rain

Rain

(d) Total Epistemic o

F1G. 5. 17 Dec 2016 precipitation-type predictions and their uncertainties from the evidential model are visualized
for the central United States. (a) The most likely precipitation-type prediction and (b)—(d) the total aleatoric, DST,
and epistemic uncertainties, respectively. The red, purple, and navy contours indicate the 0°C isotherm at the surface,
2-km AGL, and the 0-5-km AGL maximum, respectively.
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FIG. 6. (a)—(c) Composite soundings are presented lightest-to-darkest using the median of the 10th, 20th, 50th, and 90th percentile most
certain predictions generated by the evidential model. The total uncertainty is utilized for (a) the MC-ensemble MLP and (b) the eviden-
tial MLP, while the DST uncertainty is employed for (c) the evidential MLP.

With the calibration weights identified, the three models
were trained and compared against an ensemble of Gaussian
models created using CV splits. Figure 8 displays the reliabil-
ity diagram for the ENN and the ensemble of Gaussian mod-
els (the results for other ensembles are shown in Fig. S5).
Overall, both models demonstrate similar reliability and cor-
relation with observations. However, there are some discrep-
ancies between the two. The Gaussian model exhibits less
sharpness and correlation for latent heat predictions. The
ENN variation shows promise for uncertainty quantification
in our regression case study. However, unlike discrete cate-
gorical problems, regression tasks face additional calibration
challenges due to their unbounded nature. Further research is
needed to generalize these findings across diverse regression
problems.

How effective is the calibration? Figure 9 shows 2D histo-
grams quantifying the relationship between the computed
RMSE for the three model tasks and aleatoric, epistemic, and
total uncertainty for both evidential models and Gaussian en-
sembles. Unlike the precipitation-type problem, the dominant
uncertainty for the evidential model is epistemic uncertainty,

(a) Multi-task model

which contributes the most to the total uncertainty. The 1-1
relationship is observed for epistemic and total uncertainties
when both the RMSE and uncertainty are generally small,
and this relationship is observed for more than half of the
testing data in each case. However, as the quantities increase,
the computed RMSE flattens out for sensible and latent heats,
while for friction velocity, the relationship appears to be lin-
ear with an initial flattening of the RMSE for relatively higher
values of uncertainty, which then continues to grow linearly.
Note also that none of the models were calibrated according
to aleatoric uncertainty; in fact, all of them were underdisper-
sive. Overall, the best PITD skill score and the best fit be-
tween the 1-1 line were achieved for friction velocity, which is
inherently an easier task to solve.

The Gaussian ensemble showed opposite trends in its un-
certainty allocation. For all three outputs, aleatoric uncer-
tainty is favored over epistemic. The RMSE generally
increases faster than the aleatoric uncertainty, pointing to the
ensemble uncertainty estimate being underdispersive and not
accounting for the full range of uncertainty. The evidential
model’s parametric assumptions about how uncertainty is

(b) Single-task models
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FI1G. 7. The PITD skill score as a function of the evidential loss coefficient [A, Eq. (17)] for (a) one multitask model
and (b) three single-task models.
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allocated result in a more calibrated total uncertainty estimate
for all three outputs.

These results are further corroborated by the PIT histogram
and the discard-test, which are shown in Figs. 10a and 10b,
respectively. The PIT histogram also shows that friction ve-
locity came the closest to calibration, having the flattest histo-
gram of the three models, followed by latent heat. These
quantities also show a hump toward the left middle side of
the histogram indicating slight underconfidence by the model.
Friction velocity also has a small hump on the right side of
the histogram, further indicating some overconfidence on a
subset of the data. The sensible heat model, on the other hand,
clearly shows a pronounced hump on the left and a smaller one
on the right side of the histogram, showing that observations
fall near a tail, or fully outside of the predicted distributed,
more often than they should. All of these observations are
consistent with Fig. 9. All models were subject to extensive
hyperparameter optimization, which suggests that there are
limitations to the degree of calibration possible on certain
datasets when using the evidential regression approach. Section
SVIin the online supplemental material details the optimization
approach and computational cost, which exhibited considerable
variability across models, ranging from around 10 h for a model
predicting a single target on graphical processing units (GPUs)
to over 75 h for a more complex evidential model predicting
multiple targets like friction velocity, sensible, and latent heat
fluxes on the same GPU resources.

The discard test shows that for all three models, the pre-
dicted aleatoric, epistemic, and total uncertainties are linked
to the performance of the model through the RMSE, where
the more certain data points have lower RMSE values in each
case. This is still the case even though the models possessed
different degrees of calibration. Therefore, the uncertainty
value can be thresholded such that when the model is in oper-
ation, it can be used conservatively when model predictions
are too uncertain (e.g., the model will not return a prediction
if the predicted uncertainty is larger than the threshold).

