Low Overhead Logic Locking for System-Level Security: A Design
Space Modeling Approach

Long Lam Maksym Melnyk Michael Zuzak
Rochester Institute of Technology Rochester Institute of Technology Rochester Institute of Technology
115530@rit.edu mmé6878@rit.edu mjzeec@rit.edu

Abstract

Integrated circuits are often fabricated in untrusted facilities,
making intellectual property privacy a concern. This prompted the
development of logic locking, a security technique that corrupts the
functionality of a design without a correct secret key. Prior work
has shown that system-level phenomena can degrade the security of
locking, highlighting the importance of configuring locking in a sys-
tem. In this work, we propose a design space modeling framework
to generate system-level models of the logic locking design space
in arbitrary ICs by simulating a small, carefully-selected portion
of the design space. These models are used to automatically iden-
tify near-optimal locking configurations in a system that achieve
security goals with minimal power/area overhead. We evaluate our
framework with two experiments. 1) We evaluate the quality of
modeling-produced solutions by exhaustively simulating locking
in a RISC-V ALU. The models produced by our algorithm had an
average R? > 0.99 for all design objectives and identified a locking
configuration within 96% of the globally optimal solution after sim-
ulating < 3.6% of the design space. 2) We compare our model-based
locking to conventional module-level locking in a RISC-V processor.
The locking configuration from our model-based approach required
29.5% less power on average than conventional approaches and was
the only method to identify a solution meeting all design objectives.
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1 Introduction

The high cost and complexity of integrated circuit (IC) fabrica-
tion has driven the widespread use of untrusted facilities to manu-
facture and test ICs. The GDSII files provided for fabrication can
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be reverse-engineered into complete design netlists, leaking high-
value intellectual property (IP) and enabling piracy, counterfeiting,
and malicious modification [9]. This set of supply-chain security
challenges is known as the untrusted foundry problem.

Logic locking was developed to mitigate the security concerns
from untrusted fabrication by locking the function of specific mod-
ules in an IC behind a secret key [2]. Without the key, error is
injected in the locked module to cause failures and derail unautho-
rized use. A large body of work on locking explores these schemes
through a module-level lens, relying on the assumption that any
errant functionality in a module is sufficient to protect an IC from
unauthorized use [16]. However, recent research has shown that
system-level phenomena (e.g. error resilience, input space utiliza-
tion, etc.) degrade or even eliminate the security of logic locking
when an IC is viewed as a whole [13, 20]. This prompted a shift
towards logic locking for high-level security (i.e., architecture or
system), including gate-level constructions with architectural evalu-
ations [18, 22], and HLS strategies [18, 21]. Despite varied high-level
locking approaches, most research relies on the assumption that a
designer has pre-configured locking in a design and must only con-
sider optimizing security and attack resilience. This is a non-trivial
assumption that substantially impacts design goals (e.g., power).

In this work, we aim to address this problem, exploring how
to best configure logic locking in an IC to meet system objectives.
Specifically, we address the following design problem. Given a list
of modules containing critical IP that must be protected and an ar-
bitrary set of design objectives (e.g., power budget, attack time, etc.),
identify a set of locking techniques, their size, and the modules they
are implemented in to optimize system design goals. To achieve this,
a strong understanding of the system design space of logic locking
is necessary. Unfortunately, this design space is not intuitive due
to the many variables involved and the complex interaction be-
tween these variables. Moreover, exhaustive simulation or ad-hoc
approaches to explore this design space are infeasible. To overcome
this, we propose design space modeling (DSM) to model the locking
design space. DSM has been successfully applied to varied design
space exploration (DSE) problems with complex, multi-variate de-
sign spaces [5, 11]. This leads to our primary goal: to develop a
DSM framework to model the system-level design space for logic
locking and employ these models to identify optimal logic locking
configurations in arbitrary ICs sufficient for system-wide security
with minimal power and area overhead.

