NysAct: A Scalable Preconditioned Gradient Descent
using Nystrom-Based Approximation

Anonymized for blind review

Abstract—First-order methods are computationally efficient
and exhibit fast convergence rates but often have poorer gener-
alization compared to SGD. In contrast, second-order methods
enhance convergence and generalization but typically incur high
computational and memory costs. In this work, we introduce
NYSACT, a scalable first-order gradient preconditioning method
that strikes a balance between traditional first-order and second-
order optimization methods. NYSACT leverages an eigenvalue-
shifted Nystrom method to approximate the activation covariance
matrix, which is used as a preconditioning matrix, significantly
reducing time and memory complexities with minimal impact
on test accuracy. Our experiments show that NYSACT not only
achieves improved test accuracy compared to both first-order
and second-order methods but also demands considerably less
computational resources than second-order methods.

Index Terms—Deep learning optimization, Gradient precondi-
tioning, Nystrom approximation

I. INTRODUCTION

The success of deep learning models heavily depends on
optimization strategies, with gradient-based methods being
crucial for effective training. Gradient preconditioning has
gained traction for its ability to accelerate convergence by
adjusting gradients during training. First-order methods such
as stochastic gradient descent with momentum (SGD) [25]
and Adam(W) [16, 20] are popular for their computational
efficiency, with Adam(W) using adaptive learning rates based
on the second moments of gradients. However, despite their
low per-iteration cost, their convergence is often slow.

Second-order methods can improve the convergence by
preconditioning gradients to make them effective in navigating
ill-conditioned loss landscapes [8, 10, 18]. However, their
computational overhead is often prohibitive, especially in large-
scale deep learning tasks. Directly leveraging the Hessian
matrix [6, 29] requires double backpropagation, significantly
increasing time and memory demands. To improve efficiency,
methods like KFAC [21] and Shampoo [10] approximate the
(empirical) Fisher information matrix (FIM), instead of the Hes-
sian, and decompose it into the Kronecker product of smaller
matrices but still result in longer training times compared to
SGD. For example, in our experiments with ResNet-110 on
CIFAR-100 using a single GPU, AdaHessian [32] took on
average 46.33 seconds per epoch, KFAC 21.75 seconds, and
Shampoo 200.63 seconds, while SGD took only 8.88 seconds.

In this work, we propose a novel preconditioned optimizer,
called NYSACT, whose performance is as good as that of
second-order methods while having significantly less computa-
tion and memory requirement. KFAC approximates the FIM
F € R™™*™" of a layer with the Kronecker product of two

matrices: F = P ® A, where P € R™*™ and A € R™**™ are
covariance matrix of pre-activation gradients and activations,
respectively. A recent work [1] empirically found that the term
P makes no contribution to the high performanace of KFAC and
proposed an optimizer, called FOOF, that replaces P with an
identity matrix I. Based on this observation, NYSACT chooses
to use activation covariance matrix as a preconditioner. While
only computing and maintaining A saves both computation
and memory space, FOOF still suffers from high complexity
of matrix operations on A, rendering it impractical for large
neural networks.

To further improve scalability, NysAct approximates the
activation covariance matrix A using the eigenvalue-shifted
Nystrom method [24, 30]. Given a matrix A € R"*" and
a fixed rank r < n, the Nystrom method requires only
O(r3 + nr?) time and O(nr) memory to compute the ap-
proximation of A ™. In contrast, low-rank approximations that
use singular value decomposition (SVD) have time and memory
complexities of O(n?) and O(n?), respectively. The eigenvalue-
shifted Nystrom method due to Tropp et al. [30] is specifically
adapted for positive semi-definite matrices and offers a sharp
approximation error bound, making it an effective choice for
scalable gradient preconditioning in deep learning. We also
make an important observation. There are two commonly used
sampling methods for Nystom approximation, uniform column
sampling without replacement and Gaussian sketching. In our
experiments, we compare the efficacy of these two sampling
methods in the context of curvature matrix approximation and
found that both methods perform similarly when the input
dataset is small to medium scale dataset but, then the input is
large-scale, the Gaussian sketching methods yielded inferior
performance than the subcolumn sampling method.

To demonstrate the effectiveness of the Nystrom method
in approximating the activation covariance matrix, we trained
ResNet-32 model [11] on CIFAR-100 [17] dataset for 100
epochs using SGD with a mini-batch size of 128. Figure 1
shows the heatmaps of actual and Nystrom approximated
covariance matrices. As shown, the Nystrom method has
an ability to recover the whole covariance matrix from the
randomly sampled subset of r columns.

A. Contributions

The key contributions of this paper are summarized as
follows.

Scalable Gradient Preconditioning. We introduce NYS-
ACT, a scalable gradient preconditioning method that signifi-
cantly reduces computational costs while maintaining a minimal

Exact Activation Cov

N strém—a proximated
b

(a) Layer1.2.Convl

Exact Activation Cov Nystrom-approximated

(b) Layer2.1.Convl

Fig. 1: Comparison of exact activation covariance and Nystrom-approximated activation covariance in ResNet-32 architecture

trained on CIFAR-100 dataset

compromise in performance. By integrating the Nystrom
approximation with activation covariance, our method strikes a
balance between efficiency and accuracy, making it well-suited
for large-scale deep learning tasks.

Extensive Experimental Validation. We provide extensive
experimental results that demonstrate the effectiveness of
NYSACT in image classification tasks. Our experiments,
conducted across various network architectures on CIFAR and
ImageNet datasets, show that NYSACT not only achieves higher
test accuracy than both traditional first-order and second-order
gradient preconditioning methods but also requires less time
and memory resources compared to second-order methods.

