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AbstractÐFirst-order methods are computationally efficient
and exhibit fast convergence rates but often have poorer gener-
alization compared to SGD. In contrast, second-order methods
enhance convergence and generalization but typically incur high
computational and memory costs. In this work, we introduce
NYSACT, a scalable first-order gradient preconditioning method
that strikes a balance between traditional first-order and second-
order optimization methods. NYSACT leverages an eigenvalue-
shifted Nyström method to approximate the activation covariance
matrix, which is used as a preconditioning matrix, significantly
reducing time and memory complexities with minimal impact
on test accuracy. Our experiments show that NYSACT not only
achieves improved test accuracy compared to both first-order
and second-order methods but also demands considerably less
computational resources than second-order methods.

Index TermsÐDeep learning optimization, Gradient precondi-
tioning, Nyström approximation

I. INTRODUCTION

The success of deep learning models heavily depends on

optimization strategies, with gradient-based methods being

crucial for effective training. Gradient preconditioning has

gained traction for its ability to accelerate convergence by

adjusting gradients during training. First-order methods such

as stochastic gradient descent with momentum (SGD) [25]

and Adam(W) [16, 20] are popular for their computational

efficiency, with Adam(W) using adaptive learning rates based

on the second moments of gradients. However, despite their

low per-iteration cost, their convergence is often slow.

Second-order methods can improve the convergence by

preconditioning gradients to make them effective in navigating

ill-conditioned loss landscapes [8, 10, 18]. However, their

computational overhead is often prohibitive, especially in large-

scale deep learning tasks. Directly leveraging the Hessian

matrix [6, 29] requires double backpropagation, significantly

increasing time and memory demands. To improve efficiency,

methods like KFAC [21] and Shampoo [10] approximate the

(empirical) Fisher information matrix (FIM), instead of the Hes-

sian, and decompose it into the Kronecker product of smaller

matrices but still result in longer training times compared to

SGD. For example, in our experiments with ResNet-110 on

CIFAR-100 using a single GPU, AdaHessian [32] took on

average 46.33 seconds per epoch, KFAC 21.75 seconds, and

Shampoo 200.63 seconds, while SGD took only 8.88 seconds.

In this work, we propose a novel preconditioned optimizer,

called NYSACT, whose performance is as good as that of

second-order methods while having significantly less computa-

tion and memory requirement. KFAC approximates the FIM

F ∈ R
mn×mn of a layer with the Kronecker product of two

matrices: F = P⊗A, where P ∈ R
m×m and A ∈ R

n×n are

covariance matrix of pre-activation gradients and activations,

respectively. A recent work [1] empirically found that the term

P makes no contribution to the high performanace of KFAC and

proposed an optimizer, called FOOF, that replaces P with an

identity matrix I. Based on this observation, NYSACT chooses

to use activation covariance matrix as a preconditioner. While

only computing and maintaining A saves both computation

and memory space, FOOF still suffers from high complexity

of matrix operations on A, rendering it impractical for large

neural networks.

To further improve scalability, NysAct approximates the

activation covariance matrix A using the eigenvalue-shifted

Nyström method [24, 30]. Given a matrix A ∈ R
n×n and

a fixed rank r ≪ n, the Nyström method requires only

O(r3 + nr2) time and O(nr) memory to compute the ap-

proximation of A−1. In contrast, low-rank approximations that

use singular value decomposition (SVD) have time and memory

complexities of O(n3) and O(n2), respectively. The eigenvalue-

shifted Nyström method due to Tropp et al. [30] is specifically

adapted for positive semi-definite matrices and offers a sharp

approximation error bound, making it an effective choice for

scalable gradient preconditioning in deep learning. We also

make an important observation. There are two commonly used

sampling methods for Nystöm approximation, uniform column

sampling without replacement and Gaussian sketching. In our

experiments, we compare the efficacy of these two sampling

methods in the context of curvature matrix approximation and

found that both methods perform similarly when the input

dataset is small to medium scale dataset but, then the input is

large-scale, the Gaussian sketching methods yielded inferior

performance than the subcolumn sampling method.

To demonstrate the effectiveness of the Nyström method

in approximating the activation covariance matrix, we trained

ResNet-32 model [11] on CIFAR-100 [17] dataset for 100

epochs using SGD with a mini-batch size of 128. Figure 1

shows the heatmaps of actual and Nyström approximated

covariance matrices. As shown, the Nyström method has

an ability to recover the whole covariance matrix from the

randomly sampled subset of r columns.

A. Contributions

The key contributions of this paper are summarized as

follows.

Scalable Gradient Preconditioning. We introduce NYS-

ACT, a scalable gradient preconditioning method that signifi-

cantly reduces computational costs while maintaining a minimal



(a) Layer1.2.Conv1 (b) Layer2.1.Conv1

Fig. 1: Comparison of exact activation covariance and Nyström-approximated activation covariance in ResNet-32 architecture

trained on CIFAR-100 dataset

compromise in performance. By integrating the Nyström

approximation with activation covariance, our method strikes a

balance between efficiency and accuracy, making it well-suited

for large-scale deep learning tasks.

