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Abstract—Human mesenchymal stem cells (hMSCs) have great
potential in cell-based therapies and regenerative medicine due
to their self-renewal and multipotency. hMSCs can be dif-
ferentiated into several cell types, including adipocytes and
osteblast. Conventional approaches for determining adipocyte
formation include staining of lipid droplets (i.e., oil-red-O) during
adipogenesis, which is time-consuming and uneconomical. Thus,
there is an emerging need for a more effective and accurate
approach to the prediction of adipogenic differentiation. Here,
by combining live-cell imaging with a deep learning method,
we developed a convolutional neural network-based approach
to precisely predict lipid droplet formation during adipogenic
differentiation of hMSCs.

Index Terms—Transfer learning, Deep learning, CNN, hMSCs,
Adipogenic differentiation, ResNet, convolution, computer vision,
osteogenic differentiation, human mesenchymal stem cells, adi-
pogenisis

I. INTRODUCTION

Mesenchymal stem cells (MSCs) have great potential for

tissue engineering, regenerative medicine, and cell-based ther-

apies due to their capacity of self-renewal and multi-potency.

Under certain chemical or biophysical stimulations, MSCs

can be differentiated into various lineages, including os-

teoblasts, adipocytes, neurons, and chondrocytes [1]. Although

MSCs hold great potential for both regenerative medicine

and novel therapeutic discovery, MSC based clinical trials

are currently limited due to inconsistent therapeutic affects,

including functional heterogeneities among different donors,

stemness stability, differentiation capacity, and variation in

MSCs production [2]. Thus, an automated, robust approach

for identifying differentiation is required for effective quality

control of MSCs functions. Recently, it has been reported that

MSCs functions, particularly differentiation potential, relate to

cell morphology [3], [4], [5]. For example, MSCs morphology

has been correlated with differentiation capacity [6], [7], [8]

and passage number [9]. Recent advancements in machine

learning provide the opportunity for predicting a stem cell’s

fate by utilizing large data sets of stem cell characteristics

[10], [11], [12]. Among these machine learning methods,

deep learning techniques have emerged as powerful tools to

predict and identify stem cell patterns and lineage relationships

[13]. Machine learning algorithms have been used to pre-

dict MSC osteogenic potential [6], [7], micro-environmental

cues, neural stem cell differentiation, and blastocyst formation

[10]. However, the majority of the machine learning-based

approaches are built on data collected from fixed cells through

immunoflourescent (IF) staining, which is more time consum-

ing and expensive than stainless live cell imaging. Thus, there

is an urgent need for an effective deep learning-based approach

that can accurately predict and identify the fate of stem cells

without causing cell fixation or requiring staining. To advance

this field, we aim to investigate whether a morphology-based

prediction model, using a data set obtained through stainless

live cell imaging is capable of predicting adipogenic and

osteogenic differentiation in cells. Adipogenic differentiation,

the process of mature fat cell formation, plays a crucial role in

adipose tissue development and metabolic regulation. Accurate

prediction and identification of cells undergoing adipogenic

differentiation can provide valuable insights into various phys-

iological and pathological conditions. In this study, we aim to

develop an efficient and robust tool for identifying adipogenic

differentiated cells based on cellular morphology by leveraging

the power of deep learning and image analysis. The model will

be trained on a dataset of labelled cell images and will learn to

capture key morphological features associated with adipocyte

and osteocyte formation. In this study we will show that the

ResNet 18 for transfer learning can classify images with slight

morphological variations correctly, with satisfactory results on

Accuracy, Precision, Recall. Our research aims to assess the

effectiveness of ResNet architectures for adipocyte identifica-

tion on images of hMSCs. Our findings reveal that ResNet

can accurately identify stem cell patterns with a high degree

of stability, all while requiring a relatively small number of

labelled training examples.