II. RELATED WORK

SketchySGD [6] utilizes the Nystrom method [31] to approxi-
mate the Hessian matrix with a low-rank representation, relying
on mini-batch Hessian-vector products. However, SketchySGD
requires double backpropagation to compute these approxima-
tions, leading to substantial memory and time overhead. In our
experiments training ResNet-110 on the CIFAR-100 dataset,
SketchySGD averaged 58.14 seconds per epoch and consumed
21,890 MB of memory with a mini-batch size of 128 on a single
GPU. In contrast, NYSACT took only 11.32 seconds and 1,142
MB of memory. While SketchySGD is most closely related to
NYSACT, we excluded it from our baselines due to resource
constraints. Other notable methods based on low-rank approx-
imation on preconditioner includes MFAC [7], SKFAC [27],
and Eva [35]. MFAC introduced rank-1 approximations for
estimating inverse-Hessian vector products, employing iterative
conjugate gradient solvers. However, this method necessitates
multiple forward and backward passes, which significantly
raises both computational and memory requirements. SKFAC
proposed a low-rank formulation for the inverse of FIM using
the Sherman-Morrison-Woodbury formula. It stores both the
activation covariance and pre-activation gradient covariance
matrices as used in KFAC, requiring the inversion of both
matrices, whereas NYSACT stores only sketched activation
covariance matrices. Among KFAC’s low-rank approximation
variants, Eva is the most efficient method that preserves KFAC’s
original performance. Eva computes and stores batch-averaged

activation and pre-activation gradient vectors, and updates the
inverse of the approximated FIM using the Sherman-Morrison
formula. However, as demonstrated in [1], KFAC’s effectiveness
as a second-order method is primarily driven by the activation
term, rather than the pre-activation gradient term.

III. PRELIMINARIES

A. Notations

The set 1,2,..., N is represented by [N]. The vectorization
of a matrix M € RP*Y denoted as vec(M), converts
M into a vector vec(M) € RP?, arranged as vec(M) =
[MI, M, MI,]", where M, ; denotes the j®
column of matrix M. For any matrix M, we denote the set
of its eigenvalues by A(IM) and the set of its singular values
by (M), both assumed to be sorted in descending order. We
denote the Kronecker product by ®.

B. Setup for Architecture and Training

Consider a network f(x;6) composed of L layers, trained
on a dataset D = {(x;,y;)}" ;. For each layer | € [L], let
WO ¢ R xdi-1 represents the weight matrix, and b € R
represents the bias vector. The forward propagation of f is
defined as follows:

z) = Whal-1) 4 p(O) ¢ R
al) — ¢,(Z(l)) eR%
0(1) — [VeC(W(l)),bT]T c Rdl(dl—1+1) ,
0c[O@NT,... (0T eRP,

al® =x,

where z denotes the pre-activations, a represents the activations,
and ¢ is the activation function. For convolutional layers,
similar to KFAC, we employed patch extraction to unfold
the input into patches, transforming the additional axes into a
format compatible with matrix operations.

We consider training a deep neural network that takes an
input x and produces an output f(6;x), where f : R — R
is differentiable and possibly nonconvex in 6. Given training

examples D, we aim to learn the network parameters 6 by
minimizing the empirical loss £ over the training set:

n

min £(6) := % Zé(f(xi; 0),yi),

d
OcR =

ey

where ¢ is a loss function.

C. FIM-based Gradient Preconditioning

To solve the problem (1), KFAC approximates the FIM with a
Kronecker product of smaller matrices as (F); ; = A;_1,_1®
P, ;, where A;; = E[a)(al?))T] denotes the activation
covariance from layer i and j, and P, ; = E [B‘Zﬁ) 2 T}
represents the pre-activation gradient covariance between layer
i and j. Assuming the independence between layer ¢ and j
for i # j, KFAC computes the diagonal blocks of FIM only,
denoted by A o p® = A;_1;-1 ®Py,;, which results in
the following update rule for layer [at iteration k.

l l -1)\ — l
o) = 00 (Al o) gl

=0 —mvee (PG (AT). @
where G represents the gradient of the loss with respect to the
parameters, and g denotes the gradient in vectorized form. A
notable scalable KFAC variant recently proposed is Eva which
has following update rule:

1 (l 1)

0, = 00— pevee (B) G0 AL 1),
where A = E [a®] E [a0)]" and P = E [2] E [25].
The update rule for FOOF is given by substituting P i n 2)
into the identity matrix I:

), = 00— evee (G (A1)

D. Nystrom Method

The Nystrom method [31] is a well-established technique for
constructing low-rank approximations of a matrix A € R”*"
by selecting a subset of its columns. Specifically, let S € R™*"
be a matrix that randomly samples r < n columns of A,
where each column of S is a vector having one entry equal to
1 and all other entries are 0. Then AS € R"*" corresponds to
the submatrix of A formed by r randomly sampled columns
of A. The Nystrom approximation A,y of A is given by

A~ A, = AS(STAS)'STA |

where X denotes the Moore-Penrose pseudoinverse. Notice
that A,y can be obtained by storing STAS € R™ " and
AS € R™*", which only takes O(nr) memory space.

There are alternative ways of constructing the sampling
matrix S. One way is to sample each entry of S from
the standard Guassian distribution A/(0, 1), which is called
Gaussian sketching. Instead of sampling columns, the Gaussian
sketching randomly projects the points in A onto a lower
dimensional space.

