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Abstract: Accurate and timely water level predictions are essential for effective shoreline and coastal
ecosystem management. As sea levels rise, the frequency and severity of coastal inundation events
are increasing, causing significant societal and economic impacts. Predicting these events with
sufficient lead time is essential for decision-makers to mitigate economic losses and protect coastal
communities. While machine learning methods have been developed to predict water levels at
specific sites, there remains a need for more generalized models that perform well across diverse
locations. This study presents a robust deep learning model for predicting water levels at multiple
tide gauge locations along the Gulf of Mexico, including the open coast, embayments, and ship
channels, all near major ports. The selected architecture, Seq2Seq, achieves significant improvements
over the existing literature. It meets the National Oceanic and Atmospheric Administration’s (NOAA)
operational criterion, with the percentage of predictions within 15 cm for lead times up to 108 h at
the tide gauges of Port Isabel (92.2%) and Rockport (90.4%). These results represent a significant
advancement over current models typically failing to meet NOAA'’s standard beyond 48 h. This
highlights the potential of deep learning models to improve water level predictions, offering crucial
support for coastal management and flood mitigation.

Keywords: operational water level forecasting; tide gauges; coastal inundation; deep learning;
machine learning; Seq2Seq; transformer-based architectures

1. Introduction

Accurate water level predictions along coastlines, including at tide gauges, are crucial
for many coastal activities, including short-term operational tasks such as navigation and
emergency management and longer-term planning for coastal adaptations and ecosystem
management [1,2]. However, the accuracy of tidal predictions, which primarily account
for gravitational influences on water levels, is often insufficient for short-term operational
forecasts, as they do not include metocean forcings that can dominate depending on
location and conditions. This limitation is particularly evident in regions like the microtidal
Gulf of Mexico, where metocean conditions such as wind, atmospheric pressure, and
oceanic currents significantly influence water levels. For instance, a study of a similar tidal
environment in Thailand demonstrated that wind speed can significantly affect sea water
levels, further emphasizing the importance of including such factors in predictions [3].
In such locations, traditional tidal predictions often fall short of meeting the National
Oceanic and Atmospheric Administration’s (NOAA) central frequency (CF) standard,
which requires that at least 90% of predictions have an error within 15 cm or less of
the eventual measurement; a value deemed acceptable for most applications [4,5]. This
standard is important for operational purposes, guiding navigation in and out of coastal
ports [6] and informing preemptive actions ahead of potential inundation events to mitigate
economic losses and other impacts of coastal flooding [1,7].
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This research explores the potential of new deep learning methods to improve the
accuracy and lead time of operational water level predictions. Water level refers to the
height of the surface of a body of water relative to a specific point or reference datum and
is subject to short-term changes due to tides, weather conditions, storm surges, and human
activities [8]. These fluctuations can pose immediate threats to coastal infrastructure, disrupt
shipping and port activities, and affect coastal habitats [9]. While relative sea level refers to
the average height of the ocean’s surface over years and changes gradually due to long-term
climatic and geological processes [10], short-term water level predictions address immediate
and practical concerns for local communities, industries, and ecosystems. Although sea
level rise is a critical global issue linked to climate change and necessitates long-term
mitigation strategies [11], water level predictions are essential for day-to-day operations
and emergency responses. For fixed-height coastal infrastructure, such as roads and sea
walls, rising relative sea levels lead to rapidly increasing inundation frequencies and
increase the risk of wave overtopping during strong winds, as misestimating water levels
can compromise seawall integrity [12-14]. This highlights the importance of accurate water
level predictions for different applications.

Water level predictions have traditionally relied on tidal predictions, which account
for gravitational influences. However, their accuracy can vary, especially in microtidal
regions like the Texas coast, where they often fail to meet NOAA'’s CF (15 cm) standard.
Recent efforts have focused on enhancing traditional harmonic predictions, with some
approaches incorporating Al [15-17]. Despite these advancements, harmonic predictions
alone remain insufficient in microtidal areas where metocean forces are the dominant
influence on water levels. Due to these shortcomings, hydrodynamic models emerged as
the first solution to improve prediction accuracy in the early 2000s [18]. Hydrodynamic
models incorporate atmospheric and oceanic forcings, which improve prediction accuracy.
However, these models require extensive data inputs, including accurate bathymetry, wind
forcings, and real-time boundary and initial conditions. An example is NOAA’s Gulf of
Mexico Operational Forecast System (NGOFS2), a hydrodynamic model that offers water
level predictions for the Gulf of Mexico [19]. However, NGOFS2’s predictions are limited
to a 48 h lead time and do not offer accessible forecasts for all locations [19]. Although
hydrodynamic models can provide predictions across large coastal areas, their accuracy
at specific tide gauge locations is often limited by the model’s resolution. In contrast, Al
methods, which can learn complex, non-linear interactions between metocean forcings and
water levels, offer an opportunity to enhance prediction accuracy and extend lead times at
specific locations, particularly in microtidal environments like the Gulf of Mexico.

A few years later, shallow Al models started to be applied to water level predictions.
While there is extensive literature on long-term sea level predictions using machine learn-
ing [20-22], research on machine learning for short-term water level forecasts is relatively
limited. Initial efforts in short-term predictions primarily focused on lakes and reservoirs,
utilizing simpler models such as Multilayer Perceptrons (MLPs) [23,24]. More advanced
methods, including support vector machines [25], seasonal multiplicative autoregressive
models [26], and hybrid models like MLP-FFA [26], have also been explored. However, the
dynamics of water level changes in inland environments differ significantly from those
in coastal settings, which are influenced by a more complex interplay of factors such as
wind, barometric pressure, tides, riverine flow, wave setup, oceanic currents, and water
temperature. These complexities necessitate adaptations to AI models to accurately predict
coastal water levels. The unique hydrodynamic and meteorological conditions of coastal
regions make water level predictions particularly challenging, requiring models that can
effectively capture the intricate, non-linear interactions among these drivers.

Among the few existing Al studies, the works by [27,28] are the most comparable to
the current research. Both studies focused on the Texas Gulf of Mexico region, which is also
the focus of this study. Ref. [28] utilized a shallow neural network architecture; however,
their approach was unable to meet the National Oceanic and Atmospheric Administration’s
(NOAA) Central Frequency (CF) standard of a 15 cm accuracy for lead times beyond 48 h. In
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contrast, this research aims to achieve significant performance improvements by employing
deeper neural network architectures. These advanced models are designed to enhance
prediction accuracy and extend lead times while meeting NOAA’s CF (15 cm) standard,
achieving up to 96 h of accuracy at most stations and up to 108 h at inland locations.

Ref. [29] evaluated multiple Al methods, including support vector regression, particle
swarm optimization, artificial neural networks, and convolutional neural networks, using
various performance criteria. However, their study focused on much longer lead times,
ranging from 144 to 720 h. These extended lead times are influenced by factors distinct
from those affecting shorter-term water levels, which are more heavily impacted by recent
observations of water levels and wind conditions. As a result, ref. [29]’s findings are
not directly comparable to the current research, which targets the critical 12 to 108 h
short-term prediction window. In this window, timely and accurate forecasts are crucial
for effective coastal management and disaster preparedness. Similarly, ref. [30] applied
machine learning to predict surges (defined as the difference between water level and
harmonic prediction) with a one-hour lead time across 736 tide gauge stations. While their
study encompasses a large number of tide gauges, the predictions are limited to a very
short lead time of just one hour. In contrast, the methods proposed in this research aim to
extend the lead time to 96 h or more, demonstrating the potential to significantly broaden
the temporal scope of tide gauge predictions.

This paper presents several key contributions to the field of coastal water level predic-
tion: (1) the design and rigorous comparison of a range of state-of-the-art deep learning
(DL) architectures specifically tailored for operational coastal water level predictions; (2) an
evaluation of these models across diverse coastal settings, including open coast, ship
channels, and embayments, to ensure their applicability under various environmental
conditions; (3) the research demonstrates substantial improvements in prediction accuracy
using DL, surpassing the capabilities of existing models; (4) our models successfully extend
the operational prediction lead times to up to 96 h at multiple Gulf of Mexico stations
and up to 108 h at Port Isabel and Rockport, meeting NOAA’s CF (15 cm) standard—a
significant advancement over previous models that were limited to 48 h or less.