While the ENN shows promising performance, caution
must be exercised when interpreting the predicted uncertainty
values as they may not consistently align with the range of the
(in-distribution) training target values (Ovadia et al. 2019).
Discrepancies were observed, such as unexpected humps in
the epistemic uncertainty distributions at extreme values for
certain quantities like friction velocity (Fig. S8). Additionally,
different optimized model architectures, despite comparable
overall calibration, produced varying uncertainty distributions,
especially at the extremes. These findings underscore the need
for critical evaluation and validation of the uncertainty estimates
to ensure their reliability and alignment with the true nature of
the data.

Further analysis revealed distinct diurnal trends in the epi-
stemic uncertainty for friction velocity, sensible heat, and la-
tent heat fluxes. In Fig. 11, the composite epistemic and
aleatoric uncertainties vary in concert with the predicted val-
ues. During the daytime, flux values increase due to insolation
heating the surface and causing convective eddies and evapo-
transpiration. The epistemic uncertainty increases at a faster
rate compared with the aleatoric uncertainty. However, even
small changes to the evidential loss weight could change the
magnitude of this relationship (Fig. S9), emphasizing the im-
portance of properly calibrating the loss to ensure reliable
and physically sensible uncertainty predictions, particularly
for latent and sensible heat tasks.

To gain further insight into why the predictions and uncer-
tainties vary with the diurnal cycle, we visualize the relation-
ship between the dominant inputs and the uncertainties, the
10-to-0-m temperature gradient, and the 10-m wind speed
(Fig. 12). Each bivariate combination is fed through the ENN.
To ensure physical consistency, a bulk Richardson number
derived from the chosen wind speed and temperature gradi-
ent and a fixed mixing ratio gradient are also provided to the
model input vector. Figure 12a shows that variations in sensi-
ble heat flux are driven more by the temperature gradient for
negative gradients (unstable regime), especially at high wind
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speeds, and more by the wind speed for positive gradients
(stable regime). The predicted uncertainties (Figs. 12b-d) fol-
low similar patterns to the sensible heat flux predictions. Epi-
stemic uncertainty increases faster than aleatoric uncertainty
in the unstable regime. Aleatoric uncertainty shows higher
relative values in the stable regime, which aligns with the 10-
m temperature gradient providing less information about the
surface sensible heat flux under more stratified and less turbu-
lent conditions.

5. Discussion

For the precipitation-type classification task, the ENN
model achieved comparable accuracy to traditional classifiers
while simultaneously quantifying the aleatoric uncertainty
arising from the inherent biases and data quality issues in the
training data (especially inconsistency in crowd-sourced ob-
servations) and the epistemic uncertainty stemming from the
model’s generalization errors aided by gaps in training data.
The aleatoric uncertainty generally exceeded the epistemic
uncertainty in this problem, underscoring the benefit of

decomposing and analyzing the different sources of uncer-
tainty. For example, identifying irreducible aleatoric uncer-
tainty can guide users to data quality control measures or
feature engineering techniques to better separate the data.
Identification of high epistemic uncertainty can potentially
highlight data gaps that can reduce uncertainty with more tar-
geted data collection. The close alignment between regions of
high DST uncertainty and peaks in epistemic uncertainty
highlights how different uncertainty metrics can capture re-
lated aspects of model confidence. Furthermore, the discard
test validated the effectiveness of using the uncertainty esti-
mates to filter out unreliable predictions, thereby improving
operational reliability.

For categorical problems like the winter precipitation-type
classification, the use of DST for quantifying uncertainty of-
fers additional benefits. It allows for representation and rea-
soning about uncertain or conflicting evidence, which is useful
in real-world datasets with ambiguous or uncertain ground
truth labels. DST also enables the principled combination of
evidence from multiple sources, which can be beneficial when
dealing with different data types or integrating information
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from diverse sensors or models. The ability of an NN to essen-
tially abstain from making a prediction is valuable in situations
with limited information or incomplete evidence, allowing for
a more nuanced representation of uncertainty.

For the surface-layer flux regression problem, proper cali-
bration emerged as a crucial factor for obtaining meaningful
uncertainty estimates. While the ENN’s overall performance
was comparable to a deterministic MLP, occasional instances
of unrealistic uncertainty values emphasize the need for cau-
tious interpretation and further improvements in calibration.
Architectural choices and dropout rates significantly impacted
the uncertainty characteristics, suggesting the importance
of careful model design and hyperparameter tuning. The
time-of-day analysis revealed sensible patterns in the varia-
tion of epistemic uncertainty, with higher uncertainty dur-
ing daytime hours when modeling turbulent transport and
radiation processes is more challenging. This observation
provides reassurance about the reliability of the uncertainty
estimates and their ability to capture fundamental govern-
ing processes.