Algorithm 1 NYSACT

Require: Learning rate 75, Momentum (1, EMA 5, Damping
p, Covariance update frequency 7., Inverse update frequency
Tinv, Rank r

Initialize: Parameter 6, Momentum mg = 0, Sketching Cy =
O, Preconditioner A -1

1: for k=1,2,3,... do

2: if Sketch == "Gaussian" then
3: s € U= ~ N (0, 11)
4: else if Sketch == "Subcolumn" then
5: Indices = RandPerm(d;_1)[: 7]
6: SY = Tjndices) € RU-1%", where I € Ri—1 %1
7. if (kK mod TCOU) = 0 then
s CV=p,.c 4+ (1-8,) AVSD g Rh-1x
9 if (k mod Tinw) = 0 then
10: Ck — C l)/(k? mod Tcov))
1 l
11 Ci)damped - Cl(f) +p- S()
12: wi = (st >)Tckddmped e Rr*"
13: Eigendecomposition: w = = QAQT
W Wi = QA+ (W) +5) 1] Q7
15: Cholesky decomposition: Wghfﬁed =LLT
l
16 XU = Gy hpegli ! € RA1XT
17: Slngular value decomposition: XD =uzvT
18: > = diag (max (0' — (Amin(WD)| 4 p)1,.,0,))
e(l)IRT‘XT‘
19: (Ak) U[T]Zl U[r] p(I U[]UET])
€ Rdi-1xdi—1

20: Gk — Vﬁ(gk) c Rdzxdzfl
21 m,(f) = Bungll — N vece (GSC”(AS))‘l)

22: 0121):9(1) +m (l)

IV. ALGORITHM

In this section, we present NYSACT as an optimizer to solve
the problem (1) and describe each step in the algorithm in
detail. The pseudocode of NYSACT is provided in Algorithm 1.

Let G,(cl) be the gradient of £ w.r.t. the parameters of layer
l. Withtout the momentum, NYSACT performs the following
update for each layer | € [L]:

), =0 —n(C ©1,,) " vee(G),
where Cg) is the exponential moving average (EMA) of

covariance matrix of activations of { — 1:
CY =50 + (1 - B2) ALY,

A. Eigenvalue-shifted Nystrom

We initially applied the standard Nystréom method [31] in
NYSACT, but this led to highly unstable training dynamics.
Instead, we draw inspiration from the eigenvalue-shifted
Nystrom method [24, 30] and adapt it with slight modifications
to suit deep learning settings. The key modification involves

TABLE I: Comparison of time and memory complexity for
updating preconditioner(s)

Method Time Complexity
KFAC O(@d3,) +0(d3)

Memory Complexity
O(dgy) +O(d3)

EVA O(d3,)+O0(d2) Odow) + O(din)
FOOF O(d3) o(d2)
NYSACT O(r%) + O(dyy - 2) O(di - 1)

applying the eigenvalue-shifted Nystrom method to the damped
activation covariance A + pI, where p > 0 serves as a damping
term to ensure that the resulting matrix is positive definite,
rather than applying to the raw activation covariance A. This
adjustment enhances stability during the inversion process,
ensuring that NYSACT is numerically robust.

B. NYSACT

Now, we detail the implementation of NYSACT for deep
learning tasks. Line 3 and 6 correspond to two different
methods for constructing the sampling matrix. When Gaussian
sampling is employed, we refer to the method as NYSACT-
G, whereas subcolumn sampling leads to the method denoted
as NYSACT-S. In Line 8, we update C, the sketch matrix
of A, using an exponential moving average (EMA) and by
sampling a subset of inputs for each layer, determined by the
sampling matrix S. In Line 11, we add damping p to the
sketch matrix, and in Line 12, we form a principal submatrix
‘W of A. Line 14 applies eigenvalue shifting using the smallest
eigenvalue |/\min(W(l))\, with an additional p added to ensure
the positive definiteness of the shifted W Line 15 thr(llgh 18
detail the computations for A + pI ~ Cdampedw;}ﬂedcdamped.
We back-shift the shifted eigenvalues in Line 18. In Line 19,
Ul.,] denotes the truncated matrix U, retaining only the first
7 columns. The resulting preconditioner A ™' thus has a fixed
rank of r.

C. Complexities

We compare the asymptotic time and memory costs of pre-
conditioning a layer with a weight matrix of size (doy X diy) in
Table I. The most computationally intensive steps in NYSACT
occur in Line 13, 15, 16, and 17. However, since the rank r
is typically much smaller than the dimensions of the weight
matrix, NYSACT is expected to achieve significantly lower
complexity compared to KFAC and FOOF, providing a more
efficient approach for utilizing second-order information in
deep learning optimization tasks. Numerical results comparing
time and memory costs are presented in Section VI-C.

D. Hyperparamters

While second-order gradient preconditioning methods are
often sensitive to hyperparameter choices, particularly the
learning rate 77, EMA coefficient 32, and damping factor p,
NYSACT is more robust to variations in these hyperparameters,
allowing for consistent and reliable performance with less effort
in hyperparameter tuning. In our experiments, we observed
that NYSACT, FOOF, and other KFAC variants perform well

TABLE II: Comparison of relative wall-clock time and memory
usage over SGD on CIFAR datasets

Model ResNet-32 ResNet-110 DenseNet-121
(# params) (0.5M) (2M) (8M)
Time Mem Time Mem Time Mem
KFAC 229%x 1.05x | 2.45x 1.09x | 2.18x 1.05x
Eva 1.77x 1.00x 1.71x 1.00x 1.24x 1.00x
FOOF 1.52x 1.04x 1.55% 1.06x 1.67x 1.04 x
NYSACT-G | 1.33x 1.00x | 1.36x 1.00x | 1.22x 1.00x
NYSACT-S | 1.40x 1.00x | 1.31x 1.00x | 1.19x 1.00x

when using the same hyperparameters as SGD, such as the
learning rate, momentum coefficient 31, and weight decay. For
the remaining hyperparameters, such as (32, p, inverse update
frequency T;,,, and rank r, we present an ablation study in
Section VI-C.