2. Material and Methods

This section provides a comprehensive overview of the materials and methods used in
this study. It begins with a detailed description of the study area (Section 2.1), followed by
an explanation of the dataset (Section 2.2), including the specific inputs (Section 2.2.1), data
preprocessing techniques (Section 2.2.2), and data preparation steps employed (Section 2.2.3).
The section then focuses on the Seq2Seq architecture (Section 2.3.1), which demonstrated
the best performance for our research problem. Additionally, a description of the harmonic
analysis is included (Section 2.3.2), as it serves as the baseline standard for water level
predictions. Detailed descriptions of the other deep learning architectures evaluated—MLP,
transformer, conformer, and informer—are provided in Appendix A.

2.1. Study Area

The four tide gauge stations illustrated in Figure 1 were selected to represent the
diverse metocean conditions along the Texas coast in the Gulf of Mexico. From south to
north, these stations are Port Isabel, Bob Hall Pier, Rockport, and Galveston Bay Entrance,
North Jetty. These locations are important due to their proximity to the major ship channel
ports of Houston/Galveston (North Jetty) and Corpus Christi (Bob Hall Pier), which rank
first and third in the U.S. by tonnage, respectively (United States Army Corps of Engineers,
2023), as well as the Port of Brownsville (Port Isabel). Additionally, these tide gauge stations
are near recreational beaches (Bob Hall Pier and North Jetty), a NOAA National Estuarine
Research Reserve (Rockport), and sensitive coastal ecosystems (all stations).
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Figure 1. Study area with the location of the four tide gauges.

Some of the characteristics of the respective tide gauge stations are listed in Table 1,
along with local metocean conditions. The Great Diurnal Tidal Ranges (GDR) is the height
difference between the mean higher high water and the mean lower low water [31]. While
the Texas coast is microtidal [32], the GDR varies substantially along the Texas coast, from
non-tidal in the Laguna Madre [33] to about 0.5 m for locations along the GOM coast
such as Bob Hall Pier, an open coast location, and North Jetty, a station protected by a
long jetty at the entrance of the Houston ship channel. The other two stations, Port Isabel
and Rockport, are more inland. Their water level variability is attenuated depending
on the hydraulic resistance between the coast and the tide gauges’ respective locations
outside of extreme event conditions. The GDRs of Port Isabel and Rockport are 0.41 m and
0.11 m, respectively. Further inland, the station of Port Isabel is along a deep ship channel
(12.8 m [34]), resulting in a less attenuated water level range than that of Rockport. Note
that the GDR will also influence the accuracy of water level predictions, with larger water
level variability typically resulting in larger prediction errors and a more challenging task
to meet the NOAA criterion of a CF (15 cm) greater than 90%.

Table 1. Description of the tide gauge stations, selected years, location of the tide gauge stations,
description of the tide gauge location type, and median wind speed.

Bob Hall Pier Port Isabel Rockport North Jetty
Years [2008-2012] 2007 and [2009-2012]  [2009-2013]  [2012-2014], 16, 18
GDR (m) 0.50 0.42 0.11 0.51
Latitude 27°34.8 N 26°3.7 N 28°1.3N 29°214N
Longitude 97°13.0 W 97°129 W 97°2.8 W 94°43.5 W
Location type Gulf of Mexico Inland/Ship Channel Bay Gulf of Mexico/Jetty
Median wind speed (m/s) 6.1 53 49 5.8

The short-term water level dynamic also varies depending on location. Each selected
station experiences different wind and wave climates, resulting in part from a growing
distance to the continental shelf for the more northern stations. The mean wind speeds
along the Texas coast are some of the highest in the continental US and vary from 4.9 m/s
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to 6.1 m/s for our study sites depending on the location’s including distance from the
open coast. Strong winds lead directly or indirectly, through their influence on alongshore
coastal currents, to higher or lower water levels both along the shores of the GOM and
within the bays and estuaries, depending on the wind direction. Large waves along the
coast lead to higher water levels and runup on open ocean beaches. Occasional extreme
events can result in significant changes in water levels, as exemplified by the impacts of
Hurricanes Hanna in 2020, Harvey in 2017, and Ike in 2008. These events caused substantial
damage, including the destruction of Bob Hall Pier by Hurricane Hanna, the disabling of
the Rockport station during Hurricane Harvey, and the widespread devastation caused by
Hurricane Ike. Although extreme events influence the performance of the models, these
low-frequency extreme events are not part of the scope of this study. The proposed work
aims to design a deep learning-based method to predict water levels that can perform well
in multiple locations independently of the described differences between these stations.

2.2. Dataset

The dataset utilized for this research combines 6 min data sourced from NOAA
Tides and Currents [35] and data from the Texas Coastal Ocean Observation Network
(TCOON) [36], accessible via the Texas Digital Library TCOON Collection [37]. While the
water level, harmonic prediction, and surge data were sourced from NOAA, the wind
data were sourced from TCOON historical records and made available on GitHub. This
multi-source data approach was adopted to enhance data quality and minimize missing
values, addressing gaps ranging from 6 min to several months in both the wind and water
level datasets.

One challenge in using environmental data for machine learning applications is ac-
quiring high-quality data with minimal missing values, ensuring that the overall dataset
distribution remains unaffected. To mitigate this issue, we devised a data preprocessing
methodology to address missing values (refer to Section 2.2.2), evaluated in Section Evalua-
tion of the Gap-Filling Approach Used. We identified the years with the fewest missing
values across combined variables for each location. To maintain data distribution integrity,
we only selected the years where less than 2% of 6 min observations were missing, resulting
in varying years chosen for different stations. Subsequently, we proceeded to the data
preprocessing stage, preparing the data for the neural network (refer to Section 2.2.3).

2.2.1. Inputs

The selection of inputs depends on the research objectives, the dynamics of the system,
and, particularly for operational models, data availability. While theoretical research often
considers numerous variables, operational studies are limited to existing real-time data
and favor fewer inputs to limit sensitivity to data consistency challenges, especially during
extreme events. This research aims to implement the proposed model in real-time, so
only past surges (surge = water level — harmonic prediction) and measured and predicted
wind along and across the shore were utilized as inputs, with the surge variable used
as the target. Using surge rather than water level as the input and target improves the
model’s performance by decoupling the tidal signal, driven by gravitational forces, from
metocean forcings. The tidal component is subtracted from the water level signal before
being fed into the model, and it is added back to the predictions to obtain complete water
level predictions.

The wind data used in this study were collected by sensors installed at the tide
gauge stations. The wind observations include both wind direction and speed, which
were converted into alongshore and across-shore wind components. This conversion was
necessary before using the wind data as AI model inputs, as the model cannot inherently
understand that 0 and 360 degrees represent the same direction. This preprocessing step
ensured that the model could effectively interpret the wind data.
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2.2.2. Data Preprocessing

The data preparation step resulted in a high-quality dataset by minimizing the number
of gaps, resulting in the Al-ready data available in the GitHub repository. The gap-filling
process was divided into two stages: addressing short and long gaps. A short gap was
defined as one lasting up to 1 h for wind data and 3 h for surge values. Any gaps exceeding
these durations were classified as long gaps. While only short gaps were identified in
the water level time series, both short- and long-term gaps were observed in the wind
time series. Surge values were utilized to fill gaps in water levels, while along-shore and
across-shore values were employed to fill gaps in wind data.

NOAA employs a post-processing approach to fill most of the water level gaps [5].
Consequently, the NOA A-verified water level time series quality was excellent, with only a
few short gaps to fill, typically averaging about an hour per year per station due to station
maintenance. In contrast, NOAA does not apply post-processing corrections to the wind
data, resulting in a significant number of missing values, with some gaps spanning from
multiple days to months. The TCOON wind data exhibited fewer missing values compared
to the NOAA wind data and hence was selected. Large gaps were filled using a correction
based on the NOAA dataset when those data were available.

The short gap-filling process, applied to both surge and winds, involved applying
a linear interpolation approach. The interpolation began with computing the average
of the five 6 min values preceding the gap as the starting value and concluded with
averaging the first five values following the gap as the end value. Utilizing an average
value computed over thirty minutes before and after the gaps enhanced the robustness of
the gap-filling approach.

