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Abstract—Human mesenchymal stem cells (hMSCs) have great
potential in cell-based therapies and regenerative medicine due
to their self-renewal and multipotency. hMSCs can be dif-
ferentiated into several cell types, including adipocytes and
osteblast. Conventional approaches for determining adipocyte
formation include staining of lipid droplets (i.e., oil-red-O) during
adipogenesis, which is time-consuming and uneconomical. Thus,
there is an emerging need for a more effective and accurate
approach to the prediction of adipogenic differentiation. Here,
by combining live-cell imaging with a deep learning method,
we developed a convolutional neural network-based approach
to precisely predict lipid droplet formation during adipogenic
differentiation of hMSCs.

Index Terms—Transfer learning, Deep learning, CNN, hMSCs,
Adipogenic differentiation, ResNet, convolution, computer vision,
osteogenic differentiation, human mesenchymal stem cells, adi-
pogenisis

I. INTRODUCTION

Mesenchymal stem cells (MSCs) have great potential for
tissue engineering, regenerative medicine, and cell-based ther-
apies due to their capacity of self-renewal and multi-potency.
Under certain chemical or biophysical stimulations, MSCs
can be differentiated into various lineages, including os-
teoblasts, adipocytes, neurons, and chondrocytes [1]. Although
MSCs hold great potential for both regenerative medicine
and novel therapeutic discovery, MSC based clinical trials
are currently limited due to inconsistent therapeutic affects,
including functional heterogeneities among different donors,
stemness stability, differentiation capacity, and variation in
MSCs production [2]. Thus, an automated, robust approach
for identifying differentiation is required for effective quality
control of MSCs functions. Recently, it has been reported that
MSCs functions, particularly differentiation potential, relate to
cell morphology [3], [4], [5]. For example, MSCs morphology
has been correlated with differentiation capacity [6], [7], [8]
and passage number [9]. Recent advancements in machine
learning provide the opportunity for predicting a stem cell’s
fate by utilizing large data sets of stem cell characteristics
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[10], [11], [12]. Among these machine learning methods,
deep learning techniques have emerged as powerful tools to
predict and identify stem cell patterns and lineage relationships
[13]. Machine learning algorithms have been used to pre-
dict MSC osteogenic potential [6], [7], micro-environmental
cues, neural stem cell differentiation, and blastocyst formation
[10]. However, the majority of the machine learning-based
approaches are built on data collected from fixed cells through
immunoflourescent (IF) staining, which is more time consum-
ing and expensive than stainless live cell imaging. Thus, there
is an urgent need for an effective deep learning-based approach
that can accurately predict and identify the fate of stem cells
without causing cell fixation or requiring staining. To advance
this field, we aim to investigate whether a morphology-based
prediction model, using a data set obtained through stainless
live cell imaging is capable of predicting adipogenic and
osteogenic differentiation in cells. Adipogenic differentiation,
the process of mature fat cell formation, plays a crucial role in
adipose tissue development and metabolic regulation. Accurate
prediction and identification of cells undergoing adipogenic
differentiation can provide valuable insights into various phys-
iological and pathological conditions. In this study, we aim to
develop an efficient and robust tool for identifying adipogenic
differentiated cells based on cellular morphology by leveraging
the power of deep learning and image analysis. The model will
be trained on a dataset of labelled cell images and will learn to
capture key morphological features associated with adipocyte
and osteocyte formation. In this study we will show that the
ResNet 18 for transfer learning can classify images with slight
morphological variations correctly, with satisfactory results on
Accuracy, Precision, Recall. Our research aims to assess the
effectiveness of ResNet architectures for adipocyte identifica-
tion on images of hMSCs. Our findings reveal that ResNet
can accurately identify stem cell patterns with a high degree
of stability, all while requiring a relatively small number of
labelled training examples.
The rest of the paper is organized as follows.
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Fig. 1.

o Section II, presents the description of the dataset, pre-
processing methods, models, and statistical analysis done
in this study. A detailed background of image collections,
training details, hyper parameter tuning, and architecture
of our customized ResNet model are presented.

Section III, explains how the experiments are performed
and presents the evaluation of customized ResNetlS8
model.

Section IV, concludes the paper, presents the limitations
of the study and the conclusion and gives perspectives
for future work.

II. MATERIALS AND METHODS
A. Cell Culture and Reagents

Our Human mesenchymal stem cells (hMSCs) were ac-
quired from Lonza. According to the manufacture, hMSCs
were isolated from normal (non-diabetic) adult human bone
marrow withdrawn from bilateral punctures of the posterior
iliac crests of normal volunteers. hMSCs were maintained
in mesenchymal stem cell basal medium with GA-1000, L-
glutamine, and mesenchymal cell growth supplements. The
cells were cultured in a humidified incubator at 37 °C with 5
percent C'O2 and passaged using 0.25 Trypsin-EDTA (Invitro-
gen). The cell culture medium was replaced every three days.
hMSCs from passages 3-7 were used in the experiments.