V. CONVERGENCE ANALYSIS
VI. EXPERIMENTS

We assess the performance of NYSACT on a range of image
classification tasks and compare it with other baseline methods.
All experiments were conducted using 2 Nvidia RTX6000
GPUs.

A. CIFAR Dataset

Settings. For the CIFAR dataset, we employed ResNet-32,
ResNet-110, and DenseNet-121 [14], training each model for
100 and 200 epochs. We used a mini-batch size of 128 and
cosine annealing learning rate scheduling [19]. The reported
metrics in this section are averaged over 5 independent runs. We
compared NYSACT against state-of-the-art first- and second-
order optimization methods. Specifically, we include SGD
as an essential baseline and Adam and AdamW as first-
order methods that precondition gradients using their second
moments. We evaluate KFAC and Eva as second-order methods
that precondition gradients using approximated FIM. Finally,
we include FOOF and NYSACT as first-order methods that
employ activation covariance-based gradient preconditioning.
Detailed hyperparameter settings for each method are provided
in Table VI in Appendix B.

Training Results. The training results overall indicate
that NYSACT retains much of FOOF’s strong performance
with minimal compromise. As shown in Tables III, NYSACT
outperforms most other baselines in terms of test accuracy.
While Adam and AdamW exhibit faster convergence during
the early stages of training, they ultimately achieve lower test
accuracy compared to other methods. Second-order methods
generally outperform the first-order methods, such as SGD,
Adam, and AdamW. However, they show less effective perfor-
mance in both convergence rate and generalization compared
to the activation covariance-based preconditioning methods,
FOOF and NYSACT. When comparing NYSACT to FOOF,
FOOF delivered the strongest results overall, with NYSACT
following closely as a strong second. Given that NYSACT
is designed as a scalable alternative to FOOF, this outcome

TABLE III: Test accuracy (%) of ResNet and DenseNet on CIFAR datasets

Dataset Model ResNet-32 ResNet-110 DenseNet-121
Epoch 100 200 100 200 100 200
SGD | 92.80+021 93.57+029 | 93.304+0.24 94.18+043 | 9533+0.16 95.58+0.13
ADAM 91.594-0.09 92.284+0.14 92.4340.08 92.9040.21 93.114+0.19 93.354+0.16
ADAMW 90.7940.16 91.83+0.28 92.33+0.25 93.1940.19 94.2440.10 94.56+0.14
CIFAR-10 KFAC 93.1640.17 93.78+0.13 94.3540.13 94.64-+0.10 95.2340.16 95.5740.07
EvA 93.0740.16 93.65+0.14 94.184+0.10 94.644-0.09 95.30+0.13 95.69+0.11
FOOF 93.61+0.147 94.05+0.17 | 94.70+0.101 95.09+0.107 | 95.79+0.04T 9595+0.08"
NYSACT-G | 93.12+0.11 93.68+0.21 94.48+0.09 94.764+0.12 | 95.53+0.13 95.7440.10
NYSACT-s | 93.28+021% 93794022 | 94.532+0.17F 94.94+0.16F | 95.60+£0.19F 95.83+0.08%
Dataset Model ResNet-32 ResNet-110 DenseNet-121
Epoch 100 200 100 200 100 200
SGD 70.47+0.38 70.67+0.49 71.4441.90 72.4841.36 79.63+0.15 80.324-0.24
ADAM 67.164+0.41 67.90+0.55 70.10+045 71.22+044 | 73.48+0.41 73.49+0.21
ADAMW 65.231+0.16 67.04+1.08 68.88+0.31 70.59+0.37 75.51£0.23 76.30+0.12
CIFAR-100 KFAC 70.21+0.34 70.9140.28 73.10+0.41 74.68-+0.33 79.7940.24 80.16+0.10
EvVA 70.32+0.31 71.1140.50 | 73.55+033 74.13+£034 | 79.32+0.08 79.89+0.27
FOOF 71.21+0347 71.82+023% | 75.13+0267 75.914+031T | 80.92+0287 80.98+0.25f
NYSACT-G | 70.704£0.18 71.1440.17F | 73.94+038% 74.704£0.19 | 80.40+024% 80.70+0.34%
NYSACT-s | 70.864-0.44% 71.124+0.34 73.76+0.45 75.01+0.16% 80.3340.29 80.544-0.17

t and 1 indicate the best and second-best test accuracies, respectively.

suggests that its approximation of the activation covariance
matrix is reasonably effective. In comparison to KFAC and
Eva, NYSACT either matches or exceeds their performance in
CIFAR-10 training, and it distinctly outperforms in CIFAR-100
training for all networks tested. Figure 2 shows the progression
of training loss and test accuracy over 200 epochs on CIFAR-
100 dataset. The results for ResNets clearly demonstrate that
NYSACT effectively balances the fast convergence of first-
order methods with the strong generalization capabilities of
second-order methods. For DenseNet-121, NYSACT performs
comparably to the other second-order baselines.

Time and Memory Complexities. Table II highlights
the computational efficiency of NYSACT. As demonstrated,
NYSACT has considerably faster execution time than both
FOOF and KFAC, while also using less memory. Notably,
NYSACT consistently achieves faster execution times compared
to Eva, which relies solely on vector multiplications during the
computation of preconditioners, across all tested architectures.

B. ImageNet Dataset

Settings. In our experiments on the ImageNet (ILSVRC
2012) [4] dataset, we trained ResNet-50, ResNet-101, and DeiT
Small (DeiT-S) [28] architectures for 100 and 200 epochs.
Each training session utilized a mini-batch size of 1,024
and employed a cosine annealing schedule for learning rate
adjustment. We evaluated NYSACT against the same baselines
used in our CIFAR experiments. For a comprehensive overview
of the experimental settings, refer to Table VII and Table ??
in Appendix B.