1.1 Contributions

We propose DSM to configure logic locking to achieve designer-
specified security requirements with minimal corresponding power
and area overhead in arbitrary ICs. To do so, small portions of the
design space are iteratively identified and simulated to produce
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mathematical models for design goals (i.e., power overhead, se-
curity, etc.). These models are then used to identify near-optimal
configurations of logic locking in arbitrary ICs based on designer-
specified goals. We summarize our contributions as follows:

o A quantifiable, system-level security metric for logic locking
that quantifies both the frequency and severity of errors for
an unauthorized user of a logic-locked system.

e An algorithm for guided DSM to automatically configure
logic locking in an IC to meet arbitrary, designer-specified
goals with a minimal power and area overhead.

e An open-source DSM framework that applies our algorithms
to configure logic locking in arbitrary ICs. This can be found
at https://github.com/mzuzak/DSM-for-Logic-Locking.

To evaluate the proposed DSM framework, we applied it to lock
a RISC-V processor [15]. The design space models produced by
the framework were highly predictive, modeling the power, area,
security, and SAT attack runtime of arbitrary locking solutions with
an average R% > 0.99. Moreover, our DSM framework identified
system-level locking solutions within 96% of the globally optimal
solution after simulating only 3.6% of the design space. Compared
to conventional methods that configure logic locking at the module
level, the locking solution identified by our model-based approach
required 29.5% less power on average and was the only method to
identify a solution meeting all design objectives.

2 Preliminaries

2.1 Logic Locking

Logic locking addresses the untrusted foundry problem by ren-
dering IC function dependent on a locking key. This is done through
adding extra primary inputs, known as key inputs, to drive combi-
national logic in a target module in a design. The security of locking
is often evaluated by two goals: 1) error severity; and 2) attack re-
silience [21]. Error severity is the ability of logic locking to derail
device function, often quantified by the percent of a locked mod-
ule’s input space producing corrupt output for wrong keys. Attack
resilience is the ability of locking to resist attack. The SAT attack
is commonly used to assess attack resilience [10, 12, 16, 20]. State-
of-the-art locking includes Stripped Functionality Logic Locking
(SFLL) [10], CASLock [12], and others [2].

2.2 Design Space Exploration and Modeling

Design space exploration (DSE) is used to identify favorable
system configurations from a vast and complex design space. It is
common in the area of processor [8] and 3D IC [11] design. Due to
continued increases in the number of design space variables and
the complexity of evaluating design decisions, DSM was developed
to perform DSE by generating mathematical models for the design
space that are used to predict favorable design configurations [5, 11].

2.3 Related Work

Prior work has adopted a high-level (i.e., system or architecture)
approach to the untrusted foundry problem, including secure scan-
chains [1] and behavioral locking during high-level synthesis or
at the RT-Level [3, 6, 7]. While these approaches consider high-
level security, they do not use logic locking. This overlooks the
body of work developing provably secure and low-overhead logic
locking. For example, the behavioral locking used by TAO [7] can
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Table 1: Example system-level design space for logic locking.

Variable: Possible Variable Configurations

Lockable Module: {ALU, Decoder, Branch Predictor}
Locking Techniques: {SFLL [10], CASLock [12], SLL [17]}
Key Length (Bits):  {0,16,32,48,64}

be unlocked by an SAT-based attacker that is provably resisted by
most recent logic locking [10, 12, 22]. Several works have explored
locking for system security [18, 21]. However, these works assume
that a designer has already selected locking techniques and imple-
mented them in a design, aiming to tune locking in a module to
optimize security goals. These approaches differ from this work
where we assume the designer has only specified the modules with
critical IP to be locked and provided a cost function.

2.4 Threat Model

We consider an untrusted foundry adversary who aims to use the
IC in an unauthorized manner. They can take any strategy using:

(1) A locked IC netlist from GDSII reverse-engineering [9].
(2) An activated, black-box oracle IC from testing facilities or
the open market that can be queried with arbitrary inputs.

A defense must 1) resist attacks against locking (e.g., SAT attack
[14]); and 2) inject enough error to stop unauthorized IP use for a
wrong key. This model is consistent with prior work [10, 12, 21, 22].

3 Motivation and Problem Formulation

System-level locking configuration has sizable design implica-
tions [20]. Therefore, a method to understand the system design
space of locking is crucial to produce effective locked ICs. This
work proposes a method to do so. We begin by formalizing the
system-level logic locking DSE problem addressed in this work.

