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ABSTRACT Given telemetry datasets (e.g., GPS location, speed, direction, distance.), the Older Driver

Classification (ODC) problem identifies two groups of drivers: normal and abnormal. The ODC problem

is essential in many societal applications, including road safety, insurance risk assessment, and targeted

interventions for elderly drivers with dementia or Mild Cognitive Impairment (MCI). The problem is

challenging because of the volume and heterogeneity of temporally-detailed vehicle datasets. This paper

proposes a novel spatial deep-learning approach that leverages Grid-Index based data augmentation to

enhance the detection of abnormal driving behaviors. Through extensive experiments and a real-world case

study, the proposed approach consistently identifies abnormal drivers with high accuracy. The findings

demonstrate the potential of grid-based methods to improve telematics-based driving behavior analysis

significantly. This approach offers valuable implications for enhancing road safety measures, optimizing

insurance risk assessments, and developing targeted interventions for at-risk drivers.

INDEX TERMS Spatial Deep Learning, Older Driver Classification, and Trajectory Data Mining

I. INTRODUCTION

Given telemetry datasets (e.g., GPS location, speed, direc-

tion), the Older Driver Classification (ODC) problem identi-

fies two groups of drivers: normal and abnormal. The ODC

problem plays a significant role in road safety improvement

and targeted interventions for elderly drivers with dementia

or Mild Cognitive Impairment (MCI). This problem is chal-

lenging due to the volume and heterogeneity of data collected

from vehicles and the complexity of spatial-temporal patterns

in driving behavior. Traditional classification methods often

rely solely on basic telematics features such as speed, di-

rection, and distance, which lack the granularity to capture

subtle driving anomalies that may indicate cognitive decline,

such as delayed braking or inconsistent lane changes. To

address this, we introduce a novel method that combines

traditional features with advanced spatial-temporal analysis

to improve classification accuracy.

Our study leverages grid-indexed shape analysis to en-

hance the accuracy of vehicle trajectory classification. The

core idea is to segment trajectories with a time window and

grid cells and utilize temporally detailed spatial grid indexes.

This approach allows convolution filters to recognize com-

plex spatiotemporal patterns.

We first decompose the trajectory into segments based on

a fixed time window. Assume that the trajectory takes n units

of time. Let the size of the time window be w. Then, the
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(a) A driver’s trip overlaid with a grid. (b) Points and their
Indexes

FIGURE 1: Example of a driver’s trip

number of segments is n − w + 1. Figure 1(a) shows an

example of a segment of the trajectory overlaid with grids.

The red dot indicates the starting point of the trip. In this

example, we assume that the time window size is 13 units.

Figure 1(b) shows an example of points and their indexes

for the segment shown in Figure 1(a). The grid id (x, y)
represents the coordinates, where x is the index along the

longitude axis and y is the index along the latitude axis.

Our method captures complex spatiotemporal driving pat-

terns with these grid-indexed segments, enabling more ac-

curate classification of normal and abnormal driving behav-

iors. By analyzing these grid indexes, we can detect driving

behaviors that are not apparent through primary telematics

data(e.g., GPS location, acceleration, direction, distance.)

alone. Our proposed approach combines the strengths of

traditional telematics features with advanced grid-based anal-

ysis to improve overall classification performance.

A. APPLICATION DOMAIN

The Older Driver Classification (ODC) problem addresses

the critical need to enhance road safety for elderly drivers,

particularly those with Mild Cognitive Impairment (MCI)

or dementia. The ODC problem leverages telematics tech-

nology to monitor and analyze driving patterns, crucial for

identifying and mitigating abnormal driving behaviors that

pose risks to drivers and others on the road.

Telematics data provides comprehensive insights into driv-

ing behaviors by capturing speed, direction, and location

metrics. In the context of ODC, this data is instrumental in

detecting cognitive decline in elderly drivers, indicated by be-

haviors like confusion at intersections, erratic speed changes,

and missed turns. Early identification of these patterns al-

lows family members and healthcare providers to intervene,

ensuring the safety of elderly drivers and maintaining their

independence and mobility [1]. Figure 2(a) illustrates the

monitoring process of an elderly driver using telematics.