Training Results. The experimental results on ImageNet
dataset, summarized in Table IV.

Why NYSACT-G performs poorly?

TABLE IV: Top-1 accuracy (%) of ResNets and DeiT on
ImageNet dataset

Model ResNet-50 ResNet-101 DeiT-S
Epoch 100 200 100 200 100 200
SGD 78.05 79.46 | 79.66 81.34 | 69.08 75.27
ADAMW 76.73 79.14 | 77.76 80.62 | 73.78 77.96
KFAC 78.16 7934 | 79.53 81.13 | 69.84 X
Eva 7771 7948 | 79.55 81.06 | 69.67 76.57
FOOF 7837 79.69 | 79.96 81.04 | 65.37
NYSACT-S | 7547 70.72 76.16

X indicates a training failure.

TABLE V: Comparison of relative wall-clock time and memory
usage over SGD on ImageNet dataset

Model ResNet-50 ResNet-101 DeiT-S
(# params) 27M) (45M) (22M)
Time Mem Time Mem Time Mem
KFAC 1.21x 1.02x | 1.25x 1.02x 1.37x 1.03x
Eva 1.02x 1.00x 1.03x 1.00x 1.01x 1.00x
FOOF 1.25x 1.01x | 1.31x 1.02x 1.11x 1.02x
NYSACT-S | 1.06x 1.00x | 1.07x 1.00x 1.03x 1.00x

Time and Memory Complexities. Table V highlights the
computational efficiency gains of NYSACT.

C. Ablation Study

We performed a hyperparameter study on NYSACT and
compared its results with other gradient preconditioning meth-
ods. We selected KFAC, Eva, and FOOF as baselines because
they all rely on approximations of FIM and share similar
hyperparameters, making them ideal for direct comparison
with NYSACT. This analysis was carried out using ResNet-32

ResNet-32

ResNet-110

DenseNet-121

1.50
— SGD — SGD —-= Eva
1.25 Adam Adam —— FOOF
AdamW AdamW — NysAct-G
»1.00{ — S6D — KFAC — KFAC —— NysAct:S
S Adam - = Eva
- 0.75 Adamw — FOOF
'E — KFAC —— NysAct-G
F0.50] == Eva — NysAct-S
— FOOF
0.25{ — NysAct-G
— NysAct-S
0.00
80 — SGD == Eva — SGD - Eva
—_ Adam — FOOF Adam — FOOF
o
S AdamW —— NysAct-G AdamW —— NysAct-G
570 — KFAC — NysAct-S — KFAC —— NysAct-S —
©
—
=]
S 60
f SGD == Eva
0 Adam —— FOOF
L
Fso AdamW —— NysAct-G
KFAC — NysAct-S
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch

Fig. 2: Comparison of training loss and test accuracy of optimizers on CIFAR-100 dataset

on CIFAR-10 and ResNet-110 on CIFAR-100, each trained for
100 epochs across three different runs.

Essential Hyperparameters. Figure 3 provides a compre-
hensive comparison of NYSACT with KFAC, Eva, and FOOF,
focusing on essential hyperparameter tuning. The first subplot
highlights that all methods, including NYSACT, perform best at
a learning rate of 0.1. At the lower end, with a learning rate of
0.001, Eva and FOOF struggle, showing a drop in performance.
On the higher end, at a learning rate of 1.0, KFAC and Eva
experience significant performance degradation. In contrast,
NYSACT maintains stable and consistent performance across
the entire range of learning rates tested. In the second subplot,
NYSACT, along with the other methods, demonstrates consis-
tent performance across different EMA coefficients, with the
exception of KFAC. This suggests that NYSACT’s performance
remains largely unaffected by changes in the EMA coefficient,
whereas KFAC exhibits noticeable fluctuations, particularly at
a coefficient value of 0.9. In the third subplot, NYSACT’s test
accuracy increases as damping values rise within the range
of 0.1 to 10.0. At a damping value of 0.01, both FOOF and
NYSACT experience a slight dip in performance relative to
KFAC and Eva. However, when the damping value reaches 10.0,
KFAC displays significant variability and a marked decline in
performance. The observation in the last subplot aligns with
the broader trend in optimization, where large-batch training
often leads to degraded network performance, as highlighted
in previous research [9, 13]. Among the methods compared,
NYSACT experiences a moderate decrease in test accuracy
as the batch size grows, showing a more stable performance
relative to other baselines.

Inverse Update Frequencies. In Figure 4, we assessed

the effects of varying inverse update frequencies for the
preconditioning matrix, testing intervals of 5, 10, 50, and
100 steps. The results suggest that increasing the update
frequency does not significantly compromise the test accuracy
of NYSACT, while it contributes to reducing computational
overhead. For update frequencies of 10 steps or more, NYSACT
achieved the fastest training time while maintaining the second-
best test accuracy, just behind FOOF. At a frequency of 5 steps,
Eva exhibited the fastest overall training time, with FOOF being
the slowest. NYSACT demonstrated a slightly faster training
time than FOOF. KFAC is absent from this subplot due to its
frequent failures in inverting the preconditioners. Notably, at
50 and 100 steps, Eva, despite being the lightest and most
scalable variant of KFAC, became slower than FOOF in this
settings.