Ensemble and evidential methods for regression tasks show
distinct differences in their treatment of uncertainty. Eviden-
tial models exhibited higher epistemic uncertainty, while en-
semble methods emphasized aleatoric uncertainty. Evidential
models exhibited higher epistemic uncertainty, likely resulting

from more degrees of freedom in the model architecture than
ensemble methods. In contrast, ensemble methods empha-
sized aleatoric rather than epistemic uncertainty, likely due to
the stronger regularization compared with evidential models.
Applying the LoTV to the normal-inverse-gamma distribu-
tion, we find that in evidential models, epistemic uncertainty
increases when the model is more uncertain and adapts read-
ily to new data. Conversely, ensembles tend to show higher
aleatoric uncertainty, as individual models capture inherent
data noise, and model disagreement (epistemic uncertainty)
remains smaller. Notably, the evidential model’s total uncer-
tainty was well-calibrated across tasks, whereas the ensemble
was only calibrated for sensible heat predictions. This suggests
that evidential models offer more flexibility in representing
uncertainty but require careful regularization to balance the
exploration of hypothesis space. In contrast, ensemble meth-
ods, while constrained by fixed data structures and a limited
number of models, tend to overemphasize aleatoric uncer-
tainty, potentially at the expense of accurately capturing epi-
stemic uncertainty. Future exploration could consider how to
further optimize these methods. For ensembles, introducing
regularization coefficients to the loss could potentially widen
or adjust the epistemic spread. For evidential models, stron-
ger regularization might limit the exploration of the hypothe-
sis space, reducing the epistemic magnitude.
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These findings highlight the strengths and limitations of
both ensemble and evidential approaches and underscore the
practical challenges in achieving well-calibrated uncertainty
estimates. A key limitation highlighted in this study is the
extensive hyperparameter tuning and computational cost

required for effective uncertainty calibration (see section SVI
in the online supplemental material), particularly for the evi-
dential regression model. This underscores the greater chal-
lenges associated with calibrating uncertainties for regression
tasks compared to classification problems. Calibrating ML
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puts and the predictions or uncertainties. The gray overlay contours indicate the number of training examples that
have a corresponding temperature gradient and wind speed value.
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models to account for epistemic uncertainty typically requires
either a dedicated calibration/validation dataset or prior as-
sumptions derived from similar data. While this requirement
is more apparent for post hoc calibration methods like iso-
tonic regression, it also applies to evidential methods through
the tuning of the KL divergence term in the loss function. We
have found that the raw target predictions themselves are not
very sensitive to the KL divergence term, and thus, we recom-
mend performing hyperparameter tuning with a fixed KL
divergence term first and then calibrating uncertainty sepa-
rately with the tuned model. However, if the trained ENN is
applied to a dataset with a distribution shift, such as transi-
tioning from training on analysis data to applying the model
to forecast data, the evidential uncertainty estimates may be-
come inherently underdispersive. Further research is needed
to develop techniques for adjusting uncertainty estimates
based on the nature and extent of the domain shift. While we
used RMSE versus oy, relationships and PIT histograms for
regression calibration, equivalent metrics for discrete classifi-
cation problems are lacking. Future work should develop ro-
bust calibration metrics for classification tasks, enabling
comprehensive comparison of uncertainty quantification
methods across problem types.

6. Conclusions

In conclusion, this study demonstrates the potential of EDL
as an effective technique for predictive modeling and UQ in
weather and climate applications, for both classification and
regression. The approach synergistically integrates the capabil-
ities of probabilistic modeling with the representational power
of deep NNs. This enables the models to produce well-calibrated
estimates of uncertainty without ensembles or sampling, over-
coming the limitations of standard deep learning approaches.
The ability to quantify different sources of uncertainty provides
valuable insights into model reliability and limitations of the
training data.

The decomposition of aleatoric and epistemic uncertainties
facilitates detailed analysis to identify challenging prediction
cases and opportunities for model improvements. With cali-
brated uncertainty estimates, ENNs have the potential to en-
hance understanding of forecast reliability and inform critical
decision-making across various meteorological domains, from
real-time severe event prediction to long-term climate projec-
tions. Given the representational flexibility, computational ef-
ficiency, and uncertainty quantification capabilities, EDL
shows promise for tackling a diverse array of prediction and
uncertainty estimation problems in the atmospheric and cli-
mate sciences.

7. Software development

The Machine Integration and Learning for Earth Systems
(MILES) group Generalized Uncertainty for Earth System
Science (GUESS) package (MILES-GUESS) provides tools
for estimating and analyzing different sources of uncertainty
in Earth system science applications. Users working in
weather and climate can leverage MILES-GUESS to train
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neural network models that quantify multiple uncertainty
types like aleatoric, epistemic, and DST uncertainties.

The package contains layers and losses for EDL, allowing
users to build neural networks that output distributions over
targets rather than just point estimates. This enables estimat-
ing both aleatoric uncertainty from noise in the data and epi-
stemic uncertainty from model limitations. The code also
supports MC dropout ensembles for epistemic uncertainty
quantification.