To induce adipogenic differentiation, hMSCs were seeded
at a density of 1x 104 cells/mL with a volume of 700 pL in
12 well-plates. When cells reach 80-90 percent confluency,
the basal medium was replaced with adipogenic induction
medium, which is supplemented with induction and growth
factors. Adipogenic induction medium was changed every
three days. Images were taken after 5 days, 7 days, 10 days
and 13 days of induction, respectively.

B. Characteristics of hMSCs

Mesenchymal stem cells have the capability to differentiate
into various cell types including adipocytes through adipogenic
induction. The adipogenic differentiation of hMSCs can be
characterized by intracellular accumulation of lipid droplets
as well as specific adipocyte transcription genes, for example,
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Bright field images of hMSCs under control and adipogenic differentiation conditions at different time points, Scale bar: 50 pm

PRAR- . The adipogenic differentiation process includes four
stages, growth arrest, mitotic clonal expansion (MCE), early
differentiation, and late differentiation. Fig. 1 shows bright
field images of hMSCs under control and adipogenic induction
conditions. In the control group, hMSCs were cultured with the
basal medium. As shown in the upper panel of Fig. 1 , hMSCs
display a spinal shape without chemical induction. After adi-
pogenic induction, hMSCs went through growth arrest, clonal
expansion (5 days), and early differentiation (7, 10, and 13
days). Under adipogenic differentiation, hMSCs morphology
changes, and cells accumulate lipid droplets internally. As the
adipocyte matures, the amount of lipids increases until almost
the entire cell volume is occupied, as indicated in the yellow
arrow.

C. Related work

Several seminal works have laid the foundation for machine
learning based methodology to identify cell differentiation.

In 2013 Matsuoka et al. [14] has applied Ridge Regression
as the machine learning modeling method to quantitatively
predict cellular osteogenic potential.

Support Vector Machine algorithm and “supercell” cluster-
ing of single cells was used to identify the cell morphology
features which best describe hBMSC population cell morphol-
ogy. alterations associated with the transition (NF1 to NF2)
of hBMSC osteogenic differentiation modulated by nanofiber
densities [15], [16].

A transfer learning-based approach was utilized as the
feature extractor by Kim et al. (2022) [17], with four well-
performing models (VGG19, InceptionV335, Xception, and
DenseNet121) pre-trained on ImageNet. With over 85% ac-
curacy, the results demonstrated the potential of a computer
vision based method for identifying stem cell differentiation.

More recently, Zhou et al. (2023) [18] introduced a predic-
tive model for classifying hMSC differentiation lineages using
the k-nearest neighbors (kNN) algorithm. It provided accurate
prediction of lineage fate on different types of biomaterials
as early as the first week of hMSCs culture with an overall
accuracy of 90.63% on the test data set.
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III. MODEL
A. Transfer Learning

Transfer learning is defined as applying a model trained
on a general task to a new related task ([19]). Building a
model using only cell images as training data is often not the
most practical strategy since it requires large computational
resources, and high quality labeled data is scarce. In addition,
the deeper a network becomes (i.e. the more layers it has), the
more training data it requires to converge on a best estimate
for all parameters. Pre-trained convolutional neural networks
(CNNs) have been trained on large-scale data sets and have
learned general feature representations that capture meaningful
patterns and structures in images of all types. In order to
properly adapt these models to our task, we provide additional
training data that is used to fine tune the parameters of the final
layers in the network. [20].

B. ResNet Architectures

The deep residual network (ResNet) is one of the most
common convolutional neural networks (CNN), developed by
He et al [21]. The residual building block (RBB) is the most
vital element in ResNetl8. The RBB is based on the idea
of skipping blocks of convolution layers by using shortcut
connections (see Fig. 2). These shortcuts are useful to avoid
the vanishing/exploding gradients problem, which helps us to
construct deeper networks and improves final performance for
fault diagnosis [22]. In other words, since convolution is a
lossy process, short cutting inputs and recombining them with
their convoluted outputs allows for a better flow of gradient
information in very deep networks.

Each image in our data set has a high number of dimensions,
2592 x 1944 pixels, and much of the space is essentially empty.
To reduce the dimensionality of the images, and eliminate
unnecessary information we employ a convolutional neural
network, specifically ResNet 18 [21].

This architecture consists of seventeen convolution layers
followed by an average pooling layer and two fully con-
nected layers with 128 and 2 units respectively (see Fig. 4).
Additionally, the final fully connected layer has a softmax
activation function to express our class weights as a probability
distribution. One advantage of ResNet 18 is that it has been
pre-trained on the ImageNet data set which consists of over 1
million images divided into one thousand categories. Since the

918

pre-training data set is so diverse, the ResNet model already
has some general ’knowledge’ of what it means for two
images to be different. As a result, adapting ResNet to a new
classification task should require fewer training examples than
building a model from scratch. This is incredibly convenient
given the amount of labor and time required to collect and
label our training data.

