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A B S T R A C T   

Pore-scale modeling is essential in understanding and predicting flow and transport properties of rocks. 
Generally, pore-scale modeling is dependent on imaging technologies such as Micro Computed Tomography 
(micro-CT), which provides visual confirmation into the pore microstructures of rocks at a representative scale. 
However, this technique is limited in the ability to provide high resolution images showing the pore-throats 
connecting pore bodies. Pore scale simulations of flow and transport properties of rocks are generally done on 
a single 3D pore microstructure image. As such, the simulated properties are only representative of the simulated 
pore-scale rock volume. These are the technological and computational limitations which we address here by 
using a stochastic pore-scale simulation approach. This approach consists of constructing hundreds of 3D pore 
microstructures of the same pore size distribution and overall porosity but different pore connectivity. The 
construction of the 3D pore microstructures incorporates the use of Mercury Injection Capillary Pressure (MICP) 
data to account for pore throat size distribution, and micro-CT images to account for pore body size distribution. 
The approach requires a small micro-CT image volume (7–19 mm3) to reveal key pore microstructural features 
that control flow and transport properties of highly heterogeneous rocks at the core-scale. Four carbonate rock 
samples were used to test the proposed approach. Permeability calculations from the introduced approach were 
validated by comparing laboratory measured permeability of rock cores and permeability estimated using five 
well-known core-scale empirical model equations. The results show that accounting for the stochastic connec
tivity of pores results in a probabilistic distribution of flow properties which can be used to upscale pore-scale 
simulated flow properties to the core-scale. The use of the introduced stochastic pore-scale simulation 
approach is more beneficial when there is a higher degree of heterogeneity in pore size distribution. This is 
shown to be the case with permeability and hydraulic tortuosity which are key controls of flow and transport 
processes in rocks.   

1. Introduction 

Appropriate information of the pore microstructure of rocks is 
crucial in many geoscience and engineering applications (Ishola et al., 
2022; Regnet et al., 2019; Starnoni et al., 2017) such as hydrocarbon 
exploration (Ebrahimi and Vilcáez, 2019; Vilcáez, 2020), geothermal 
exploration, groundwater exploration, carbon sequestration (Shabani 
et al., 2020; Shabani and Vilcáez, 2019), hydrogen storage, mineral 
exploration, and environmental studies (Omar and Vilcáez, 2022). The 
pore microstructure of rocks control fundamental flow and transport 
properties of rocks such as permeability and hydraulic tortuosity (Ishola 
et al., 2022). The pore microstructure of rocks can be described as the 
configuration of voids. Characteristic features of pore microstructures 

include pore throats, pore body, pore shape, and pore topology. These 
features vary in rocks because of heterogeneity. Generally, pore micro
structures are less heterogenous in sandstone and more heterogenous in 
carbonate rocks. Heterogeneity in natural rocks result largely from a 
combination of deposition and diagenesis processes (Hollis, 2011; 
Morad et al., 2010; Regnet et al., 2019; Wang et al., 2017). An increase 
in the degree of heterogeneity has been shown to lead to increased de
gree of uncertainty in permeability and hydraulic tortuosity of rocks 
(Ishola et al., 2022). Traditionally, flow properties such as permeability 
are predicted from macroscale petrophysical properties of rocks such as 
porosity. While this approaches generally work well in sandstone, they 
often fail in carbonate rocks because of the inherent heterogeneity 
(Dasgupta and Mukherjee, 2020; Westphal et al., 2005). A same porosity 
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value has been shown can be associated to permeability values spanning 
five orders of magnitude if pore microstructural features such as pore 
size distribution and pore connectivity are not accounted for (Westphal 
et al., 2005; Yang and Aplin, 2010; Zhang et al., 2018). To help constrain 
this issue, pore size distribution data via measurements like nuclear 
magnetic resonance (NMR) (Westphal et al., 2005) and mercury injec
tion capillary pressure (MICP) (Comisky et al., 2007) have been incor
porated into empirical approaches to predicting permeability. 

Fig. 1. Rock samples (A–D) used in this study along with respective permeability measured in each sample.  

Fig. 2. MICP data of pore throat radius for study samples in Fig. 1. The dashed green line denotes the threshold below which data is considered unreliable.  

Table 1 
EPTR of rock samples used in this study.  

