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ABSTRACT Given telemetry datasets (e.g., GPS location, speed, direction, distance.), the Older Driver
Classification (ODC) problem identifies two groups of drivers: normal and abnormal. The ODC problem
is essential in many societal applications, including road safety, insurance risk assessment, and targeted
interventions for elderly drivers with dementia or Mild Cognitive Impairment (MCI). The problem is
challenging because of the volume and heterogeneity of temporally-detailed vehicle datasets. This paper
proposes a novel spatial deep-learning approach that leverages Grid-Index based data augmentation to
enhance the detection of abnormal driving behaviors. Through extensive experiments and a real-world case
study, the proposed approach consistently identifies abnormal drivers with high accuracy. The findings
demonstrate the potential of grid-based methods to improve telematics-based driving behavior analysis
significantly. This approach offers valuable implications for enhancing road safety measures, optimizing

insurance risk assessments, and developing targeted interventions for at-risk drivers.

INDEX TERMS Spatial Deep Learning, Older Driver Classification, and Trajectory Data Mining

. INTRODUCTION

Given telemetry datasets (e.g., GPS location, speed, direc-
tion), the Older Driver Classification (ODC) problem identi-
fies two groups of drivers: normal and abnormal. The ODC
problem plays a significant role in road safety improvement
and targeted interventions for elderly drivers with dementia
or Mild Cognitive Impairment (MCI). This problem is chal-
lenging due to the volume and heterogeneity of data collected
from vehicles and the complexity of spatial-temporal patterns
in driving behavior. Traditional classification methods often
rely solely on basic telematics features such as speed, di-
rection, and distance, which lack the granularity to capture
subtle driving anomalies that may indicate cognitive decline,
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such as delayed braking or inconsistent lane changes. To
address this, we introduce a novel method that combines
traditional features with advanced spatial-temporal analysis
to improve classification accuracy.

Our study leverages grid-indexed shape analysis to en-
hance the accuracy of vehicle trajectory classification. The
core idea is to segment trajectories with a time window and
grid cells and utilize temporally detailed spatial grid indexes.
This approach allows convolution filters to recognize com-
plex spatiotemporal patterns.

We first decompose the trajectory into segments based on
a fixed time window. Assume that the trajectory takes n units
of time. Let the size of the time window be w. Then, the
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(a) A driver’s trip overlaid with a grid.

FIGURE 1: Example of a driver’s trip

number of segments is n — w + 1. Figure 1(a) shows an
example of a segment of the trajectory overlaid with grids.
The red dot indicates the starting point of the trip. In this
example, we assume that the time window size is 13 units.
Figure 1(b) shows an example of points and their indexes
for the segment shown in Figure 1(a). The grid id (x,y)
represents the coordinates, where z is the index along the
longitude axis and y is the index along the latitude axis.

Our method captures complex spatiotemporal driving pat-
terns with these grid-indexed segments, enabling more ac-
curate classification of normal and abnormal driving behav-
iors. By analyzing these grid indexes, we can detect driving
behaviors that are not apparent through primary telematics
data(e.g., GPS location, acceleration, direction, distance.)
alone. Our proposed approach combines the strengths of
traditional telematics features with advanced grid-based anal-
ysis to improve overall classification performance.

A. APPLICATION DOMAIN

The Older Driver Classification (ODC) problem addresses
the critical need to enhance road safety for elderly drivers,
particularly those with Mild Cognitive Impairment (MCI)
or dementia. The ODC problem leverages telematics tech-
nology to monitor and analyze driving patterns, crucial for
identifying and mitigating abnormal driving behaviors that
pose risks to drivers and others on the road.

Telematics data provides comprehensive insights into driv-
ing behaviors by capturing speed, direction, and location
metrics. In the context of ODC, this data is instrumental in
detecting cognitive decline in elderly drivers, indicated by be-
haviors like confusion at intersections, erratic speed changes,
and missed turns. Early identification of these patterns al-
lows family members and healthcare providers to intervene,
ensuring the safety of elderly drivers and maintaining their
independence and mobility [1]. Figure 2(a) illustrates the
monitoring process of an elderly driver using telematics.

In fleet management, addressing the ODC problem in-
volves optimizing driver performance by identifying and mit-
igating inefficient driving behaviors. Telematics data helps
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FIGURE 2: Applications of the ODC problem

fleet operators optimize routing, minimize fuel consumption,
and enforce safety protocols, enhancing overall efficiency
and safety [2].