Once models are trained with MILES-GUESS, the package
provides a range of analysis and visualization tools tailored
for Earth system applications. These include PIT calibration
analysis, spread-error diagrams, coverage curves, and more.
The code is primarily written in Python and is designed to in-
tegrate seamlessly with common Earth science workflows
based on TensorFlow/Keras and PyTorch. MILES-GUESS is
accessible online (https:/github.com/ai2es/miles-guess) where
example Jupyter Notebooks demonstrate how to use the
package.

Acknowledgments. This material is based upon work sup-
ported by the National Science Foundation under Grant
RISE-2019758 and by the NSF National Center for Atmo-
spheric Research, which is a major facility sponsored by the
National Science Foundation under Cooperative Agreement
1852977. We would like to acknowledge high-performance com-
puting support from Cheyenne and Casper (Computational and
Information Systems Laboratory 2020) provided by NCAR'’s
Computational and Information Systems Laboratory, sponsored
by the National Science Foundation. MJM was supported by
the University of Maryland Grand Challenges Program and the
U.S. Department of Energy (DOE), Office of Science,
RGMA component of the EESM program under Award
DE-SC0022070 and National Science Foundation TA 1947282.

Data availability statement. All datasets used in this study
are available at https://doi.org/10.5281/zenodo0.8368187. The
MILES-GUESS package is archived at https://doi.org/10.
5281/zenodo.10729801. The surface layer model weights and
evaluation data are archived at https://doi.org/10.5281/zenodo.
13774771. The winter precipitation-type model weights and
evaluation data are archived at https://doi.org/10.5281/zenodo.
13776835.

REFERENCES

Abdar, M., and Coauthors, 2021: A review of uncertainty quanti-
fication in deep learning: Techniques, applications and chal-
lenges. Inf. Fusion, 76, 243-297, https://doi.org/10.1016/.
inffus.2021.05.008.

Amini, A., W. Schwarting, A. Soleimany, and D. Rus, 2020:
Deep evidential regression. NIPS’20: Proceedings of the 34th
International Conference on Neural Information Processing
Systems, Curran Associates Inc., 14 927-14 937, https:/dl.acm.
org/doi/abs/10.5555/3495724.3496975.

Angelopoulos, A. N., and S. Bates, 2022: A gentle introduction
to conformal prediction and distribution-free uncertainty

Unauthenticated | Downloaded 01/

21/25 04:08 PM UTC


https://github.com/ai2es/miles-guess
https://doi.org/10.5281/zenodo.8368187
https://doi.org/10.5281/zenodo.10729801
https://doi.org/10.5281/zenodo.10729801
https://doi.org/10.5281/zenodo.13774771
https://doi.org/10.5281/zenodo.13774771
https://doi.org/10.5281/zenodo.13776835
https://doi.org/10.5281/zenodo.13776835
https://doi.org/10.1016/j.inffus.2021.05.008
https://doi.org/10.1016/j.inffus.2021.05.008
https://dl.acm.org/doi/abs/10.5555/3495724.3496975
https://dl.acm.org/doi/abs/10.5555/3495724.3496975

18 ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS

quantification. arXiv, 2107.07511v6, https://doi.org/10.48550/
arXiv.2107.07511.

Barnes, E. A., and R. J. Barnes, 2021: Controlled abstention neu-
ral networks for identifying skillful predictions for regression
problems. J. Adv. Model. Earth Syst., 13, ¢2021MS002575,
https://doi.org/10.1029/2021MS002575.

Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution
of numerical weather prediction. Nature, 525, 47-55, https://
doi.org/10.1038/nature14956.

Bosveld, F. C., P. Baas, A. C. M. Beljaars, A. A. M. Holtslag, J.
V.-G. de Arellano, and B. J. H. van de Wiel, 2020: Fifty years
of atmospheric boundary-layer research at Cabauw serving
weather, air quality and climate. Bound.-Layer Meteor., 177,
583-612, https:/doi.org/10.1007/s10546-020-00541-w.

Breiman, L., 1996: Bagging predictors. Mach. Learn., 24, 123-140,
https://doi.org/10.1007/BF00058655.

Bremnes, J. B., 2020: Ensemble postprocessing using quantile
function regression based on neural networks and Bernstein
polynomials. Mon. Wea. Rev., 148, 403-414, https://doi.org/10.
1175/MWR-D-19-0227.1.

Brier, G. W., 1950: Verification of forecasts expressed in terms of
probability. Mon. Wea. Rev., 78 (1), 1-3, https://doi.org/10.
1175/1520-0493(1950)078<0001: VOFEIT>2.0.CO;2.

Casella, G., and R. L. Berger, 2002: Statistical Inference. 2nd ed.
Duxbury Press, 686 pp.