Sample A B C D 

EPTR (μm) 7.016 7.503 7.773 7.785  
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Conventionally, the inclusion of pore connectivity to predict perme
ability relies on 3D imaging techniques which are used to reveal the 
position of three-dimensional connections that exist between pores in 
rocks (Bernabé et al., 2010; Civan, 2002; Dasgupta and Mukherjee, 
2020; Ishola et al., 2022). There are two main techniques for obtaining 
3D images of rocks, namely the focussed ion beam scanning electron 
microscope imaging (FIB-SEM) and the X-ray computed tomography 
(micro-CT) techniques. The more common approach is the use of 
micro-CT technique (Bazaikin et al., 2017; Xiong et al., 2016; Zhang 
et al., 2019). The Micro-CT technique has the capacity to image rela
tively large volumes of rocks (typically, rock cores of 1-inch diameter by 
few inches length) such that the calculated rock properties are repre
sentative at continuum scale. That said, there is a linear relationship 
between sample size and resolution of images obtained from micro-CT 
(Bazaikin et al., 2017). This implies that obtaining high resolution im
ages of rocks is only possible for smaller sample sizes which is at the cost 
of the representative nature of pore microstructural information ob
tained from the rock samples (Bazaikin et al., 2017; Blunt et al., 2013; 
Mees F. et al., 2003; Xiong et al., 2016). Conversely, a representative 
sample size has lower image resolution resulting in the erosion of 
smaller pore-throats and the associated pore connectivity. For a sample 
size ranging from ~0.5 to ~100 mm, the corresponding resolution of 
images obtainable ranges from ~0.7 to ~120 μm (Wang and Miller, 
2020). Micro-CT technology often fail to capture the connecting paths in 
low permeability rocks at representative scale, resulting in 3D images of 
floating unconnected pores which is unsuitable for direct pore-scale 

simulation of fluid flow on the 3D pore microstructure image. Poor 
resolution of micro-CT images could also lump unresolved pore micro
structures with larger ones resulting in higher average 
pore-microstructural features which can significantly increase perme
ability (Devarapalli et al., 2017). In agreement to the observations of 
Devarapalli and others, Saxena et al. (2018) and others showed the 
lower limit of permeability for a given porosity to increase with coarser 
resolution of micro-CT images due to the overestimation of pore-throat 
sizes in the micro-CT images (Saxena et al., 2018; Uchic et al., 2007). 
This indicates the crucial role of resolution in predicting flow properties 
of heterogeneous rocks from rock micro-CT images. It is noteworthy that 
the accuracy of flow property estimations derived from rock images can 
also be influenced by the type of numerical model applied, the boundary 
conditions set during simulation, and how precisely the pore spaces are 
distinguished from the solid material in the image segmentation process 
(Khirevich et al., 2015; Reinhardt et al., 2022). The main technique to 
obtaining high resolution images of rock samples is by using FIB-SEM 
(Blunt et al., 2013; Uchic et al., 2007; Vilcáez et al., 2017; Xiong 
et al., 2016) which is a destructive technique that provides image res
olution of up to 0.4 nm but can only image up to tens of cubic microns of 
the rock sample which is not statistically representative of heteroge
neous rocks. Statistically representative volume of heterogeneous rock 
varies from study to study (Saraji and Piri, 2015; Uchic et al., 2007; 
Vilcáez et al., 2017; Xiong et al., 2016). High resolution images from 
micro-CT and FIB-SEM approaches comes at the cost of sample size 
(Saxena et al., 2018) and this is more consequential with higher 

Fig. 3. 3D micro-CT images of the four carbonate samples (A–D) used in this study.  

Fig. 4. (a) A 2D slice through unprocessed micro-CT image of sample A. (b) A 2D slice through segmented micro-CT image of sample A.  
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heterogeneity. This is because the volume to reach the representative 
elementary volume (REV) will often get larger as heterogeneity in
creases (Adeleye and Akanji, 2018; Bear, 1972; Ghanbarian, 2022; 
Sadeghnejad et al., 2023). Hence, for relatively homogenous samples, 

smaller sample sizes might suffice, allowing the acquisition of 
high-resolution images that are representative in nature. 

There are several approaches to accounting for pore connectivity in 
images with poor resolution. This includes the use of random 

Fig. 5. Pore size distribution (PSD) of all samples micro-CT images (Fig. 3).  