In fleet management, addressing the ODC problem in-

volves optimizing driver performance by identifying and mit-

igating inefficient driving behaviors. Telematics data helps

(a) Monitoring an
elderly driver (Courtesy:
https://www.fau.edu/broward/news/
memory-driving-study/)

(b) Insurance data
analysis (Courtesy:
https://www.statefarm.com/simple-
insights/auto-and-vehicles)

FIGURE 2: Applications of the ODC problem

fleet operators optimize routing, minimize fuel consumption,

and enforce safety protocols, enhancing overall efficiency

and safety [2].

The insurance industry benefits from addressing the ODC

problem through more accurate risk assessments and pre-

mium calculations. Telematics data enables personalized,

usage-based insurance (UBI) policies, rewarding safe driving

habits and detecting fraudulent claims, which protects the

integrity of the insurance system. Figure 2(b) demonstrates

the analysis of insurance data through telematics.

Transportation safety authorities use insights from the

ODC problem to develop targeted interventions to reduce

accident rates. By identifying and mitigating risky behav-

iors like aggressive driving, rapid lane changes, and exces-

sive speeding, authorities can implement public awareness

campaigns and enhanced enforcement measures to improve

public safety [3].

Urban planning and infrastructure development also ben-

efit from solving the ODC problem. Analyzing traffic flow

and congestion patterns using telematics data helps urban

planners design more efficient transportation networks, opti-

mize traffic signals, plan new roadways, and enhance public

transit systems to improve the commuting experience for

urban dwellers [4], [5].

In research and development, addressing the ODC problem

supports the advancement of autonomous driving technolo-

gies. By providing real-world data on vehicle dynamics and

driver behavior, telematics enables the development of algo-

rithms that improve the safety and reliability of self-driving

cars [6].

In summary, addressing the Older Driver Classification

(ODC) problem has far-reaching implications across multiple

domains. The comprehensive analysis of driving behaviors

using telematics data is indispensable for improving road

safety, optimizing fleet management, refining insurance risk

assessments, and advancing transportation technologies. The

interdisciplinary impact of solving the ODC problem under-

scores its transformative potential in shaping the future of

mobility.
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B. PROBLEM FORMULATION

Our study aims to develop a predictive model based on

a spatial deep-learning framework for detecting abnormal

driving behavior. The problem is formulated as follows:

Input:

- a set of vehicle drivers with temporally-detailed telematics

data (e.g., lon, lat, speed, direction, distance),

- a binary label for normal and abnormal drivers,

- the size of the time window w, and

- the size of the grid cell c

Output: Trajectory Classification Model

Objective:

- Maximize the predictive performance to classify driving

behavior.

Constraints:

- The model must generalize well to unseen data, ensuring

robust performance.

C. OUR CONTRIBUTION

In this paper, we introduce a novel spatial deep learning

approach to the Older Driver Classification (ODC) problem

using telematics data. Our approach leverages grid indexes

and data augmentation to enhance the detection of abnormal

driving behaviors. Specifically, our contributions are as fol-

lows:

• We introduce the ODC problem, classifying older

drivers into normal and abnormal categories using

telematics data.

• We propose the grid indexes and data augmentation to

effectively analyze the temporally detailed telematics

data.

• We collect and process the real-world trajectory data

from 200 vehicles for three years.

• We experimentally validate our approach using real-

world telematics datasets, demonstrating significant im-

provements over traditional anomaly detection methods.

D. RELATED WORK

The study of driving behavior has evolved significantly, from

primary telemetry analyses to complex models utilizing ad-

vanced machine learning and deep learning techniques.

Initial research primarily used traditional methods like

speed and braking force analysis and threshold-based detec-

tion systems. These systems monitored basic parameters to

identify deviations from established norms [7]±[9]. Despite

their utility, these early models needed more flexibility and

scope.

Researchers then shifted toward statistical methods, such

as Gaussian Mixture Models (GMMs) and Principal Com-

ponent Analysis (PCA). These methods used statistical in-

ference to detect subtle patterns in driving data but relied

heavily on manually extracted features, which limited their

effectiveness [10]±[12].

The adoption of machine learning algorithms marked a

significant advancement. Techniques like Support Vector

Machines (SVMs) and Random Forests (RFs) classified driv-

ing styles and detected anomalies using broader features.

However, these methods required deep expertise to select

relevant features and fine-tune the models [13]±[15].