Chapman, W. E., L. Delle Monache, S. Alessandrini, A. C.
Subramanian, F. M. Ralph, S.-P. Xie, S. Lerch, and N.
Hayatbini, 2022: Probabilistic predictions from deterministic
atmospheric river forecasts with deep learning. Mon. Wea.
Rev., 150, 215-234, https://doi.org/10.1175/MWR-D-21-0106.1.

Computational and Information Systems Laboratory, 2020:
Cheyenne: HPE/SGI ICE XA System (NCAR Community
Computing). NCAR, https://doi.org/10.5065/D6RX9IHX.

Delaunay, A., and H. M. Christensen, 2022: Interpretable deep
learning for probabilistic MJO prediction. Geophys. Res. Lett.,
49, €2022GL098566, https://doi.org/10.1029/2022GL09I8566.

Dempster, A. P., 1968: A generalization of Bayesian inference.
J. Roy. Stat. Soc., 30B, 205-232, https://doi.org/10.1111/.2517-
6161.1968.tb00722.x.

Dietterich, T. G., 2000: Ensemble methods in machine learning.
MCS °00: Proceedings of the First International Workshop on
Multiple Classifier Systems, Springer-Verlag, 1-15, https:/dl.
acm.org/doi/10.5555/648054.743935.

Foster, D., D. J. Gagne II, and D. B. Whitt, 2021: Probabilistic
machine learning estimation of ocean mixed layer depth
from dense satellite and sparse in situ observations. J. Adv.
Model. Earth Syst., 13, €2021MS002474, https://doi.org/10.
1029/2021MS002474.

Gal, Y., and Z. Ghahramani, 2016: Dropout as a Bayesian ap-
proximation: Representing model uncertainty in deep learn-
ing. Proc. 33rd Int. Conf. on Machine Learning, New York,
NY, JMLR.org, 1050-1059, https://dl.acm.org/doi/10.5555/
3045390.3045502.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari,
and D. B. Rubin, 2013: Bayesian Data Analysis. Vol. 2.
Chapman and Hall/CRC, 552 pp.

Ghazvinian, M., Y. Zhang, D.-J. Seo, M. He, and N. Fernando,
2021: A novel hybrid artificial neural network—Parametric
scheme for postprocessing medium-range precipitation fore-
casts. Adv. Water Resour., 151, 103907, https://doi.org/10.1016/
j.advwatres.2021.103907.

Gneiting, T., A. E. Raftery, A. H. Westveld III, and T. Goldman,
2005: Calibrated probabilistic forecasting using ensemble

VOLUME 3

model output statistics and minimum CRPS estimation. Mon.
Wea. Rev., 133, 1098-1118, https://doi.org/10.1175/MWR2904.1.

——, F. Balabdaoui, and A. E. Raftery, 2007: Probabilistic fore-
casts, calibration and sharpness. J. Roy. Stat. Soc., 69B, 243—
268, https://doi.org/10.1111/j.1467-9868.2007.00587 x.

Gordon, E. M., and E. A. Barnes, 2022: Incorporating uncertainty
into a regression neural network enables identification of
decadal state-dependent predictability in CESM2. Geo-
phys. Res. Lett., 49, ¢2022GL098635, https://doi.org/10.
1029/2022GL098635.

Guillaumin, A. P., and L. Zanna, 2021: Stochastic-deep learning
parameterization of ocean momentum forcing. J. Adv. Model.
Earth  Syst, 13, ¢2021MS002534, https://doi.org/10.1029/
2021MS002534.

Hamill, T. M., 2001: Interpretation of rank histograms for verify-
ing ensemble forecasts. Mon. Wea. Rev., 129, 550-560, https://
doi.org/10.1175/1520-0493(2001)129<0550:I0RHFV>2.0.CO32.

Haupt, S. E., W. Chapman, S. V. Adams, C. Kirkwood, J. S.
Hosking, N. H. Robinson, S. Lerch, and A. C. Subramanian,
2021: Towards implementing artificial intelligence post-processing
in weather and climate: Proposed actions from the Oxford
2019 workshop. Philos. Trans. Roy. Soc., A379, 20200091,
https://doi.org/10.1098/rsta.2020.0091.

Haynes, K., R. Lagerquist, M. McGraw, K. Musgrave, and L.
Ebert-Uphoff, 2023: Creating and evaluating uncertainty esti-
mates with neural networks for environmental-science appli-
cations. Artif. Intell. Earth Syst., 2, 220061, https://doi.org/10.
1175/A1ES-D-22-0061.1.

Herman, G. R., and R. S. Schumacher, 2018: Money doesn’t grow
on trees, but forecasts do: Forecasting extreme precipitation
with random forests. Mon. Wea. Rev., 146, 1571-1600, https:/
doi.org/10.1175/MWR-D-17-0250.1.

Hoffman, M. D., D. M. Blei, C. Wang, and J. Paisley, 2013: Stochas-
tic variational inference. J. Mach. Learn. Res., 14, 1303-1347.