Fig. 6. Percentage changes in average and standard deviation of PSD. (A)–(D) corresponds to rock samples A, B, C, and D. The micro-CT images of the rock samples 
(Fig. 3) were obtained using Phoenix Nanotom M at Baker Hughes facility in Oklahoma City, USA. 
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distribution of pore connectivity to account for possible connectivity 
scenarios (Jivkov et al., 2013; Jivkov and Xiong, 2014). However, the 
approach by Jivkov et al. (2013) and others assumes uniform spatial 
distribution of pore centroids which is not the case in heterogenous 
rocks. Mehmani and Prodanovic’ (2014) approached pore network 
modelling differently by using the Delaunay tessellation of grain centres 
in a two-scale network construction. The workflow yielded less struc
tured spatial distribution but assumes a fixed connectivity with a coor
dination number of four in its macronetwork and micronetwork 
(Mehmani and Prodanović, 2014). The fixed nature of pore connectivity 
is the key limit of this approach as this is not a feasible configuration for 
heterogeneous rocks. Statistical approaches such as multiple-point 

statistics (Okabe and Blunt, 2004) have been shown to reproduce real
istic pore microstructural information of 2D thin sections of rocks which 
in turn produced reasonable permeability values. Wu et al. (2018) and 
others improved on this approach by using 3D micro-CT images in their 
reconstruction which accounts for anisotropy and 3D configuration of 
the pore microstructure. Like the approaches led by Jikov et al. (2013), 
Mehmani and Prodanović (2014), and Okabe and Blunt (2004), the 
capacity of 3D multipoint statistics to capture and produce realistic pore 
connectivity depends on the quality of the image in terms of resolution 
and its statistical representation of the rock sample. Furthermore, the 
proposed workflow by Wu et al. (2018) and others does not work well 
with high heterogeneity. In recent literature, innovative approaches to 
pore network modelling have been utilized for varying problems. This 
includes the use of a novel graph-based method to address the phase 
connectivity problem within the context of simulating capillary-driven 

Fig. 7. (a) and (b) show two stochastic pore-microstructural models of sample D. (b) is zoomed in to reveal the pore throat pore body relationship.  

Table 2 
General properties of 200 stochastically generated 3D pore-microstructures.  

Sample Minimum 
number of 
pores 

Maximum 
number of 
pores 

Average 
digital 
rock 
volume 
(mm3) 

Minimum 
digital rock 
volume 
(mm3) 

Maximum 
digital rock 
volume 
(mm3) 

A 950 997 19.18 16.21 25.44 
B 950 1000 11.11 8.51 16.49 
C 953 998 12.76 10.60 15.10 
D 951 998 7.16 6.07 8.61  

Fig. 8. Pressure distribution superimposed on principal flow paths through the pore-microstructural models in Fig. 7 at steady state. Flow in the image is in the 
positive X direction. 

Table 3 
Statistics of cell count across generated pore-microstructural models.  

Sample Average Minimum Maximum 

A 5,602,059 4,035,754 6,141,038 
B 3,778,544 3,050,166 4,160,014 
C 4,618,266 3,888,282 4,843,624 
D 4,146,574 3,301,447 4,335,784  
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immiscible displacement in permeable media (Petrovskyy et al., 2021). 
Additionally, a study by Moslemipour and Sadeghnejad (2021) has 
developed and applied a dual-scale Pore Network Model (PNM) to 
effectively capture and simulate the complex multiscale pore structure 
characteristic of vuggy carbonate rocks, which are notably challenging. 
This model efficiently preserves the connectivity between vugs and 
pores, even when they overlap. The results demonstrate that the 
reconstructed dual-scale PNM closely matches the laboratory measure
ment data of the actual rock sample. 

In an earlier study (Ishola et al., 2022), we emphasize the relevance 
of accounting for the stochastic connectivity of pores in making pre
dictions of permeability and hydraulic tortuosity of heterogeneous 
porous media by using equally probable stochastic pore connectivity 
scenarios where porosity and pore size distribution are kept constant. 
The approach in that study replicates permeability pattern found in real 
rocks which is validated by the lognormal distribution of permeability 
found in real heterogenous rocks (Malin et al., 2020; Sahin et al., 2007). 
In another study (Ishola and Vilcáez, 2022), we applied the proposed 
stochastic pore-scale simulation approach to predict permeability of 
nine rocks. Generally, the estimated permeability of the samples was 
closer to true values when compared to five popular empirical perme
ability equations. In the current study, we built on our existing workflow 
(Ishola et al., 2022; Ishola and Vilcáez, 2022) to generate realistic pore 
microstructures by augmenting X-ray micro-CT data with MICP data to 
account for a wider range of pore sizes and pore connectivity. This novel 
workflow uses high resolution and statistically representative data 

simultaneously. Here, we estimate an effective pore throat radius 
(EPTR) from MICP data while the distribution of pore body radius (PSD) 
was obtained from micro-CT images. Like other studies, we simplified 
the pore shape to a sphere of equivalent volume to the true geometry. To 
account for pore connectivity, we employed the stochastic approach by 
(Ishola et al., 2022; Ishola and Vilcáez, 2022) to generate equally 
probable stochastic pore connectivities in rock samples of the same 
porosity and pore size distribution. The results of this approach are 
validated by comparing the simulated permeabilities by this new 
approach to laboratory measured permeability values as well as to 
estimated permeability values from well-known empirical permeability 
models. 