At a high level, each convolution layer is essentially sliding
some filter over the image with the idea that only relevant
information makes it through the filter. We can imagine each
image as a three dimensional tensor where the length of the
last dimension is three, one for each color channel (RGB).
The filter is then a four dimensional tensor, where each
element along the first dimension represents a 3D tensor
called a kernel. The values, or weights in each kernel are not
necessarily equal, and in most cases should not be. In Fig. 3 we
can see an example of a convolution operation with a filter size
of 128, and kernels of size 3x3x3. The filter is aligned with the
image (shaded in red) and we compute the Hadamard product
between each kernel (orange) and the shaded region. We then
sum the values in the resulting matrix and output. Thus, each
kernel produces a single output, so each filter should produce
a sequence of 128 outputs. In addition, we can see that one can
only shift the filter 5 units in either direction without hitting
a wall, so we expect a final output size of 5x5x128.

Fig. 3. A 2d convolution with 3 color channels, filter size of 128, and kernel
size 3x3x3

During training, we will adjust the weights in each of the
eighteen convolution layers and two fully connected layers
according to the cross entropy loss function (Equation 1),
specifically, the binary case when M = 2. Additionally we
will employ stochastic gradient descent with momentum using
learning rate = 0.001 and momentum = 0.9. After many train-
ing examples we expect the weights in each convolution layer
to be learned such that the outputs of the final convolution are
linearly separable with regard to their true class.

M
Cross Entropy = — Z Yo,c 10g(Po,c)

c=1

e))

where M is the number of classes, ¥, . is a binary value equal
to 1 if the observation’s true class is the same as the class
¢ otherwise 0, and p, . is the predicted probability that the
observation belongs to class c.
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C. Image Preprocessing

Since ResNet only accepts images with red, green and blue
color channels (RGB) of size 224x224 pixels with normalized
channel values, we must transform our inputs to the correct
shape and type. Each image is first resized to 256x256 pixels
using bi-linear interpolation before being converted from gray
scale to RGB with Floyd-Steinberg dithering. These trans-
formed images can each be represented as a three dimensional
tensor with shape (3, 256, 256) and real number values
between O and 255. For training, we then perform a randomly
centered square crop resulting in a final shape of (3, 224,
224). Additionally, during training each image has a 50%
chance of being reflected about the y-axis. Each of these
random operations serves to prevent the model from over
fitting. Finally, the RGB values in each image tensor are
standardized using the mean and standard deviation method
(i.e. we subtract the mean from all pixel values and divide the
result by the standard deviation for each color channel) with
values derived from the ImageNet data set (see Table I).

TABLE 1
MEAN AND STANDARD DEVIATIONS USED FOR NORMALIZATION
GROUPED BY COLOR CHANNEL

Color Channel R G B
Mean 485 456 406
StdDev 229 224 225

D. Evaluation Metrics

In the field of statistics and in particular for the purposes of
prediction, four key terms are usually computed for assessing
the performance of a classifier: true positives (fp), true nega-
tives (tn), false positives (fp), and false negatives (fn). The
terms positive and negative refer to the classifier’s predicted
label, and the terms true and false refer to whether that
prediction corresponds to the external judgment, also known
as the observation [23]. In our case, we will label any sample
which exhibits adipogenic and/or osteogenic differentiation as
a member of the positive class, while labelling all control
samples as members of the negative class.

Some major measurement metrics: accuracy, precision, re-
call, F1 Score, and AUC are used to assess how well a binary
classification is performed [23].

E. Imaging

Images were captured using the ZOE Fluorescent Cell
Imager with an integrated digital camera (BIO-RAD). All
fluorescence images were taken with the same setting for com-
parison. Data collection and imaging analysis were performed
using NIH ImagelJ software.

IV. RESULTS AND DISCUSSION

A. Experiments

We used an 80:20 split to divide the data set into 1,232
training images, and 301 validation images. Since the images
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are collected over the range of several days, our split is
stratified such that equal proportions of images from each day
are selected. That is, we take 80% of the 5 day images, 80% of
the 7 day images, 80% of the 10 day images, and 80% of the
13 day images for our training set. The data set information
is shown in Table II.

The model was trained for a total of twelve epochs with a
batch size of 128. Throughout development we found that with
this batch size, the model tended to converge on the training set
between eight and twelve epochs. After training we selected
the model with the greatest accuracy on the training data set
in order to perform our validation and compute the discussed
metrics.