Impact of Rank on NYSACT. Figure 5 presents the
impact of the rank hyperparameter in NYSACT. The subplots
on the left display the results for NYSACT-G, while those
on the right show the results for NYSACT-S. In both cases,
NYSACT outperforms SGD in test accuracy and closely follows
FOOF. When comparing the sketching methods, Gaussian
sampling exhibits larger variability in test accuracy compared
to subcolumns sampling, though both methods achieve similar
performance, around 74% test accuracy. As the rank size
increases, there is a subtle trend of improved test accuracy
for both sampling methods, aligning with the expectation that
higher-rank approximations better capture the original matrix’s
properties. The findings suggest that NYSACT effectively
approximates the exact activation covariance matrix with low
ranks, as evidenced by the minimal difference in test accuracy
between rank-5 and rank-20 approximations, with overlapping

= 95 f =0=— =g
<80 / o | 90 93"
g 90
© KFAC KFAC 92 KFAC
360 —4- Eva 85| 4 Eva — Eva
g KFAC —$— NysAct-G 85 FOOF FOOF 91 FOOF
% 40| —$— Eva —$— NysAct-S —4— NysAct-G —— NysAct-G —4— NysAct-G
2 FOOF 80 —4— NysAct-S 80 —$— NysAct-S 90 —4— NysAct-S
0.001 0.01 0.1 1 0.0 0.5 0.9 0.99 0.01 0.1 1 10 128 256 512 1024
Learning Rate EMA Coefficient Damping Batch Size

Fig. 3: Comparison of the effects of learning rate, EMA coefficient, damping, and mini-batch size on gradient preconditioning
methods, training ResNet-32 on CIFAR-10 for 100 epochs.

Test Accuracy (%)
o N
=) o

(%]
o

Tinv: 5 Tinv: 10 Tinv: 50 Tinv: 100
KFAC KFAC KFAC
—— Eva —— Eva —— Eva —— Eva
FOOF FOOF FOOF FOOF
— NysAct-G — NysAct-G — NysAct-G — NysAct-G
—— NysAct-S —— NysAct-S —— NysAct-S — NysAct-S
0 10 20 30 0 20 40 60 O 20 30 0 10 20 30

Wall-clock Time (minutes) Wall-clock Time (minutes)

Wall-clock Time (minutes) Wall-clock Time (minutes)

Fig. 4: Comparison of wall-clock time for different inverse update frequencies during ResNet-110 training on the CIFAR-100
dataset

error bars indicating negligible variance.

VII. CONCLUSION

We introduced NYSACT, a scalable gradient preconditioning
method that effectively reduces the computational complexity
associated with activation covariance-based preconditioning
while maintaining a fast convergence rate and strong general-
ization performance. Our extensive empirical evaluations on
image classification tasks demonstrate that NYSACT signifi-
cantly improves end-to-end training time compared to other
advanced preconditioning methods such as KFAC, Eva, and
FOOF. Furthermore, NYSACT delivers better test accuracy
compared to first-order methods such as SGD and Adam(W).
By addressing the limitations of both first- and second-order
methods, NYSACT offers an optimal blend between them,
making it a scalable yet powerful optimization choice for deep
learning tasks.

(1]

(2]

(3]

REFERENCES

Frederik Benzing. Gradient descent on neurons and its link
to approximate second-order optimization. In Proceedings
of the International Conference on Machine Learning,
2022.

Maxim Berman, Hervé Jégou, Andrea Vedaldi, Iasonas
Kokkinos, and Matthijs Douze. Multigrain: a unified
image embedding for classes and instances. ArXiv,
abs/1902.05509, 2019.

Ekin Dogus Cubuk, Barret Zoph, Jonathon Shlens, and
Quoc V. Le. Randaugment: Practical automated data aug-
mentation with a reduced search space. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 2019.

(4]

(5]

[6

—_

(7]

(8]

(9]

[12]

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In IEEE conference on computer vision and
pattern recognition, 2009.

Terrance Devries and Graham W. Taylor. Improved
regularization of convolutional neural networks with
cutout. ArXiv, abs/1708.04552, 2017.

Zachary Frangella, Pratik Rathore, Shipu Zhao, and
Madeleine Udell. Sketchysgd: Reliable stochastic op-
timization via randomized curvature estimates, 2024.
Elias Frantar, Eldar Kurtic, and Dan Alistarh. M-FAC:
Efficient matrix-free approximations of second-order
information. In A. Beygelzimer, Y. Dauphin, P. Liang,
and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, 2021.

Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practical
quasi-newton methods for training deep neural networks.
In Proceedings of the Conference on Neural Information
Processing Systems, volume abs/2006.08877, 2020.
Priya Goyal, Piotr Dollar, Ross B. Girshick, Pieter
Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. ArXiv, 2017.
Vineet Gupta, Tomer Koren, and Yoram Singer. Sham-
poo: Preconditioned stochastic tensor optimization. In
International Conference on Machine Learning, 2018.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016.

Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi,
Torsten Hoefler, and Daniel Soudry. Augment your batch:

75 SGD I

—4— FOOF E

70

74{ =$= NysAct-5
—$— NysAct-10
73 NysAct-15
—$— NysAct-20

—— FOOF
= NysAct-5
= NysAct-10

NysAct-15
—— NysAct-20

Test Accuracy (%)
w
o

D
70 75 56 13
—4— FOOF
60 74{ =§= NysAct-5 E
SGD == NysAct-10
50 —— FOOF 73 NysAct-15
—— NysAct-5 —$— NysAct-20
40 72
= NysAct-10
30 NysAct-15 71
—— NysAct-20

0 20 40 60 80 100 14 16 18 20 22
Epoch Wall-clock Time (minutes)

(a) NYSACT-Gaussian Sampling

20 0 20 40 60 80 100 14 16 18 20 22

Epoch Wall-clock Time (minutes)

(b) NYSACT-Subcolumns Sampling

Fig. 5: Comparison of test accuracy and wall-clock time for different ranks of NYSACT during ResNet-110 training on the
CIFAR-100 dataset. The errorbar plots illustrate the comparison of test accuracy and wall-clock time for each method at their
optimal epoch during the 100-epoch training period, along with the corresponding computational time in minutes.

better training with larger batches. ArXiv, abs/1901.09335,

2019.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer,

generalize better: closing the generalization gap in large

batch training of neural networks. In Neural Information

Processing Systems, 2017.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger.