The insurance industry benefits from addressing the ODC
problem through more accurate risk assessments and pre-
mium calculations. Telematics data enables personalized,
usage-based insurance (UBI) policies, rewarding safe driving
habits and detecting fraudulent claims, which protects the
integrity of the insurance system. Figure 2(b) demonstrates
the analysis of insurance data through telematics.

Transportation safety authorities use insights from the
ODC problem to develop targeted interventions to reduce
accident rates. By identifying and mitigating risky behav-
iors like aggressive driving, rapid lane changes, and exces-
sive speeding, authorities can implement public awareness
campaigns and enhanced enforcement measures to improve
public safety [3].

Urban planning and infrastructure development also ben-
efit from solving the ODC problem. Analyzing traffic flow
and congestion patterns using telematics data helps urban
planners design more efficient transportation networks, opti-
mize traffic signals, plan new roadways, and enhance public
transit systems to improve the commuting experience for
urban dwellers [4], [5].

In research and development, addressing the ODC problem
supports the advancement of autonomous driving technolo-
gies. By providing real-world data on vehicle dynamics and
driver behavior, telematics enables the development of algo-
rithms that improve the safety and reliability of self-driving
cars [6].

In summary, addressing the Older Driver Classification
(ODC) problem has far-reaching implications across multiple
domains. The comprehensive analysis of driving behaviors
using telematics data is indispensable for improving road
safety, optimizing fleet management, refining insurance risk
assessments, and advancing transportation technologies. The
interdisciplinary impact of solving the ODC problem under-
scores its transformative potential in shaping the future of
mobility.
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B. PROBLEM FORMULATION

Our study aims to develop a predictive model based on

a spatial deep-learning framework for detecting abnormal

driving behavior. The problem is formulated as follows:

Input:

- aset of vehicle drivers with temporally-detailed telematics
data (e.g., lon, lat, speed, direction, distance),

- a binary label for normal and abnormal drivers,

- the size of the time window w, and

- the size of the grid cell ¢

Output: Trajectory Classification Model

Objective:

- Maximize the predictive performance to classify driving
behavior.

Constraints:

- The model must generalize well to unseen data, ensuring
robust performance.

C. OUR CONTRIBUTION

In this paper, we introduce a novel spatial deep learning
approach to the Older Driver Classification (ODC) problem
using telematics data. Our approach leverages grid indexes
and data augmentation to enhance the detection of abnormal
driving behaviors. Specifically, our contributions are as fol-
lows:

o« We introduce the ODC problem, classifying older
drivers into normal and abnormal categories using
telematics data.

« We propose the grid indexes and data augmentation to
effectively analyze the temporally detailed telematics
data.

o We collect and process the real-world trajectory data
from 200 vehicles for three years.

« We experimentally validate our approach using real-
world telematics datasets, demonstrating significant im-
provements over traditional anomaly detection methods.

D. RELATED WORK

The study of driving behavior has evolved significantly, from
primary telemetry analyses to complex models utilizing ad-
vanced machine learning and deep learning techniques.

Initial research primarily used traditional methods like
speed and braking force analysis and threshold-based detec-
tion systems. These systems monitored basic parameters to
identify deviations from established norms [7]-[9]. Despite
their utility, these early models needed more flexibility and
scope.

Researchers then shifted toward statistical methods, such
as Gaussian Mixture Models (GMMs) and Principal Com-
ponent Analysis (PCA). These methods used statistical in-
ference to detect subtle patterns in driving data but relied
heavily on manually extracted features, which limited their
effectiveness [10]-[12].

The adoption of machine learning algorithms marked a
significant advancement. Techniques like Support Vector
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Machines (SVMs) and Random Forests (RFs) classified driv-
ing styles and detected anomalies using broader features.
However, these methods required deep expertise to select
relevant features and fine-tune the models [13]-[15].

With the advent of big data and neural networks, Deep
Neural Networks (DNNs) and Convolutional Neural Net-
works (CNNs) emerged as practical tools. These models
autonomously learned complex, hierarchical features without
manual feature engineering, directly extracting discrimina-
tive features from high-dimensional raw data, such as images
from traffic cameras and sensors [16]-[19].