The long gap-filling process for the wind time series involved integrating data from
both NOAA and TCOON. Although the data from NOAA and TCOON originated from
the same wind sensor at each location, they often exhibited a different number of missing
values due to variations in post-processing approaches before public release. To address
this inconsistency, a replacement approach with correction was implemented. An average
of the previous five values before the gap and the first five values at the end of the gap
were computed for both the NOAA and TCOON data. The discrepancies between the
values from both data sources before and after the gap were calculated. The average of
these differences served as the correction value, which was then added to the data from the
other source to fill the long gaps.

Evaluation of the Gap-Filling Approach Used

To assess the robustness of the proposed gap-filling approaches and ensure that the
data distribution remained unchanged, artificial gaps were created in a test dataset. Sub-
sequently, these gaps were filled using the described methods, and the accuracy assessed
based on the Mean Absolute Error (MAE) [38] and Root Mean Squared Error (RMSE) [38]
(refer to Equations (1) and (2)). The metrics reported in Tables 2—4 are based on thirty
repetitions, with about 40% of the data being successively removed for gaps of varying
lengths for each repetition. The MAE and RMSE statistics were computed across all gaps,
while the standard deviations (SDs) reflect the variability across the thirty repetitions.

1 & .
MAE = ~ Y lvi — 9l 1)
=

n

/i 0.2
RMSE = |/ Zi=1\Wi ZYi)” (y;; 7i) )

where y; and §j; are the true measurements and the gap-filled values, respectively.

The analysis of the results in Table 2 reveals the effectiveness of the proposed short gap
interpolation method. Across all stations, both the MAE and RMSE for the surge values
remain below 3.8 and 5.0 cm, respectively. Notably, the 3.8 cm threshold meets the 15 cm
NOAA CF standard.
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Table 2. Evaluation of the short gap interpolation approach for the surge variable. The standard
deviations are estimated by creating 30 different sets of artificial gaps of different lengths, representing
about 40% of the data.

Station MAE =+ SD (cm) RMSE =+ SD (cm)
Bob Hall Pier 3.50 £ 0.04 4.45 4+ 0.06
Port Isabel 2.90 £+ 0.02 3.554+0.03
Rockport 2.69 +0.02 3.20£0.03
North Jetty 3.76 £0.05 495+ 0.08

Table 3 presents the results of interpolating short gaps in wind data, demonstrating
the success of the proposed interpolation approach.

Table 3. Evaluation of the short gap interpolation approach for the wind variable. The standard
deviations are estimated by creating 30 different sets of artificial gaps of different lengths, representing
about 40% of the data.

Station MAE =+ SD (m/s) RMSE =+ SD (m/s)
Bob Hall Pier 0.57 £ 0.01 0.86 +£0.03
Port Isabel 0.55+0.01 0.77 £0.01
Rockport 0.57 £ 0.01 0.81 £0.02
North Jetty 0.63 £0.01 0.96 £0.03

Table 4 illustrates the error associated with filling long gaps in the wind data. The
remarkably low errors in the table can be attributed to the utilization of data from two
datasets originating from the same sensor despite undergoing different post-processing
methods. This enables a highly accurate gap-filling method for handling long gaps.

Table 4. Evaluation of the long gap interpolation approach for the wind variable. The standard
deviations are estimated by creating 30 different sets of artificial gaps of different lengths, representing
about 40% of the data.

Station MAE =+ SD (m/s) RMSE =+ SD (m/s)
Bob Hall Pier 0.94 +0.49 1.92 +£0.89
Port Isabel 0.81 +0.39 1.48 +0.86
Rockport 0.70+0.32 1.29 +0.69
North Jetty 1.49 +0.37 2.52+0.63

2.2.3. Data Preparation

The data preparation step involved formatting the dataset to be used as a neural
network input. However, despite employing the gap-filling method, some gaps remained
unfilled, leading to an incomplete time series and posing a significant challenge. In environ-
mental time series problems, it is widely known that previous time steps contain valuable
information that contributes to better predictions. Hence, we incorporated columns con-
taining past wind and water level measurements. Specifically, we included hourly measure-
ments ranging from the current time up to 12 h prior for 12, 24, and 48 h predictions, as well
as up to 6 h prior for 72 and 96 h predictions, for both water level and wind variables. The
selection of prior measurement windows varies depending on forecast times, driven by the
evolving dynamics of water level predictions. As the lead time increases, the significance
of wind predictions becomes more pronounced, while the importance of past wind and
water level measurements diminishes. Furthermore, hourly columns were included for the
wind-perfect prognosis technique, spanning from the forecast time to the predicted time.
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Subsequently, after creating all the necessary columns, rows containing missing values
were removed.

2.3. Methodology

The growing power of deep learning techniques has revolutionized various fields,
including environmental science and hydrology. These advanced methods are particularly
adept at handling complex, non-linear relationships within large datasets, offering the po-
tential for significantly improved predictive performance over traditional approaches [39].
By leveraging long-term historical data and utilizing modern techniques to control overfit-
ting [40], deep learning models can provide more accurate and reliable predictions.

This research aimed to evaluate and compare the performance of several state-of-
the-art deep learning architectures for the prediction of coastal water levels. The architec-
tures compared included MLP [41], Seq2Seq [42], transformer [43], conformer [44], and
informer [45]. While the methodology section focuses on the detailed description and
implementation of the Seq2Seq architecture (Section 2.3.1), which was found to perform
best for our specific problem, the section also includes a discussion of harmonic analysis as
the baseline standard for water level prediction (Section 2.3.2). Descriptions of the other
deep learning architectures are provided in Appendix A.

An initial set of hyperparameters was determined using KerasTuner for each deep
learning architecture. Further tuning was conducted by the modeler, focusing on learning
curves and other performance metrics. Various sets of hyperparameters were tested across
different locations and lead times for each architecture. However, the models” performances
did not show significant differences with varying hyperparameter settings. Therefore, a
single architecture and a consistent set of hyperparameters were selected for each DL
method. The models utilized the Adam optimizer [46] and mean squared error as the loss
function [47]. They incorporated a learning rate scheduler with a reduction factor of 0.1
and a patience of 10 epochs. Additionally, early stopping was implemented with a patience
value of 35 epochs, a learning rate set to 0.0001, and a batch size of 512.

The reader is invited to examine the code implementation at the following GitHub link:
https://github.com/conrad-blucher-institute /waterLevelJournal (accessed on 7 October 2024).

2.3.1. Seq2Seq

The Seq2Seq architecture, also known as the encoder—decoder architecture, is a neural
network model designed for handling sequences of varying lengths [42]. Seq2Seq archi-
tectures are highly versatile and can be adapted for various tasks by changing the input
and output data. They have been extended and improved with variations such as attention
mechanisms, which allow the model to focus on different parts of the input sequence
during decoding, resulting in better performance, especially for longer sequences.

The encoder is the first part of the Seq2Seq model. It takes an input sequence of
variable length and encodes it into a fixed-size context vector or hidden state. This context
vector is meant to capture the semantic information from the input sequence. The encoder
is typically implemented using a Recurrent Neural Network (RNN), Long Short-Term
Memory (LSTM), or Gated Recurrent Unit (GRU). The input sequence is processed one
token at a time, and the hidden state is updated at each step [42].

The decoder is the second part of the Seq2Seq model. It takes the context vector
produced by the encoder as its initial hidden state and generates an output sequence one
token at a time. Similar to the encoder, the decoder is typically implemented using an RNN,
LSTM, or GRU. During training, the decoder is provided with the target sequence (the
ground truth), and it generates tokens to match the target sequence [42].

Seq2Seq models are trained using pairs of input and target sequences. The encoder
processes the input sequence, and the decoder generates the output sequence step by step.
The loss is computed by comparing the predicted sequence with the target sequence, and
backpropagation is used to update the model’s parameters [42].
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After an extensive hyperparameter tuning process using KerasTuner, the Seq2seq
model architecture was defined. The encoder utilized a GRU layer with 1 unit, configured
with a tanh activation function and dropout for regularization, followed by a dense layer
with 32 units using tanh activation. The decoder employed a GRUCell with 32 units, capable
of predicting sequences, and featured an optional attention mechanism with configurable
sizes and dropout (refer to Figure 2). The model was optimized using the RMSprop
optimizer with a learning rate of 0.0001 and mean squared error as the loss function. Early
stopping with a patience of 40 epochs and a batch size of 512 was used to ensure high
performance and prevent overfitting.