2. Material and methods 

Four carbonate rock samples were used in this study (Fig. 1). For 
each of the rock samples three sets of data were obtained. This includes 
laboratory permeability measurement of the samples (Section 2.1), 
MICP information (Section 2.2), and 3D micro-CT images (Section 2.3). 

2.1. Experimental rock permeability 

Permeability of our samples were obtained using Darcy’s law (Darcy, 
1856) via Eq. (1). 

Fig. 9. Permeability distribution across respective samples.  
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K =
Q × μ × L
A × ΔP

(1)  

where K is the absolute permeability of the rock domain (m2), Q is the 
volumetric flowrate through the rock sample (m3/s), μ is the dynamic 
viscosity of the fluid injected into the rock sample (Pa-s), L is the length 
along the principal direction of fluid travel in the rock sample (m), A is 
the cross-sectional area of flow (m2), and ΔP is the pressure drop in the 
principal direction of the fluid flow (Pa). 

In our laboratory setup for permeability measurement, we used a 
Hassler Type core-holder (RCH-series of Core Laboratory) to hold the 
rock samples at a pressure of 2000 psi. Water was injected into the held 
rock samples with a 260 dual syringe pump (Teledyne ISCO) at flow 
rates ranging from 0.025 to 0.5 ml/min. The range of flow rate used in 
this study resulted in a maximum Reynolds number of 1 × 10−4 which 
ensures that the application of Darcy’s laws to estimate permeability is 
valid in all our laboratory measurements. We used a Rosemount Pres
sure Sensor to measure pressure at the inlet of our samples while the 
outlet pressure is known to be atmospheric pressure for our experi
mental setup. The experiment is deemed to have reached steady state 
when the pressure drops across the sample stopped changing through 
time. 

2.2. Effective pore throat radius 

In this study, to help capture the resultant effect of pore throats on 

the permeability of heterogeneous rocks, we incorporate pore throats of 
an effective pore throat radius (EPTR) into our approach to construct 
pore microstructures of the same porosity, pore body size distribution, 
but stochastic pore connectivity (Ishola et al., 2022; Ishola and Vilcáez, 
2022). EPTR in this study refers to the weighted average pore throat 
size, estimated from MICP data (Fig. 2). This is an improvement from 
previous studies where pore throats were inferred from micro-CT images 
(Sun et al., 2021; Willson et al., 2012; Zhang et al., 2022) which has poor 
resolution for representative volumes required to represent rock samples 
(Bazaikin et al., 2017; Blunt et al., 2013; Mees F. et al., 2003; Xiong 
et al., 2016). We estimated EPTR from MICP data of rock sample at 
continuum scale via three steps: 

Step one: Account for the ink bottle effect. The pore shadowing or 
ink-bottle phenomenon (Xiong et al., 2016) can lead to an over
estimation of smaller pore sizes during MICP data acquisition. This is 
because of the increase in pressure from mercury injection obscures the 
presence of larger pore volumes located beyond narrower pores, 
mistakenly categorizing them as tight pores. To address the ink bottle 
effect, we used a cutoff at points indicated by a dashed green line in 
Fig. 2, where the incremental pore volume approaches zero, followed by 
a pronounced increase. These minimal incremental pore volumes likely 
contribute to the ink bottle effect by hindering the flow of mercury 
during the injection process. Additionally, the sharp increase across the 
cutoff line suggests that the pore throats on either side of this line have 
limited interaction. It is critical to note that by setting this threshold, we 

Fig. 10. Hydraulic tortuosity distribution across respective samples.  
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also disregard any genuine pores that are smaller than this threshold. 
However, Fig. 2 demonstrates that the pore throats below this threshold 
account for a negligible portion of the total pore volume. Therefore, this 
method offers a favorable balance when attempting to minimize the 
impact of the ink bottle effect on our EPTR calculations. 

Step two: Estimate the weight of each pore throat size. In a previous 
work by Dastidar et al. (2007) the fraction of each incremental pore 
volume is used as weights Eq. (2): 

wi =
vi

∑n

i=1
(vi)

(2)  

where n is the number of pore throat size data points, and vi is the in
cremental pore volume of a given pore throat i. Here, we used the ratio 
of the incremental pore volume to the curved surface area (s) of an 
equivalent cylinder as weights: 

wi =
vi/si

∑n

i=1
(vi/si)

(3)  

curved surface area (s) is given by: 

si = 2πrihi (4)  

where ri is the radius of a given pore throat i and hi is the corresponding 
pore throat length. In this study we assumed hi to be constant, hence, si is 
controlled by ri in Eq. (3). The incremental pore volume (vi) accounts for 
the fraction of total volume of fluid a pore throat (i) controls. The curved 
surface area si is introduced in this study to account for the impact of 
frictional interaction at the fluid-rock interface which negates flow 

through a pore throat i. Curved surface area and not total surface area is 
used here because the pore throats are idealized as cylinders and the 
portion of the cylinder having the frictional interaction with the fluid 
flowing through is the curved surface since the idealized cylinder is 
expected to be hollow for fluid to pass through it. 