Recognizing the importance of spatial analysis in trajec-
tory data, researchers employed techniques in spatial data
mining (Spatial DM) to uncover complex patterns in move-
ment data, providing deeper insights into spatial behav-
iors [20], [21]. Although effective in analyzing large datasets,
these methods sometimes lacked the temporal depth to fully
understand dynamic behaviors [22], [23].

Our work builds upon these foundations by integrating
spatial-temporal pattern recognition with deep learning ca-
pabilities [24], [25]. We introduce Grid-Index Resolution
(GIR), an approach inspired by advances in spatial tessel-
lation and grid-based modeling in geographical information
systems (GIS). By segmenting trajectories into grid cells, we
capture the geometric properties of driving routes.

This research distinguishes itself by employing convolu-
tion filters to analyze these grid-indexed shapes—a novel
application of these networks, typically used in image and
video recognition. Our model effectively learns from the spa-
tiotemporal patterns within these detailed grid cells, surpass-
ing traditional and advanced machine-learning techniques.

Figure 3 illustrates the various approaches to the ODC
problem, highlighting the evolution from traditional methods
to advanced deep learning techniques.

Abnormal driving detection

| Traditional Methods I | Statistical Methods | |
[Treshotds | [amm | [ pca | [svms | RFs
Y

Deep Learning

ﬁ?

Machine Learning |

|Speed and Brake Force]

Spatial DM

ITrajectoryAnalysisI [ Grid-Based Model I

I GIR | |C0mbinedApproach|

FIGURE 3: Approaches to the ODC problem.

E. SCOPE AND OUTLINE

This paper organizes the remaining sections: Section II de-
scribes telematic data, grid indexes, and data augmentation.
Section III introduces the proposed approach based on grid
indexes and neural network models. Section IV presents the
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experimental observations and results. Finally, Section V
concludes the paper.

Il. GRID-INDEX APPROACH

The Grid-Index Approach provides a systematic method
for analyzing driving behavior using spatial and temporal
dimensions. This approach transforms raw GPS data into
a structured format for advanced pattern recognition using
deep learning models. This section outlines the processes
involved, from data collection to feature augmentation.

A. DATA COLLECTION AND PREPARATION

We collect telematics data through precise GPS tracking, cap-
turing every second of a vehicle’s journey. We calculate basic
metrics such as distance, speed, and azimuth (or bearing)
from GPS coordinates to extract meaningful features.

1) Distance
The distance between two GPS points is calculated using the
Haversine formula, which accounts for the Earth’s curvature.

(0,-1)

FIGURE 4: Representation of direction (azimuth) using car-
dinal and intercardinal directions.

TABLE 1: Points and their Azimuth x and y values

AN

The formula is given by:
2

d = 2r arcsin <\/sin2 <A2¢> + cos(¢y) cos(¢pz) sin? (
(1)

where r is the Earth’s radius, A¢ is the difference in latitude,
and A is the difference in longitude between the two points

((blv )‘1) and (¢27 )‘2)

2) Speed
Given three GPS points, pl, p2, and p3, we can calculate the
speed on p2 using the following equation.

Adplpg

2 =
v(p2) Ay’

2
where Adp1p3 is the distance between pl and p3 and At,qp3
is the time interval between p1 and p3.

We also gathered speed over ground (SOG) values from
the AutoPi device installed in the vehicles. We can enhance
the learning model’s ability to understand speed patterns by
utilizing both speed and SOG.

3) Direction

We first compute the azimuth (or bearing) between two GPS
points. However, the azimuth value for North is either 0 or
360 degrees, indicating a discontinuity. Our approach maps
the azimuth value onto the unit circle and converts it to
coordinates on the circle.

Figure 4 shows an example of this transformation for car-
dinal and intercardinal directions. Table 1 shows an example
of azimuth_x and azimuth_y values corresponding to the
directions illustrated in Figure 1.

B. SEGMENTATION AND AUGMENTATION
Our proposed approach involves three main steps: (1) seg-
menting a trajectory using a time window, (2) mapping each

4

Point | X | Y Azimuth_x | Azimuth_y
1 0 0 0 1
2 0 0 0 1
3 1 0 0 1
4 1 0 0 1
5 2 0 1 0
6 2 0 1 0
7 2 1 0 -1
8 1 1 0 -1
9 1 1 1 0
10 1 1 1 0
11 1 2 0 -1
12 0 2 0 -1
) , 13 0 2 0 0

segment to the grid index, and (3) applying data augmenta-
tion through rotation to enhance model robustness.