Inputs Encoder Decoder
[ | [
Water Level Time

Series of Past %
Observations N Water Level
GRU Dense 5 GRU Dense ater Leve
o ° Predictions
Wind Time S
Series of Past g

Observations

Figure 2. Illustration of the implemented Seq2Seq architecture for water level predictions. The model
features an encoder—decoder structure, where the encoder processes time series data of water levels
and wind measurements through a GRU layer, followed by a dense layer. The encoded state is then
utilized by the decoder, which also comprises GRU and dense layers, to produce the final water
level predictions.

2.3.2. Harmonic Analysis

The performance of all the models was compared with tidal predictions [48]. Tidal
predictions can be computed years in advance; however, they do not account for rel-
ative sea level rise, weather, or other environmental factors. Tidal predictions for the
respective locations and years were obtained from the NOAA Tides and Currents sta-
tion pages. NOAA tidal predictions are referenced to the last tidal epoch (1983-2001)
for the stations at Port Isabel, Bob Hall Pier, and North Jetties. For Rockport, a later ref-
erence period (2002-2006) was used by NOAA (NOAA CO-OPS). Zero mean sea level
was computed based on these epochs, so the performance of tidal predictions decreases
over time due to relative sea level rise. To better compare the predictive methodologies,
the following rates of relative sea level rise for the study locations were considered: Port
Isabel = 4.29 mm/year [49], Bob Hall Pier = 5.48 mm/year [50], Rockport = 5.97 mm/year [51],
and North Jetty = 6.32 mm/year [52]. For each location, the difference from the midpoint
of the tidal epoch was multiplied by the station’s rate of relative sea level rise, and the
result was added as a bias adjustment to the station’s tidal predictions. The same metrics
were then used to compute the performance of these adjusted tidal predictions. Using tidal
predictions without these corrections would result in a lower performance and would not
provide a fair comparison of the respective methodologies.

3. Results and Discussion

Al models have uncertainty due to the selection of different local minima during
repeated calibrations. To confidently evaluate model performance, it is best to train and
assess the performance of the models multiple times. In our study, each model was trained
five times, and their performances were compared by considering the respective metric
ranges. From these five runs, the model with the median performance for the CF of 15 cm
was selected as the representative model for that architecture. This representative model
was then used to compare performance across different architectures while accounting for
the performance ranges.

For environmental problems, it is also necessary to consider year-to-year variability,
since a model may perform better in some years than others. A model that performs
consistently well over multiple years demonstrates the desired robust generalization. To
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assess year-to-year variability, five years of data were used for each location, along with
a K-Fold validation approach [53]. A one-year timespan was selected for each fold to
capture the seasonal variability in water levels. The experimental design resulted in the
model’s performance being assessed over five independent testing sets. For each fold, the
validation dataset included three months of data from each of the remaining four years,
resulting in a year of data, while the training dataset consisted of the remaining three years
of data. For each of the five forecast times and four locations, and for each of the five
architectures, the models were trained five times, resulting in a total of 3000 individual
models once the respective architectures were established through the tuning process
described in Section 2.3.

The metric used for evaluating the model’s performance is the CF of 15 cm, which
calculates the percentage of predicted values with an absolute error of 15 cm or less. A
higher CF indicates more accurate predictions, as it means a greater proportion of values
have an error of 15 cm or smaller. Additionally, for a water level predictive model to
be considered operational, the NOAA requirements include that its CF of 15 cm be 90%
or higher.

3.1. Performance Comparison of the Deep Learning Architectures

This section evaluates the performance of the proposed architectures across all lead
times, locations, and test years, aiming to determine the best-performing architecture for
short-term water level predictions. To ensure a robust comparison, we analyzed the median
performance from five training repetitions for each case, focusing on the CF (15 cm) metric.
This metric was selected because a model achieving 90% or higher CF (15 cm) is required for
operational use. It emphasizes the model’s performance while emphasizing low-frequency
and high-impact events.

Table 5 presents the architecture that performed best overall across the five indepen-
dent testing years when comparing the median performance of the respective models.
The median performance was selected for comparison to improve the robustness of the
results, although the range of performance for the five repetitions was typically small. To be
considered the best model, the CF (15 cm) of the median model had to be the largest of the
five models more frequently than the other models. The higher performance was typically
observed for two or three of the test years. If two architectures are listed, it indicates a tie,
i.e., the two architectures were the top performers for two of the testing years, with no
single architecture emerging as the best for that specific location and lead time.

Table 5. Summary of the architecture(s) showing the best, or tied for best, performance for the
locations and lead times of this study.

Station 12h 24h 48 h 72h 96 h
Bob Hall Pier Seq2Seq Seq2Seq Seq2Seq Seq2Seq Seq2Seq
Port Isabel ~ Transformer Seq2Seq Seq2Seq/MLP  Seq2Seq/MLP  Seq2Seq/Conformer
Rockport Seq2Seq Seq2Seq Seq2Seq Seq2Seq/MLP Seq2Seq
North Jetty Seq2Seq Seq2Seq/ Transformer MLP MLP MLP

Table 5 shows that the Seq25eq model demonstrates the best performance in most
scenarios. Out of twenty-five combinations, Seq2Seq was the top performer in ten and tied
for the best in six. The MLP architecture was the second-best, being the top or tied across six
scenarios. Overall, based on the CF (15 cm) metric, Seq2Seq emerged as the top-performing
architecture for this research problem. The detailed results can be found in Appendix B.

Further analysis of Table 5 reveals that Seq2Seq performed the best for Bob Hall
Pier and Rockport for all lead times. For Port Isabel, Seq2Seq was the best for all lead
times except for the 12 h predictions, where the transformer architecture outperformed it
by less than 0.1% for the respective CF (15 cm) median cases. At North Jetty, Seq2Seq’s
performance was, on average, within 0.8% of the best-performing architecture, which
varied by lead time. Although Seq2Seq was not the top performer or tied for the best in



Water 2024, 16, 2886

11 of 25

five out of twenty locations and lead times, its performance was consistently among the
highest based on the CF (15 cm) metric. Overall, Seq2Seq emerged as the best-performing
model for predicting water levels along the Texas coast. While the selection of Seq2Seq as
the best performing model was based on a robust range of test years, architectures, and
hyperparameters, it should be emphasized that differences in CF (15 cm) are not that large
between models. These differences can be summarized by comparing the range of the
worst- and best-performing models for the five test years for all lead times combined, 12 h
to 96 h. The performance differences range from 3.0% to 5.5% for North Jetty, 1.0% to 8.8%
for Rockport, 0.8% to 2.2% for Port Isabel, and 1.3% to 4.8% for Bob Hall Pier.

If metrics more focused on overall performance, such as MAE or RMSE, had been
selected, the rankings of the models based on their median performance would have
differed, and no single model would consistently show the best performance. However,
when using CF (15 cm), the Seq2Seq architecture consistently demonstrated superior
performance (refer to Table 5) across all locations except North Jetty. The results in this
table are derived from the median repetitions found in Appendix B.

Table Al illustrates the results for Bob Hall Pier, showing that Seq2Seq was the best-
performing architecture in 16 out of 25 experiments, clearly establishing it as the best
architecture. Similarly, for Port Isabel (refer to Table A2), Seq2Seq was the best in 15 out of
25 cases. For Rockport (refer to Table A3), it was the best-performing architecture in 19 out
of 25 cases. For North Jetty (refer to Table A4), Seq2Seq showed the best performance in 10
out of 25 cases. Thus, Seq2Seq emerges as the best architecture across all locations.

Another important observation from Tables A1-A4 is that although Seq2Seq was the
best-performing architecture, the performance of the second-best architecture, often either
the MLP or transformer, was very similar in terms of CF (15 cm). For instance, at Bob Hall
Pier, Seq2Seq outperformed the second-best architecture by an average of only 0.2% for
the 12 h predictions. These small performance differences were maintained for the 24 h,
48 h, 72 h, and 96 h predictions, with differences of 0.3%, 0.3%, 0.3%, and 0.4%, respectively.
These small performance differences between the best and second-best median models
were consistent across the other locations, including Port Isabel, Rockport, and North Jetty.