Step three: Calculate the EPTR by using the estimated weights to 
compute a weighted average pore throat radius (Eq. (5)). 

EPTR =

∑n

i=1
(wi × ri)

∑n

i=1
(wi)

(5) 

The estimated EPTR (Table 1) was used as the pore throat radius to 
construct 3D pore microstructures following our stochastic approach 
(Ishola et al., 2022; Ishola and Vilcáez, 2022). The MICP data also 
provided effective total porosity which was used as control to constrain 
constructed pore microstructures. 

The MICP data of the samples (Fig. 2) were obtained from Integrated 
Core Characterization Center, University of Oklahoma, USA. 

2.3. Pore body size distribution (PSD) data 

The PSD used in this study was obtained from micro-CT images of the 
rock samples in Fig. 1. It is noteworthy that micro-CT imaging is the 
chosen approach for obtaining PSD ahead of other methods because it 
captures 3D visual representation of pores present in each of the samples 
and is a much more scalable and non-destructive option of obtaining the 
true pore microstructures in rocks, albeit, at lower resolution compared 
to some approaches. The size of the micro-CT images for all the samples 
is 1000 x 1000 x 1000 pixels in x, y, and z directions with a resolution of 

Fig. 11. Percentage change in average permeability with number of pore-scale simulated permeability. Red portion of the plot is deemed unrepresentative while 
green is deemed representative. Representative number of pore microstructures used to simulate permeability for (a) is 144, (b) is 128, (c) is 146, and (d) is 108. 
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7.5 μm (Fig. 3). The resulting 422 mm3 volumes were segmented 
(Fig. 4.) to separate the pores in the image from the background using a 
watershed algorithm. 

The watershed algorithm (Gostick, 2017) was used to prevent 
overestimation of pore volumes via the separation of pores connected in 
the images. The volume distribution of the resultant isolated pores was 
obtained from the segmented image. PSD (Fig. 5) is obtained from the 
volume distribution by calculating the pore radius of equivalent spher
ical volume for each of the pores (Eq. (6)). 

Ri =

̅̅̅̅̅̅̅̅̅̅̅̅̅
3 × Vi

4 × π
3

√

(6)  

where Ri is the radius of the equivalent sphere of volume Vi and i is the 
pore obtained from the micro-CT image. 

To verify the representative nature of the PSD data, we conducted a 
representative elementary volume (REV) analysis on the segmented 3D 
image for each sample (Bear, 1972). The purpose of the REV analysis 
was to determine if the PSD obtained from the micro-CT data is repre
sentative. In the REV analysis, we evaluated the percentage change in 
average PSD, and standard deviation of PSD (Fig. 6) for subvolumes of 
micro-CT image data (Fig. 4), ranging from 0.05 mm3 to 422 mm3. For 
this study, a 5% change in average pore-size was applied as cut off for 

Fig. 12. Percentage change in average hydraulic tortuosity with pore-scale simulated hydraulic tortuosity. Red portion of the plot is deemed unrepresentative while 
green is deemed representative. Representative number of pore microstructures used to simulate hydraulic conductivity for (a) is 61, (b) is 80, (c) is 88, and (d) is 31. 

Fig. 13. Relationship between heterogeneity (PSD coefficient of variation) and 
required number of pore-microstructures to obtain representative nature of 
observed flow properties. 

Table 4 
Permeability measurements/estimations using different approaches.  

Permeability model 
approach 

Sample A 
(mD) 

Sample B 
(mD) 

Sample C 
(mD) 

Sample D 
(mD) 

Experimental permeability 20.96 3.19 15.13 35.31 
Winland (Kolodzie, 1980a, 

b) 
9.29 68.75 46.16 40.51 

Swanson (Swanson, 1981) 12.68 55.93 42.19 40.02 
Wells-Amaefule Method ( 

Wells and Amaefule, 
1985) 

2.28 7.24 5.82 5.58 

Kamath Method (Kamath, 
1992) 

24.29 79.41 63.41 60.8 

OU Method (Dastidar et al., 
2007) 

5.22 36.49 12.24 12.14 

Current study 5.19 5.28 12.24 16.69  
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the representative volume. The REV analysis showed all our samples to 
have a representative volume of 27 mm3 given by the relatively low 
percentage change in all the three statistical parameters tracked through 
the varying volume of the rock images (Fig. 6). This implies that any 
subsample in the range of 27 mm3–422 mm3 will approximately have 
the same PSD. 