With the advent of big data and neural networks, Deep

Neural Networks (DNNs) and Convolutional Neural Net-

works (CNNs) emerged as practical tools. These models

autonomously learned complex, hierarchical features without

manual feature engineering, directly extracting discrimina-

tive features from high-dimensional raw data, such as images

from traffic cameras and sensors [16]±[19].

Recognizing the importance of spatial analysis in trajec-

tory data, researchers employed techniques in spatial data

mining (Spatial DM) to uncover complex patterns in move-

ment data, providing deeper insights into spatial behav-

iors [20], [21]. Although effective in analyzing large datasets,

these methods sometimes lacked the temporal depth to fully

understand dynamic behaviors [22], [23].

Our work builds upon these foundations by integrating

spatial-temporal pattern recognition with deep learning ca-

pabilities [24], [25]. We introduce Grid-Index Resolution

(GIR), an approach inspired by advances in spatial tessel-

lation and grid-based modeling in geographical information

systems (GIS). By segmenting trajectories into grid cells, we

capture the geometric properties of driving routes.

This research distinguishes itself by employing convolu-

tion filters to analyze these grid-indexed shapesÐa novel

application of these networks, typically used in image and

video recognition. Our model effectively learns from the spa-

tiotemporal patterns within these detailed grid cells, surpass-

ing traditional and advanced machine-learning techniques.

Figure 3 illustrates the various approaches to the ODC

problem, highlighting the evolution from traditional methods

to advanced deep learning techniques.

FIGURE 3: Approaches to the ODC problem.

E. SCOPE AND OUTLINE

This paper organizes the remaining sections: Section II de-

scribes telematic data, grid indexes, and data augmentation.

Section III introduces the proposed approach based on grid

indexes and neural network models. Section IV presents the
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experimental observations and results. Finally, Section V

concludes the paper.

II. GRID-INDEX APPROACH

The Grid-Index Approach provides a systematic method

for analyzing driving behavior using spatial and temporal

dimensions. This approach transforms raw GPS data into

a structured format for advanced pattern recognition using

deep learning models. This section outlines the processes

involved, from data collection to feature augmentation.

A. DATA COLLECTION AND PREPARATION

We collect telematics data through precise GPS tracking, cap-

turing every second of a vehicle’s journey. We calculate basic

metrics such as distance, speed, and azimuth (or bearing)

from GPS coordinates to extract meaningful features.

1) Distance
The distance between two GPS points is calculated using the

Haversine formula, which accounts for the Earth’s curvature.

The formula is given by:

d = 2r arcsin

(
√

sin2
(

∆ϕ

2

)

+ cos(ϕ1) cos(ϕ2) sin
2

(

∆λ

2

)

)

,

(1)

where r is the Earth’s radius, ∆ϕ is the difference in latitude,

and ∆λ is the difference in longitude between the two points

(ϕ1, λ1) and (ϕ2, λ2).

2) Speed
Given three GPS points, p1, p2, and p3, we can calculate the

speed on p2 using the following equation.

v(p2) =
∆dp1p3

∆tp1p3
, (2)

where ∆dp1p3 is the distance between p1 and p3 and ∆tp1p3
is the time interval between p1 and p3.

We also gathered speed over ground (SOG) values from

the AutoPi device installed in the vehicles. We can enhance

the learning model’s ability to understand speed patterns by

utilizing both speed and SOG.

3) Direction
We first compute the azimuth (or bearing) between two GPS

points. However, the azimuth value for North is either 0 or

360 degrees, indicating a discontinuity. Our approach maps

the azimuth value onto the unit circle and converts it to

coordinates on the circle.

Figure 4 shows an example of this transformation for car-

dinal and intercardinal directions. Table 1 shows an example

of azimuth_x and azimuth_y values corresponding to the

directions illustrated in Figure 1.

B. SEGMENTATION AND AUGMENTATION

Our proposed approach involves three main steps: (1) seg-

menting a trajectory using a time window, (2) mapping each

FIGURE 4: Representation of direction (azimuth) using car-

dinal and intercardinal directions.

TABLE 1: Points and their Azimuth x and y values

Point X Y Azimuth_x Azimuth_y

1 0 0 0 1

2 0 0 0 1

3 1 0 0 1

4 1 0 0 1

5 2 0 1 0

6 2 0 1 0

7 2 1 0 -1

8 1 1 0 -1

9 1 1 1 0

10 1 1 1 0

11 1 2 0 -1

12 0 2 0 -1

13 0 2 0 0

segment to the grid index, and (3) applying data augmenta-

tion through rotation to enhance model robustness.