Table 6 illustrates the Seq2Seq median results of the respective five independent testing
years for the different stations and lead times. The Seq2Seq model met NOAA's operational
standards for predictions of up to 96 h for Port Isabel and Rockport and up to 72 h for Bob
Hall Pier. This represents a substantial improvement compared to the state-of-the-art in the
literature, which was unable to meet the CF criterion for predictions beyond 48 h [28,54].
The performance for Bob Hall Pier was inferior compared to the other two stations due to
the larger water level range on the open coast, which makes predictions more challenging.
In contrast, the inland stations, which exhibit attenuated water level ranges, showed higher
performances. Additionally, Table 6 shows a lower performance for the North Jetty location.
Despite being protected by jetties, this station is on the open coast and experiences minimal
attenuation, resulting in a water level range similar to that of Bob Hall Pier. The more
northern station of North Jetty is correlated with a wider offshore continental shelf, making
it more sensitive to wind forcings compared to the southern locations where deep waters
are closer to the coastline. This increased sensitivity to metocean forcings makes predictions
more challenging, explaining the lower performance.

Table 6. Performance of Seq2Seq water level predictions (CF 15 cm) for the median year at each
station and forecast time.

Station 12h 24h 48 h 72h 96 h Tidal
Bob Hall Pier 97.7% 94.2% 90.6% 90.1% 88.6% 82.1%
Port Isabel 98.9% 97.2% 95.1% 93.4% 92.2% 83.5%
Rockport 99.9% 99.1% 95.0% 92.3% 90.4% 88.2%

North Jetty 95.4% 92.4% 89.0% 87.2% 85.4% 71.8%
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Furthermore, Table 6 presents the median tidal prediction CF (15 cm) for the same
set of testing years as Table 5. Despite the relative sea level rise adjustment, none of the
tidal predictions met the NOAA criterion for operational water level prediction models of
CF (15 cm) > 90%. The importance of wind forcing along the continental shelf is reflected
in the North Jetty tidal predictions performance, which stands at 71.8%. For all locations
and testing years, the performance of the harmonic tidal predictions was lower than the
96 h Seq2Seq predictions, confirming the ability of the Al model to integrate atmospheric
forcings and provide more accurate water level predictions.

MLPs are not specifically designed to handle sequential data. Although MLPs can
model very complex functions, their architecture is not tailored to capture temporal inter-
dependencies at multiple time scales. Similarly, transformer architectures, despite their
self-attention mechanisms, are not inherently designed to capture temporal dependencies.
They are more focused on capturing long-range dependencies, which may not align with
the specific temporal patterns present in water level time series data.

During the hyperparameter tuning process, it was observed that using a large number
of attention heads in the transformer architectures led to overfitting despite mitigating the
potential for overfitting by using dropouts and regularization. While the multi-head atten-
tion mechanism does not inherently cause overfitting, it introduces additional complexity
to the model. This increases the likelihood of overfitting, especially in cases where the prob-
lem is characterized by low dimensionality and relatively straightforward relationships,
such as water level predictions.

The Seq2Seq architecture emerged as the best-performing model for predicting water
levels based on the CF (15 cm) metric. This is likely due to a good balance between
sufficient complexity to capture the nonlinear relationships between metocean forcings
and future water levels while maintaining a relatively simpler architecture that is sufficient
to capture the relationships between the limited number of predictors and the target of
this problem. These relatively simple interdependencies may pose a challenge for more
complex architectures, such as the informer, conformer, and transformer architectures, as
they will be more prone to overfitting. And, the Seq2Seq model’s inherent ability to more
explicitly extract temporal dependencies at different timescales likely explains its superior
performance compared to simpler MLP architectures.

3.2. Analysis of the Yearly Variability of the Predictions

Understanding year-to-year variability is essential for assessing how well the model
generalizes to different datasets and future years. Figure 3 illustrates this variability by
showing the CF (15 cm) results for the Seq2Seq architecture. Each dot represents the median
value of the five independent testing years, while the tips of the error bars indicate the
performance for the best and worst testing years.

Figure 3 highlights the overall excellent performance of the Seq2Seq architecture,
with all stations achieving at least 90% for 12 and 24 h predictions except for one year for
24 h predictions at North Jetty. For Port Isabel and Rockport, model performance was
consistently above 90% for 48 h predictions and for all but one year for 72 h predictions.
The median results for 96 h predictions also surpassed the 90% threshold, demonstrating
the potential for longer lead time predictions with this approach.

The error bars in Figure 3 indicate that the performance difference across independent
testing years is relatively consistent for short lead times but increases with longer lead times.
As discussed in Section 2.2.3, the importance of the past measurements decreases with
lead time, as evidenced from the smaller number of past measurements in the optimized
architectures of the longer lead time predictions. Hence, short-term water level predictions
will be more influenced by recent anomalous high or low water levels. In contrast, longer
lead time predictions of 48 h and beyond rely more on wind predictions and less on
historical water level data. This likely makes it more challenging to adjust for anomalous
average water levels, resulting in an asymmetrical 5-year range for the performance metrics
of long lead time predictions. Since tidal predictions lack direct measurements, adjustments
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for unusually high or low water levels are not feasible, leading to the lowest performances
and wider ranges of CF (15 cm) observed in the figure.
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Figure 3. Interannual variability of Seq25eq model performance over five years, with dots represent-
ing the median performance across five independent testing sets, and vertical bars indicating the
range from the best to the worst independent testing set.

For all models that included 2010 as a test year, for all locations except North Jetty, the
lowest performance was recorded during that period. This particular year was marked
by historically unusual water levels along the Texas coast. In the case of North Jetty, the
lowest performance occurred in 2016: another year characterized by significant interannual
variability, though it was less pronounced than in 2010. The difference in performance
for the worst-performing year impacts performance in two different ways. The inclusion
of the testing year in the training set provides an advantage by exposing the models to a
wider range of average water level conditions. When the challenging year is not included,
the models trained on the rest of the data will have more difficulties predicting under
somewhat different conditions, leading to lower performance as well. The performance
distributions for Rockport across all lead times appeared to be more symmetrical compared
to the other stations, with the lowest performance still occurring in 2010, as anticipated.
This may be attributed to Rockport having a substantially smaller GDR, resulting in smaller
average water level differences compared to other locations. Consequently, past water
levels likely played a more crucial role for longer lead times at this station, enabling the
models to better accommodate unusually high or low average water levels.

The impact of these unusual years on average water levels, specifically 2010 and 2016,
is also reflected in Figure 4. This figure presents a time series of predictions for 12 and 96 h
lead times for the year that resulted in the lowest performance at each location, except for
Bob Hall Pier, where 2008 was selected due to the influence of hurricanes Dolly and Ike on
the predictions.

The Oceanic Nifio Index (ONI) for the Nifio 3.4 region is typically used to characterize
conditions, with 3-month running mean sea surface temperatures above 0.5 °C indicating
an El Nifio event and below —0.5 °C indicating a La Nifia event [55]. The year 2010 was
particularly unusual, as it started with strong El Nifio conditions (ONI for December—
January—-February = 1.5) and ended with strong La Nifia conditions (ONI for November—
December—January = —1.6) [55]. El Nifio and La Nifia are the two phases of the well-known
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climatic variability observed in the Pacific Ocean, which significantly influences weather
patterns globally.
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Figure 4. Comparison of predicted and measured water level time series at 12 h and 96 h lead times
for the studied tide gauge stations: Bob Hall Pier (2008), Port Isabel (2010), Rockport (2010), and
North Jetty (2016).

The El Nifio-Southern Oscillation (ENSO) shift in 2010 was compounded by a loop
current eddy colliding with the Texas coast in July of that year. Such events typically lead
to an increase in average water levels of about 15 cm [56]. This contributed to one of the
largest yearly interannual variability values in water levels, approximately 35 cm, observed
along the Texas coast since records began in 1908 [52].

All stations tested for 2010 (Bob Hall Pier, Rockport, and Port Isabel) were trained on
data from other years that did not experience such significant changes in average water
levels, which explains the somewhat lower performance for that year. For the North Jetty
station, the performance of the deep learning model was lower in 2016; a year that also
experienced large changes in ENSO conditions. The ONI (DJF) for 2016 was 2.5, and it
ended the year with an ONI (NDJ) of —0.6. This resulted in an interannual variability range
of about 25 cm, making it more challenging for models trained on data from other years to
make accurate predictions.
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For all cases, the performance of the 12 h predictive models was significantly better
than the 96 h predictions, as expected, with the vast majority of the predictions falling
within the £15 cm range. The 96 h comparative graphics allow us to observe the conditions
leading to predictions outside this +15 cm range. For all locations, the majority of the
discrepancies involved several hours of predictions above or below that range during sharp
changes in water levels, such as the passage of cold fronts (resulting in low water level
events) or strong southerly winds (resulting in high water level events).

