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Pore-scale modeling is essential in understanding and predicting flow and transport properties of rocks.
Generally, pore-scale modeling is dependent on imaging technologies such as Micro Computed Tomography
(micro-CT), which provides visual confirmation into the pore microstructures of rocks at a representative scale.
However, this technique is limited in the ability to provide high resolution images showing the pore-throats

Permeabilit; . . . . .
Tortuosity v connecting pore bodies. Pore scale simulations of flow and transport properties of rocks are generally done on
Upscaling a single 3D pore microstructure image. As such, the simulated properties are only representative of the simulated

pore-scale rock volume. These are the technological and computational limitations which we address here by
using a stochastic pore-scale simulation approach. This approach consists of constructing hundreds of 3D pore
microstructures of the same pore size distribution and overall porosity but different pore connectivity. The
construction of the 3D pore microstructures incorporates the use of Mercury Injection Capillary Pressure (MICP)
data to account for pore throat size distribution, and micro-CT images to account for pore body size distribution.
The approach requires a small micro-CT image volume (7-19 mm®) to reveal key pore microstructural features
that control flow and transport properties of highly heterogeneous rocks at the core-scale. Four carbonate rock
samples were used to test the proposed approach. Permeability calculations from the introduced approach were
validated by comparing laboratory measured permeability of rock cores and permeability estimated using five
well-known core-scale empirical model equations. The results show that accounting for the stochastic connec-
tivity of pores results in a probabilistic distribution of flow properties which can be used to upscale pore-scale
simulated flow properties to the core-scale. The use of the introduced stochastic pore-scale simulation
approach is more beneficial when there is a higher degree of heterogeneity in pore size distribution. This is
shown to be the case with permeability and hydraulic tortuosity which are key controls of flow and transport
processes in rocks.

1. Introduction

Appropriate information of the pore microstructure of rocks is
crucial in many geoscience and engineering applications (Ishola et al.,
2022; Regnet et al., 2019; Starnoni et al., 2017) such as hydrocarbon
exploration (Ebrahimi and Vilcaez, 2019; Vilcdez, 2020), geothermal
exploration, groundwater exploration, carbon sequestration (Shabani
et al., 2020; Shabani and Vilcaez, 2019), hydrogen storage, mineral
exploration, and environmental studies (Omar and Vilcaez, 2022). The
pore microstructure of rocks control fundamental flow and transport
properties of rocks such as permeability and hydraulic tortuosity (Ishola
et al., 2022). The pore microstructure of rocks can be described as the
configuration of voids. Characteristic features of pore microstructures
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include pore throats, pore body, pore shape, and pore topology. These
features vary in rocks because of heterogeneity. Generally, pore micro-
structures are less heterogenous in sandstone and more heterogenous in
carbonate rocks. Heterogeneity in natural rocks result largely from a
combination of deposition and diagenesis processes (Hollis, 2011;
Morad et al., 2010; Regnet et al., 2019; Wang et al., 2017). An increase
in the degree of heterogeneity has been shown to lead to increased de-
gree of uncertainty in permeability and hydraulic tortuosity of rocks
(Ishola et al., 2022). Traditionally, flow properties such as permeability
are predicted from macroscale petrophysical properties of rocks such as
porosity. While this approaches generally work well in sandstone, they
often fail in carbonate rocks because of the inherent heterogeneity
(Dasgupta and Mukherjee, 2020; Westphal et al., 2005). A same porosity
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Fig. 1. Rock samples (A-D) used in this study along with respective permeability measured in each sample.
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Fig. 2. MICP data of pore throat radius for study samples in Fig. 1. The dashed green line denotes the threshold below which data is considered unreliable.

Table 1

EPTR of rock samples used in this study.
Sample A B C D
EPTR (pm) 7.016 7.503 7.773 7.785

value has been shown can be associated to permeability values spanning
five orders of magnitude if pore microstructural features such as pore
size distribution and pore connectivity are not accounted for (Westphal
etal., 2005; Yang and Aplin, 2010; Zhang et al., 2018). To help constrain
this issue, pore size distribution data via measurements like nuclear
magnetic resonance (NMR) (Westphal et al., 2005) and mercury injec-
tion capillary pressure (MICP) (Comisky et al., 2007) have been incor-
porated into empirical approaches to predicting permeability.
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Fig. 4. (a) A 2D slice through unprocessed micro-CT image of sample A. (b) A 2D slice through segmented micro-CT image of sample A.