First, we decompose the trajectory into segments based on

the time window. Assume that the trajectory takes n units of

time. Let the size of the time window be w. We slide the

time window across the sequence of GPS points to create

segments. If the sliding step equals one unit of time, then

the number of segments is n− w + 1.

Next, we map each segment to the grid index. We shift the

starting point to the origin of the coordinate system and map

each GPS point onto the grid index (see Figure 1). This shift-

to-origin process ensures translation invariance.

Lemma 1. The shift-to-origin process ensures translation

invariance.

Proof. The shift-to-origin process translates the input seg-

ment (or trajectory) so that the starting point becomes the

origin of the coordinate system. Let S(x, y) be the input

segment, and S(x+ δtx, y + δty) be the translated segment.

Then, both segments produce the same outcome after the

shift-to-origin process. Thus, the proof is complete.

Lastly, we perform data augmentation through rotation to

increase the model’s capability to generalize across diverse

driving conditions. This involves creating multiple rotated

versions of each segment, which simulate different driving

directions and orientations, allowing the model to recognize

patterns regardless of the vehicle’s orientation. Specifically,

we apply rotations of 90°, 180°, and 270°, as illustrated in

Figure 5, 6, and 7. This rotation-based augmentation expands

the dataset and ensures that the model captures a variety of
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spatial orientations, which is essential for detecting abnormal

driving patterns across different directional movements.

(a) 90 ° counterclockwise rotation (b) Indexes

FIGURE 5: 90 ° counterclockwise rotational transformation

(a) 180 ° counterclockwise rotation (b) Indexes

FIGURE 6: 180 ° counterclockwise rotational transformation

(a) 270 ° counterclockwise rotation (b) Indexes

FIGURE 7: 270 ° counterclockwise rotational transformation

Lemma 2. The rotation process ensures rotation invariance.

Proof. The rotation process augments the training data by

including various rotated versions of the input segment. In

our approach, we represent the sequence of locations using

grid indexes. Given the limited number of possible index se-

quences, the rotation process ensures rotation invariance.

Through this process, our method achieves both transla-

tion and rotation invariance, ensuring that the model can

robustly detect driving anomalies across diverse orientations

and directions. Translation invariance is achieved by ensur-

ing that the system produces the same response regardless

of input shifts, while rotation invariance means that the

model’s output remains consistent despite changes in the

vehicle’s orientation. These properties make the proposed

model highly adaptable and effective in detecting abnormal

driving patterns under varying spatial conditions.

III. PROPOSED APPROACH

In this section, we present our approach to detecting ab-

normal driving behaviors by integrating traditional naïve

features with novel grid-indexed features. We utilize a multi-

modal neural network model that combines both a Simple

Neural Network (SNN) for Naive features and a Convolu-

tional Neural Network (CNN) for grid-indexed features. This

approach captures both temporal and spatial driving patterns,

enhancing the accuracy and robustness of abnormal driving

detection.

A. MODEL

We developed a combined model leveraging naïve and grid-

indexed telematics features. This methodology integrates

simple and complex feature sets to improve the detection of

abnormal driving behaviors.

1) Naïve Data Model

The naïve dataset includes essential telematics metrics: dis-

tance (kilometers), speed (kph), speed over ground (SOG)

(kph), and direction (azimuth). The azimuth value is mapped

onto the unit circle and converted to corresponding coordi-

nates to capture directional information effectively.

The naïve dataset features are processed through a Simple

Neural Network (SNN) layout, as detailed in Table 2.

TABLE 2: Naïve Data Stream Model

Layer (Type) Output Shape Activation Dropout

Input Layer (4) - -

Fully Connected Layer (128) ReLU 0.5

Fully Connected Layer (64) ReLU 0.5

Fully Connected Layer (32) ReLU -

Output Layer (2) Softmax -

The input dimension for the naïve approach is 4, represent-

ing the four key telematics features: speed, SOG, direction,

and distance. The model is trained using the Adam optimizer

with a learning rate of 0.001 and CrossEntropyLoss as the

loss function, suitable for binary classification tasks. Dropout

layers with a rate of 0.5 are applied after the first and second

fully connected layers to mitigate overfitting by randomly

deactivating 50 percent of the neurons during training.