Extensive Experimental Validation. We provide extensive

experimental results that demonstrate the effectiveness of

NYSACT in image classification tasks. Our experiments,

conducted across various network architectures on CIFAR and

ImageNet datasets, show that NYSACT not only achieves higher

test accuracy than both traditional first-order and second-order

gradient preconditioning methods but also requires less time

and memory resources compared to second-order methods.

II. RELATED WORK

SketchySGD [6] utilizes the Nyström method [31] to approxi-

mate the Hessian matrix with a low-rank representation, relying

on mini-batch Hessian-vector products. However, SketchySGD

requires double backpropagation to compute these approxima-

tions, leading to substantial memory and time overhead. In our

experiments training ResNet-110 on the CIFAR-100 dataset,

SketchySGD averaged 58.14 seconds per epoch and consumed

21,890 MB of memory with a mini-batch size of 128 on a single

GPU. In contrast, NYSACT took only 11.32 seconds and 1,142

MB of memory. While SketchySGD is most closely related to

NYSACT, we excluded it from our baselines due to resource

constraints. Other notable methods based on low-rank approx-

imation on preconditioner includes MFAC [7], SKFAC [27],

and Eva [35]. MFAC introduced rank-1 approximations for

estimating inverse-Hessian vector products, employing iterative

conjugate gradient solvers. However, this method necessitates

multiple forward and backward passes, which significantly

raises both computational and memory requirements. SKFAC

proposed a low-rank formulation for the inverse of FIM using

the Sherman-Morrison-Woodbury formula. It stores both the

activation covariance and pre-activation gradient covariance

matrices as used in KFAC, requiring the inversion of both

matrices, whereas NYSACT stores only sketched activation

covariance matrices. Among KFAC’s low-rank approximation

variants, Eva is the most efficient method that preserves KFAC’s

original performance. Eva computes and stores batch-averaged

activation and pre-activation gradient vectors, and updates the

inverse of the approximated FIM using the Sherman-Morrison

formula. However, as demonstrated in [1], KFAC’s effectiveness

as a second-order method is primarily driven by the activation

term, rather than the pre-activation gradient term.

III. PRELIMINARIES

A. Notations

The set 1, 2, . . . , N is represented by [N ]. The vectorization

of a matrix M ∈ R
p×q, denoted as vec(M), converts

M into a vector vec(M) ∈ R
pq, arranged as vec(M) =[

M⊺

∗,1 M⊺

∗,2 · · · M⊺

∗,n

]⊺
, where M∗,j denotes the jth

column of matrix M. For any matrix M, we denote the set

of its eigenvalues by λ(M) and the set of its singular values

by σ(M), both assumed to be sorted in descending order. We

denote the Kronecker product by ⊗.

B. Setup for Architecture and Training

Consider a network f(x;θ) composed of L layers, trained

on a dataset D = {(xi, yi)}
n
i=1. For each layer l ∈ [L], let

W(l) ∈ R
dl×dl−1 represents the weight matrix, and b(l) ∈ R

dl

represents the bias vector. The forward propagation of f is

defined as follows:

z(l) = W(l)a(l−1) + b(l) ∈ R
dl ,

a(l) = ϕ(z(l)) ∈ R
dl , a(0) = x ,

θ
(l) = [vec(W(l)),b⊺]⊺ ∈ R

dl(dl−1+1) ,

θ ∈ [(θ(1))⊺, . . . , (θ(L))⊺]⊺ ∈ R
p ,

where z denotes the pre-activations, a represents the activations,

and ϕ is the activation function. For convolutional layers,

similar to KFAC, we employed patch extraction to unfold

the input into patches, transforming the additional axes into a

format compatible with matrix operations.

We consider training a deep neural network that takes an

input x and produces an output f(θ;x), where f : Rd → R

is differentiable and possibly nonconvex in θ. Given training



examples D, we aim to learn the network parameters θ by

minimizing the empirical loss L over the training set:

min
θ∈Rd

L(θ) :=
1

n

n∑

i=1

ℓ (f(xi;θ), yi), (1)

where ℓ is a loss function.

C. FIM-based Gradient Preconditioning

To solve the problem (1), KFAC approximates the FIM with a

Kronecker product of smaller matrices as (F)i,j = Ai−1,j−1⊗
Pi,j , where Ai,j = E

[
a(i)(a(j))⊺

]
denotes the activation

covariance from layer i and j, and Pi,j = E

[
∂L

∂z(i)
∂L

∂z(j)

⊺
]

represents the pre-activation gradient covariance between layer

i and j. Assuming the independence between layer i and j
for i ̸= j, KFAC computes the diagonal blocks of FIM only,

denoted by A(l−1) ⊗P(l) = Al−1,l−1 ⊗Pl,l, which results in

the following update rule for layer l at iteration k.