DSE poses the problem: given a set of decision variables (degrees-
of-freedom), m, identify a variable configuration that optimizes a
set of objective values, n [8]. DSM solves the DSE problem by
developing a fitness function, f(m), that translates a point in the
design space (m variable configuration) to a point in the solution
space (n objective values). This fitness function is used to identify
configurations in the design space as candidate solutions.

For the system-level logic locking configuration problem, the
m-variable design space contains a set of variables for each module
with critical IP that must be locked. These variables correspond
to each candidate locking technique that could be used to lock
the module and the length of the key for the locking technique in
each module. Tbl. 1 contains an example of the design space for a
processor IC with 3 modules that must be locked and 3 possible
locking schemes considered that use |k| = {0, 16, 32, 48, 64} key bits.
Even this small sample design space includes 125 possible design
configurations (i.e., 125 locking combinations per module with 3
independently-locked modules). Hence, any attempt to simulate
more than a tiny fraction of the > 10° locking solutions is infeasible.

There are 4 design objectives': 1) system security (see Sec. 4); 2)
SAT attack runtime; 3) power overhead; and 4) area overhead. An
arbitrary cost function will mix these objective values into a quan-
tifiable goal (e.g., minimize power subject to a security constraint).

'We assume the designer is unwilling to degrade clock frequency for locking. Hence,
all designs are subject to a fixed clock constraint and timing is excluded as an objective.
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Figure 1: Method to quantify proposed security metric (S).
4 System-Level Security Metric (S)

Principled system design requires quantifiable design objectives.
In the case of logic locking, prior work relied on metrics expressed
qualitatively [18, 21] (e.g., “restrict unauthorized use”) or at the
module level [12]. To enable system-level design, we propose a
security-metric, S, equal to the ratio of inputs per observed error
and inputs until recovery. Inputs per observed error measures the
average number of characteristic inputs that must be applied to the
IC until an error is observed on output pins. This quantifies the
rate that locking injects errors, taking into account system-level
phenomena that mask error, such as error resilience. Inputs until
recovery measures the average number of errant outputs until the
IC returns to correct output. This measures the severity of locking-
induced error, taking into account system-level phenomena that
limit error impact, including module importance and redundancy.
Smaller S values indicate higher security.

4.1 Measuring the System Security Metric (S)

The proposed S metric is dependent on the specific inputs ap-
plied to the IC, the locking configuration, and the characteristics
of the locked system. Thus, we must quantify it per design. To
do so, we propose the following measurement framework. Two
functional simulations for an IC are run simultaneously: one with
a random incorrect key and one with the correct key. At each time,
the simulations (i.e., locked and unlocked) are compared. We depict
this measurement setup in Fig. 1. Note that this approach is similar
to the system-level security metrics proposed in [20], however, in
this work we produce a single, unified security metric for locking.

Both functional simulations (i.e., locked and unlocked) are run
on a common input trace. As the simulation runs, locking-induced
errors are identified by comparing the output values produced by
both functional simulations over a large output window, called
the compare window. Any divergence of the locked IC output is
classified as a critical error and used to calculate inputs per observed
error. The duration of this error is measured by tracking how long
it takes for outputs from the locked simulation instance to once
again match the outputs from the other simulation instance. The
number of cycles until this occurs is used to measure inputs until
recovery. When this recovery occurs, the two output traces are
re-synchronized (to reset the compare window) and functional
simulation continues. This allows system-wide security (S) to be
measured for arbitrary locking configurations in arbitrary ICs.

5 Design Space Modeling Algorithm

In this section, we formalize our DSM algorithm to produce the
models used to identify system-level locking configurations that
optimize designer cost functions in arbitrary ICs. A block diagram
for the DSM algorithm is in Fig. 2. The details of each component of
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the DSM algorithm are in the sections below. The complete code can
be found at https://github.com/mzuzak/DSM-for-Logic-Locking.