This configuration ensures that the model generalizes well

to unseen data by not depending excessively on specific

features.

2) Grid-Based Data Model

The Grid-Based dataset organizes telematics data into a

structured 2D grid to capture spatial patterns in driving

behavior. Each grid cell represents a fixed area (e.g., 1 km by

1 km). As shown in Figure 1, we map the vehicle’s path onto
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FIGURE 8: Architecture of the Combined Model integrating naïve and Grid-Indexed features. The model captures both

temporal patterns from the naïve features and spatial relationships from the Grid-Index features.

a 3 × 3 grid. Each point along the vehicle’s path is assigned

a grid cell based on its geographical coordinates (longitude

and latitude). For instance, we start with an index of (0, 0)
at the origin and update each cell to 1 if the vehicle passes

through it, creating a binary matrix of movements. Larger

grids provide more detailed tracking of spatial patterns.

The grid-based input is processed by a Convolutional Neu-

ral Network (CNN) to detect spatial dependencies. Table 3

provides an overview of the CNN layers, showing layer

types, output shapes, activation functions, and dropout rates

for each step.

TABLE 3: Layer Configuration Overview of the Grid-Based

Data Stream

Layer(Type) Shape Activation Dropout

Input Layer (3, 3, 1) - -

Conv2D (32 filters, 3x3) (1, 1, 32) ReLU -

MaxPooling2D (2x2) (1, 1, 32) - -

Flatten (32) - -

Fully Connected Layer (256) ReLU 0.5

Fully Connected Layer (64) ReLU -

Fully Connected Layer (32) ReLU -

Output (32) - -

• Conv2D Layers: Convolutional layers apply filters that

help detect spatial features, such as changes in direction

or dense areas of movement, within the grid.

• MaxPooling2D Layers: These layers downsample the

spatial data from the Conv2D layers, reducing its size

while retaining key features for further analysis.

• Flatten Layer: This layer converts the 2D spatial data

into a 1D vector, which is then fed into the fully con-

nected layers.

• Fully Connected Layers: These layers analyze the flat-

tened data to identify complex spatial patterns. The final

output is a 32-dimensional vector capturing essential

driving features.

• Dropout: We apply a dropout rate of 0.5 to the first

fully connected layer to prevent overfitting by randomly

disabling 50 percent of the units during training.

3) Proposed Combined Data Model

The Combined model’s architecture integrates outputs from

the naïve and Grid-based streams, enhancing the model’s

capability to discern complex patterns indicative of abnormal

driving behavior. The architecture is detailed as follows:

a: Feature Integration:
• Intermediate Representations:

± Naïve Data Stream: The Simple Neural Network

(SNN) processes naïve features such as speed, direc-

tion, and distance, producing an intermediate feature

vector.

± Grid-based Data Stream: The Convolutional Neural

Network (CNN) processes the grid-indexed features,

producing an intermediate feature vector.

• Concatenation Layer: The intermediate representations

from the Naïve and Grid-based streams concatenate to

form a unified feature vector.

TABLE 4: Layer Configuration Overview of the Proposed

Combined Model

Layer(Type) Shape Activation Dropout

Concatenation Layer (64) - -

Fully Connected Layer (256) ReLU 0.5

Fully Connected Layer (64) ReLU -

Fully Connected Layer (32) ReLU -

Output Layer (2) Softmax -

The Combined model integrates the outputs from both the

naïve and Grid-based models by concatenating their inter-

mediate representations into a 64-dimensional feature vector.

This vector is passed through a series of fully connected

layers to refine the feature space before making the final

classification. Dropout with a rate of 0.5 is applied to the

first fully connected layer to prevent overfitting by randomly

setting 50 percent of the input units to zero during training.

The final output is a 2-dimensional vector representing

the probability of each class (normal or abnormal driving

behavior), computed using the softmax activation function.

This multi-modal approach effectively captures temporal

patterns from the naïve features and spatial relationships

from the Grid-Index features, enabling the model to make

more accurate predictions.

IV. EXPERIMENTAL EVALUATION

We conducted experiments to evaluate the performance of the

proposed combined approach. The goal was to demonstrate

the performance improvements by integrating naïve and grid-

based features. We aimed to answer three key questions:

(1) What is the effect of data size? (2) What is the effect

of the neural network width(number of nodes)? (3) What
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is the effect of the number of the neural network model

depth(hidden layers)?