θ
(l)
k+1 = θ

(l)
k − ηk(A

(l−1)
k ⊗P

(l)
k )−1g

(l)
k

= θ
(l)
k − ηk vec

(
(P

(l)
k )−1G

(l)
k (A

(l−1)
k )−1

)
, (2)

where G represents the gradient of the loss with respect to the

parameters, and g denotes the gradient in vectorized form. A

notable scalable KFAC variant recently proposed is Eva which

has following update rule:

θ
(l)
k+1 = θ

(l)
k − ηk vec

(
(P̃

(l)

k )−1G
(l)
k (Ã

(l−1)

k )−1
)
,

where Ã = E
[
a(i)

]
E
[
a(j)

]⊺
and P̃ = E

[
∂L

∂z(i)

]
E
[

∂L
∂z(j)

]⊺
.

The update rule for FOOF is given by substituting P in (2)

into the identity matrix I:

θ
(l)
k+1 = θ

(l)
k − ηk vec

(
G

(l)
k (A

(l−1)
k )−1

)
.

D. Nyström Method

The Nyström method [31] is a well-established technique for

constructing low-rank approximations of a matrix A ∈ R
n×n

by selecting a subset of its columns. Specifically, let S ∈ R
n×r

be a matrix that randomly samples r ≪ n columns of A,

where each column of S is a vector having one entry equal to

1 and all other entries are 0. Then AS ∈ R
n×r corresponds to

the submatrix of A formed by r randomly sampled columns

of A. The Nyström approximation Anys of A is given by

A ≈ Anys = AS(S⊺AS)†S⊺A ,

where X† denotes the Moore-Penrose pseudoinverse. Notice

that Anys can be obtained by storing S⊺AS ∈ R
r×r and

AS ∈ R
n×r, which only takes O(nr) memory space.

There are alternative ways of constructing the sampling

matrix S. One way is to sample each entry of S from

the standard Guassian distribution N (0, 1), which is called

Gaussian sketching. Instead of sampling columns, the Gaussian

sketching randomly projects the points in A onto a lower

dimensional space.

Algorithm 1 NYSACT

Require: Learning rate ηk, Momentum β1, EMA β2, Damping

ρ, Covariance update frequency τcov , Inverse update frequency

τinv , Rank r
Initialize: Parameter θ0, Momentum m0 = 0, Sketching C0 =
O, Preconditioner A−1

0 = I

1: for k = 1, 2, 3, . . . do

2: if Sketch == "Gaussian" then

3: S(l) ∈ R
dl−1×r ∼ N (0, 1

p
I)

4: else if Sketch == "Subcolumn" then

5: Indices = RandPerm(dl−1)[: r]
6: S(l) = I[Indices] ∈ R

dl−1×r, where I ∈ R
dl−1×dl−1

7: if (k mod τcov) = 0 then

8: C
(l)
k = β2 ·C

(l)
k−1 + (1− β2) ·A

(l)
k S(l) ∈ R

dl−1×r

9: if (k mod τinv) = 0 then

10: Ĉ
(l)

k = C
(l)
k /(1− β

(k mod τcov)
2 )

11: Ĉ
(l)

k,damped = Ĉ
(l)

k + ρ · S(l)

12: W(l) = (S(l))⊺Ĉ
(l)

k,damped ∈ R
r×r

13: Eigendecomposition: W(l) = QΛQ⊺

14: W
(l)
shifted = Q

[
Λ+

(
|λmin(W

(l))|+ ρ
)
I
]
Q⊺

15: Cholesky decomposition: W
(l)
shifted = LL⊺

16: X(l) = Ĉ
(l)

k,dampedL
−1 ∈ R

dl−1×r

17: Singular value decomposition: X(l) = UΣV⊺

18: Σ̃ = diag
(
max

(
σ

2 − (|λmin(W
(l))|+ ρ)1r,0r

))

∈ R
r×r

19: (A
(l)
k )−1 = U[:r]Σ̃

−1
U⊺

[:r] +
1
ρ
(I−U[:r]U

⊺

[:r])

∈ R
dl−1×dl−1

20: Gk = ∇L(θk) ∈ R
dl×dl−1

21: m
(l)
k = β1m

(l)
k−1 − ηk vec

(
G

(l)
k (A

(l)
k )−1

)

22: θ
(l)
k = θ

(l)
k−1 +m

(l)
k

IV. ALGORITHM

In this section, we present NYSACT as an optimizer to solve

the problem (1) and describe each step in the algorithm in

detail. The pseudocode of NYSACT is provided in Algorithm 1.

Let G
(l)
k be the gradient of L w.r.t. the parameters of layer

l. Withtout the momentum, NYSACT performs the following

update for each layer l ∈ [L]:

θ
(l)
k+1 = θ

(l)
k − ηk(C

(l)
k ⊗ Im)−1 vec(G

(l)
l ) ,

where C
(l)
k is the exponential moving average (EMA) of

covariance matrix of activations of l − 1:

C
(l)
k = β2C

(l)
k−1 + (1− β2)A

(l−1)
k .