5.1 Overview of DSM Algorithm

As input, the m-variable system-level locking design space and
a user design objective (i.e., cost function) is provided. The locking
design space consists of: 1) the modules with critical IP to be locked,;
2) the locking schemes that can be used in each locked module; and
3) the possible size of each locking scheme in key bits. See Tbl. 1 for
a small example design space. The design objective formalizes the
system-level designer goals. For example, a design objective could
be to identify a locking solution with minimum power overhead
subject to an area, SAT runtime, and S-metric constraint. Upon ter-
mination, the framework returns: 1) a design space model, namely
a fitness function, f(m), that estimates the four objective values (S-
metric, SAT runtime, power, and area) for any m-variable locking
solution in the target IC; and 2) a predicted optimal locking solution
generated from these models based on the design objective.

To generate these outputs, the proposed DSM framework first
performs a sampling of n uniformly distributed design space points
(see Sec. 5.2). Regression functions are then used to generate a model
from this data. We outline the specific regression functions and how
they were selected in Sec. 5.3. The regression model will be used to
predict objective values for locking solutions, allowing simulation
results to be compared to model estimates to assess model accuracy.
The stopping criteria are then evaluated to terminate modeling if
model accuracy is above a threshold or if the design space becomes
oversampled, risking overfitting (see Sec. 5.5). If termination does
not occur, a region of interest (ROI) is defined based on the model,
highlighting regions where optimal design configurations are likely
to occur (see Sec. 5.4). The proposed DSM framework will select
the next simulation from the ROI This configuration will then
be simulated to quantify each design objective (see Sec. 6.1 for
the simulation framework). The model is then re-generated with
these added data points and the process continues until the stopping
criteria are met. Upon termination, the design space model, f(m), and
the expected optimal configuration is returned. Key components of
the DSM algorithm are green-shaded in Fig. 2 and described below.

5.2 Initial Sampling of Design Space

Creating the initial model requires balance between over-sampling,
which risks long runtimes and overfitting, and under-sampling,
which may yield a poor model to guide simulation. To generate the
initial model, a set of points for simulation are selected uniformly
(i.e., equally spaced) in the design space. This ensures that the initial
model will not be biased towards a specific region of the design

# Initial (" Design
Points Space

Select new points for simulation
Define Region of Interest (ROI) <«
Select M points from ROI at each iteration

5 Build Models:
U"'f°f'“ —>» S-Metric, Area, Power, SAT —> Create Al?d .Evaluate
Sampling Attack Runtime Predictions

) v

Queue New Evaluate Stopping ——
" . [
Simulated Points |5th0nyise Criteria

Predicted Locking
Configuration

Complete

Figure 2: Overview of proposed DSM algorithm.
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space. This helps minimize the risk of the model producing an ar-
tificial maxima in a large, unsampled portion of the design space
that could potentially arise from non-uniform initial sampling ap-
proaches. Such an artificial maxima would discourage any further
simulation in that region of the design space during the directed
simulation phase described in the following section, failing to iden-
tify any high-quality solutions that may exist in this region. The
number of simulated points used to generate initial models, defined
as 1, is left to the user as design space complexity may vary widely
by design, locking scheme, or other application-specific context.

5.3 Building Models and Regression Functions

A suitable regression function is necessary to accurately model
the design space. To select the regression function for each design
objective, we evaluated several candidates by building models on a
small subset of design points and assessing their efficacy using an
exhaustive characterization of the locking design space of an ALU
in a RISC-V processor (see Sec. 6.2). Evaluated regression functions
included SS-ANOVA [4], linear, logistic, polynomial, and exponen-
tial. We omit detailed results for brevity, however, we discuss the
selected regression function for each design objective below.

5.3.1 Power, Area, and S-Metric For power, area, and S-metric ob-
jectives, SS-ANOVA outperformed all other evaluated regression
functions in the RISC-V ALU, achieving an average R? > 0.99 (see
Sec. 6.2). Thus, we have adopted SS-ANOVA [4] to produce models
for these 3 design objectives. SS-ANOVA fits smoothing splines
(piece-wise cubic functions) to a dataset using the analysis of vari-
ance (ANOVA) method [4]. ANOVA is a statistical technique that
aims to analyze the underlying source of variance in a population
and generate a model as a function of descriptive properties. An
SS-ANOVA model, f, is represented as a function of independent
variables m = {my, my, ..., m,, } as depicted in Eqn. 1 [4]. Each unique
subset of independent variables is defined as a term. The order of the
term is defined as the number of independent variables in the subset.
SS-ANOVA models each term as a smoothing spline, {f1, ..., fi2,...n}-
The final model, f, is the sum of all smoothing splines.