The rest of the paper is organized as follows.
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Fig. 1. Bright field images of hMSCs under control and adipogenic differentiation conditions at different time points, Scale bar: 50 μm

• Section II, presents the description of the dataset, pre-

processing methods, models, and statistical analysis done

in this study. A detailed background of image collections,

training details, hyper parameter tuning, and architecture

of our customized ResNet model are presented.

• Section III, explains how the experiments are performed

and presents the evaluation of customized ResNet18

model.

• Section IV, concludes the paper, presents the limitations

of the study and the conclusion and gives perspectives

for future work.

II. MATERIALS AND METHODS

A. Cell Culture and Reagents

Our Human mesenchymal stem cells (hMSCs) were ac-

quired from Lonza. According to the manufacture, hMSCs

were isolated from normal (non-diabetic) adult human bone

marrow withdrawn from bilateral punctures of the posterior

iliac crests of normal volunteers. hMSCs were maintained

in mesenchymal stem cell basal medium with GA-1000, L-

glutamine, and mesenchymal cell growth supplements. The

cells were cultured in a humidified incubator at 37 ◦C with 5

percent CO2 and passaged using 0.25 Trypsin-EDTA (Invitro-

gen). The cell culture medium was replaced every three days.

hMSCs from passages 3-7 were used in the experiments.

To induce adipogenic differentiation, hMSCs were seeded

at a density of 1x 104 cells/mL with a volume of 700 μL in

12 well-plates. When cells reach 80-90 percent confluency,

the basal medium was replaced with adipogenic induction

medium, which is supplemented with induction and growth

factors. Adipogenic induction medium was changed every

three days. Images were taken after 5 days, 7 days, 10 days

and 13 days of induction, respectively.

B. Characteristics of hMSCs

Mesenchymal stem cells have the capability to differentiate

into various cell types including adipocytes through adipogenic

induction. The adipogenic differentiation of hMSCs can be

characterized by intracellular accumulation of lipid droplets

as well as specific adipocyte transcription genes, for example,

PRAR- γ. The adipogenic differentiation process includes four

stages, growth arrest, mitotic clonal expansion (MCE), early

differentiation, and late differentiation. Fig. 1 shows bright

field images of hMSCs under control and adipogenic induction

conditions. In the control group, hMSCs were cultured with the

basal medium. As shown in the upper panel of Fig. 1 , hMSCs

display a spinal shape without chemical induction. After adi-

pogenic induction, hMSCs went through growth arrest, clonal

expansion (5 days), and early differentiation (7, 10, and 13

days). Under adipogenic differentiation, hMSCs morphology

changes, and cells accumulate lipid droplets internally. As the

adipocyte matures, the amount of lipids increases until almost

the entire cell volume is occupied, as indicated in the yellow

arrow.

C. Related work

Several seminal works have laid the foundation for machine

learning based methodology to identify cell differentiation.

In 2013 Matsuoka et al. [14] has applied Ridge Regression

as the machine learning modeling method to quantitatively

predict cellular osteogenic potential.

Support Vector Machine algorithm and “supercell” cluster-

ing of single cells was used to identify the cell morphology

features which best describe hBMSC population cell morphol-

ogy. alterations associated with the transition (NF1 to NF2)

of hBMSC osteogenic differentiation modulated by nanofiber

densities [15], [16].

A transfer learning-based approach was utilized as the

feature extractor by Kim et al. (2022) [17], with four well-

performing models (VGG19, InceptionV335, Xception, and

DenseNet121) pre-trained on ImageNet. With over 85% ac-

curacy, the results demonstrated the potential of a computer

vision based method for identifying stem cell differentiation.

More recently, Zhou et al. (2023) [18] introduced a predic-

tive model for classifying hMSC differentiation lineages using

the k-nearest neighbors (kNN) algorithm. It provided accurate

prediction of lineage fate on different types of biomaterials

as early as the first week of hMSCs culture with an overall

accuracy of 90.63% on the test data set.