First, we decompose the trajectory into segments based on
the time window. Assume that the trajectory takes n units of
time. Let the size of the time window be w. We slide the
time window across the sequence of GPS points to create
segments. If the sliding step equals one unit of time, then
the number of segments is n — w + 1.

Next, we map each segment to the grid index. We shift the
starting point to the origin of the coordinate system and map
each GPS point onto the grid index (see Figure 1). This shift-
to-origin process ensures translation invariance.

Lemma 1. The shift-to-origin process ensures translation
invariance.

Proof. The shift-to-origin process translates the input seg-
ment (or trajectory) so that the starting point becomes the
origin of the coordinate system. Let S(z,y) be the input
segment, and S(x + dt,, y + 6t,) be the translated segment.
Then, both segments produce the same outcome after the
shift-to-origin process. Thus, the proof is complete. O

Lastly, we perform data augmentation through rotation to
increase the model’s capability to generalize across diverse
driving conditions. This involves creating multiple rotated
versions of each segment, which simulate different driving
directions and orientations, allowing the model to recognize
patterns regardless of the vehicle’s orientation. Specifically,
we apply rotations of 90°, 180°, and 270°, as illustrated in
Figure 5, 6, and 7. This rotation-based augmentation expands
the dataset and ensures that the model captures a variety of
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spatial orientations, which is essential for detecting abnormal
driving patterns across different directional movements.

Y
) T—.—.' Original (x,y) | 90-degree (X, y))
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(a) 90 ° counterclockwise rotation (b) Indexes

FIGURE 5: 90 ° counterclockwise rotational transformation
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(a) 180 ° counterclockwise rotation (b) Indexes

FIGURE 6: 180 ° counterclockwise rotational transformation

of input shifts, while rotation invariance means that the
model’s output remains consistent despite changes in the
vehicle’s orientation. These properties make the proposed
model highly adaptable and effective in detecting abnormal
driving patterns under varying spatial conditions.

lll. PROPOSED APPROACH

In this section, we present our approach to detecting ab-
normal driving behaviors by integrating traditional naive
features with novel grid-indexed features. We utilize a multi-
modal neural network model that combines both a Simple
Neural Network (SNN) for Naive features and a Convolu-
tional Neural Network (CNN) for grid-indexed features. This
approach captures both temporal and spatial driving patterns,
enhancing the accuracy and robustness of abnormal driving
detection.

A. MODEL

We developed a combined model leveraging naive and grid-
indexed telematics features. This methodology integrates
simple and complex feature sets to improve the detection of
abnormal driving behaviors.

1) Naive Data Model
The naive dataset includes essential telematics metrics: dis-
tance (kilometers), speed (kph), speed over ground (SOG)
(kph), and direction (azimuth). The azimuth value is mapped
onto the unit circle and converted to corresponding coordi-
nates to capture directional information effectively.

The naive dataset features are processed through a Simple

Y Neural Network (SNN) layout, as detailed in Table 2.
P o ® @ @ Original (x,y) | 270-degree (x,y’) . 3
° f0.0) 0.1) 0.2) ) 00 TABLE 2: Naive Data Stream Model
0,0) 0,0)
1.0 0.1 Layer (Type) Output Shape Activation Dropout
o e 1.0 O Input Layer 4) - -
A1 (2,0) 0.2)
1,0) (1.1 (1,2 2.0) 02 Fully Connected Layer (128) ReLU 0.5
J 2.0 (1.2) Fully Connected Layer (64) ReLU 0.5
83 EH; Fully Connected Layer (32) ReLU -
o [ o 2 (1:1) (_1:1) Output Layer 2) Softmax
(-2,0) (-2,1) (-2,2) (1.2) 2.
0,2 (-2,0) . . . . :
0 1 2 X ©2 20 The input dimension for the naive approach is 4, represent-

(a) 270 ° counterclockwise rotation (b) Indexes

FIGURE 7: 270 ° counterclockwise rotational transformation

Lemma 2. The rotation process ensures rotation invariance.