Densely connected convolutional networks. 2017 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2016.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and

Kilian Q. Weinberger. Deep networks with stochastic

depth. In European Conference on Computer Vision,

2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. In Proceedings of the

International Conference on Learning Representations,

2015.

[17] Alex Krizhevsky. Learning multiple layers of features
from tiny images. Technical report, Citeseer, 2009.

[18] Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy
Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training.
In The Twelfth International Conference on Learning
Representations, 2024.

[19] Tlya Loshchilov and Frank Hutter. Sgdr: Stochastic gradi-
ent descent with warm restarts. International Conference
on Learning Representations, 2016.

[20] Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. In Proceedings of the International
Conference on Learning Representations, 2019.

[21] James Martens and Roger Grosse. Optimizing neural net-
works with kronecker-factored approximate curvature. In
Proceedings of the International Conference on Machine
Learning, 2015.

[22] Samuel G. Miiller and Frank Hutter. Trivialaugment:
Tuning-free yet state-of-the-art data augmentation. 2021
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 754-762, 2021.

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

[13]

[14]

[15]

[16]

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin
Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information
Processing Systems 32, 2019.

Archan Ray, Nicholas Monath, Andrew McCallum, and
Cameron Musco. Sublinear time approximation of text
similarity matrices. In AAAI Conference on Artificial
Intelligence, 2021.

Herbert Robbins and Sutton Monro. A stochastic approx-
imation method. The annals of mathematical statistics,
pages 400—407, 1951.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision. 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2818-2826, 2015.

Zedong Tang, Fenlong Jiang, Maoguo Gong, Hao Li,
Yue Wu, Fan Yu, Zidong Wang, and Min Wang. Skfac:
Training neural networks with faster kronecker-factored
approximate curvature. 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
13474-13482, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Fran-
cisco Massa, Alexandre Sablayrolles, and Herv’e J’egou.
Training data-efficient image transformers & distillation
through attention. In International Conference on Machine
Learning, 2020.

Hoang Tran and Ashok Cutkosky. Better SGD using
second-order momentum. In Advances in Neural Infor-
mation Processing Systems, 2022.

Joel A. Tropp, Alp Yurtsever, Madeleine Udell, and
Volkan Cevher. Fixed-rank approximation of a positive-
semidefinite matrix from streaming data. In Neural
Information Processing Systems, 2017.

Christopher K. I. Williams and Matthias W. Seeger. Using
the nystrom method to speed up kernel machines. In
Neural Information Processing Systems, 2000.

[32] Zhewei Yao, Amir Gholami, Sheng Shen, Kurt Keutzer,

[24]

[33]

[34]

[35]

[36]

and Michael W. Mahoney. Adahessian: An adaptive sec-
ond order optimizer for machine learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2020.
Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Young Joon Yoo. Cutmix:
Regularization strategy to train strong classifiers with
localizable features. 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), 2019.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin,
and David Lopez-Paz. mixup: Beyond empirical risk
minimization. In International Conference on Learning
Representations, 2018.

Lin Zhang, Shaohuai Shi, and Bo Li. Eva: Practical
second-order optimization with kronecker-vectorized ap-
proximation. In International Conference on Learning
Representations, 2023.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li,
and Yi Yang. Random erasing data augmentation. AAAI
Conference on Artificial Intelligence, abs/1708.04896,
2017.

APPENDIX
A. Convegence Analysis

In this section, we analyze the convergence properties of NYSACT. To simplify the analysis, we focus on feed-forward
networks composed of linear layers, though these results can be extended to other types of layers as well.
We make the following standard assumptions in stochastic optimization.

Assumption A.l. (Smoothness) The loss function £ is continuously differentiable and L-smooth, i.e., for all W; and W,
IVL(W1) = VL(W2)|r < L|W1 — Wep
Assumption A.2. (Gradient Properties) The stochastic gradient is an unbiased gradient estimate of the true gradient:
E[G(W)] = VL(W),
where G is the gradient in matrix form. The variance of the stochastic gradient is bounded by a constant o2:
E [||G(W) = VL(W)|7] < o®.
Additionally, the norm of the true gradient is bounded, i.e., there exists a constant C' > 0 such that
IVL(W)[| < C.

Assumption A.3. (Nystrom Approximation) The Nystrom approximated activation covariance A of the exact activation
covariance A = E[aaT] satisfies the approximation bound

|A — Allp < | Alr
for some small approximation error € > 0, and the eigenvalues of A are bounded as 0 < /\min(A) <N <)\max(A).
The update rule for NYSACT is given by
Wk+1 =W, — nGk(Ak + pI)_l.

Using the Assumption A.1, the Taylor expansion of the loss around Wy, gives
L
LWi+1) < LWk) + (G, W1 = W) + 5 [Wipr — W%
Substituting Wy 1 — Wy = —nGk(Ak + pI)~L, we have

L
LWis1) < LIWg) + (G, W1 = W) + 5 [Wir — W%

Rearranging terms gives
- 3 L ~ _
< L(Wi) = 1(Gp, Gr(Ag + pI) ") + %HG]C(AIC +oD) 7% 3)