TABLE II
DERMOSCOPIC DATA INFORMATION
Class Days Training Set | Test Set
Differentiation | 5 days 245 60
7 days 237 57
10 days 239 58
13 days 231 57
Control 5 days 80 20
7 days 80 20
10 days 40 10
13 days 80 19
Total 1232 301

B. Results

Our model reached its maximum accuracy on the train
data after eight epochs resulting in the performance metrics
shown in Table III. We can see that the validation accuracy
is exceptional with 97.34% of the images being correctly
classified. Additionally, we can see in the confusion matrix
(Figure 6) that the classification error is perfectly balanced
between false positives and negatives meaning that recall =
precision = F'1. We can also observe from the AUC (Figure
5) that the model has a strong ability to distinguish between
the positive and negative class, significantly outperforming
random chance.

TABLE IIT

MODEL VALIDATION RESULTS
Metric | Value
Accuracy | 0.9734
Precision | 0.9828
Recall 0.9828
F1 0.9828
AUC 0.9873

Furthermore, if we assume that the classification error of
our model is normally distributed, we can obtain a binomial
confidence interval using a Wald interval. Given the fact that
our model achieved a classification accuracy of 97.34% on a
validation set of 301 images, we can therefore infer that the
true accuracy of the model lies in the range [95.52%, 99.15%]
with 95% confidence.

In “Morphology-Based Prediction of Osteogenic Differenti-
ation Potential of Human Mesenchymal Stem Cells”, Lan et al.
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experimented using transfer learning with the Resnet50, Incep-
tionV3, and VGG16 models for the purpose of classifying only
differentiated osteocytes in a cell culture. In doing so they were
able to obtain a, “high area under the curve (AUC) (0.94 +
0.04)” [14] and “achieve(d) accuracy higher than 80% on the
validation set except for day 0” [14]. Although Lan et al. were
classifying only pure osteogenic differentiation as opposed to
both adipogenic and osteogenic differentiation, it is still clear
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that our model was able to achieve a significantly greater
level of performance as demonstrated by its greater accuracy
and AUC. Additionally, our base model, Resnet18, has a total
parameter count of approximately 11 million which is less than
half that of both Resnet50 and InceptionV3 with around 26
and 27 million parameters respectively, and drastically smaller
than VGG16 with 138 million parameters. As a result we are
also able to retrain our model more quickly, perform faster
predictions, and deploy the model to devices with limited
hardware such as smartphones.

Since our training and validation data contains images taken
at 5, 7, 10, and 13 days after sample collection, we also
examined the performance of our model on each group via
the same metrics. The reasoning for examining these groups
is that although we are chemically inducing adipogenisis, not
all cells begin the process at exactly the same time. As a result
the proportion of differentiated cells increases as the culture
ages. Additionally the process of adipogenisis can take up to
two weeks before a cell is completely differentiated, meaning
that over time cells will exhibit more of the morphological
features of adipocytes. Our initial assumption was that images
taken earlier in a culture’s lifetime would be more difficult to
identify. However, we can see from Table IV that the model
was actually least accurate at the 13 day mark. In fact, there
does not appear to be any strong relationship between the
number of days since collection, and the model’s accuracy.
One explanation for this is that after 5 days the visual effects of
adipogenic and osteogenic differentiation are already relatively
pronounced. Additionally, after the 5 day mark we do not see
any major changes in the defining visual characteristics of
the differentiated cells, instead we tend to see them grow in
number and size.

V. CONCLUSIONS AND FUTURE WORK

In this study, we developed a deep learning-based algorithm
using transfer learning on ResNet 18 to classify hMSCs
adipogenic differentiation based on morphology changes. Our
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TABLE IV
MODEL METRICS BY DAYS SINCE SAMPLE COLLECTION

Days | Accuracy | Precision | Recall | F1 Score | AUC
5 days 0.9750 0.9677 1.0000 0.9836 0.9642
7 days 0.9740 1.0000 0.9649 0.9821 1.0000
10 days 1.0000 1.0000 1.0000 1.0000 1.0000
13 days 9474 0.9649 0.9649 0.9649 0.9917

model was able to attain an accuracy of 97.34%, AUC of
96.2%, and an F1 score of .9828 with a symmetric tradeoff
between precision and recall. Furthermore, we were able
to correctly classify images taken as early as 5 days after
culturing with no appreciable drop in the models performance
metrics. Therefore, this non-invasive approach, which only
requires simple bright field microscope images, could be an
effective aid in bio-manufacturing and research into cell-based
therapies.

However, there are several avenues for future work that can
extend and enhance our findings. Firstly, we will focus on
identification and characterisation of the early differentiating
cells (day 1, 2, 3 and 5). Additionally, we will apply the current
state-of-the-art techniques and methodologies in cell segmen-
tation to compute the proportion of differentiation for every
image. These future directions will contribute to advancing the
field of microscopy image recognition and provide valuable
insights for practical applications of deep learning across the
field.
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