917

Authorized licensed use limited to: Univ of New Haven. Downloaded on January 21,2025 at 18:32:07 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. A Basic Residual Block

III. MODEL

A. Transfer Learning

Transfer learning is defined as applying a model trained

on a general task to a new related task ([19]). Building a

model using only cell images as training data is often not the

most practical strategy since it requires large computational

resources, and high quality labeled data is scarce. In addition,

the deeper a network becomes (i.e. the more layers it has), the

more training data it requires to converge on a best estimate

for all parameters. Pre-trained convolutional neural networks

(CNNs) have been trained on large-scale data sets and have

learned general feature representations that capture meaningful

patterns and structures in images of all types. In order to

properly adapt these models to our task, we provide additional

training data that is used to fine tune the parameters of the final

layers in the network. [20].

B. ResNet Architectures

The deep residual network (ResNet) is one of the most

common convolutional neural networks (CNN), developed by

He et al [21]. The residual building block (RBB) is the most

vital element in ResNet18. The RBB is based on the idea

of skipping blocks of convolution layers by using shortcut

connections (see Fig. 2). These shortcuts are useful to avoid

the vanishing/exploding gradients problem, which helps us to

construct deeper networks and improves final performance for

fault diagnosis [22]. In other words, since convolution is a

lossy process, short cutting inputs and recombining them with

their convoluted outputs allows for a better flow of gradient

information in very deep networks.

Each image in our data set has a high number of dimensions,

2592 x 1944 pixels, and much of the space is essentially empty.

To reduce the dimensionality of the images, and eliminate

unnecessary information we employ a convolutional neural

network, specifically ResNet 18 [21].

This architecture consists of seventeen convolution layers

followed by an average pooling layer and two fully con-

nected layers with 128 and 2 units respectively (see Fig. 4).

Additionally, the final fully connected layer has a softmax

activation function to express our class weights as a probability

distribution. One advantage of ResNet 18 is that it has been

pre-trained on the ImageNet data set which consists of over 1

million images divided into one thousand categories. Since the

pre-training data set is so diverse, the ResNet model already

has some general ’knowledge’ of what it means for two

images to be different. As a result, adapting ResNet to a new

classification task should require fewer training examples than

building a model from scratch. This is incredibly convenient

given the amount of labor and time required to collect and

label our training data.

At a high level, each convolution layer is essentially sliding

some filter over the image with the idea that only relevant

information makes it through the filter. We can imagine each

image as a three dimensional tensor where the length of the

last dimension is three, one for each color channel (RGB).

The filter is then a four dimensional tensor, where each

element along the first dimension represents a 3D tensor

called a kernel. The values, or weights in each kernel are not

necessarily equal, and in most cases should not be. In Fig. 3 we

can see an example of a convolution operation with a filter size

of 128, and kernels of size 3x3x3. The filter is aligned with the

image (shaded in red) and we compute the Hadamard product

between each kernel (orange) and the shaded region. We then

sum the values in the resulting matrix and output. Thus, each

kernel produces a single output, so each filter should produce

a sequence of 128 outputs. In addition, we can see that one can

only shift the filter 5 units in either direction without hitting

a wall, so we expect a final output size of 5x5x128.

Fig. 3. A 2d convolution with 3 color channels, filter size of 128, and kernel
size 3x3x3

During training, we will adjust the weights in each of the

eighteen convolution layers and two fully connected layers

according to the cross entropy loss function (Equation 1),

specifically, the binary case when M = 2. Additionally we

will employ stochastic gradient descent with momentum using

learning rate = 0.001 and momentum = 0.9. After many train-

ing examples we expect the weights in each convolution layer

to be learned such that the outputs of the final convolution are

linearly separable with regard to their true class.