A. DATA COLLECTION

We collected a comprehensive dataset over 3.5 years from

200 drivers, including individuals with Mild Cognitive Im-

pairment (MCI), to evaluate our approach. Participants were

recruited through community outreach, targeting drivers aged

65 and older with valid driver’s licenses and insurance. Par-

ticipants were initially screened using the Montreal Cognitive

Assessment (MoCA) to assess their eligibility. Drivers with

a MoCA score of 19 or higher were included in the study,

ensuring cognitive baseline comparability.

We installed AutoPi devices in each participant’s vehi-

cle to facilitate data collection. These devices continuously

recorded critical telematics data throughout the study period,

as illustrated in Figure 9. The AutoPi devices captured essen-

tial metrics such as vehicle speed (kph), speed over ground

(SOG), direction (azimuth), distance, and GPS coordinates

(longitude and latitude). This comprehensive data enabled

a detailed analysis of driving behaviors related to cognitive

impairment.

FIGURE 9: AutoPi device used for collecting telematics

data, including speed, SOG, azimuth, distance, and GPS

coordinates [26], [27].

We labeled each trip segment based on the cognitive status

of the drivers. For drivers diagnosed with MCI, we labeled all

segments as abnormal (1), recognizing that abnormal drivers

can exhibit both normal and abnormal driving behaviors.

We expected the neural network to capture the frequency

and pattern of these behaviors during training. This labeling

approach enhanced the model’s ability to differentiate and

accurately classify driving behaviors.

All participants provided informed consent, and the Insti-

tutional Review Board (IRB) approved the study. We con-

ducted periodic assessments for the participants and com-

pensated them for their participation. The dataset enabled us

to train and evaluate our models on a diverse set of driving

behaviors, supporting the effectiveness of our proposed ap-

proach.

B. EXPERIMENT LAYOUT

The layout of our experiments is designed as follows:

FIGURE 10: Experimental Layout

TABLE 5: Experiment Configurations

Experiment Data Size Nodes Configuration Hidden Layers

Exp 1 4 months 64, 32, 16 1

Exp 2 8 months 96, 48, 24 2

Exp 3 1 year 128, 64, 32 3

Exp 4 2 years 128, 64, 32 3

a: Evaluation Metrics:

We used the following evaluation metrics to assess model

performance:

• Recall: The proportion of actual positive instances that

the model correctly identifies.

• F1-Score: Harmonic mean of precision and recall.

• AUC: Area Under the Receiver Operating Characteris-

tic (ROC) curve.

b: Factors Analyzed:

Our experiments analyzed the impact of various factors,

including:

• Data Size: Evaluating performance on datasets of vary-

ing sizes (4 months, 8 months, 1 year, and 2 years).

• Number of Nodes: Testing different configurations of

node sizes in neural network layers.

• Number of Hidden Layers: Assessing the impact of

network depth with different hidden layer configura-

tions.

c: Approaches Compared:

We compared the following approaches in our experiments:

• Naive Approach: Using basic telematics features.

• Grid-Index based Approach: Incorporating spatial re-

lationships through grid-indexed features.

• Combined Approach: Integrating both naïve and grid-

based features.

C. EXPERIMENT RESULTS

We experimentally evaluated the proposed algorithms by

comparing the impact on the performance of (1) the data

size, (2) the neural network width, and (3) the neural network

height.
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1) Effect of Data Size
In the first experiment, we systematically varied the data sizes

to evaluate their effect on the performance of the algorithms.

We used performance metrics, including Recall, F1-Score,

and AUC, to assess how well the models performed with

different amounts of training data. We divided the dataset into

subsets representing four months, eight months, one year, and

two years of collected data. We then used each subset to train

and test the model independently, allowing us to observe how

increasing the amount of data affects model performance.

Figure 11 shows the results for Recall, F1-Scores, and

AUC across the Naïve, Grid-based, and Combined ap-

proaches at these different data sizes.

(a) Recall (b) F1-Score

(c) AUC

FIGURE 11: Effect of Data Size on Model Performance for

F1-Score, AUC, and Recall across Naïve, Grid-based, and

Combined approaches.