Fm)=c+ ) fim)+ ), > fij(mim)) +..+
i=1

i=1 j=i+1
fz..n(mi,ma,...my) +e (1)

To create S-metric, area, and power models for a system, an SS-
ANOVA model for each design objective is generated for locking
in one module at a time. This constitutes a greedy algorithm that
assumes each design objective is separable per module. For power
and area, this is largely true. However, for a system with multiple
locked modules, the locking in each module may interact, impacting
the system S-metric. To model this, we adopt an iterative approach,
constructing models for one module at a time and freezing the
locking configuration before considering the next locked module.
For example, consider a system with L locked modules. In this case,
we randomly select the first module and apply the DSM algorithm to
generate S-metric, area, and power models with SS-ANOVA. After
the locking configuration is selected for that module, it is frozen.
Models for the next locked module are generated assuming all prior
locking is already in place. This process proceeds iteratively until
a locking solution is found for all L modules. For each SS-ANOVA
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model, we include all first and second order terms. This produced
the best models in our exhaustively simulated ALU (see Sec. 6.2).

5.3.2  SAT Attack Runtime Many locking schemes are designed to
resist SAT attacks [10, 12]. This makes quantifying SAT runtime
infeasible for many locking solutions, limiting the regions of the
design space that can be used to build models. As a result, we adopt
a different approach for runtime modeling, relying on prior theo-
retical derivations of SAT attack complexity for model generation
[19, 22]. Specifically, we use theoretically derived SAT attack com-
plexity to select a regression function for each locking scheme. For
example, the Anti-SAT locking scheme [16] proved that SAT attack
iteration count, which is proportional to runtime, grows exponen-
tially in key length. Hence, an exponential regression function is
selected to model SAT runtime for Anti-SAT.

If a module has multiple locking schemes, the model for each
scheme is summed to predict total SAT runtime for the locked mod-
ule?. Consider the following example without the loss of generality.
To produce a SAT runtime model for a module being locked with
3 locking schemes (SFLL [10], CASLock [12], and SLL [17]) with
key, k = (ksrLL, kcasLocks ksLL), we define the regression function
in Eqn. 2. In Eqn. 2, each locking scheme has its own term, whose
form (e.g., exponential, linear, etc.) is determined by [19, 22], with
added constants (4, ..., F) that are determined through regression.

SAT (k) = A # 2BIksFLLI=C 4 D s pFrlkcastock] + F o |kspp | (2)

To construct a SAT runtime model using the regression function
in Eqn. 2, locking configurations using the y smallest key lengths
for each locking scheme are generated and SAT attacked. y is a
user-defined parameter. The SAT runtime model is then fit based
on these simulated points. Despite only simulating low SAT com-
plexity solutions, accurate models can still be produced because the
theoretical results ensure similar growth/tail behavior. This enables
the prediction of SAT runtime in regions of the design space where
simulation is infeasible. The accuracy of these SAT runtime models
is empirically demonstrated using exhaustive simulation in Sec. 6.2.

5.4 Iterative Selection of Simulation Points

Near-optimal regions in the design space based on design ob-
jectives are more important to a designer than those farther away,
which are unlikely to produce a high-quality solution. As a result,
directed simulation is performed by drawing a region of interest
(ROI) in the design space from which future simulations are selected
to update the model. This ROI-based approach mirrors those used
by prior work exploring DSM for 3D ICs [11]. By generating more
data points in these near-optimal regions of the design space, the
model becomes more accurate in these regions.