Conventionally, the inclusion of pore connectivity to predict perme-
ability relies on 3D imaging techniques which are used to reveal the
position of three-dimensional connections that exist between pores in
rocks (Bernabé et al., 2010; Civan, 2002; Dasgupta and Mukherjee,
20205 Ishola et al., 2022). There are two main techniques for obtaining
3D images of rocks, namely the focussed ion beam scanning electron
microscope imaging (FIB-SEM) and the X-ray computed tomography
(micro-CT) techniques. The more common approach is the use of
micro-CT technique (Bazaikin et al., 2017; Xiong et al., 2016; Zhang
et al., 2019). The Micro-CT technique has the capacity to image rela-
tively large volumes of rocks (typically, rock cores of 1-inch diameter by
few inches length) such that the calculated rock properties are repre-
sentative at continuum scale. That said, there is a linear relationship
between sample size and resolution of images obtained from micro-CT
(Bazaikin et al., 2017). This implies that obtaining high resolution im-
ages of rocks is only possible for smaller sample sizes which is at the cost
of the representative nature of pore microstructural information ob-
tained from the rock samples (Bazaikin et al., 2017; Blunt et al., 2013;
Mees F. et al., 2003; Xiong et al., 2016). Conversely, a representative
sample size has lower image resolution resulting in the erosion of
smaller pore-throats and the associated pore connectivity. For a sample
size ranging from ~0.5 to ~100 mm, the corresponding resolution of
images obtainable ranges from ~0.7 to ~120 pm (Wang and Miller,
2020). Micro-CT technology often fail to capture the connecting paths in
low permeability rocks at representative scale, resulting in 3D images of
floating unconnected pores which is unsuitable for direct pore-scale

simulation of fluid flow on the 3D pore microstructure image. Poor
resolution of micro-CT images could also lump unresolved pore micro-
structures with larger ones resulting in higher average
pore-microstructural features which can significantly increase perme-
ability (Devarapalli et al., 2017). In agreement to the observations of
Devarapalli and others, Saxena et al. (2018) and others showed the
lower limit of permeability for a given porosity to increase with coarser
resolution of micro-CT images due to the overestimation of pore-throat
sizes in the micro-CT images (Saxena et al., 2018; Uchic et al., 2007).
This indicates the crucial role of resolution in predicting flow properties
of heterogeneous rocks from rock micro-CT images. It is noteworthy that
the accuracy of flow property estimations derived from rock images can
also be influenced by the type of numerical model applied, the boundary
conditions set during simulation, and how precisely the pore spaces are
distinguished from the solid material in the image segmentation process
(Khirevich et al., 2015; Reinhardt et al., 2022). The main technique to
obtaining high resolution images of rock samples is by using FIB-SEM
(Blunt et al., 2013; Uchic et al.,, 2007; Vilcaez et al., 2017; Xiong
et al., 2016) which is a destructive technique that provides image res-
olution of up to 0.4 nm but can only image up to tens of cubic microns of
the rock sample which is not statistically representative of heteroge-
neous rocks. Statistically representative volume of heterogeneous rock
varies from study to study (Saraji and Piri, 2015; Uchic et al., 2007;
Vilcaez et al., 2017; Xiong et al., 2016). High resolution images from
micro-CT and FIB-SEM approaches comes at the cost of sample size
(Saxena et al., 2018) and this is more consequential with higher
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Fig. 5. Pore size distribution (PSD) of all samples micro-CT images (Fig. 3).
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Fig. 6. Percentage changes in average and standard deviation of PSD. (A)-(D) corresponds to rock samples A, B, C, and D. The micro-CT images of the rock samples
(Fig. 3) were obtained using Phoenix Nanotom M at Baker Hughes facility in Oklahoma City, USA.

heterogeneity. This is because the volume to reach the representative smaller sample sizes might suffice, allowing the acquisition of
elementary volume (REV) will often get larger as heterogeneity in- high-resolution images that are representative in nature.

creases (Adeleye and Akanji, 2018; Bear, 1972; Ghanbarian, 2022; There are several approaches to accounting for pore connectivity in
Sadeghnejad et al., 2023). Hence, for relatively homogenous samples, images with poor resolution. This includes the use of random
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Fig. 7. (a) and (b) show two stochastic pore-microstructural models of sample D. (b) is zoomed in to reveal the pore throat pore body relationship.