Proof. The rotation process augments the training data by
including various rotated versions of the input segment. In
our approach, we represent the sequence of locations using
grid indexes. Given the limited number of possible index se-
quences, the rotation process ensures rotation invariance. [

Through this process, our method achieves both transla-
tion and rotation invariance, ensuring that the model can
robustly detect driving anomalies across diverse orientations
and directions. Translation invariance is achieved by ensur-
ing that the system produces the same response regardless

VOLUME 4, 2016

ing the four key telematics features: speed, SOG, direction,
and distance. The model is trained using the Adam optimizer
with a learning rate of 0.001 and CrossEntropyLoss as the
loss function, suitable for binary classification tasks. Dropout
layers with a rate of 0.5 are applied after the first and second
fully connected layers to mitigate overfitting by randomly
deactivating 50 percent of the neurons during training.

This configuration ensures that the model generalizes well
to unseen data by not depending excessively on specific
features.

2) Grid-Based Data Model

The Grid-Based dataset organizes telematics data into a
structured 2D grid to capture spatial patterns in driving
behavior. Each grid cell represents a fixed area (e.g., 1 km by
1 km). As shown in Figure 1, we map the vehicle’s path onto

5
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FIGURE 8: Architecture of the Combined Model integrating naive and Grid-Indexed features. The model captures both
temporal patterns from the naive features and spatial relationships from the Grid-Index features.

a 3 x 3 grid. Each point along the vehicle’s path is assigned
a grid cell based on its geographical coordinates (longitude
and latitude). For instance, we start with an index of (0,0)
at the origin and update each cell to 1 if the vehicle passes
through it, creating a binary matrix of movements. Larger
grids provide more detailed tracking of spatial patterns.

The grid-based input is processed by a Convolutional Neu-
ral Network (CNN) to detect spatial dependencies. Table 3
provides an overview of the CNN layers, showing layer
types, output shapes, activation functions, and dropout rates
for each step.

TABLE 3: Layer Configuration Overview of the Grid-Based
Data Stream

Layer(Type) Shape Activation Dropout
Input Layer (3,3, 1) - -
Conv2D (32 filters, 3x3) (1,1,32) ReLU
MaxPooling2D (2x2) (1, 1,32) -
Flatten (32) - -
Fully Connected Layer (256) ReLU 0.5
Fully Connected Layer (64) ReLLU -
Fully Connected Layer (32) ReLU
Output (32) -

« Conv2D Layers: Convolutional layers apply filters that
help detect spatial features, such as changes in direction
or dense areas of movement, within the grid.

« MaxPooling2D Layers: These layers downsample the
spatial data from the Conv2D layers, reducing its size
while retaining key features for further analysis.

« Flatten Layer: This layer converts the 2D spatial data
into a 1D vector, which is then fed into the fully con-
nected layers.

o Fully Connected Layers: These layers analyze the flat-
tened data to identify complex spatial patterns. The final
output is a 32-dimensional vector capturing essential
driving features.

o Dropout: We apply a dropout rate of 0.5 to the first
fully connected layer to prevent overfitting by randomly
disabling 50 percent of the units during training.

3) Proposed Combined Data Model

The Combined model’s architecture integrates outputs from
the naive and Grid-based streams, enhancing the model’s
capability to discern complex patterns indicative of abnormal
driving behavior. The architecture is detailed as follows:

a: Feature Integration:
« Intermediate Representations:

— Naive Data Stream: The Simple Neural Network
(SNN) processes naive features such as speed, direc-
tion, and distance, producing an intermediate feature
vector.

— Grid-based Data Stream: The Convolutional Neural
Network (CNN) processes the grid-indexed features,
producing an intermediate feature vector.

o Concatenation Layer: The intermediate representations
from the Naive and Grid-based streams concatenate to
form a unified feature vector.

TABLE 4: Layer Configuration Overview of the Proposed
Combined Model

Layer(Type) Shape Activation Dropout
Concatenation Layer (64) - -
Fully Connected Layer (256) ReLU 0.5
Fully Connected Layer (64) ReLU -
Fully Connected Layer (32) ReLU
Output Layer 2) Softmax

The Combined model integrates the outputs from both the
naive and Grid-based models by concatenating their inter-
mediate representations into a 64-dimensional feature vector.
This vector is passed through a series of fully connected
layers to refine the feature space before making the final
classification. Dropout with a rate of 0.5 is applied to the
first fully connected layer to prevent overfitting by randomly
setting 50 percent of the input units to zero during training.

The final output is a 2-dimensional vector representing
the probability of each class (normal or abnormal driving
behavior), computed using the softmax activation function.