The data points used for model update are selected as follows.
From the set of all points in the design space, Q, the designer aims
to discover an optimal configuration based on user-specified objec-
tives. Without loss of generality, we assume the design objectives
are to satisfy an S-metric, SAT runtime, and area constraint while
minimizing power overhead. To select the data points for directed
simulation, we define an ROI with Eqn. 3. This ROI is the set of
design points, i € Q, with S-metric, SAT attack runtime, power,
and area ({S;, T;, P;, A;}) within distance ® = {¢s, ¢7, ¢p, P4} of the

2For compound locking, prior work showed that keys for SAT-weak locking could be
found quickly and independently from other locking [1], indicating additive behavior.
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5.5 Stopping Criteria

Stopping criteria determine when modeling halts. We consider
2 criteria. 1) A sufficient portion of the design space was sampled
to avoid model overfitting. This is user-defined, however, for the
evaluation (Sec. 6) it is defined as 5% of the design space. 2) The ROI
converges (i.e., the same M points are selected as the ROI in consec-
utive iterations). This indicates that the model has converged to a
local minima. Once a stopping criterion is met, modeling is halted
and the predicted optimal system locking solution is returned.

6 Experimental Evaluation

We evaluate our DSM framework with 2 experiments using a
RISC-V processor benchmark [15]. First, we perform an exhaustive
simulation of the locking design space in the ALU to evaluate the
accuracy of our design space models. Second, we apply our DSM
framework to lock the RISC-V core using an arbitrary cost function.
We then compare the locking solution identified by our model-based
approach to a conventional module-level locking approach.

6.1 Experimental Setup and Simulation Flow

The DSM framework used for the experimental evaluation is
outlined in Fig. 3. Key aspects of this setup are summarized below.

Design Objective (Cost Function): The design objective (cost
function) is defined by Eqn. 4. The goal is to identify a locking solu-
tion, 1, from the design space, Q, with the lowest power overhead, P,
subject to a constraint on 1) area overhead, Ao = Ajock /Ano_lock <
2%, 2) S-metric, S < 1074, and 3) SAT attack runtime, T; > 7 days.

{i € QA <2%AS; <107 ATy > 7days A min(P;)}  (4)

This cost function is defined without the loss of generality as our
DSM framework can be used with any desired objective.
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Figure 4: Exhaustive characterization of the logic locking
design space for a single locked module (RISC-V ALU).

DSM Parameters: The initial models are created from n = 25
uniformly selected points. During each iteration, the M = 5 points
with the lowest predicted cost are selected from the ROI to update
the model. The RO is defined using the radii: ® = {@s, 1, Pp, Pa}
={3x 107>, 2%, 10%, 5%).

Logic Locking Configuration: Locked modules are produced
using a custom logic-locking code generator. While any locking
scheme could be considered, we selected SFLL [10], CASLock [12],
and SLL [17] to provide a cross-section of locking approaches.

System Security Metric (S): A 50,000 input trace was applied
to the processor to estimate S using the simulator outlined in Sec.
4. This trace was the set of all unit tests for the RISC-V core [15].

SAT Runtime: Estimates are made using the SAT attack in [14].

Power/Area Overhead: Estimates are produced using the Syn-
opsys Design Compiler with the Synopsys 32nm SAED library. All
evaluated designs were subject to a 100MHz clock constraint.

6.2 Experiment 1: Exhaustive Characterization

To evaluate the accuracy of the design space models and locking
solutions produced by our DSM algorithm, we performed an ex-
haustive simulation of a small logic locking configuration problem.
Specifically, we considered the locking design space of a RISC-V
ALU incorporating a 64-bit secret key (i.e., the sum of the key
length for each locking technique in the ALU must be 64-bits). This
constrains the design space to 905 possible locking configurations,
making exhaustive simulation feasible. However, we note that even
for this small example the simulation time exceeded 100 hours.
This highlights the infeasibility of simulating large portions of the
design space and motivates our modeling-based approach.

Logic Locking Design Space: Fig. 4 depicts the S-metric, power,
and area overhead for all possible locking configurations in the ALU
with a total key size of 64 bits. We make 3 observations based on
these results. 1) Fig. 4 demonstrates the non-trivial nature of the
locking design space, even with only a single locked module, high-
lighting the challenge of identifying optimal design configurations.
2) The overwhelming majority of points in the design space are
far from an optimal solution, highlighting the importance of the
system locking configuration problem addressed in this work. 3)
The correlation between each design objective is weak, affirming
our decision to model design objectives separately.