As shown in Figure 11, increasing the dataset size leads

to consistent improvements in model performance across all

approaches. Larger datasets provide the models with more

varied examples, which enhances their ability to generalize

and accurately classify new, unseen data. This is reflected in

the higher F1 scores, AUC values, and Recall observed as the

data size increases. The model trained on the 2-year dataset

achieves the highest performance, indicating the importance

of a larger dataset in capturing complex driving behaviors.

2) Effect of Neural Network Model Width (Number of Nodes)
In the second experiment, we evaluated how the number

of nodes in the neural network layers affects model perfor-

mance. We measured performance using Recall, F1-Score,

and AUC. We conducted the experiments with different

configurations of node sizes in the simple NN and CNN

output layers while keeping other factors constant to isolate

the effect of node variations.

Figure 12 shows the F1-Scores, AUC, and Recall for

Naïve, Grid-based, and Combined approaches across varying

node sizes:

(a) Recall (b) F1-Score

(c) AUC

FIGURE 12: Effect of Number of Nodes on Model Perfor-

mance for F1-Score, AUC, and Recall across Naïve, Grid-

based, and Combined approaches.

The experiments reveal that increasing the number of

nodes in the neural network layers generally enhances the

model’s performance. Configurations with more nodes con-

sistently achieve higher F1 scores, AUC values, and Recall.

However, this trend may only sometimes be linear, as increas-

ing the number of nodes beyond a certain point might lead

to diminishing returns or even overfitting, depending on the

dataset’s complexity and size.

3) Effect of Neural Network Model Depth (Number of Layers)

The third experiment evaluated the effect of the number

of hidden layers in the neural network on model perfor-

mance. Performance measurements were Recall, F1-Score,

and AUC. The experiments were conducted with 1, 2, and

3 hidden layer configurations while keeping the node size

configuration fixed at 128 nodes for each layer to isolate the

effect of varying the number of layers.

Figure 13 shows the Recall, F1-Scores, and AUC for

Naïve, Grid-based, and Combined approaches across varying

numbers of hidden layers:

The results indicate that increasing the number of hidden

layers improves model performance up to a certain point. The

model with 3 hidden layers achieved the highest F1-Score,

AUC, and Recall, indicating that deeper architectures can

capture more complex data representations.

D. EXPERIMENT ANALYSIS

After careful analysis, we determined that the best perfor-

mance was achieved with the following configuration: 2

years of data, 128 nodes per layer, and 3 hidden layers.

This configuration leverages the strengths identified in the

previous experiments.

The Combined Approach achieves outstanding results, as

shown in Table 6, with a Precision of 0.97, a Recall of
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(a) Recall (b) F1-Score

(c) AUC

FIGURE 13: Effect of Layer Complexity on Model Perfor-

mance for F1-Score, AUC, and Recall across Naïve, Grid-

based, and Combined approaches.

TABLE 6: Performance Metrics for Combined Approach

Metric Precision Recall F1-Score

Combined Approach 0.97 0.96 0.96

0.96, and an F1-Score of 0.96. These metrics highlight the

approach’s robustness and accuracy in classifying driving

behaviors.

The experimental results indicate that the Combined Ap-

proach significantly outperforms the Naive and Grid-based

approaches across all evaluation metrics. The Naive Ap-

proach, while straightforward and easy to implement, fre-

quently misclassifies data due to its reliance on basic telem-

atics features, which fail to capture the complexity of driving

behavior.

The Grid-based Approach offers a marked improvement

by incorporating spatial relationships within the data, lead-

ing to better precision and recall. However, the Combined

Approach truly excels by integrating the strengths of Naive

and Grid-based features to deliver superior performance.

To ensure the robustness and generalizability of the results,

we employed 5-fold cross-validation during the evaluation

process, which mitigates the risk of overfitting and validates

the model’s performance across diverse subsets of the data.

The higher precision, recall, and F1-Score demonstrate its

ability to accurately identify abnormal driving behaviors

while minimizing false positives and negatives.

In conclusion, the Combined Approach offers a robust and

effective solution for detecting abnormal driving behaviors,

leveraging the comprehensive insights gained from Naive

and Grid-based features. This study’s findings pave the way

for further research and development in telematics-based

driving behavior analysis, with significant implications for

road safety, fleet management, and insurance risk assessment.

E. DISCUSSION

Our study highlights the significant improvements in de-

tecting abnormal driving behavior by integrating diverse

data features and advanced neural network architectures.