Table 2
General properties of 200 stochastically generated 3D pore-microstructures.
Sample  Minimum Maximum Average Minimum Maximum
number of number of digital digital rock digital rock
pores pores rock volume volume
volume (mm®) (mm?)
(mm®)
A 950 997 19.18 16.21 25.44
B 950 1000 11.11 8.51 16.49
C 953 998 12.76 10.60 15.10
D 951 998 7.16 6.07 8.61

distribution of pore connectivity to account for possible connectivity
scenarios (Jivkov et al., 2013; Jivkov and Xiong, 2014). However, the
approach by Jivkov et al. (2013) and others assumes uniform spatial
distribution of pore centroids which is not the case in heterogenous
rocks. Mehmani and Prodanovic® (2014) approached pore network
modelling differently by using the Delaunay tessellation of grain centres
in a two-scale network construction. The workflow yielded less struc-
tured spatial distribution but assumes a fixed connectivity with a coor-
dination number of four in its macronetwork and micronetwork
(Mehmani and Prodanovic, 2014). The fixed nature of pore connectivity
is the key limit of this approach as this is not a feasible configuration for
heterogeneous rocks. Statistical approaches such as multiple-point

statistics (Okabe and Blunt, 2004) have been shown to reproduce real-
istic pore microstructural information of 2D thin sections of rocks which
in turn produced reasonable permeability values. Wu et al. (2018) and
others improved on this approach by using 3D micro-CT images in their
reconstruction which accounts for anisotropy and 3D configuration of
the pore microstructure. Like the approaches led by Jikov et al. (2013),
Mehmani and Prodanovi¢ (2014), and Okabe and Blunt (2004), the
capacity of 3D multipoint statistics to capture and produce realistic pore
connectivity depends on the quality of the image in terms of resolution
and its statistical representation of the rock sample. Furthermore, the
proposed workflow by Wu et al. (2018) and others does not work well
with high heterogeneity. In recent literature, innovative approaches to
pore network modelling have been utilized for varying problems. This
includes the use of a novel graph-based method to address the phase
connectivity problem within the context of simulating capillary-driven

Table 3

Statistics of cell count across generated pore-microstructural models.
Sample Average Minimum Maximum
A 5,602,059 4,035,754 6,141,038
B 3,778,544 3,050,166 4,160,014
C 4,618,266 3,888,282 4,843,624
D 4,146,574 3,301,447 4,335,784

0 Pressure (Pa) 1

Fig. 8. Pressure distribution superimposed on principal flow paths through the pore-microstructural models in Fig. 7 at steady state. Flow in the image is in the

positive X direction.
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Fig. 9. Permeability distribution across respective samples.

immiscible displacement in permeable media (Petrovskyy et al., 2021).
Additionally, a study by Moslemipour and Sadeghnejad (2021) has
developed and applied a dual-scale Pore Network Model (PNM) to
effectively capture and simulate the complex multiscale pore structure
characteristic of vuggy carbonate rocks, which are notably challenging.
This model efficiently preserves the connectivity between vugs and
pores, even when they overlap. The results demonstrate that the
reconstructed dual-scale PNM closely matches the laboratory measure-
ment data of the actual rock sample.

In an earlier study (Ishola et al., 2022), we emphasize the relevance
of accounting for the stochastic connectivity of pores in making pre-
dictions of permeability and hydraulic tortuosity of heterogeneous
porous media by using equally probable stochastic pore connectivity
scenarios where porosity and pore size distribution are kept constant.
The approach in that study replicates permeability pattern found in real
rocks which is validated by the lognormal distribution of permeability
found in real heterogenous rocks (Malin et al., 2020; Sahin et al., 2007).
In another study (Ishola and Vilcaez, 2022), we applied the proposed
stochastic pore-scale simulation approach to predict permeability of
nine rocks. Generally, the estimated permeability of the samples was
closer to true values when compared to five popular empirical perme-
ability equations. In the current study, we built on our existing workflow
(Ishola et al., 2022; Ishola and Vilcaez, 2022) to generate realistic pore
microstructures by augmenting X-ray micro-CT data with MICP data to
account for a wider range of pore sizes and pore connectivity. This novel
workflow uses high resolution and statistically representative data