2.4. Stochastic generation of 3D pore microstructures 

In this study, we employ our stochastics approach (Ishola and 
Vilcáez, 2022) to generate 3D pore microstructures of the same pore size 
distribution and effective porosity but different pore connectivity. In this 
study we assumed a cylindrical pore throat with length of 1 μm. The 
radius of the pore throats (EPTR) was estimated from MICP data as 
described in section 2.2. The pore sizes were randomly obtained from 
the respective PSDs of the samples and the pore throat sizes were fixed to 
the respective EPTRs. The pore microstructures construction approach 
involves the stochastic spatial distribution of pores in a computational 
domain given four constraints. The first constraint is that the first pore in 
the computational domain is at the centre to allow equal possible 
spreading path to the entire domain. Subsequent connections start 
randomly along established paths in the computational domain. The 
second is that a space already occupied by a pore is no longer available 
to subsequent pores added into the system. The third constraint is that 
for a pore microstructure to be valid, there must be at least a connecting 
path between the inlet and outlet of the computational domain. The 
fourth constraint is that porosity is equal to effective porosity, and this is 
provided by the MICP data in this study. The resultant stochastic 3D pore 
microstructure has equal probability of occurring while honouring the 
effective porosity and pore size distribution of the parent sample 
(Fig. 7). The number of pores in each 3D pore microstructures in this 
study ranges from 950 to 1000 which consequently results in 3D pore 
microstructural volumes ranging from 6.07 to 25.44 mm3 (Table 2). It is 
noteworthy that the volume of the 3D pore microstructure varies 
depending on the number of pores (Table 2), sizes of the pores sampled 
from the PSD (Fig. 5), and the effective porosity of the sample (Fig. 2). 

2.5. Direct pore-scale simulations of permeability 

Permeability of the 3D pore microstructures (Fig. 7) was estimated 
from Eq. (1) using data obtained from pore-scale simulations of fluid 
flow. For each rock sample, 200 pore microstructures were generated 
and used for flow simulation. Steady state simulations of fluid flow 
(Fig. 8) were accomplished with STAR-CCM+®, a computational fluid 
dynamics software that solves the mass continuity equation (Eq. 7) and 
Navier Stokes equation (Eq. 8) using its finite volume methodology. 

∇
→ ⋅ ρ V→+

∂ρ
∂t

= 0 (7)  

∂ V→

∂t
+

(
V→ ⋅ ∇

→
)

V→= −
1
ρ∇

→P + v∇
→2 V→ (8)  

where ρ is density of the fluid, v is kinematic viscosity, P is pressure, t is 
time, and V→ is fluid velocity. 

STAR-CCM+® has been benchmarked against experiments and 
shown to accurately replicate pore scale fluid flow (Oostrom et al., 2016; 
Yang et al., 2013, 2016). In this study, we used an unstructured poly
hedral mesh type to capture the complex geometry of the 3D 
pore-microstructural models generated. All the generated 3D pore mi
crostructures were assigned a minimum cell size of 0.2 μm while other 
parameters in the mesh generator were kept at default. The number of 
cells in each pore microstructure varied from 3,050,166 to 6,141,038 
(Table 3). 

In all simulations, water was used as the fluid and there was no 
chemical reaction in the computational domain. A no-slip wall boundary 
condition was used throughout the computational domain except at the 
opposite sides along the intended flow direction which had inlet pres
sure set at 1 Pa and outlet pressure set at 0 Pa to drive fluid flow. To 
ensure that permeability calculations were valid, we made certain that 
the Reynolds number of all the pore scale simulations was less than 1 
since Darcy’s law (Darcy, 1856) was used in estimating permeability 
(Eq. (1)). All simulations were seen to have converged for permeability 
when the change in permeability in the last two iterations is less than 1% 
while attaining residuals (continuity, x momentum, y momentum, and z 
momentum) were less than 10− 4 by the end of 200 iterations assigned in 
all our flow simulations. 