Jpsang, A., 2018: Subjective Logic: A Formalism for Reasoning
Under Uncertainty. Springer, 337 pp.

Karpatne, A., and Coauthors, 2017: Theory-guided data science:
A new paradigm for scientific discovery from data. /EEE
Trans. Knowl. Data Eng., 29, 23182331, https://doi.org/10.
1109/TKDE.2017.2720168.

Kendall, A., and Y. Gal, 2017: What uncertainties do we need in
Bayesian deep learning for computer vision? NIPS’17: Proceed-
ings of the 31st International Conference on Neural Information
Processing Systems, Curran Associates Inc., 5580-5590, https:/
dl.acm.org/doi/10.5555/3295222.3295309.

Koenker, R., 2005: Quantile Regression. Cambridge University
Press, 368 pp.

Kotz, S., N. Balakrishnan, and N. L. Johnson, 2004: Continuous
Multivariate Distributions. Vol. 1, Models and Applications.
John Wiley and Sons, 753 pp.

Lakshminarayanan, B., A. Pritzel, and C. Blundell, 2017: Simple
and scalable predictive uncertainty estimation using deep en-
sembles. NIPS’17: Proceedings of the 31st International Con-
ference on Neural Information Processing Systems, Curran
Associates Inc., 6405-6416, https://dl.acm.org/doi/10.5555/
3295222.3295387.

Leith, C. E., 1974: Theoretical skill of Monte Carlo forecasts.
Mon. Wea. Rev., 102, 409-418, https://doi.org/10.1175/1520-
0493(1974)102<0409:TSOMCF>2.0.CO;2.

Liu, J. Z., Z. Lin, S. Padhy, D. Tran, T. Bedrax-Weiss, and B.
Lakshminarayanan, 2020: Simple and principled uncertainty
estimation with deterministic deep learning via distance
awareness. NIPS’20: Proceedings of the 34th International

Unauthenticated | Downloaded 01/21/25 04:08 PM UTC


https://doi.org/10.48550/arXiv.2107.07511
https://doi.org/10.48550/arXiv.2107.07511
https://doi.org/10.1029/2021MS002575
https://doi.org/10.1038/nature14956
https://doi.org/10.1038/nature14956
https://doi.org/10.1007/s10546-020-00541-w
https://doi.org/10.1007/BF00058655
https://doi.org/10.1175/MWR-D-19-0227.1
https://doi.org/10.1175/MWR-D-19-0227.1
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://doi.org/10.1175/MWR-D-21-0106.1
https://doi.org/10.5065/D6RX99HX
https://doi.org/10.1029/2022GL098566
https://doi.org/10.1111/j.2517-6161.1968.tb00722.x
https://doi.org/10.1111/j.2517-6161.1968.tb00722.x
https://dl.acm.org/doi/10.5555/648054.743935
https://dl.acm.org/doi/10.5555/648054.743935
https://doi.org/10.1029/2021MS002474
https://doi.org/10.1029/2021MS002474
https://dl.acm.org/doi/10.5555/3045390.3045502
https://dl.acm.org/doi/10.5555/3045390.3045502
https://doi.org/10.1016/j.advwatres.2021.103907
https://doi.org/10.1016/j.advwatres.2021.103907
https://doi.org/10.1175/MWR2904.1
https://doi.org/10.1111/j.1467-9868.2007.00587.x
https://doi.org/10.1029/2022GL098635
https://doi.org/10.1029/2022GL098635
https://doi.org/10.1029/2021MS002534
https://doi.org/10.1029/2021MS002534
https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
https://doi.org/10.1098/rsta.2020.0091
https://doi.org/10.1175/AIES-D-22-0061.1
https://doi.org/10.1175/AIES-D-22-0061.1
https://doi.org/10.1175/MWR-D-17-0250.1
https://doi.org/10.1175/MWR-D-17-0250.1
https://doi.org/10.1109/TKDE.2017.2720168
https://doi.org/10.1109/TKDE.2017.2720168
https://dl.acm.org/doi/10.5555/3295222.3295309
https://dl.acm.org/doi/10.5555/3295222.3295309
https://dl.acm.org/doi/10.5555/3295222.3295387
https://dl.acm.org/doi/10.5555/3295222.3295387
https://doi.org/10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2
https://doi.org/10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2

OCTOBER 2024

Conference on Neural Information Processing Systems, Cur-
ran Associates Inc., 7498-7512, https://dl.acm.org/doi/10.5555/
3495724.3496353.

MacKay, D. J., 2003: Information Theory, Inference and Learning
Algorithms. Cambridge University Press, 628 pp.

McCandless, T., D. J. Gagne, B. Kosovi¢, S. E. Haupt, B. Yang,
C. Becker, and J. Schreck, 2022: Machine learning for im-
proving surface-layer-flux estimates. Bound.-Layer Meteor.,
185, 199-228, https://doi.org/10.1007/s10546-022-00727-4.