A. Eigenvalue-shifted Nyström

We initially applied the standard Nyström method [31] in

NYSACT, but this led to highly unstable training dynamics.

Instead, we draw inspiration from the eigenvalue-shifted

Nyström method [24, 30] and adapt it with slight modifications

to suit deep learning settings. The key modification involves



TABLE I: Comparison of time and memory complexity for

updating preconditioner(s)

Method Time Complexity Memory Complexity

KFAC O(d3out) +O(d3in) O(d2out) +O(d2in)
EVA O(d2out) +O(d2in) O(dout) +O(din)

FOOF O(d3in) O(d2in)
NYSACT O(r3) +O(din · r2) O(din · r)

applying the eigenvalue-shifted Nyström method to the damped

activation covariance A+ρI, where ρ > 0 serves as a damping

term to ensure that the resulting matrix is positive definite,

rather than applying to the raw activation covariance A. This

adjustment enhances stability during the inversion process,

ensuring that NYSACT is numerically robust.

B. NYSACT

Now, we detail the implementation of NYSACT for deep

learning tasks. Line 3 and 6 correspond to two different

methods for constructing the sampling matrix. When Gaussian

sampling is employed, we refer to the method as NYSACT-

G, whereas subcolumn sampling leads to the method denoted

as NYSACT-S. In Line 8, we update C, the sketch matrix

of A, using an exponential moving average (EMA) and by

sampling a subset of inputs for each layer, determined by the

sampling matrix S. In Line 11, we add damping ρ to the

sketch matrix, and in Line 12, we form a principal submatrix

W of A. Line 14 applies eigenvalue shifting using the smallest

eigenvalue |λmin(W
(l))|, with an additional ρ added to ensure

the positive definiteness of the shifted W. Line 15 through 18

detail the computations for A+ ρI ≈ ĈdampedW
−1
shiftedĈ

⊺

damped.

We back-shift the shifted eigenvalues in Line 18. In Line 19,

U[:r] denotes the truncated matrix U, retaining only the first

r columns. The resulting preconditioner A−1 thus has a fixed

rank of r.

C. Complexities

We compare the asymptotic time and memory costs of pre-

conditioning a layer with a weight matrix of size (dout ×din) in

Table I. The most computationally intensive steps in NYSACT

occur in Line 13, 15, 16, and 17. However, since the rank r
is typically much smaller than the dimensions of the weight

matrix, NYSACT is expected to achieve significantly lower

complexity compared to KFAC and FOOF, providing a more

efficient approach for utilizing second-order information in

deep learning optimization tasks. Numerical results comparing

time and memory costs are presented in Section VI-C.

D. Hyperparamters

While second-order gradient preconditioning methods are

often sensitive to hyperparameter choices, particularly the

learning rate η, EMA coefficient β2, and damping factor ρ,

NYSACT is more robust to variations in these hyperparameters,

allowing for consistent and reliable performance with less effort

in hyperparameter tuning. In our experiments, we observed

that NYSACT, FOOF, and other KFAC variants perform well

TABLE II: Comparison of relative wall-clock time and memory

usage over SGD on CIFAR datasets

Model ResNet-32 ResNet-110 DenseNet-121
(# params) (0.5M) (2M) (8M)

Time Mem Time Mem Time Mem

KFAC 2.29× 1.05× 2.45× 1.09× 2.18× 1.05×
EVA 1.77× 1.00× 1.71× 1.00× 1.24× 1.00×

FOOF 1.52× 1.04× 1.55× 1.06× 1.67× 1.04×
NYSACT-G 1.33× 1.00× 1.36× 1.00× 1.22× 1.00×
NYSACT-S 1.40× 1.00× 1.31× 1.00× 1.19× 1.00×

when using the same hyperparameters as SGD, such as the

learning rate, momentum coefficient β1, and weight decay. For

the remaining hyperparameters, such as β2, ρ, inverse update

frequency τinv, and rank r, we present an ablation study in

Section VI-C.

V. CONVERGENCE ANALYSIS

VI. EXPERIMENTS

We assess the performance of NYSACT on a range of image

classification tasks and compare it with other baseline methods.

All experiments were conducted using 2 Nvidia RTX6000

GPUs.

A. CIFAR Dataset

Settings. For the CIFAR dataset, we employed ResNet-32,

ResNet-110, and DenseNet-121 [14], training each model for

100 and 200 epochs. We used a mini-batch size of 128 and

cosine annealing learning rate scheduling [19]. The reported

metrics in this section are averaged over 5 independent runs. We

compared NYSACT against state-of-the-art first- and second-

order optimization methods. Specifically, we include SGD

as an essential baseline and Adam and AdamW as first-

order methods that precondition gradients using their second

moments. We evaluate KFAC and Eva as second-order methods

that precondition gradients using approximated FIM. Finally,

we include FOOF and NYSACT as first-order methods that

employ activation covariance-based gradient preconditioning.