simultaneously. Here, we estimate an effective pore throat radius
(EPTR) from MICP data while the distribution of pore body radius (PSD)
was obtained from micro-CT images. Like other studies, we simplified
the pore shape to a sphere of equivalent volume to the true geometry. To
account for pore connectivity, we employed the stochastic approach by
(Ishola et al., 2022; Ishola and Vilcaez, 2022) to generate equally
probable stochastic pore connectivities in rock samples of the same
porosity and pore size distribution. The results of this approach are
validated by comparing the simulated permeabilities by this new
approach to laboratory measured permeability values as well as to
estimated permeability values from well-known empirical permeability
models.

2. Material and methods

Four carbonate rock samples were used in this study (Fig. 1). For
each of the rock samples three sets of data were obtained. This includes
laboratory permeability measurement of the samples (Section 2.1),
MICP information (Section 2.2), and 3D micro-CT images (Section 2.3).

2.1. Experimental rock permeability

Permeability of our samples were obtained using Darcy’s law (Darcy,
1856) via Eq. (1).
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where K is the absolute permeability of the rock domain (mz), Q is the
volumetric flowrate through the rock sample (m%/s), 4 is the dynamic
viscosity of the fluid injected into the rock sample (Pa-s), L is the length
along the principal direction of fluid travel in the rock sample (m), A is
the cross-sectional area of flow (m?), and AP is the pressure drop in the
principal direction of the fluid flow (Pa).

In our laboratory setup for permeability measurement, we used a
Hassler Type core-holder (RCH-series of Core Laboratory) to hold the
rock samples at a pressure of 2000 psi. Water was injected into the held
rock samples with a 260 dual syringe pump (Teledyne ISCO) at flow
rates ranging from 0.025 to 0.5 ml/min. The range of flow rate used in
this study resulted in a maximum Reynolds number of 1 x 10~* which
ensures that the application of Darcy’s laws to estimate permeability is
valid in all our laboratory measurements. We used a Rosemount Pres-
sure Sensor to measure pressure at the inlet of our samples while the
outlet pressure is known to be atmospheric pressure for our experi-
mental setup. The experiment is deemed to have reached steady state
when the pressure drops across the sample stopped changing through
time.

2.2. Effective pore throat radius

In this study, to help capture the resultant effect of pore throats on

the permeability of heterogeneous rocks, we incorporate pore throats of
an effective pore throat radius (EPTR) into our approach to construct
pore microstructures of the same porosity, pore body size distribution,
but stochastic pore connectivity (Ishola et al., 2022; Ishola and Vilcaez,
2022). EPTR in this study refers to the weighted average pore throat
size, estimated from MICP data (Fig. 2). This is an improvement from
previous studies where pore throats were inferred from micro-CT images
(Sunetal., 2021; Willson et al., 2012; Zhang et al., 2022) which has poor
resolution for representative volumes required to represent rock samples
(Bazaikin et al., 2017; Blunt et al., 2013; Mees F. et al., 2003; Xiong
et al., 2016). We estimated EPTR from MICP data of rock sample at
continuum scale via three steps:

Step one: Account for the ink bottle effect. The pore shadowing or
ink-bottle phenomenon (Xiong et al., 2016) can lead to an over-
estimation of smaller pore sizes during MICP data acquisition. This is
because of the increase in pressure from mercury injection obscures the
presence of larger pore volumes located beyond narrower pores,
mistakenly categorizing them as tight pores. To address the ink bottle
effect, we used a cutoff at points indicated by a dashed green line in
Fig. 2, where the incremental pore volume approaches zero, followed by
a pronounced increase. These minimal incremental pore volumes likely
contribute to the ink bottle effect by hindering the flow of mercury
during the injection process. Additionally, the sharp increase across the
cutoff line suggests that the pore throats on either side of this line have
limited interaction. It is critical to note that by setting this threshold, we
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also disregard any genuine pores that are smaller than this threshold.
However, Fig. 2 demonstrates that the pore throats below this threshold
account for a negligible portion of the total pore volume. Therefore, this
method offers a favorable balance when attempting to minimize the
impact of the ink bottle effect on our EPTR calculations.