McGovern, A., K. L. Elmore, D. J. Gagne 11, S. E. Haupt, C. D.
Karstens, R. Lagerquist, T. Smith, and J. K. Williams, 2017:
Using artificial intelligence to improve real-time decision-
making for high-impact weather. Bull. Amer. Meteor. Soc.,
98, 2073-2090, https://doi.org/10.1175/BAMS-D-16-0123.1.

Meinert, N., and A. Lavin, 2021: Multivariate deep evidential re-
gression. arXiv, 2104.06135v4, https://doi.org/10.48550/arXiv.
2104.06135.

——, J. Gawlikowski, and A. Lavin, 2023: The unreasonable ef-
fectiveness of deep evidential regression. Proc. AAAI Conf.
Artif. Intell., 37, 9134-9142, https://doi.org/10.1609/aaai.v37i8.
26096.

Muiioz-Esparza, D., C. Becker, J. A. Sauer, D. J. Gagne II,
J. Schreck, and B. Kosovi¢, 2022: On the application of an
observations-based machine learning parameterization of sur-
face layer fluxes within an atmospheric large-eddy simulation
model. J. Geophys. Res. Atmos., 127, €2021JD036214, https://
doi.org/10.1029/2021JD036214.

Murphy, A. H., 1973: A new vector partition of the probability
score. J. Appl. Meteor., 12, 595-600, https://doi.org/10.1175/
1520-0450(1973)012<0595: ANVPOT>2.0.CO;2.

Murphy, K. P., 2007: Conjugate Bayesian Analysis of the Gaussian
Distribution. University of British Columbia, 29 pp.

Nadav-Greenberg, L., and S. L. Joslyn, 2009: Uncertainty fore-
casts improve decision making among nonexperts. J. Cognit.
Eng. Decis. Making, 3, 209-227, https://doi.org/10.1518/
155534309X474460.

Neal, R. M., 2012: Bayesian Learning for Neural Networks. Lecture
Notes in Statistics, Vol. 118. Springer, 204 pp.

Nix, D. A, and A. S. Weigend, 1994: Estimating the mean and
variance of the target probability distribution. Proc. 1994
IEEE Int. Conf. on Neural Networks (ICNN’94), Orlando,
FL, Institute of Electrical and Electronics Engineers, 55-60,
https://ieeexplore.ieee.org/document/374138.

Oh, D., and B. Shin, 2022: Improving evidential deep learning via
multi-task learning. Proc. AAAI Conf. Artif. Intell., 36, 7895—
7903, https://doi.org/10.1609/aaai.v36i7.20759.

Opvadia, Y., and Coauthors, 2019: Can you trust your model’s un-
certainty? Evaluating predictive uncertainty under dataset
shift. Proceedings of the 33rd International Conference on
Neural Information Processing Systems, Curran Associates
Inc., 14003-14 014, https://dl.acm.org/doi/abs/10.5555/3454287.
3455541.

Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski,
2005: Using Bayesian model averaging to calibrate forecast
ensembles. Mon. Wea. Rev., 133, 1155-1174, https://doi.org/
10.1175/MWR2906.1.

Rasmussen, C. E., and C. K. 1. Williams, 2006: Gaussian Processes
for Machine Learning. The MIT Press, 248 pp.

SCHRECK ET AL. 19

Rasp, S., and S. Lerch, 2018: Neural networks for postprocessing
ensemble weather forecasts. Mon. Wea. Rev., 146, 3885-3900,
https://doi.org/10.1175/MWR-D-18-0187.1.

Romano, Y., E. Patterson, and E. J. Candes, 2019: Conformalized
quantile regression. Proceedings of the 33rd International
Conference on Neural Information Processing Systems, Cur-
ran Associates Inc., 3543-3553, https://dl.acm.org/doi/10.5555/
3454287.3454605.

Scheuerer, M., M. B. Switanek, R. P. Worsnop, and T. M. Hamill,
2020: Using artificial neural networks for generating probabil-
istic subseasonal precipitation forecasts over California. Mon.
Wea. Rev., 148, 3489-3506, https://doi.org/10.1175/MWR-D-
20-0096.1.

Schulz, B., and S. Lerch, 2022: Machine learning methods for
postprocessing ensemble forecasts of wind gusts: A system-
atic comparison. Mon. Wea. Rev., 150, 235-257, https://doi.
org/10.1175/MWR-D-21-0150.1.

Sensoy, M., L. Kaplan, and M. Kandemir, 2018: Evidential deep
learning to quantify classification uncertainty. NIPS’18: Pro-
ceedings of the 32nd International Conference on Neural In-
formation Processing Systems, Curran Associates Inc., 3183—
3193, https://dl.acm.org/doi/10.5555/3327144.3327239.