2.5.1. Permeability estimations from empirical models 
To evaluate if augmenting X-ray micro-CT data with MICP data 

produces realistic 3D pore microstructures and thus permeability values 
using our previously proposed stochastic pore-scale simulation 
approach, the arithmetic average permeability of 200 possible pore 
microstructures was compared with experimental permeability values as 
well as with permeability values estimated from popular empirical 
models. Empirical models considered includes Winland (Kolodzie, 
1980), Swanson (Swanson, 1981), Wells-Amaefule (J.D. Wells and 
Amaefule, 1985, Kamath, 1992), and Dastidar (Dastidar et al., 2007) 
models given by Eqs. (9)–(13). 

kWinland = 49.4*R1⋅7
35 *∅1⋅47 (9)  

kSwanson−brine = 355*
[

sb

PC

]2.005

A
(10)  

kWells−Amaefule = 30.5*
[

sb

PC

]1.56

A
(11)  

kKamath = 347*
[

sb

PC

]1.60

A
(12)  

kDastidar = 4073*R1.64
wgm*∅3.06 (13)  

where sb is the percent bulk volume occupied by mercury, PC is the 
mercury capillary pressure (psia), A is the maximum amplitude, R35 is 
35% mercury saturation of pore volume, ∅ is porosity (fraction), and 
Rwgm is the geometric mean of pore sizes. 

Table 5 
Mean absolute percentage error (MAPE) of current study compared to five other 
approaches to estimating permeability.  

Permeability model 
approach 

Percentage error MAPE 
(%) 

Sample 
A (%) 

Sample 
B (%) 

Sample 
C (%) 

Sample 
D (%) 

Winland (Kolodzie, 
1980) 

56 2055 205 15 583 

Swanson (Swanson, 
1981) 

40 1653 179 13 471 

Wells-Amaefule 
Method (Wells and 
Amaefule, 1985) 

89 127 62 84 90 

Kamath Method ( 
Kamath, 1992) 

16 2389 319 72 699 

OU Method ( 
Dastidar et al., 
2007) 

75 1044 19 66 301 

Current study 75 66 19 53 53  
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3. Results and discussion 

3.1. Role of stochastic pore connectivity 

In this study, we evaluated the importance of pore connectivity on 
estimating flow properties (permeability and hydraulic tortuosity) of 
heterogeneous rocks using fluid flow simulations on stochastically 
generated 3D pore-microstructures for four rock samples. Different from 
the traditional approach where flow properties are simulated using a 
single micro-CT image assuming an arbitrary pore connectivity due to 
the inability of micro-CT to capture small pore throats, here we construct 
hundreds of 3D pore microstructures of stochastic pore connectivity and 
equal probability of occurrence using PSD data from micro-CT data and 
pore throat radius data inferred from MICP data. As such, this approach 
does not only solve the problem of low resolution of micro-CT images to 
capture pore connectivity, but it also accounts for the effect of the sto
chastic nature of pore connectivities in rocks. Each sample of given PSD, 
shows a permeability distribution (Fig. 9) with a coefficient of variation 
of 34% in sample A, 35% in sample B, 32% in sample C, and 26% in 
sample D. The variation in permeability (Fig. 9) in all samples confirms 
the relevance of accounting for the stochastic connectivity of pores in 
estimating the flow properties of heterogeneous rocks. The same applies 
to hydraulic tortuosity which is shown in Fig. 10 to have a coefficient of 
variation of 15% in sample A, 17% in sample B, 14% in sample C, and 
12% in sample D. Given that pore connectivity cannot be measured 
directly in rocks due to limitations in resolution and/or due to high cost, 
stochastically constructed 3D pore microstructures of equal probability 
of occurrence helps account for the unknown connectivity in rock 
samples. Considering the large number of possible connectivity sce
narios reflected by a distribution of possible property (permeability and 
hydraulic tortuosity) values can be used to make more robust inferences. 
In this study, we obtain permeability and hydraulic tortuosity of the four 
samples by computing average permeability (Fig. 11) and hydraulic 
tortuosity (Fig. 12) values. The number of 3D pore microstructures and 
corresponding pore-scale simulated permeability and hydraulic tortu
osity values used to calculate average permeability and hydraulic tor
tuosity values was deemed sufficient when the percentage change in 
permeability and hydraulic tortuosity values is approximately zero 
percent. As shown in Fig. 11, the number of required pore-scale simu
lations for permeability is 144 for sample A, 128 for sample B, 146 for 
sample C, and 108 for sample D. For hydraulic tortuosity, the number of 
required pore-scale simulations to be representative is 61 for sample A, 
80 for sample B, 88 for sample C, and 31 for sample D (Fig. 12). The 
number of 3D pore microstructures and corresponding pore-scale sim
ulations were lower for hydraulic tortuosity than for permeability. This 
is attributed to the lower influence of pore throat sizes and pore con
nectivity on hydraulic connectivity than on permeability (Ishola et al., 
2022). This is also reflected by lower CV of hydraulic tortuosity obtained 
in this study (Fig. 10) compared to permeability (Fig. 9). A plot of 
number of 3D pore microstructures to reach REV against heterogeneity 
in the four samples (Fig. 13) show that the number of 3D pore micro
structures required to obtain representative permeability and hydraulic 
tortuosity increases with heterogeneity. This implies that relatively 
heterogenous rocks benefits more from our stochastic pore-scale simu
lation approach. 