In addition to the interannual variability, the Texas coast was significantly impacted
by several tropical storms and hurricanes in 2008, with Hurricanes Ike and Dolly making
landfall that year. These intense but short-duration storms had a substantial impact on
model performance over 2-3 days. This impact can be observed in Figure 4 for Bob Hall
Pier, particularly for the 96 h predictions. During these periods, the predictions fall outside
the +15 cm range for several hours, which lowers the overall performance of the models. It
should be noted that these models are not designed to predict water levels during tropical
storms or hurricanes. A larger number and variety of the impact of such storms on water
levels and metocean conditions would need to be recorded to make the calibration of Al
models for such conditions promising.

3.3. Exploring Extended Water Level Predictions: A Case Study of 108-Hour Forecasts for Port
Isabel and Rockport

The goal was to create a generalizable model that is applicable across diverse locations
along the Texas coast while extending the lead time of model predictions, currently meeting
NOAA's standard for CF (15 cm) for up to 48 h [28]. The analysis revealed that employing
the Seq2Seq architecture allowed the predictions to be extended up to 96 h into the future
for most of the studied locations while still meeting the NOAA standard for CF (15 cm).

The predictability and dynamics of weather forcings significantly influence model
performance, posing challenges for longer-term temporal predictions. Inland stations such
as Port Isabel and Rockport exhibit reduced water level ranges, facilitating predictions
within the +15 cm range and enabling longer lead times. Consequently, a case study
was conducted on these locations to explore the feasibility of further extending water
level predictions. The case study revealed that, for these two locations, it was possible to
maintain the 90% CF of 15 cm for most of the independent testing years up to 108 h (refer
to Table 7) using the Seq2Seq model.

Table 7. Median CF (15 cm) results for the Seq2Seq architecture for 108 h predictions at Port Isabel
and Rockport.

Station Year 1 Year 2 Year 3 Year 4 Year 5
Port Isabel 91.93 91.19 83.56 92.61 92.35
Rockport 86.58 84.76 94.52 92.76 90.19

The low performance for Port Isabel for Year 3 and for Rockport for Year 2 correspond
to the very unusual year of 2010. Rockport Year 1 (2009) also showed a lower performance,
while Years 3 and 4 showed performances substantially above 90%. Coupling the present
deep learning predictions with subseasonal-to-seasonal water level predictions has the
potential to account for unusual conditions (e.g., ENSO-driven events) and significantly
improve performance, potentially leading to CF (15 cm)-compliant predictions for even
longer lead times.

3.4. Practical Applications and Model Limitations

In this section, we expand on the broader implications of applying deep learning mod-
els, such as Seq2Seq, to predict water levels in different coastal environments. While our
study focused on the Gulf of Mexico, a microtidal region with strong metocean forcings, the
potential for applying this model in other coastal areas, including macrotidal environments,
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is worth discussing. Below, we address key considerations related to the model’s general
applicability, particularly in environments with differing tidal dynamics.

3.4.1. Applicability and Potential of Seq2Seq in Coastal Water Level Predictions

Our research demonstrated the Seq2Seq model’s effectiveness for water level pre-
dictions in the Gulf of Mexico, a microtidal region. However, coastal environments vary
significantly, and different locations may require adaptations of the model to account for
varying atmospheric and oceanic conditions. In macrotidal environments, tidal ranges are
much larger. However, other metocean forcings may still be important for the accurate
predictions of water levels. even if differences with tidal predictions represent a smaller
proportion of the overall water level variability. The primary drivers of water levels and
their potential interactions with the larger tidal range will be somewhat different than for a
microtidal environment, which could lead to the need for additional inputs and research to
validate the model’s adaptability and performance in such regions.

While our study focused on different locations within a specific geographic region,
the Seq2Seq model provides a flexible framework that could be applied globally, including
for locations with the metocean conditions discussed above. The Seq2Seq architecture’s
ability to handle complex, nonlinear relationships between variables, such as wind speed,
wind direction, and water level fluctuations, makes it suitable for other coastal regions.
Other input variables can easily be added as model inputs, and Seq2Seq is a relatively
computationally efficient architecture compared to other more complex DL architectures.

Even though our model does not explicitly isolate extreme wind speeds as a variable,
it was trained using a dataset that included several instances of strong winds exceeding
20 m/s, allowing the model to incorporate the impact of strong winds on water levels. ML
models learn based on past data, and hurricane-force winds were not part of this dataset.
Hence, the model should not be used in these extreme and rare conditions. Furthermore,
wind speeds and directions can fluctuate dramatically as the eye of a hurricane impacts
a coastal region. As it would take several hurricanes of different strengths, paths, sizes,
or a set of realistic synthetic equivalents of hurricanes to impact the model location, the
authors do not foresee this type of ML approach to be effective in such rare cases. However,
this is not seen as a limitation, as coastal regions are evacuated and the most stringent
precautionary measures are taken ahead of the impact of a hurricane. The present models
are designed to assist coastal managers in all other types of situations, including the
fast-increasing occurrence of sunny day floods.

3.4.2. Importance of 96 h Predictions for Coastal Management

One of the key advantages of our model is its ability to forecast up to 96 h into the
future. This capability is particularly important for coastal management and planning.
Although tide tables perform better under calm conditions, their accuracy diminishes
when wind forcing becomes significant, especially in regions like the Gulf of Mexico. The
accuracy of tide tables is also affected by the inter-annual variability and the timing of
the seasonal shifts of sea levels at the location. Along the shores of the Gulf of Mexico,
the inter-annual variability and the seasonal variability of water levels are similar to the
tidal range, all around or below 30 cm [35]. By including real-time water levels and
wind measurements, our Seq2Seq model offers an enhanced prediction capability that
accounts for tidal elevation, inter-annual fluctuations, seasonal adjustments, and wind
effects, providing critical information for coastal activities. The ability to predict up to
96 h ahead allows coastal stakeholders to better prepare for potential disruptions caused
by strong winds or other atmospheric conditions. This predictive range offers a more
comprehensive decision-making tool, particularly for managing shipping, port operations,
and coastal infrastructure in the face of changing weather conditions.
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4. Conclusions

The results showed that the Seq2Seq architecture achieved the best performance for
predicting water levels across multiple locations in the Gulf of Mexico based on the CF
(15 cm) metric, the most widely used criterion regarding the predictions of water levels
for navigation, tide gauges, and other impactful events. Seq2Seq outperformed the other
models for most locations and lead times, and its performance was within 1% of the
top-performing architectures in cases where it was not the best. The analysis indicates
that, for all locations except North Jetty, it was possible to make 72 h predictions while
maintaining NOAA'’s CF (15 cm) standards. Furthermore, the Port Isabel and Rockport
stations were able to maintain these standards for up to 108 h for most of the independent
testing years. This represents a significant improvement over the existing literature, which
had not achieved NOAA'’s standards beyond 48 h.

The proposed Al water level prediction models can be computed almost instantly
once trained and optimized, and the models were recently implemented operationally
(https:/ /sherlock-prod.tamucc.edu/cbocp/, accessed on 7 October 2024). Ongoing work
aims to extend these predictions from average water levels to a coastal inundation model.
This new model leverages the flexibility of Al to incorporate additional inputs such as
local wave measurements and predictions. The goal is to predict the vertical height that
water will reach on the beach, including runup, to provide more precise information to
stakeholders regarding the probability of coastal inundation.

One of the current limitations of this research is the presence of missing values in the
dataset, particularly in the wind observations. A more complete dataset with fewer missing
values would allow for the inclusion of additional years in the training set, potentially
improving the model’s performance. However, we have implemented an interpolation
method that enabled us to utilize five years of data, which has proven sufficient to achieve
strong predictive performance.