Since A can be viewed as a perturbed matrix of A as A = A + (A — A), where we assume the perturbation norm ||A —A|Fis
sufficiently small, the difference between the exact and approximated preconditioners can be obtained using matrix perturbation
theory as ~ R
(Ar+pD) ' = (Ar+pI) 7" — (Ap+pI) 7 (A — Ap) (A + pI)
This yields the following error bound as
(Gi, Gr(Ak + pI) ") — (G, Gi(Ag + pI)) = Tr(Gr((Ag + pI) ™" = (Ag + pI) ") G])
= Tr(Gr(Ag + pI) 1Ay — Ag) (A + pI)'G])
Since Tr(ABC) < ||A||#||B||2]|C||r, where || - |2 denotes the spectral norm, and ||AB||z < ||A]|2||B]||2 holds,
< |Gl pll A+ pD) " |2l| Ak — Arll2]l A + pD) " [2l|Grl p
= |Gl Z Ak + pD) " 3] Ak — Akl
Assumption A.3 gives

< el Grll Bl A% + pLl|3 | Ar]l

€
e mw+mﬂGMHAwp

Using the above, we rewrite (3) as

I ~
L(Wii1) < LWL) — (G, Gr(Ay + pI) ! ne GilZ]|A GL(AL + pI) 12
(Wit1) < L(Wg) — (G, Gi(Ag + pI) >+(>\max(Ak)+p)2” klEllAklF + S 1Gr(Ax + pD) 7

B. Experimental Details

Hyperparameter Settings. Table VI outlines the hyperparameters utilized for training on CIFAR and ImageNet datasets.
Here, n refers to the learning rate, 51 and (3> represent the EMA coefficients for the first and second moments, and € is a
small constant added for numerical stability in Adam-based optimizers. In gradient preconditioning methods, 32 corresponds
to the EMA coefficient for preconditioner updates. The damping factor, p, controls the regularization of the covariance
matrix, while 7., and 75, define the update frequencies for the covariance and inverse matrices, respectively. Lastly, r
denotes the approximation rank size utilized in NYSACT. For CIFAR datasets, For KFAC and Eva, hyperparameter values
followed the recommendations in [35]. In contrast, for FOOF and NYSACT, we conducted a grid search over learning
rates [0.001,0.005,0.01,0.05,0.1,0.5] and damping factors [0.01,0.05,0.1,0.5,1, 5, 10], while keeping the remaining settings
consistent with other FIM-based preconditioners.

For ImageNet dataset, we scaled up the learning rate 7 by a factor of 5 for both SGD and preconditioning methods, using a
mini-batch size of 1,024, compared to the CIFAR training, while we decrease weight decay to 0.00002. For both ResNets and
DeiT, we tripled up the damping for KFAC and Eva to mitigate instability during preconditioner inversion. For all gradient
preconditioning methods, we reduced the inversion frequency from 50 to 5, enabling the models to more frequently adjust to
the changes in preconditioning matrices, particularly when training DeiT.

TABLE VI: Hyperparameter settings for CIFAR and ImageNet datasets training

Dataset | Optimizer | 7 Momentum 3 Ba Weight decay € P Teov Tino r
SGD 0.1 0.9 . . 0.0005 .
Adam 0.001 . 09 0.999 0.0005 1x 108
AdamW 0.001 . 0.9 0.999 0.05 1x 108 . . .
CIFAR KFAC 0.1 0.9 0.95 0.0005 0.03 5 50
Eva 0.1 0.9 0.95 0.0005 . 0.03 5 50
FOOF 0.1 0.9 0.95 0.0005 . 1.0 5 50 .
NYSACT 0.1 0.9 0.95 0.0005 . 1.0 5 50 10
Dataset | Optimizer | 7 Momentum 31 Bo Weight decay € P Teov Tino r
SGD 0.5 0.9 . . 0.00002 .
AdamW 0.001 . 0.9 0.999 0.05 1x10-8 . . .
ImaceNet KFAC 0.5 0.9 0.95 0.00002 . 0.1 5 50/5
8 Eva 0.5 0.9 0.95 0.00002 . 0.1 5 50/5
FOOF 0.5 0.9 0.95 0.00002 . 1.0 5 50/5 .
NYSACT 0.5 0.9 0.95 0.00002 / 0.0001 . 1.0 5 50/5 20

Model Settings for ResNets and DeiT. Table VII summarizes the configurations used for training on the ImageNet dataset.
Two architectures were explored: ResNet and DeiT-Small. For ResNet, we followed the PyTorch implementation [23], and for
DeiT, we applied the settings from [28]. Both models incorporated advanced training techniques such as Random Erasing [36],
Label Smoothing [26], Mixup/CutMix [33, 34], and Repeated Augmentation [12]. ResNet used TrivialAugment [22], while
DeiT employed RandAugment [3] and Stochastic Depth [15]. Training was conducted at a resolution of 176 for ResNet and
224 for DeiT, with both models evaluated at a test resolution of 224. A mini-batch size of 1,024 was used with cosine learning
rate decay and a 5-epoch warmup.

TABLE VII: Settings for ImageNet training

Architecture | ResNets DeiT
Train Res 176 224
Test Res 224 224
Batch size 1,024 1,024
LR decay cosine cosine
Warmup epochs 5 5
Label Smoothing 0.1 0.1
Stochastic Depth - 0.2
Repeated Augmentation v v
Horizontal flip v v
Random Resized Crop v v
Auto Augmentation TrivialAugment RandAugment(9/0.5)
Mixup 0.2 0.8
Cutmix 1.0 1.0
Random Erasing 0.1 0.25

	Introduction
	Contributions

	Related Work
	Preliminaries
	Notations
	Setup for Architecture and Training
	FIM-based Gradient Preconditioning
	Nyström Method

	Algorithm
	Eigenvalue-shifted Nyström
	NysAct
	Complexities
	Hyperparamters

	Convergence Analysis
	Experiments
	CIFAR Dataset
	ImageNet Dataset
	Ablation Study

	Conclusion
	Appendix
	Convegence Analysis
	Experimental Details