Detailed hyperparameter settings for each method are provided

in Table VI in Appendix B.

Training Results. The training results overall indicate

that NYSACT retains much of FOOF’s strong performance

with minimal compromise. As shown in Tables III, NYSACT

outperforms most other baselines in terms of test accuracy.

While Adam and AdamW exhibit faster convergence during

the early stages of training, they ultimately achieve lower test

accuracy compared to other methods. Second-order methods

generally outperform the first-order methods, such as SGD,

Adam, and AdamW. However, they show less effective perfor-

mance in both convergence rate and generalization compared

to the activation covariance-based preconditioning methods,

FOOF and NYSACT. When comparing NYSACT to FOOF,

FOOF delivered the strongest results overall, with NYSACT

following closely as a strong second. Given that NYSACT

is designed as a scalable alternative to FOOF, this outcome



TABLE III: Test accuracy (%) of ResNet and DenseNet on CIFAR datasets

Dataset
Model ResNet-32 ResNet-110 DenseNet-121
Epoch 100 200 100 200 100 200

CIFAR-10

SGD 92.80±0.21 93.57±0.29 93.30±0.24 94.18±0.43 95.33±0.16 95.58±0.13

ADAM 91.59±0.09 92.28±0.14 92.43±0.08 92.90±0.21 93.11±0.19 93.35±0.16

ADAMW 90.79±0.16 91.83±0.28 92.33±0.25 93.19±0.19 94.24±0.10 94.56±0.14

KFAC 93.16±0.17 93.78±0.13 94.35±0.13 94.64±0.10 95.23±0.16 95.57±0.07

EVA 93.07±0.16 93.65±0.14 94.18±0.10 94.64±0.09 95.30±0.13 95.69±0.11

FOOF 93.61±0.14† 94.05±0.17† 94.70±0.10† 95.09±0.10† 95.79±0.04† 95.95±0.08†

NYSACT-G 93.12±0.11 93.68±0.21 94.48±0.09 94.76±0.12 95.53±0.13 95.74±0.10

NYSACT-S 93.28±0.21‡ 93.79±0.22‡ 94.53±0.17‡ 94.94±0.16‡ 95.60±0.19‡ 95.83±0.08‡

Dataset
Model ResNet-32 ResNet-110 DenseNet-121
Epoch 100 200 100 200 100 200

CIFAR-100

SGD 70.47±0.38 70.67±0.49 71.44±1.90 72.48±1.36 79.63±0.15 80.32±0.24

ADAM 67.16±0.41 67.90±0.55 70.10±0.45 71.22±0.44 73.48±0.41 73.49±0.21

ADAMW 65.23±0.16 67.04±1.08 68.88±0.31 70.59±0.37 75.51±0.23 76.30±0.12

KFAC 70.21±0.34 70.91±0.28 73.10±0.41 74.68±0.33 79.79±0.24 80.16±0.10

EVA 70.32±0.31 71.11±0.50 73.55±0.33 74.13±0.34 79.32±0.08 79.89±0.27

FOOF 71.21±0.34† 71.82±0.23† 75.13±0.26† 75.91±0.31† 80.92±0.28† 80.98±0.25†

NYSACT-G 70.70±0.18 71.14±0.17‡ 73.94±0.38‡ 74.70±0.19 80.40±0.24‡ 80.70±0.34‡

NYSACT-S 70.86±0.44‡ 71.12±0.34 73.76±0.45 75.01±0.16‡ 80.33±0.29 80.54±0.17

† and ‡ indicate the best and second-best test accuracies, respectively.

suggests that its approximation of the activation covariance

matrix is reasonably effective. In comparison to KFAC and

Eva, NYSACT either matches or exceeds their performance in

CIFAR-10 training, and it distinctly outperforms in CIFAR-100

training for all networks tested. Figure 2 shows the progression

of training loss and test accuracy over 200 epochs on CIFAR-

100 dataset. The results for ResNets clearly demonstrate that

NYSACT effectively balances the fast convergence of first-

order methods with the strong generalization capabilities of

second-order methods. For DenseNet-121, NYSACT performs

comparably to the other second-order baselines.

Time and Memory Complexities. Table II highlights

the computational efficiency of NYSACT. As demonstrated,

NYSACT has considerably faster execution time than both

FOOF and KFAC, while also using less memory. Notably,

NYSACT consistently achieves faster execution times compared

to Eva, which relies solely on vector multiplications during the

computation of preconditioners, across all tested architectures.

B. ImageNet Dataset

Settings. In our experiments on the ImageNet (ILSVRC

2012) [4] dataset, we trained ResNet-50, ResNet-101, and DeiT

Small (DeiT-S) [28] architectures for 100 and 200 epochs.