This multi-modal approach effectively captures temporal
patterns from the naive features and spatial relationships
from the Grid-Index features, enabling the model to make
more accurate predictions.

IV. EXPERIMENTAL EVALUATION

We conducted experiments to evaluate the performance of the
proposed combined approach. The goal was to demonstrate
the performance improvements by integrating naive and grid-
based features. We aimed to answer three key questions:
(1) What is the effect of data size? (2) What is the effect
of the neural network width(number of nodes)? (3) What
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is the effect of the number of the neural network model
depth(hidden layers)?

A. DATA COLLECTION

We collected a comprehensive dataset over 3.5 years from
200 drivers, including individuals with Mild Cognitive Im-
pairment (MCI), to evaluate our approach. Participants were
recruited through community outreach, targeting drivers aged
65 and older with valid driver’s licenses and insurance. Par-
ticipants were initially screened using the Montreal Cognitive
Assessment (MoCA) to assess their eligibility. Drivers with
a MoCA score of 19 or higher were included in the study,
ensuring cognitive baseline comparability.

We installed AutoPi devices in each participant’s vehi-
cle to facilitate data collection. These devices continuously
recorded critical telematics data throughout the study period,
as illustrated in Figure 9. The AutoPi devices captured essen-
tial metrics such as vehicle speed (kph), speed over ground
(SOG), direction (azimuth), distance, and GPS coordinates
(longitude and latitude). This comprehensive data enabled
a detailed analysis of driving behaviors related to cognitive
impairment.

FIGURE 9: AutoPi device used for collecting telematics
data, including speed, SOG, azimuth, distance, and GPS
coordinates [26], [27].

We labeled each trip segment based on the cognitive status
of the drivers. For drivers diagnosed with MCI, we labeled all
segments as abnormal (1), recognizing that abnormal drivers
can exhibit both normal and abnormal driving behaviors.
We expected the neural network to capture the frequency
and pattern of these behaviors during training. This labeling
approach enhanced the model’s ability to differentiate and
accurately classify driving behaviors.

All participants provided informed consent, and the Insti-
tutional Review Board (IRB) approved the study. We con-
ducted periodic assessments for the participants and com-
pensated them for their participation. The dataset enabled us
to train and evaluate our models on a diverse set of driving
behaviors, supporting the effectiveness of our proposed ap-
proach.

B. EXPERIMENT LAYOUT
The layout of our experiments is designed as follows:
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TABLE 5: Experiment Configurations

Experiment | Data Size | Nodes Configuration | Hidden Layers
Exp 1 4 months 64,32, 16 1
Exp 2 8 months 96, 48, 24 2
Exp 3 1 year 128, 64, 32 3
Exp 4 2 years 128, 64, 32 3

a: Evaluation Metrics:

We used the following evaluation metrics to assess model
performance:

o Recall: The proportion of actual positive instances that
the model correctly identifies.

o F1-Score: Harmonic mean of precision and recall.

¢ AUC: Area Under the Receiver Operating Characteris-
tic (ROC) curve.

b: Factors Analyzed:
Our experiments analyzed the impact of various factors,
including:
« Data Size: Evaluating performance on datasets of vary-
ing sizes (4 months, 8 months, 1 year, and 2 years).
o Number of Nodes: Testing different configurations of
node sizes in neural network layers.
o Number of Hidden Layers: Assessing the impact of
network depth with different hidden layer configura-
tions.

c: Approaches Compared:
We compared the following approaches in our experiments:

« Naive Approach: Using basic telematics features.

o Grid-Index based Approach: Incorporating spatial re-
lationships through grid-indexed features.

« Combined Approach: Integrating both naive and grid-
based features.

C. EXPERIMENT RESULTS

We experimentally evaluated the proposed algorithms by
comparing the impact on the performance of (1) the data
size, (2) the neural network width, and (3) the neural network
height.
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1) Effect of Data Size
In the first experiment, we systematically varied the data sizes
to evaluate their effect on the performance of the algorithms.
We used performance metrics, including Recall, F1-Score,
and AUC, to assess how well the models performed with
different amounts of training data. We divided the dataset into
subsets representing four months, eight months, one year, and
two years of collected data. We then used each subset to train
and test the model independently, allowing us to observe how
increasing the amount of data affects model performance.
Figure 11 shows the results for Recall, F1-Scores, and
AUC across the Naive, Grid-based, and Combined ap-
proaches at these different data sizes.
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FIGURE 11: Effect of Data Size on Model Performance for
F1-Score, AUC, and Recall across Naive, Grid-based, and
Combined approaches.