Cross Entropy = −
M∑

c=1

yo,c log(po,c) (1)

where M is the number of classes, yo,c is a binary value equal

to 1 if the observation’s true class is the same as the class

c otherwise 0, and po,c is the predicted probability that the

observation belongs to class c.
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C. Image Preprocessing
Since ResNet only accepts images with red, green and blue

color channels (RGB) of size 224x224 pixels with normalized

channel values, we must transform our inputs to the correct

shape and type. Each image is first resized to 256x256 pixels

using bi-linear interpolation before being converted from gray

scale to RGB with Floyd-Steinberg dithering. These trans-

formed images can each be represented as a three dimensional

tensor with shape (3, 256, 256) and real number values

between 0 and 255. For training, we then perform a randomly

centered square crop resulting in a final shape of (3, 224,

224). Additionally, during training each image has a 50%

chance of being reflected about the y-axis. Each of these

random operations serves to prevent the model from over

fitting. Finally, the RGB values in each image tensor are

standardized using the mean and standard deviation method

(i.e. we subtract the mean from all pixel values and divide the

result by the standard deviation for each color channel) with

values derived from the ImageNet data set (see Table I).

TABLE I
MEAN AND STANDARD DEVIATIONS USED FOR NORMALIZATION

GROUPED BY COLOR CHANNEL

Color Channel R G B

Mean .485 .456 .406

StdDev .229 .224 .225

D. Evaluation Metrics
In the field of statistics and in particular for the purposes of

prediction, four key terms are usually computed for assessing

the performance of a classifier: true positives (tp), true nega-

tives (tn), false positives (fp), and false negatives (fn). The

terms positive and negative refer to the classifier’s predicted

label, and the terms true and false refer to whether that

prediction corresponds to the external judgment, also known

as the observation [23]. In our case, we will label any sample

which exhibits adipogenic and/or osteogenic differentiation as

a member of the positive class, while labelling all control

samples as members of the negative class.
Some major measurement metrics: accuracy, precision, re-

call, F1 Score, and AUC are used to assess how well a binary

classification is performed [23].

E. Imaging
Images were captured using the ZOE Fluorescent Cell

Imager with an integrated digital camera (BIO-RAD). All

fluorescence images were taken with the same setting for com-

parison. Data collection and imaging analysis were performed

using NIH ImageJ software.

IV. RESULTS AND DISCUSSION

A. Experiments
We used an 80:20 split to divide the data set into 1,232

training images, and 301 validation images. Since the images

are collected over the range of several days, our split is

stratified such that equal proportions of images from each day

are selected. That is, we take 80% of the 5 day images, 80% of

the 7 day images, 80% of the 10 day images, and 80% of the

13 day images for our training set. The data set information

is shown in Table II.

The model was trained for a total of twelve epochs with a

batch size of 128. Throughout development we found that with

this batch size, the model tended to converge on the training set

between eight and twelve epochs. After training we selected

the model with the greatest accuracy on the training data set

in order to perform our validation and compute the discussed

metrics.

TABLE II
DERMOSCOPIC DATA INFORMATION

Class Days Training Set Test Set
Differentiation 5 days 245 60

7 days 237 57
10 days 239 58
13 days 231 57

Control 5 days 80 20
7 days 80 20

10 days 40 10
13 days 80 19

Total 1232 301

B. Results

Our model reached its maximum accuracy on the train

data after eight epochs resulting in the performance metrics

shown in Table III. We can see that the validation accuracy

is exceptional with 97.34% of the images being correctly

classified. Additionally, we can see in the confusion matrix

(Figure 6) that the classification error is perfectly balanced

between false positives and negatives meaning that recall =
precision = F1. We can also observe from the AUC (Figure

5) that the model has a strong ability to distinguish between

the positive and negative class, significantly outperforming

random chance.

TABLE III
MODEL VALIDATION RESULTS

Metric Value
Accuracy 0.9734
Precision 0.9828

Recall 0.9828
F1 0.9828

AUC 0.9873

Furthermore, if we assume that the classification error of

our model is normally distributed, we can obtain a binomial

confidence interval using a Wald interval. Given the fact that

our model achieved a classification accuracy of 97.34% on a

validation set of 301 images, we can therefore infer that the

true accuracy of the model lies in the range [95.52%, 99.15%]

with 95% confidence.