——, V. Deli’c, and L. Kaplan, 2020: A review of uncertainty
quantification in deep learning: Techniques, applications and
challenges. arXiv, 2011.06225v4, https://doi.org/10.48550/arXiv.
2011.06225.

Shaker, M. H., and E. Hiillermeier, 2020: Aleatoric and epistemic
uncertainty with random forests. Advances in Intelligent Data
Analysis XVIII: 18th International Symposium on Intelligent
Data Analysis, IDA 2020, Konstanz, Germany, April 27-29,
2020, Proceedings, Springer-Verlag, 444-456, https://dl.acm.
org/doi/10.1007/978-3-030-44584-3_35.

Shepherd, J. G., 2009: Geoengineering the climate: Science, gover-
nance and uncertainty. 98 pp., https:/royalsociety.org/-/
media/policy/publications/2009/8693.pdf.

Soleimany, A. P., A. Amini, S. Goldman, D. Rus, S. N. Bhatia,
and C. W. Coley, 2021: Evidential deep learning for guided
molecular property prediction and discovery. ACS Cent. Sci.,
7, 1356-1367, https://doi.org/10.1021/acscentsci.1c00546.

Srivastava, N., G. Hinton, A. Krizhevsky, 1. Sutskever, and R.
Salakhutdinov, 2014: Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res., 15,
1929-1958.

Stankeviciute, K., A. M. Alaa, and M. van der Schaar, 2021: Con-
formal time-series forecasting. Advances in Neural Information
Processing Systems 34, M. Ranzato et al., Eds., Curran Associ-
ates, Inc., 62166228, https:/proceedings.neurips.cc/paper/2021/
hash/312f1ba2a72318edaaa995a67835fad5-Abstract.html.

Ulmer, D., C. Hardmeier, and J. Frellsen, 2021: Prior and posterior
networks: A Survey on evidential deep learning methods for
uncertainty estimation. Trans. Mach. Learn. Res., 2023, 1-48.

Vannitsem, S., D. S. Wilks, and J. Messner, 2018: Statistical Post-
processing of Ensemble Forecasts. 1st ed. Elsevier, 362 pp.

——, and Coauthors, 2021: Statistical postprocessing for weather
forecasts: Review, challenges, and avenues in a big data
world. Bull. Amer. Meteor. Soc., 102, E681-E699, https://doi.
org/10.1175/BAMS-D-19-0308.1.

Unauthenticated | Downloaded 01/21/25 04:08 PM UTC


https://dl.acm.org/doi/10.5555/3495724.3496353
https://dl.acm.org/doi/10.5555/3495724.3496353
https://doi.org/10.1007/s10546-022-00727-4
https://doi.org/10.1175/BAMS-D-16-0123.1
https://doi.org/10.48550/arXiv.2104.06135
https://doi.org/10.48550/arXiv.2104.06135
https://doi.org/10.1609/aaai.v37i8.26096
https://doi.org/10.1609/aaai.v37i8.26096
https://doi.org/10.1029/2021JD036214
https://doi.org/10.1029/2021JD036214
https://doi.org/10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2
https://doi.org/10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2
https://doi.org/10.1518/155534309X474460
https://doi.org/10.1518/155534309X474460
https://ieeexplore.ieee.org/document/374138
https://doi.org/10.1609/aaai.v36i7.20759
https://dl.acm.org/doi/abs/10.5555/3454287.3455541
https://dl.acm.org/doi/abs/10.5555/3454287.3455541
https://doi.org/10.1175/MWR2906.1
https://doi.org/10.1175/MWR2906.1
https://doi.org/10.1175/MWR-D-18-0187.1
https://dl.acm.org/doi/10.5555/3454287.3454605
https://dl.acm.org/doi/10.5555/3454287.3454605
https://doi.org/10.1175/MWR-D-20-0096.1
https://doi.org/10.1175/MWR-D-20-0096.1
https://doi.org/10.1175/MWR-D-21-0150.1
https://doi.org/10.1175/MWR-D-21-0150.1
https://dl.acm.org/doi/10.5555/3327144.3327239
https://doi.org/10.48550/arXiv.2011.06225
https://doi.org/10.48550/arXiv.2011.06225
https://dl.acm.org/doi/10.1007/978-3-030-44584-3_35
https://dl.acm.org/doi/10.1007/978-3-030-44584-3_35
https://royalsociety.org/-/media/policy/publications/2009/8693.pdf
https://royalsociety.org/-/media/policy/publications/2009/8693.pdf
https://doi.org/10.1021/acscentsci.1c00546
https://proceedings.neurips.cc/paper/2021/hash/312f1ba2a72318edaaa995a67835fad5-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/312f1ba2a72318edaaa995a67835fad5-Abstract.html
https://doi.org/10.1175/BAMS-D-19-0308.1
https://doi.org/10.1175/BAMS-D-19-0308.1