As shown in Figure 11, increasing the dataset size leads
to consistent improvements in model performance across all
approaches. Larger datasets provide the models with more
varied examples, which enhances their ability to generalize
and accurately classify new, unseen data. This is reflected in
the higher F1 scores, AUC values, and Recall observed as the
data size increases. The model trained on the 2-year dataset
achieves the highest performance, indicating the importance
of a larger dataset in capturing complex driving behaviors.

2) Effect of Neural Network Model Width (Number of Nodes)
In the second experiment, we evaluated how the number
of nodes in the neural network layers affects model perfor-
mance. We measured performance using Recall, F1-Score,
and AUC. We conducted the experiments with different
configurations of node sizes in the simple NN and CNN
output layers while keeping other factors constant to isolate
the effect of node variations.

Figure 12 shows the F1-Scores, AUC, and Recall for
Naive, Grid-based, and Combined approaches across varying
node sizes:
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FIGURE 12: Effect of Number of Nodes on Model Perfor-
mance for F1-Score, AUC, and Recall across Naive, Grid-
based, and Combined approaches.

The experiments reveal that increasing the number of
nodes in the neural network layers generally enhances the
model’s performance. Configurations with more nodes con-
sistently achieve higher F1 scores, AUC values, and Recall.
However, this trend may only sometimes be linear, as increas-
ing the number of nodes beyond a certain point might lead
to diminishing returns or even overfitting, depending on the
dataset’s complexity and size.

3) Effect of Neural Network Model Depth (Number of Layers)
The third experiment evaluated the effect of the number
of hidden layers in the neural network on model perfor-
mance. Performance measurements were Recall, F1-Score,
and AUC. The experiments were conducted with 1, 2, and
3 hidden layer configurations while keeping the node size
configuration fixed at 128 nodes for each layer to isolate the
effect of varying the number of layers.

Figure 13 shows the Recall, F1-Scores, and AUC for
Naive, Grid-based, and Combined approaches across varying
numbers of hidden layers:

The results indicate that increasing the number of hidden
layers improves model performance up to a certain point. The
model with 3 hidden layers achieved the highest F1-Score,
AUC, and Recall, indicating that deeper architectures can
capture more complex data representations.

D. EXPERIMENT ANALYSIS
After careful analysis, we determined that the best perfor-
mance was achieved with the following configuration: 2
years of data, 128 nodes per layer, and 3 hidden layers.
This configuration leverages the strengths identified in the
previous experiments.

The Combined Approach achieves outstanding results, as
shown in Table 6, with a Precision of 0.97, a Recall of
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TABLE 6: Performance Metrics for Combined Approach

Metric Precision | Recall | F1-Score
Combined Approach 0.97 0.96 0.96

0.96, and an F1-Score of 0.96. These metrics highlight the
approach’s robustness and accuracy in classifying driving
behaviors.

The experimental results indicate that the Combined Ap-
proach significantly outperforms the Naive and Grid-based
approaches across all evaluation metrics. The Naive Ap-
proach, while straightforward and easy to implement, fre-
quently misclassifies data due to its reliance on basic telem-
atics features, which fail to capture the complexity of driving
behavior.

The Grid-based Approach offers a marked improvement
by incorporating spatial relationships within the data, lead-
ing to better precision and recall. However, the Combined
Approach truly excels by integrating the strengths of Naive
and Grid-based features to deliver superior performance.
To ensure the robustness and generalizability of the results,
we employed 5-fold cross-validation during the evaluation
process, which mitigates the risk of overfitting and validates
the model’s performance across diverse subsets of the data.
The higher precision, recall, and F1-Score demonstrate its
ability to accurately identify abnormal driving behaviors
while minimizing false positives and negatives.

In conclusion, the Combined Approach offers a robust and
effective solution for detecting abnormal driving behaviors,
leveraging the comprehensive insights gained from Naive
and Grid-based features. This study’s findings pave the way
for further research and development in telematics-based
driving behavior analysis, with significant implications for
road safety, fleet management, and insurance risk assessment.
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E. DISCUSSION

Our study highlights the significant improvements in de-
tecting abnormal driving behavior by integrating diverse
data features and advanced neural network architectures.
The Naive Approach, while offering essential insights from
telematics features, fails to capture the complex spatial and
temporal dynamics of driving data, as shown by its lower
precision and F1-Score.