In “Morphology-Based Prediction of Osteogenic Differenti-

ation Potential of Human Mesenchymal Stem Cells”, Lan et al.
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Fig. 4. Overview of ResNet 18 Models for Adipogenic Differentiation Identification

Fig. 5. AUC Curve

Fig. 6. Confusion Matrix

experimented using transfer learning with the Resnet50, Incep-

tionV3, and VGG16 models for the purpose of classifying only

differentiated osteocytes in a cell culture. In doing so they were

able to obtain a, “high area under the curve (AUC) (0.94 ±
0.04)” [14] and “achieve(d) accuracy higher than 80% on the

validation set except for day 0” [14]. Although Lan et al. were

classifying only pure osteogenic differentiation as opposed to

both adipogenic and osteogenic differentiation, it is still clear

that our model was able to achieve a significantly greater

level of performance as demonstrated by its greater accuracy

and AUC. Additionally, our base model, Resnet18, has a total

parameter count of approximately 11 million which is less than

half that of both Resnet50 and InceptionV3 with around 26

and 27 million parameters respectively, and drastically smaller

than VGG16 with 138 million parameters. As a result we are

also able to retrain our model more quickly, perform faster

predictions, and deploy the model to devices with limited

hardware such as smartphones.
Since our training and validation data contains images taken

at 5, 7, 10, and 13 days after sample collection, we also

examined the performance of our model on each group via

the same metrics. The reasoning for examining these groups

is that although we are chemically inducing adipogenisis, not

all cells begin the process at exactly the same time. As a result

the proportion of differentiated cells increases as the culture

ages. Additionally the process of adipogenisis can take up to

two weeks before a cell is completely differentiated, meaning

that over time cells will exhibit more of the morphological

features of adipocytes. Our initial assumption was that images

taken earlier in a culture’s lifetime would be more difficult to

identify. However, we can see from Table IV that the model

was actually least accurate at the 13 day mark. In fact, there

does not appear to be any strong relationship between the

number of days since collection, and the model’s accuracy.

One explanation for this is that after 5 days the visual effects of

adipogenic and osteogenic differentiation are already relatively

pronounced. Additionally, after the 5 day mark we do not see

any major changes in the defining visual characteristics of

the differentiated cells, instead we tend to see them grow in

number and size.

V. CONCLUSIONS AND FUTURE WORK

In this study, we developed a deep learning-based algorithm

using transfer learning on ResNet 18 to classify hMSCs

adipogenic differentiation based on morphology changes. Our
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TABLE IV
MODEL METRICS BY DAYS SINCE SAMPLE COLLECTION

Days Accuracy Precision Recall F1 Score AUC
5 days 0.9750 0.9677 1.0000 0.9836 0.9642
7 days 0.9740 1.0000 0.9649 0.9821 1.0000
10 days 1.0000 1.0000 1.0000 1.0000 1.0000
13 days .9474 0.9649 0.9649 0.9649 0.9917

model was able to attain an accuracy of 97.34%, AUC of

96.2%, and an F1 score of .9828 with a symmetric tradeoff

between precision and recall. Furthermore, we were able

to correctly classify images taken as early as 5 days after

culturing with no appreciable drop in the models performance

metrics. Therefore, this non-invasive approach, which only

requires simple bright field microscope images, could be an

effective aid in bio-manufacturing and research into cell-based

therapies.

However, there are several avenues for future work that can

extend and enhance our findings. Firstly, we will focus on

identification and characterisation of the early differentiating

cells (day 1, 2, 3 and 5). Additionally, we will apply the current

state-of-the-art techniques and methodologies in cell segmen-

tation to compute the proportion of differentiation for every

image. These future directions will contribute to advancing the

field of microscopy image recognition and provide valuable

insights for practical applications of deep learning across the

field.
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