DSM-Predicted Solution Quality: Fig. 5 compares the optimal-
ity of the DSM-predicted solution to the percent of the design space
that was simulated to produce it. We define the solution optimality
as po/pa, where p, is the power consumption of the globally opti-
mal solution found by exhaustive simulation and p is the power
consumption of the DSM-predicted optimal solution. Note that be-
cause all other design objectives are fixed constraints that must be
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Figure 5: Percent of design space simulated vs. the optimality
of DSM-identified locking solution in RISC-V ALU.

satisfied, only power consumption influences solution optimality.
Unsurprisingly, solution quality improves as more points are simu-
lated. When the DSM algorithm stopping criteria were met, only
3.6% of the design space was simulated. The final locking solution
exhibited a power consumption within 96% of the globally optimal
solution and met all other design constraints. This supports the
claim that our DSM algorithm can produce high-quality solutions
after simulating only a small fraction of the design space.

Accuracy/Fit of Models: To assess model fit, we calculated
the coefficient of determination (R?) for the models produced by
the DSM framework upon halting (i.e., after simulating 3.6% of the
design space). R? was calculated using all points in the design space
from the exhaustive simulation. The final DSM models exhibited a
R? > 0.99 for S-metric, power, and SAT runtime, and a R? > 0.98
for area. These high R? values indicate that the DSM models are
highly predictive of the locking design space they model.

6.3 Experiment 2: Full-System Evaluation

Next, we consider a complete system-level locking configuration
problem. Specifically, we consider locking the complete RISC-V
core [15]. In the RISC-V core, we have designated three combina-
tional modules as critical IP that must be locked: 1) ALU, 2) branch
predictor, and 3) decoder. We have allocated a 64-bit key budget
for both the ALU and the branch predictor, and a 32-bit key for the
decoder, resulting in a 160-bit key in the full system.

We applied our proposed DSM framework to identify a locking
configuration for this RISC-V core. For comparison, we consider
conventional, module-level locking where the 3 candidate logic
locking schemes (SFLL [10], CASLock [12], and SLL [17]) are se-
lected and implemented in each module as described by the authors.
To assess solution quality, we compare each locking solution using
our four design metrics and the cost function outlined in Sec. 6.1.

Results and Analysis: Tbl. 2 shows the S-metric, predicted SAT
runtime, total design area, and locked module power consumption
for the locking configuration produced by each approach. Based
on the cost function (see Sec. 6.1), satisfied design constraints are
shaded in green and failed design constraints are shaded in red.
We make two observations based on these results. 1) Only the pro-
posed DSM framework identified a locking configuration that met

Table 2: Design metrics for RISC-V locking configured by
DSM and conventional approaches. Red cells fail design goals.

DSM | SFLL[10] | CASLock [12] | SLL [17]

S-Metric | 2107° 10000 10000 2%107°
SAT Runtime | 6.5 (yrs) | 6  10%3 (yrs) 120 (yrs) 72 (s)
Area (ymz) 6235.56 5967.71 6369.88 6325.62
Power (uW) | 769.77 1270.37 890.38 829.32

Long Lam, Maksym Melnyk, and Michael Zuzak

all design constraints. This is unsurprising given that conventional
locking approaches consider only module criteria during configu-
ration. 2) The DSM-identified locking configuration required 29.5%
less power on average than the solutions identified by the con-
ventional locking approaches. These results indicate that our DSM
framework outperforms prior module-level locking strategies by
identifying locking solutions that achieve system-level design ob-
jectives and substantially reduce power overhead.

7 Conclusion

We propose a DSM framework to generate system-level models
of the logic locking design space in an IC by simulating a subset of
the design space. These models can be used to automatically iden-
tify near-optimal locking solutions in an IC that achieve arbitrary
design goals. To evaluate this framework, we applied it to a RISC-V
core. The generated design space models were highly predictive,
modeling the power, area, security, and SAT runtime of locking
solutions with an average R? > 0.99. Moreover, the DSM frame-
work identified system-level locking solutions consuming 29.5%
less power on average than those from conventional approaches.
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