Step two: Estimate the weight of each pore throat size. In a previous
work by Dastidar et al. (2007) the fraction of each incremental pore
volume is used as weights Eq. (2):

Vi

()

w; =

@

n
i

where n is the number of pore throat size data points, and v; is the in-
cremental pore volume of a given pore throat i. Here, we used the ratio
of the incremental pore volume to the curved surface area (s) of an
equivalent cylinder as weights:

wi= 5 ®)
(vi/s1)
i=1
curved surface area (s) is given by:
Si—= 27rr,-hi (4)

where r; is the radius of a given pore throat i and h; is the corresponding
pore throat length. In this study we assumed h; to be constant, hence, s; is
controlled by r; in Eq. (3). The incremental pore volume (v;) accounts for
the fraction of total volume of fluid a pore throat (i) controls. The curved
surface area s; is introduced in this study to account for the impact of
frictional interaction at the fluid-rock interface which negates flow

through a pore throat i. Curved surface area and not total surface area is
used here because the pore throats are idealized as cylinders and the
portion of the cylinder having the frictional interaction with the fluid
flowing through is the curved surface since the idealized cylinder is
expected to be hollow for fluid to pass through it.

Step three: Calculate the EPTR by using the estimated weights to
compute a weighted average pore throat radius (Eq. (5)).

M=

(w; x1y)
EPTR="1 5

> w)

i=1

|
—_

The estimated EPTR (Table 1) was used as the pore throat radius to
construct 3D pore microstructures following our stochastic approach
(Ishola et al., 2022; Ishola and Vilcaez, 2022). The MICP data also
provided effective total porosity which was used as control to constrain
constructed pore microstructures.

The MICP data of the samples (Fig. 2) were obtained from Integrated
Core Characterization Center, University of Oklahoma, USA.

2.3. Pore body size distribution (PSD) data

The PSD used in this study was obtained from micro-CT images of the
rock samples in Fig. 1. It is noteworthy that micro-CT imaging is the
chosen approach for obtaining PSD ahead of other methods because it
captures 3D visual representation of pores present in each of the samples
and is a much more scalable and non-destructive option of obtaining the
true pore microstructures in rocks, albeit, at lower resolution compared
to some approaches. The size of the micro-CT images for all the samples
is 1000 x 1000 x 1000 pixels in x, y, and z directions with a resolution of
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Fig. 13. Relationship between heterogeneity (PSD coefficient of variation) and
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observed flow properties.

7.5 pm (Fig. 3). The resulting 422 mm® volumes were segmented
(Fig. 4.) to separate the pores in the image from the background using a
watershed algorithm.

The watershed algorithm (Gostick, 2017) was used to prevent
overestimation of pore volumes via the separation of pores connected in
the images. The volume distribution of the resultant isolated pores was
obtained from the segmented image. PSD (Fig. 5) is obtained from the
volume distribution by calculating the pore radius of equivalent spher-
ical volume for each of the pores (Eq. (6)).

Table 4
Permeability measurements/estimations using different approaches.
Permeability model Sample A Sample B Sample C Sample D
approach (mD) (mD) (mD) (mD)
Experimental permeability 20.96 3.19 15.13 35.31
Winland (Kolodzie, 1980a, 9.29 68.75 46.16 40.51
b)
Swanson (Swanson, 1981) 12.68 55.93 42.19 40.02
Wells-Amaefule Method ( 2.28 7.24 5.82 5.58
Wells and Amaefule,
1985)
Kamath Method (Kamath, 24.29 79.41 63.41 60.8
1992)
OU Method (Dastidar et al., 5.22 36.49 12.24 12.14
2007)
Current study 5.19 5.28 12.24 16.69

R= {32V ©
4xr

where R; is the radius of the equivalent sphere of volume V; and i is the
pore obtained from the micro-CT image.