Each training session utilized a mini-batch size of 1,024

and employed a cosine annealing schedule for learning rate

adjustment. We evaluated NYSACT against the same baselines

used in our CIFAR experiments. For a comprehensive overview

of the experimental settings, refer to Table VII and Table ??

in Appendix B.

Training Results. The experimental results on ImageNet

dataset, summarized in Table IV.

Why NYSACT-G performs poorly?

TABLE IV: Top-1 accuracy (%) of ResNets and DeiT on

ImageNet dataset

Model ResNet-50 ResNet-101 DeiT-S
Epoch 100 200 100 200 100 200

SGD 78.05 79.46 79.66 81.34 69.08 75.27
ADAMW 76.73 79.14 77.76 80.62 73.78 77.96

KFAC 78.16 79.34 79.53 81.13 69.84 ✗

EVA 77.71 79.48 79.55 81.06 69.67 76.57

FOOF 78.37 79.69 79.96 81.04 65.37
NYSACT-S 75.47 70.72 76.16

✗ indicates a training failure.

TABLE V: Comparison of relative wall-clock time and memory

usage over SGD on ImageNet dataset

Model ResNet-50 ResNet-101 DeiT-S
(# params) (27M) (45M) (22M)

Time Mem Time Mem Time Mem

KFAC 1.21× 1.02× 1.25× 1.02× 1.37× 1.03×
EVA 1.02× 1.00× 1.03× 1.00× 1.01× 1.00×

FOOF 1.25× 1.01× 1.31× 1.02× 1.11× 1.02×
NYSACT-S 1.06× 1.00× 1.07× 1.00× 1.03× 1.00×

Time and Memory Complexities. Table V highlights the

computational efficiency gains of NYSACT.

C. Ablation Study

We performed a hyperparameter study on NYSACT and

compared its results with other gradient preconditioning meth-

ods. We selected KFAC, Eva, and FOOF as baselines because

they all rely on approximations of FIM and share similar

hyperparameters, making them ideal for direct comparison

with NYSACT. This analysis was carried out using ResNet-32
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Fig. 2: Comparison of training loss and test accuracy of optimizers on CIFAR-100 dataset

on CIFAR-10 and ResNet-110 on CIFAR-100, each trained for

100 epochs across three different runs.

Essential Hyperparameters. Figure 3 provides a compre-

hensive comparison of NYSACT with KFAC, Eva, and FOOF,

focusing on essential hyperparameter tuning. The first subplot

highlights that all methods, including NYSACT, perform best at

a learning rate of 0.1. At the lower end, with a learning rate of

0.001, Eva and FOOF struggle, showing a drop in performance.

On the higher end, at a learning rate of 1.0, KFAC and Eva

experience significant performance degradation. In contrast,

NYSACT maintains stable and consistent performance across

the entire range of learning rates tested. In the second subplot,

NYSACT, along with the other methods, demonstrates consis-

tent performance across different EMA coefficients, with the

exception of KFAC. This suggests that NYSACT’s performance

remains largely unaffected by changes in the EMA coefficient,

whereas KFAC exhibits noticeable fluctuations, particularly at

a coefficient value of 0.9. In the third subplot, NYSACT’s test

accuracy increases as damping values rise within the range

of 0.1 to 10.0. At a damping value of 0.01, both FOOF and

NYSACT experience a slight dip in performance relative to

KFAC and Eva. However, when the damping value reaches 10.0,

KFAC displays significant variability and a marked decline in

performance. The observation in the last subplot aligns with

the broader trend in optimization, where large-batch training

often leads to degraded network performance, as highlighted

in previous research [9, 13]. Among the methods compared,

NYSACT experiences a moderate decrease in test accuracy

as the batch size grows, showing a more stable performance

relative to other baselines.

Inverse Update Frequencies. In Figure 4, we assessed

the effects of varying inverse update frequencies for the

preconditioning matrix, testing intervals of 5, 10, 50, and

100 steps. The results suggest that increasing the update

frequency does not significantly compromise the test accuracy

of NYSACT, while it contributes to reducing computational

overhead. For update frequencies of 10 steps or more, NYSACT

achieved the fastest training time while maintaining the second-

best test accuracy, just behind FOOF. At a frequency of 5 steps,

Eva exhibited the fastest overall training time, with FOOF being

the slowest. NYSACT demonstrated a slightly faster training

time than FOOF. KFAC is absent from this subplot due to its

frequent failures in inverting the preconditioners. Notably, at

50 and 100 steps, Eva, despite being the lightest and most

scalable variant of KFAC, became slower than FOOF in this

settings.