The Grid-based Approach enhances detection by incor-
porating spatial relationships through grid-indexed features
processed by Convolutional Neural Networks (CNNs). This
method shows marked improvement over the Naive Ap-
proach, with higher precision and recall, indicating better
identification of abnormal driving patterns. However, a com-
prehensive capture of driving behavior complexity is still
needed.

The Combined Approach, integrating both Naive and
Grid-based methods, achieves superior performance across
all evaluation metrics. The high precision, recall, and F1-
Score, along with a robust ROC curve, highlight its ef-
fectiveness in distinguishing normal and abnormal driving
behaviors. This approach leverages the strengths of both
Simple Neural Networks (SNN) and CNNs, resulting in a
more accurate and generalizable model.

We experimented with additional features such as vehi-
cle path straightness and speed fluctuations. However, these
were ultimately excluded due to their limited effectiveness
in capturing cognitive impairment indicators. Instead, we
identified position, speed, direction, and distance traveled
as the most relevant features for spatial-temporal analysis,
as they best capture the driving patterns necessary for our
study. Furthermore, our experiments confirmed that larger
datasets, such as the two-year dataset, contribute significantly
to model performance, enhancing the detection of subtle
behavior changes.

These findings highlight the potential for implementing
this classification model in real-world applications such as
real-time monitoring systems. It can immediately detect
anomalies, enhancing road safety for elderly drivers with
Mild Cognitive Impairment (MCI) or dementia. Fleet man-
agement can also benefit from this model by optimizing
driver behavior tracking and improving safety and opera-
tional efficiency. Additionally, insurance telematics can use
the model’s anomaly detection capability to develop more
tailored policies and perform better risk assessments. Our
method is specifically designed to detect spatial-temporal
patterns associated with cognitive impairment, focusing on
behaviors such as erratic speed adjustments, lane deviations,
and inconsistent following distances. This targeted detection
enhances the model’s relevance for real-time monitoring
systems that aim to improve road safety for drivers with MCI
or dementia.

This study provides a foundation for more refined classifi-
cation of driving behavior, paving the way for better insights
into cognitive decline impacts on driving, and ultimately
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contributing to public safety, especially for vulnerable pop-
ulations.

V. CONCLUSION AND FUTURE WORK

Detecting abnormal driving behavior is essential for improv-
ing road safety, especially for drivers with Mild Cognitive
Impairment (MCI) or dementia. This study presented a novel
approach that combines traditional telematics features with
grid-indexed spatial-temporal analysis, utilizing advanced
neural network architectures.

The Naive Approach provided fundamental insights but
was limited in capturing complex driving patterns, resulting
in lower precision, recall, and Fl-scores. The Grid-based
Approach, by incorporating spatial relationships through
Convolutional Neural Networks (CNNs), showed a marked
improvement in precision and recall over the Naive Ap-
proach, yet still lacked a complete capture of driving behavior
complexity.

The Combined Approach integrates naive and grid-based
methods and shows superior performance across all evalua-
tion metrics. It significantly increases precision, recall, and
F1-Score compared to the baseline approaches, effectively
distinguishing normal and abnormal driving behaviors. This
approach leverages Simple Neural Networks (SNN) and
CNN:s to create a more accurate and generalizable model.

To promote reproducibility and facilitate further research,
we have made the implementation code publicly available on
GitHub at https://github.com/fiifijay/Spatial-Deep-Learning-
to-Older-driver-Classification.

While our approach shows promise, computational de-
mands, especially large datasets, remain challenging for
real-time deployment. Future work could optimize effi-
ciency through parallel processing techniques and explore
lightweight model architectures for faster processing.

Future work may also consider integrating additional data
sources, such as visual data from camera-based systems, to
provide a more comprehensive view of driving behavior.
Combining visual inputs with telematics and grid-based fea-
tures could improve the model’s capability to detect sub-
tle behavior variations, enhancing safety interventions for
drivers with cognitive impairments.

This study provides a foundation for further exploration
of spatial-temporal methods in driver behavior analysis, con-
tributing valuable insights for applications in road safety,
fleet management, and insurance risk assessment.
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