To verify the representative nature of the PSD data, we conducted a
representative elementary volume (REV) analysis on the segmented 3D
image for each sample (Bear, 1972). The purpose of the REV analysis
was to determine if the PSD obtained from the micro-CT data is repre-
sentative. In the REV analysis, we evaluated the percentage change in
average PSD, and standard deviation of PSD (Fig. 6) for subvolumes of
micro-CT image data (Fig. 4), ranging from 0.05 mm? to 422 mm?3. For
this study, a 5% change in average pore-size was applied as cut off for
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Table 5
Mean absolute percentage error (MAPE) of current study compared to five other
approaches to estimating permeability.

Permeability model Percentage error MAPE
approach Sample Sample Sample Sample %)
A (%) B (%) C (%) D (%)

Winland (Kolodzie, 56 2055 205 15 583
1980)

Swanson (Swanson, 40 1653 179 13 471
1981)

Wells-Amaefule 89 127 62 84 90
Method (Wells and
Amaefule, 1985)

Kamath Method ( 16 2389 319 72 699
Kamath, 1992)

OU Method ( 75 1044 19 66 301
Dastidar et al.,
2007)

Current study 75 66 19 53 53

the representative volume. The REV analysis showed all our samples to
have a representative volume of 27 mm® given by the relatively low
percentage change in all the three statistical parameters tracked through
the varying volume of the rock images (Fig. 6). This implies that any
subsample in the range of 27 mm>-422 mm?® will approximately have
the same PSD.

2.4. Stochastic generation of 3D pore microstructures

In this study, we employ our stochastics approach (Ishola and
Vilcaez, 2022) to generate 3D pore microstructures of the same pore size
distribution and effective porosity but different pore connectivity. In this
study we assumed a cylindrical pore throat with length of 1 pm. The
radius of the pore throats (EPTR) was estimated from MICP data as
described in section 2.2. The pore sizes were randomly obtained from
the respective PSDs of the samples and the pore throat sizes were fixed to
the respective EPTRs. The pore microstructures construction approach
involves the stochastic spatial distribution of pores in a computational
domain given four constraints. The first constraint is that the first pore in
the computational domain is at the centre to allow equal possible
spreading path to the entire domain. Subsequent connections start
randomly along established paths in the computational domain. The
second is that a space already occupied by a pore is no longer available
to subsequent pores added into the system. The third constraint is that
for a pore microstructure to be valid, there must be at least a connecting
path between the inlet and outlet of the computational domain. The
fourth constraint is that porosity is equal to effective porosity, and this is
provided by the MICP data in this study. The resultant stochastic 3D pore
microstructure has equal probability of occurring while honouring the
effective porosity and pore size distribution of the parent sample
(Fig. 7). The number of pores in each 3D pore microstructures in this
study ranges from 950 to 1000 which consequently results in 3D pore
microstructural volumes ranging from 6.07 to 25.44 mm? (Table 2). Tt is
noteworthy that the volume of the 3D pore microstructure varies
depending on the number of pores (Table 2), sizes of the pores sampled
from the PSD (Fig. 5), and the effective porosity of the sample (Fig. 2).

2.5. Direct pore-scale simulations of permeability

Permeability of the 3D pore microstructures (Fig. 7) was estimated
from Eq. (1) using data obtained from pore-scale simulations of fluid
flow. For each rock sample, 200 pore microstructures were generated
and used for flow simulation. Steady state simulations of fluid flow
(Fig. 8) were accomplished with STAR-CCM+®, a computational fluid
dynamics software that solves the mass continuity equation (Eq. 7) and
Navier Stokes equation (Eq. 8) using its finite volume methodology.
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where p is density of the fluid, v is kinematic viscosity, P is pressure, t is

time, and V is fluid velocity.

STAR-CCM+® has been benchmarked against experiments and
shown to accurately replicate pore scale fluid flow (Oostrom et al., 2016;
Yang et al., 2013, 2016). In this study, we used an unstructured poly-
hedral mesh type to capture the complex geometry of the 3D
pore-microstructural models generated. All the generated 3D pore mi-
crostructures were assigned a minimum cell size of 0.2 pm while other
parameters in the mesh generator were kept at default. The number of
cells in each pore microstructure varied from 3,050,166 to 6,141,038
(Table 3).