Impact of Rank on NYSACT. Figure 5 presents the

impact of the rank hyperparameter in NYSACT. The subplots

on the left display the results for NYSACT-G, while those

on the right show the results for NYSACT-S. In both cases,

NYSACT outperforms SGD in test accuracy and closely follows

FOOF. When comparing the sketching methods, Gaussian

sampling exhibits larger variability in test accuracy compared

to subcolumns sampling, though both methods achieve similar

performance, around 74% test accuracy. As the rank size

increases, there is a subtle trend of improved test accuracy

for both sampling methods, aligning with the expectation that

higher-rank approximations better capture the original matrix’s

properties. The findings suggest that NYSACT effectively

approximates the exact activation covariance matrix with low

ranks, as evidenced by the minimal difference in test accuracy

between rank-5 and rank-20 approximations, with overlapping
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Fig. 3: Comparison of the effects of learning rate, EMA coefficient, damping, and mini-batch size on gradient preconditioning

methods, training ResNet-32 on CIFAR-10 for 100 epochs.
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Fig. 4: Comparison of wall-clock time for different inverse update frequencies during ResNet-110 training on the CIFAR-100

dataset

error bars indicating negligible variance.

VII. CONCLUSION

We introduced NYSACT, a scalable gradient preconditioning

method that effectively reduces the computational complexity

associated with activation covariance-based preconditioning

while maintaining a fast convergence rate and strong general-

ization performance. Our extensive empirical evaluations on

image classification tasks demonstrate that NYSACT signifi-

cantly improves end-to-end training time compared to other

advanced preconditioning methods such as KFAC, Eva, and

FOOF. Furthermore, NYSACT delivers better test accuracy

compared to first-order methods such as SGD and Adam(W).

By addressing the limitations of both first- and second-order

methods, NYSACT offers an optimal blend between them,

making it a scalable yet powerful optimization choice for deep

learning tasks.
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APPENDIX

A. Convegence Analysis

In this section, we analyze the convergence properties of NYSACT. To simplify the analysis, we focus on feed-forward

networks composed of linear layers, though these results can be extended to other types of layers as well.

We make the following standard assumptions in stochastic optimization.

Assumption A.1. (Smoothness) The loss function L is continuously differentiable and L-smooth, i.e., for all W1 and W2,

∥∇L(W1)−∇L(W2)∥F ≤ L∥W1 −W2∥F

Assumption A.2. (Gradient Properties) The stochastic gradient is an unbiased gradient estimate of the true gradient:

E [G(W)] = ∇L(W),

where G is the gradient in matrix form. The variance of the stochastic gradient is bounded by a constant σ2:

E
[
∥G(W)−∇L(W)∥2F

]
≤ σ2.

Additionally, the norm of the true gradient is bounded, i.e., there exists a constant C > 0 such that

∥∇L(W)∥ ≤ C.

Assumption A.3. (Nyström Approximation) The Nyström approximated activation covariance Ã of the exact activation

covariance A = E[aa⊺] satisfies the approximation bound

∥A− Ã∥F ≤ ϵ∥A∥F

for some small approximation error ϵ > 0, and the eigenvalues of Ã are bounded as 0 ≤ λmin(Ã) ≤ λi ≤ λmax(Ã).

The update rule for NYSACT is given by

Wk+1 = Wk − ηGk(Ãk + ρI)−1.

Using the Assumption A.1, the Taylor expansion of the loss around Wk gives

L(Wk+1) ≤ L(Wk) + ⟨Gk,Wk+1 −Wk⟩+
L

2
∥Wk+1 −Wk∥

2
F .

Substituting Wk+1 −Wk = −ηGk(Ãk + ρI)−1, we have

L(Wk+1) ≤ L(Wk) + ⟨Gk,Wk+1 −Wk⟩+
L

2
∥Wk+1 −Wk∥

2
F

Rearranging terms gives

≤ L(Wk)− η⟨Gk,Gk(Ãk + ρI)−1⟩+
ηL

2
∥Gk(Ãk + ρI)−1∥2F . (3)

Since Ã can be viewed as a perturbed matrix of A as Ã = A+(Ã−A), where we assume the perturbation norm ∥Ã−A∥F is

sufficiently small, the difference between the exact and approximated preconditioners can be obtained using matrix perturbation

theory as

(Ãk + ρI)−1 = (Ak + ρI)−1 − (Ak + ρI)−1(Ãk −Ak)(Ak + ρI)−1.

This yields the following error bound as

⟨Gk,Gk(Ak + ρI)−1⟩ − ⟨Gk,Gk(Ãk + ρI)−1⟩ = Tr(Gk((Ak + ρI)−1 − (Ãk + ρI)−1)G⊺

k)

= Tr(Gk(Ak + ρI)−1(Ãk −Ak)(Ak + ρI)−1G⊺

k)

Since Tr(ABC) ≤ ∥A∥F ∥B∥2∥C∥F , where ∥ · ∥2 denotes the spectral norm, and ∥AB∥2 ≤ ∥A∥2∥B∥2 holds,

≤ |Gk∥F ∥Ak + ρI)−1∥2∥Ãk −Ak∥2∥Ak + ρI)−1∥2∥Gk∥F

= ∥Gk∥
2
F ∥Ak + ρI)−1∥22∥Ãk −Ak∥2

Assumption A.3 gives

≤ ϵ∥Gk∥
2
F ∥Ak + ρI∥−2

2 ∥Ak∥F

=
ϵ

(λmax(Ak) + ρ)2
∥Gk∥

2
F ∥Ak∥F .

Using the above, we rewrite (3) as

L(Wk+1) ≤ L(Wk)− η⟨Gk,Gk(Ak + ρI)−1⟩+
ηϵ

(λmax(Ak) + ρ)2
∥Gk∥

2
F ∥Ak∥F +

ηL

2
∥Gk(Ãk + ρI)−1∥2F .