Future work will focus on the development of location-specific models for tide gauge
stations. While our current study developed a generalized model that performs well across
multiple locations, creating specialized models tailored to each specific site could further
enhance performance. These specialized models would consider the inclusion of water
level data from nearby stations, which may have correlations or temporal lags that could
contribute to more accurate predictions.
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Appendix A. Deep Learning Architectures

Appendix A provides a detailed description of the multiple deep learning architectures
evaluated in this study, including MLP (Appendix A.1), transformer (Appendix A.2),
conformer (Appendix A.3), and informer (Appendix A.4). Each architecture is discussed in
terms of its design and implementation, tailored to address our research problem.
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Appendix A.1. MLP

MLP is an architecture that is commonly used in the atmospheric science literature
due to its ability to perform well across a wide range of applications [41]. Moreover, MLP
is the state-of-the-art architecture for tidal water level predictions [28,54].

The MLP architecture begins with an input layer consisting of neurons equal to the
number of features in the input data. Each neuron represents a feature, and the values
of these neurons are the feature values from the input data. After the input layer, there
are one or more hidden layers. These hidden layers are composed of multiple neurons
organized in parallel. The number of hidden layers and the number of neurons in each
layer are hyperparameters that can be adjusted based on the complexity of the problem
while controlling for potential overfitting. Neurons in the hidden layers apply activation
functions to their inputs and pass the results to the next layer. The activation functions
can introduce non-linearity into the model, enabling it to approximate complex, non-linear
relationships within the data.

Each connection between neurons in adjacent layers has an associated weight. These
weights are the model’s parameters that are learned during training to adjust the strength of
the connections. Additionally, each neuron in the hidden layers has a bias term that can be
adjusted. The weights and biases collectively represent the model’s learned parameters, which
determine how information flows through the network. Activation functions are applied to
the weighted sum of inputs in each neuron of the hidden layers [57,58]. Common activation
functions include Rectified Linear Unit (ReLU), sigmoid, and tanh. The choice of activation
function impacts the model’s ability to capture non-linear patterns in the data. The final layer
of the MLP is the output layer, which produces the model’s predictions or outputs.

After an extensive hyperparameter tuning process using KerasTuner, the MLP archi-
tecture was defined with one hidden layer with 2 neurons using sigmoid activation and L2
regularization. The model employed the Adam optimizer with a learning rate of 0.0001
and mean squared error as the loss function. Early stopping with a patience of 35 epochs
and a batch size of 512 was used to ensure high performance and prevent overfitting.

Appendix A.2. Transformer

The transformer architecture is a revolutionary neural network architecture introduced
in the paper “Attention is All You Need” by [43]. It has since become the foundation for
various Natural Language Processing (NLP) tasks and has been extended to other do-
mains. The key innovation of the transformer architecture is the self-attention mechanism,
which allows the model to efficiently capture relationships between different elements in a
sequence [43].

The self-attention mechanism allows the model to weigh the importance of various
data points (e.g., time steps in a time series) within the input sequence while processing
each data point. Self-attention operates by evaluating the relationships between different
data points and leveraging this information to construct context-aware representations [43].

The transformer architecture uses multi-head attention, which means it computes
multiple sets of self-attention weights in parallel. Each “head” learns to focus on different
aspects of the input sequence, allowing the model to capture different types of relation-
ships and features. These multiple attention heads are then concatenated and linearly
transformed to produce the final output. Since the transformer architecture doe not in-
herently capture the position of elements in a sequence (unlike RNNs or LSTMs), it uses
positional encodings. These encodings provide information about the position of each
element, allowing the model to distinguish between elements at different positions [43].

Similarly to a Seq2Seq model, the transformer architecture consists of an encoder and a
decoder. The encoder processes the input sequence, while the decoder generates the output
sequence. Each encoder and decoder layer consists of self-attention and feed-forward
neural networks. The stacked layers allow the model to learn hierarchical features. Layer
normalization is applied after each sub-layer (self-attention and feed-forward) to stabilize
the training process and improve convergence. After self-attention, each sub-layer includes
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a feed-forward neural network. This network allows the model to learn complex non-linear
relationships between elements in the sequence [43].

In addition to the standard feed-forward networks, the transformer architecture uses
positionwise feed-forward networks, meaning that the same feed-forward operation is
applied to each position independently. The attention mechanism used in the transformer
employs a scaled dot product operation, which scales the dot product of the query and
key vectors by the square root of the dimensionality of the keys. This scaling ensures that
the gradients do not become too large, resulting in more stabilized training. After the
self-attention layers, the transformer includes positionwise feed-forward networks that
independently process each position in the sequence [43].

After an extensive hyperparameter tuning process using KerasTuner, the transformer
model architecture was defined. The encoder consisted of multiple layers, each comprising
a self-attention mechanism, a feed-forward network, and layer normalization. Specifically,
it utilized 1 encoder layer with 16 hidden units, 1 attention head, and dropout for regular-
ization. The decoder mirrored this structure, featuring 1 layer with similar configurations
and an additional mechanism for attending to encoder outputs. Both the encoder and
decoder were augmented with token embeddings to capture the temporal nature of the
data. The model employed the RMSprop optimizer with a learning rate of 0.0001 and mean
squared error as the loss function. Early stopping with a patience of 40 epochs and a batch
size of 512 was used to ensure high performance and prevent overfitting.

Appendix A.3. Conformer

The conformer architecture is a neural network model designed for sequence-to-sequence
tasks, and it was introduced as an improvement over earlier models such as transformers
and Convolutional Neural Networks (CNNs) by incorporating both convolutional and self-
attention mechanisms [44]. It combines elements from both CNNs and transformers. It
leverages convolutional layers for capturing local patterns and self-attention mechanisms for
modeling long-range dependencies within sequences. This hybrid approach allows it to excel
in a wide range of sequence-based tasks. The architecture starts with a stack of convolutional
blocks. These blocks use 1D depthwise convolutions, which are efficient for capturing local
patterns and extracting important features from input sequences [44].

After the convolutional blocks, the model incorporates self-attention layers similar
to the ones found in the transformer architecture. Self-attention enables the model to
capture dependencies between elements across the entire sequence. In conformers, the
self-attention mechanism is applied in a feed-forward manner to the convolutional features,
enhancing their ability to capture global context [44].

Conformers use positional encodings to provide information about the position of each
element in the sequence. This helps the model distinguish between elements at different
positions. After self attention, conformers employ feed-forward neural networks that
process the transformed sequence representations. These networks allow the model to learn
complex non-linear relationships between elements in the sequence. Layer normalization
is applied after each sub-layer (convolution, self attention, and feed-forward) to stabilize
the training process and improve convergence [44].

After an extensive hyperparameter tuning process using KerasTuner, the conformer
model architecture was defined. The encoder consisted of a multi-head self-attention
mechanism with a model dimension of 4 and 1 attention head, followed by a point-wise
feed-forward network with a hidden dimension of 4 and ReLU activation. Each layer was
integrated with layer normalization and dropout for regularization, specifically set at a
rate of 0.1. The model employed the RMSprop optimizer with a learning rate of 0.0001
and mean squared error as the loss function. To prevent overfitting, early stopping with a
patience of 40 epochs and a batch size of 512 was implemented.
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Appendix A.4. Informer

The informer architecture is a deep learning model designed for time series forecasting
tasks. It is based on the transformer architecture and was specifically developed to handle
long-time series data efficiently and effectively. The architecture is notable for its ability to
capture both long-term and short-term dependencies within time series data [45].

The informer architecture follows an encoder—decoder structure, similar to the Seq2Seq
models. This structure allows it to take a historical time series sequence as input and
generate future forecasts. One of the distinguishing features of the informer is its use
of temporal attention mechanisms. These mechanisms enable the model to focus on
specific time steps within the input sequence, capturing temporal patterns effectively. It
helps handle long sequences without a fixed window size [45]. The model considers both
global and local contexts when making predictions. The global context captures long-term
dependencies in the data, while the local context focuses on shorter patterns. This dual
perspective allows the model to make accurate forecasts across various time scales [45].

After an extensive hyperparameter tuning process using KerasTuner, the informer
model architecture was defined. The encoder consisted of a single layer with self-attention,
featuring 16 hidden units, 1 attention head, and dropout for regularization. It also included
a convolutional component for enhanced feature extraction, followed by layer normal-
ization. The decoder mirrored this structure, utilizing self-attention and full attention
mechanisms with similar configurations. Both encoder and decoder were augmented with
token embeddings to effectively capture the temporal dependencies in the data. The model
employed the RMSprop optimizer with a learning rate of 0.0001 and mean squared error as
the loss function. To prevent overfitting, early stopping with a patience of 40 epochs and a
batch size of 512 was implemented.