In all simulations, water was used as the fluid and there was no
chemical reaction in the computational domain. A no-slip wall boundary
condition was used throughout the computational domain except at the
opposite sides along the intended flow direction which had inlet pres-
sure set at 1 Pa and outlet pressure set at O Pa to drive fluid flow. To
ensure that permeability calculations were valid, we made certain that
the Reynolds number of all the pore scale simulations was less than 1
since Darcy’s law (Darcy, 1856) was used in estimating permeability
(Eq. (1)). All simulations were seen to have converged for permeability
when the change in permeability in the last two iterations is less than 1%
while attaining residuals (continuity, x momentum, y momentum, and z
momentum) were less than 10~ # by the end of 200 iterations assigned in
all our flow simulations.

2.5.1. Permeability estimations from empirical models

To evaluate if augmenting X-ray micro-CT data with MICP data
produces realistic 3D pore microstructures and thus permeability values
using our previously proposed stochastic pore-scale simulation
approach, the arithmetic average permeability of 200 possible pore
microstructures was compared with experimental permeability values as
well as with permeability values estimated from popular empirical
models. Empirical models considered includes Winland (Kolodzie,
1980), Swanson (Swanson, 1981), Wells-Amaefule (J.D. Wells and
Amaefule, 1985, Kamath, 1992), and Dastidar (Dastidar et al., 2007)
models given by Egs. (9)-(13).

Kuintang = 49.4*R3g *@" ¥ ©
2.005
Sb
kSwanson—brine =355* |:P_:| (10)
Cla
b 1.56
kWells—Amaefule =30.5% |:F:| an
cla
1.60
«| Sp
kl(a.math =347* |:1T:| (12)
cla
kDastidar = 4073*R3v;r: 7'(®3'06 13)

where s, is the percent bulk volume occupied by mercury, P¢ is the
mercury capillary pressure (psia), A is the maximum amplitude, Rss is
35% mercury saturation of pore volume, @ is porosity (fraction), and
Rygm is the geometric mean of pore sizes.
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3. Results and discussion
3.1. Role of stochastic pore connectivity

In this study, we evaluated the importance of pore connectivity on
estimating flow properties (permeability and hydraulic tortuosity) of
heterogeneous rocks using fluid flow simulations on stochastically
generated 3D pore-microstructures for four rock samples. Different from
the traditional approach where flow properties are simulated using a
single micro-CT image assuming an arbitrary pore connectivity due to
the inability of micro-CT to capture small pore throats, here we construct
hundreds of 3D pore microstructures of stochastic pore connectivity and
equal probability of occurrence using PSD data from micro-CT data and
pore throat radius data inferred from MICP data. As such, this approach
does not only solve the problem of low resolution of micro-CT images to
capture pore connectivity, but it also accounts for the effect of the sto-
chastic nature of pore connectivities in rocks. Each sample of given PSD,
shows a permeability distribution (Fig. 9) with a coefficient of variation
of 34% in sample A, 35% in sample B, 32% in sample C, and 26% in
sample D. The variation in permeability (Fig. 9) in all samples confirms
the relevance of accounting for the stochastic connectivity of pores in
estimating the flow properties of heterogeneous rocks. The same applies
to hydraulic tortuosity which is shown in Fig. 10 to have a coefficient of
variation of 15% in sample A, 17% in sample B, 14% in sample C, and
12% in sample D. Given that pore connectivity cannot be measured
directly in rocks due to limitations in resolution and/or due to high cost,
stochastically constructed 3D pore microstructures of equal probability
of occurrence helps account for the unknown connectivity in rock
samples. Considering the large number of possible connectivity sce-
narios reflected by a distribution of possible property (permeability and
hydraulic tortuosity) values can be used to make more robust inferences.
In this study, we obtain permeability and hydraulic tortuosity of the four
samples by computing average permeability (Fig. 11) and hydraulic
tortuosity (Fig. 12) values. The number of 3D pore microstructures and
corresponding pore-scale simulated permeability and hydraulic tortu-
osity values used to calculate average permeability and hydraulic tor-
tuosity values was deemed sufficient when the percentage change in
permeability and hydraulic tortuosity values is approximately zero
percent. As shown in Fig. 11, the number of required pore-scale simu-
lations for permeability is 144 for sample A, 128 for sample B, 146 for
sample C, and 108 for sample D. For hydraulic tortuosity, the number of
required pore-scale simulations to be representative is 61 for sample A,
80 for sample B, 88 for sample C, and 31 for sample D (Fig. 12). The
number of 3D pore microstructures and corresponding pore-scale sim-
ulations were lower for hydraulic tortuosity than for permeability. This
is attributed to the lower influence of pore throat sizes and pore con-
nectivity on hydraulic connectivity than on permeability (Ishola et al.,
2022). This is also reflected by lower CV of hydraulic tortuosity obtained
in this study (Fig. 10) compared to permeability (Fig. 9). A plot of
number of 3D pore microstructures to reach REV against heterogeneity
in the four samples (Fig. 13) show that the number of 3D pore micro-
structures required to obtain representative permeability and hydraulic
tortuosity increases with heterogeneity. This implies that relatively
heterogenous rocks benefits more from our stochastic pore-scale simu-
lation approach.