The Naive Approach, while offering essential insights from

telematics features, fails to capture the complex spatial and

temporal dynamics of driving data, as shown by its lower

precision and F1-Score.

The Grid-based Approach enhances detection by incor-

porating spatial relationships through grid-indexed features

processed by Convolutional Neural Networks (CNNs). This

method shows marked improvement over the Naive Ap-

proach, with higher precision and recall, indicating better

identification of abnormal driving patterns. However, a com-

prehensive capture of driving behavior complexity is still

needed.

The Combined Approach, integrating both Naive and

Grid-based methods, achieves superior performance across

all evaluation metrics. The high precision, recall, and F1-

Score, along with a robust ROC curve, highlight its ef-

fectiveness in distinguishing normal and abnormal driving

behaviors. This approach leverages the strengths of both

Simple Neural Networks (SNN) and CNNs, resulting in a

more accurate and generalizable model.

We experimented with additional features such as vehi-

cle path straightness and speed fluctuations. However, these

were ultimately excluded due to their limited effectiveness

in capturing cognitive impairment indicators. Instead, we

identified position, speed, direction, and distance traveled

as the most relevant features for spatial-temporal analysis,

as they best capture the driving patterns necessary for our

study. Furthermore, our experiments confirmed that larger

datasets, such as the two-year dataset, contribute significantly

to model performance, enhancing the detection of subtle

behavior changes.

These findings highlight the potential for implementing

this classification model in real-world applications such as

real-time monitoring systems. It can immediately detect

anomalies, enhancing road safety for elderly drivers with

Mild Cognitive Impairment (MCI) or dementia. Fleet man-

agement can also benefit from this model by optimizing

driver behavior tracking and improving safety and opera-

tional efficiency. Additionally, insurance telematics can use

the model’s anomaly detection capability to develop more

tailored policies and perform better risk assessments. Our

method is specifically designed to detect spatial-temporal

patterns associated with cognitive impairment, focusing on

behaviors such as erratic speed adjustments, lane deviations,

and inconsistent following distances. This targeted detection

enhances the model’s relevance for real-time monitoring

systems that aim to improve road safety for drivers with MCI

or dementia.

This study provides a foundation for more refined classifi-

cation of driving behavior, paving the way for better insights

into cognitive decline impacts on driving, and ultimately
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contributing to public safety, especially for vulnerable pop-

ulations.

V. CONCLUSION AND FUTURE WORK

Detecting abnormal driving behavior is essential for improv-

ing road safety, especially for drivers with Mild Cognitive

Impairment (MCI) or dementia. This study presented a novel

approach that combines traditional telematics features with

grid-indexed spatial-temporal analysis, utilizing advanced

neural network architectures.

The Naive Approach provided fundamental insights but

was limited in capturing complex driving patterns, resulting

in lower precision, recall, and F1-scores. The Grid-based

Approach, by incorporating spatial relationships through

Convolutional Neural Networks (CNNs), showed a marked

improvement in precision and recall over the Naive Ap-

proach, yet still lacked a complete capture of driving behavior

complexity.

The Combined Approach integrates naive and grid-based

methods and shows superior performance across all evalua-

tion metrics. It significantly increases precision, recall, and

F1-Score compared to the baseline approaches, effectively

distinguishing normal and abnormal driving behaviors. This

approach leverages Simple Neural Networks (SNN) and

CNNs to create a more accurate and generalizable model.

To promote reproducibility and facilitate further research,

we have made the implementation code publicly available on

GitHub at https://github.com/fiifijay/Spatial-Deep-Learning-

to-Older-driver-Classification.

While our approach shows promise, computational de-

mands, especially large datasets, remain challenging for

real-time deployment. Future work could optimize effi-

ciency through parallel processing techniques and explore

lightweight model architectures for faster processing.

Future work may also consider integrating additional data

sources, such as visual data from camera-based systems, to

provide a more comprehensive view of driving behavior.

Combining visual inputs with telematics and grid-based fea-

tures could improve the model’s capability to detect sub-

tle behavior variations, enhancing safety interventions for

drivers with cognitive impairments.

This study provides a foundation for further exploration

of spatial-temporal methods in driver behavior analysis, con-

tributing valuable insights for applications in road safety,

fleet management, and insurance risk assessment.
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