Appendix B. Supplementary Results

Appendix B provides the supplementary results, which are organized into four tables,
each corresponding to one of the study areas: Bob Hall Pier, Port Isabel, Rockport, and
North Jetty. Each table presents the median outcomes derived from five repetitions of
the experiments, showcasing the performance of different models across multiple forecast
times and years.

The analysis presents the median results from five training repetitions, encompassing
a set of 125 experiments conducted across four distinct locations, five forecast lead times,
and five independent testing years. Among the architectures evaluated, Seq2Seq emerges
as the top performer in 69 of the experiments, demonstrating its robustness and superior
predictive capability in most scenarios. The transformer architecture follows, excelling in
34 instances, while the MLP architecture ranks third, leading in 25 cases. These results
underscore the varying strengths of each architecture across different conditions, with
Seq2Seq consistently exhibiting overall dominance.

Table A1l. Median results of the five training repetitions for Bob Hall Pier.

CF (15 cm)

Forecast Time Model Y1 Y2 Y3 Y4 Y5
MLP 95.3 97.1 96.4 97.2 97.9

Seq2Seq 95.9 97.8 96.7 97.7 98.5

12h Transformer 96.4 97.4 97.3 97.7 98.2
Conformer 93.7 96.0 93.4 95.2 96.9

Informer 94.8 96.4 93.5 96.8 95.5

MLP 924 93.5 92.8 94.7 95.8

Seq2Seq 92.4 94.2 93.4 95.3 96.0
24 h Transformer 93.1 93.6 92.3 95.5 94.7
Conformer 91.0 93.2 90.0 93.1 94.7

Informer 92.6 93.7 90.7 95.1 92.6
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Table Al. Cont.
CF (15 cm)
Forecast Time Model Y1 Y2 Y3 Y4 Y5
MLP 88.8 90.5 86.5 90.7 92.2
Seq2Seq 89.2 90.6 87.2 91.6 92.4
48 h Transformer 89.6 90.3 85.3 91.2 90.8
Conformer 88.2 90.1 84.9 89.1 90.5
Informer 89.6 90.3 84.0 91.6 87.9
MLP 88.1 90.3 84.7 89.4 90.6
Seq2Seq 88.0 90.5 85.4 90.1 90.2
72 h Transformer 89.2 89.0 83.0 88.1 89.1
Conformer 87.7 89.5 81.8 87.6 88.5
Informer 89.5 89.2 82.8 90.0 86.1
MLP 87.2 89.2 81.4 87.9 89.8
Seq2Seq 86.7 89.5 79.9 88.6 90.1
96 h Transformer 87.3 87.8 78.1 86.5 87.0
Conformer 86.6 88.8 80.8 87.0 86.3
Informer 87.9 88.7 81.3 88.1 85.3
Table A2. Median results of the five training repetitions for Port Isabel.
CF (15 cm)
Forecast Time Model Y1 Y2 Y3 Y4 Y5
MLP 98.9 98.2 97.5 98.6 99.2
Seq2Seq 99.4 98.9 98.5 98.9 99.6
12h Transformer 99.5 99.0 98.2 99.0 99.4
Conformer 99.0 98.4 96.4 96.8 99.0
Informer 98.7 97.8 96.5 98.6 98.2
MLP 97.6 94.9 94.1 97.3 97.3
Seq2Seq 98.3 95.9 95.5 97.3 97.8
24h Transformer 98.0 95.9 94.9 97.2 96.9
Conformer 98.1 95.5 93.3 95.6 97.6
Informer 97.7 95.3 93.2 97.1 96.7
MLP 95.2 93.3 89.6 94.9 95.4
Seq2Seq 95.5 93.3 90.6 95.0 95.3
48 h Transformer 95.1 91.8 89.82 93.8 93.8
Conformer 95.5 92.9 89.3 92.8 94.6
Informer 95.2 92.8 90.0 94.3 94.1
MLP 93.0 93.2 87.6 93.7 94.1
Seq2Seq 93.4 92.4 88.3 93.6 94.3
72 h Transformer 92.9 91.5 87.1 92.3 93.5
Conformer 93.6 92.1 87.0 91.4 93.5
Informer 93.1 924 86.8 93.1 92.1
MLP 92.4 91.9 85.1 92.7 92.6
Seq2Seq 92.2 91.9 85.4 92.7 93.6
96 h Transformer 91.2 89.8 84.2 91.3 91.5
Conformer 92.8 90.7 85.8 91.0 91.5
Informer 91.5 91.2 85.4 91.2 91.8
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Table A3. Median results of the five training repetitions for Rockport.

CF (15 cm)

Forecast Time Model Y1 Y2 Y3 Y4 Y5
MLP 99.5 99.1 99.9 99.8 99.7

Seq2Seq 99.8 99.9 99.9 100 99.9

12h Transformer 99.8 99.6 99.9 100 99.9
Conformer 95.3 91.1 91.6 97.0 96.7

Informer 99.1 95.4 99.8 99.1 98.0

MLP 97.4 96.8 99.3 98.6 97.8

Seq2Seq 99.0 98.4 99.7 99.3 99.1

24 h Transformer 98.7 97.4 99.5 99.2 99.1
Conformer 944 89.6 91.3 96.1 96.0
Informer 98.2 94.8 99.4 97.8 96.30

MLP 92.7 92.5 96.2 96.7 944

Seq2Seq 94.6 93.7 96.9 97.1 95.0

48h Transformer 94.0 93.0 96.8 96.4 94.6
Conformer 91.6 86.1 91.3 93.5 93.3

Informer 94.3 92.3 97.2 94.6 93.3

MLP 88.3 90.4 95.2 94.1 92.5

Seq2Seq 90.0 89.8 95.5 95.2 92.3

72 h Transformer 89.1 89.0 95.0 93.7 91.8
Conformer 88.6 83.3 88.7 90.8 89.7

Informer 90.7 88.7 95.3 93.0 90.8

MLP 85.5 86.8 94.3 924 90.5

Seq2Seq 87.1 86.8 94.9 93.1 90.4

96 h Transformer 86.7 85.8 93.6 914 90.1
Conformer 87.6 80.8 88.6 89.5 87.8
Informer 88.9 86.0 94.2 91.3 89.43

Table A4. Median results of the five training repetitions for North Jetty.

CF (15 cm)

Forecast Time Model Y1 Y2 Y3 Y4 Y5
MLP 95.2 95.0 96.2 91.7 92.7

Seq2Seq 96.2 95.4 96.1 94.3 94.9

12h Transformer 95.8 95.6 96.0 93.7 94.0
Conformer 93.6 92.5 93.8 93.3 92.6

Informer 91.2 92.3 93.2 88.8 90.0

MLP 91.8 91.5 94.7 86.5 87.2

Seq2Seq 93.0 92.4 94.3 89.3 89.9
24 h Transformer 92.7 92.9 94.3 89.8 89.7
Conformer 91.1 90.8 92.1 89.7 89.7

Informer 89.4 89.4 90.7 85.4 86.6

MLP 88.1 89.4 92.1 80.4 82.9

Seq2Seq 89.0 89.1 91.0 83.7 84.2

48 h Transformer 88.5 88.9 91.9 82.3 83.2
Conformer 87.2 87.8 89.5 84.0 84.1

Informer 84.3 85.3 88.5 80.8 81.2

MLP 86.1 88.1 91.9 76.6 80.4

Seq2Seq 87.2 88.1 90.4 80.6 81.1

72 h Transformer 86.8 88.3 90.6 80.7 80.4
Conformer 84.9 86.4 88.0 81.2 81.3

Informer 82.9 84.4 87.9 79.1 78.1
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Table A4. Cont.

CF (15 cm)
Forecast Time Model Y1 Y2 Y3 Y4 Y5
MLP 83.9 88.1 90.9 74.4 77.4
Seq2Seq 85.4 88.0 90.4 77.5 79.5
96 h Transformer 84.1 86.6 88.7 76.1 77.6
Conformer 81.4 85.0 86.9 78.8 78.3
Informer 81.3 85.0 87.2 76.6 75.4
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