3.2. Validation

To validate if augmenting X-ray micro-CT data with MICP data
reproduced measured permeability of real heterogenous rock samples,
we compared simulated permeability with measured permeability as
well as permeability estimates from five well known model equations.
We evaluated how close the estimated permeability from our approach
and permeability estimates from the five model equations match the
measured permeability of the four samples using mean absolute per-
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centage error (MAPE). MAPE is given by MAPE = %Z?:l

Kmi—Kei
kmi

where kp,;, and k.; is the measured permeability and estimated perme-
ability of respective samples while n is the total number of samples
which is four in this study. Based on MAPE (Tables 4 and 5), the esti-
mated permeability from our approach here matches more closely with
measured values than the five empirical models considered in this study.
From the MAPE calculated, we can interpret estimated permeability
from our approach to generally differ from measured value by 53%. The
closest MAPE to our result is the estimate obtained from using the Wells-
Amaefule method which had an MAPE of 90% while the remainder of
the empirical models have MAPEs greater than 300%. The comparative
accuracy obtained by augmenting X-ray micro-CT data with MICP data
shows that accounting for the stochastic connectivity of pores and actual
pore throats, outperforms empirical models in predicting permeability.
This validates the workflow introduced in this study where we account
for the stochastic connectivity of pore bodies through pore throats via a
combination of EPTR from MICP data, PSD from micro-CT images, and
pore connectivity from stochastic modelling. There are at least two ways
to reduce MAPE of the current study. This includes, (1) developing
efficient codes that allows easy incorporation of the true pore shapes
found in micro-CT images which like most studies is approximated to
spheres in this study, and (2) obtaining super higher resolution images of
the samples at representative scale beyond the micro-CT resolution of
7.5 pm in this study. Solving these problems will push constructed 3D
pore microstructures closer to the truth. The use of real pore shapes is
important to make our workflow viable for multiphase flows.

4. Conclusions

In this study, we augmented pore size distribution data obtained
from X-ray micro-CT images with pore throat size data obtained
from MICP measurements for stochastically constructing high
resolution 3D pore microstructures of the same porosity and pore
size distribution but different stochastic pore connectivity. The
micro-CT and MICP data used to construct our 3D pore microstructures
were obtained at continuum scale and covers a significant spectrum of
pore microstructural features of interest. We showed that accounting for
the stochastic connectivity of pores can result in a probabilistic distri-
bution of flow properties of rocks which guides different possible out-
comes that should be considered when upscaling pore-scale simulated
flow properties to the core-scale and beyond. The use of the introduced
stochastic pore-scale simulation approach is shown here to be more
beneficial when there is a higher degree of heterogeneity in PSD. This is
shown to be the case of permeability and hydraulic tortuosity which are
key controls of transport processes in rocks. We validated the introduced
stochastic pore-scale simulation approach by showing that the average
simulated permeability values by the introduced stochastic pore-scale
simulation match more closely with experimental core-scale measured
permeability values in comparison to five well known empirical models.
It is noteworthy that this study is based on single phase flow. To capture
key interactions in multiphase flow, we suggest the use of angular or
irregular pores instead of spherical pores. Our workflow will help build
geological models that will better account for pore-scale factors in fluid
flow as well as reactive transport processes simulations at the core- and
field-scale levels. Key areas of application for this workflow includes
petroleum production, carbon and hydrogen sequestration, environ-
mental studies, and groundwater resources development.
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