B. Experimental Details

Hyperparameter Settings. Table VI outlines the hyperparameters utilized for training on CIFAR and ImageNet datasets.

Here, η refers to the learning rate, β1 and β2 represent the EMA coefficients for the first and second moments, and ϵ is a

small constant added for numerical stability in Adam-based optimizers. In gradient preconditioning methods, β2 corresponds

to the EMA coefficient for preconditioner updates. The damping factor, ρ, controls the regularization of the covariance

matrix, while Tcov and Tinv define the update frequencies for the covariance and inverse matrices, respectively. Lastly, r
denotes the approximation rank size utilized in NYSACT. For CIFAR datasets, For KFAC and Eva, hyperparameter values

followed the recommendations in [35]. In contrast, for FOOF and NYSACT, we conducted a grid search over learning

rates [0.001, 0.005, 0.01, 0.05, 0.1, 0.5] and damping factors [0.01, 0.05, 0.1, 0.5, 1, 5, 10], while keeping the remaining settings

consistent with other FIM-based preconditioners.

For ImageNet dataset, we scaled up the learning rate η by a factor of 5 for both SGD and preconditioning methods, using a

mini-batch size of 1, 024, compared to the CIFAR training, while we decrease weight decay to 0.00002. For both ResNets and

DeiT, we tripled up the damping for KFAC and Eva to mitigate instability during preconditioner inversion. For all gradient

preconditioning methods, we reduced the inversion frequency from 50 to 5, enabling the models to more frequently adjust to

the changes in preconditioning matrices, particularly when training DeiT.

TABLE VI: Hyperparameter settings for CIFAR and ImageNet datasets training

Dataset Optimizer η Momentum β1 β2 Weight decay ϵ ρ Tcov Tinv r

CIFAR

SGD 0.1 0.9 . . 0.0005 . . . . .

Adam 0.001 . 0.9 0.999 0.0005 1× 10−8 . . . .

AdamW 0.001 . 0.9 0.999 0.05 1× 10−8 . . . .
KFAC 0.1 0.9 . 0.95 0.0005 . 0.03 5 50 .

Eva 0.1 0.9 . 0.95 0.0005 . 0.03 5 50 .
FOOF 0.1 0.9 . 0.95 0.0005 . 1.0 5 50 .

NYSACT 0.1 0.9 . 0.95 0.0005 . 1.0 5 50 10

Dataset Optimizer η Momentum β1 β2 Weight decay ϵ ρ Tcov Tinv r

ImageNet

SGD 0.5 0.9 . . 0.00002 . . . . .

AdamW 0.001 . 0.9 0.999 0.05 1× 10−8 . . . .
KFAC 0.5 0.9 . 0.95 0.00002 . 0.1 5 50 / 5 .

Eva 0.5 0.9 . 0.95 0.00002 . 0.1 5 50 / 5 .
FOOF 0.5 0.9 . 0.95 0.00002 . 1.0 5 50 / 5 .

NYSACT 0.5 0.9 . 0.95 0.00002 / 0.0001 . 1.0 5 50 / 5 20

Model Settings for ResNets and DeiT. Table VII summarizes the configurations used for training on the ImageNet dataset.

Two architectures were explored: ResNet and DeiT-Small. For ResNet, we followed the PyTorch implementation [23], and for

DeiT, we applied the settings from [28]. Both models incorporated advanced training techniques such as Random Erasing [36],

Label Smoothing [26], Mixup/CutMix [33, 34], and Repeated Augmentation [12]. ResNet used TrivialAugment [22], while

DeiT employed RandAugment [3] and Stochastic Depth [15]. Training was conducted at a resolution of 176 for ResNet and

224 for DeiT, with both models evaluated at a test resolution of 224. A mini-batch size of 1,024 was used with cosine learning

rate decay and a 5-epoch warmup.

TABLE VII: Settings for ImageNet training

Architecture ResNets DeiT

Train Res 176 224
Test Res 224 224

Batch size 1,024 1,024
LR decay cosine cosine

Warmup epochs 5 5

Label Smoothing 0.1 0.1
Stochastic Depth - 0.2

Repeated Augmentation ✓ ✓

Horizontal flip ✓ ✓

Random Resized Crop ✓ ✓

Auto Augmentation TrivialAugment RandAugment(9/0.5)
Mixup 0.2 0.8
Cutmix 1.0 1.0

Random Erasing 0.1 0.25
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