3.2. Validation 

To validate if augmenting X-ray micro-CT data with MICP data 
reproduced measured permeability of real heterogenous rock samples, 
we compared simulated permeability with measured permeability as 
well as permeability estimates from five well known model equations. 
We evaluated how close the estimated permeability from our approach 
and permeability estimates from the five model equations match the 
measured permeability of the four samples using mean absolute per

centage error (MAPE). MAPE is given by MAPE = 1
n
∑n

i=1

⃒
⃒
⃒
⃒
km,i−ke,i

km,i

⃒
⃒
⃒
⃒ × 100 

where km,i, and ke,i is the measured permeability and estimated perme
ability of respective samples while n is the total number of samples 
which is four in this study. Based on MAPE (Tables 4 and 5), the esti
mated permeability from our approach here matches more closely with 
measured values than the five empirical models considered in this study. 
From the MAPE calculated, we can interpret estimated permeability 
from our approach to generally differ from measured value by 53%. The 
closest MAPE to our result is the estimate obtained from using the Wells- 
Amaefule method which had an MAPE of 90% while the remainder of 
the empirical models have MAPEs greater than 300%. The comparative 
accuracy obtained by augmenting X-ray micro-CT data with MICP data 
shows that accounting for the stochastic connectivity of pores and actual 
pore throats, outperforms empirical models in predicting permeability. 
This validates the workflow introduced in this study where we account 
for the stochastic connectivity of pore bodies through pore throats via a 
combination of EPTR from MICP data, PSD from micro-CT images, and 
pore connectivity from stochastic modelling. There are at least two ways 
to reduce MAPE of the current study. This includes, (1) developing 
efficient codes that allows easy incorporation of the true pore shapes 
found in micro-CT images which like most studies is approximated to 
spheres in this study, and (2) obtaining super higher resolution images of 
the samples at representative scale beyond the micro-CT resolution of 
7.5 μm in this study. Solving these problems will push constructed 3D 
pore microstructures closer to the truth. The use of real pore shapes is 
important to make our workflow viable for multiphase flows. 

4. Conclusions 

In this study, we augmented pore size distribution data obtained 
from X-ray micro-CT images with pore throat size data obtained 
from MICP measurements for stochastically constructing high 
resolution 3D pore microstructures of the same porosity and pore 
size distribution but different stochastic pore connectivity. The 
micro-CT and MICP data used to construct our 3D pore microstructures 
were obtained at continuum scale and covers a significant spectrum of 
pore microstructural features of interest. We showed that accounting for 
the stochastic connectivity of pores can result in a probabilistic distri
bution of flow properties of rocks which guides different possible out
comes that should be considered when upscaling pore-scale simulated 
flow properties to the core-scale and beyond. The use of the introduced 
stochastic pore-scale simulation approach is shown here to be more 
beneficial when there is a higher degree of heterogeneity in PSD. This is 
shown to be the case of permeability and hydraulic tortuosity which are 
key controls of transport processes in rocks. We validated the introduced 
stochastic pore-scale simulation approach by showing that the average 
simulated permeability values by the introduced stochastic pore-scale 
simulation match more closely with experimental core-scale measured 
permeability values in comparison to five well known empirical models. 
It is noteworthy that this study is based on single phase flow. To capture 
key interactions in multiphase flow, we suggest the use of angular or 
irregular pores instead of spherical pores. Our workflow will help build 
geological models that will better account for pore-scale factors in fluid 
flow as well as reactive transport processes simulations at the core- and 
field-scale levels. Key areas of application for this workflow includes 
petroleum production, carbon and hydrogen sequestration, environ
mental studies, and groundwater resources development. 
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Mehmani, A., Prodanović, M., 2014. The effect of microporosity on transport properties 
in porous media. Adv. Water Resour. 63, 104–119. https://doi.org/10.1016/j. 
advwatres.2013.10.009. 

Morad, S., Al-Ramadan, K., Ketzer, J.M., De Ros, L.F., 2010. The impact of diagenesis on 
the heterogeneity of sandstone reservoirs: a review of the role of depositional facies 
and sequence stratigraphy. AAPG (Am. Assoc. Pet. Geol.) Bull. 94, 1267–1309. 
https://doi.org/10.1306/04211009178. 

Moslemipour, A., Sadeghnejad, S., 2021. Dual-scale pore network reconstruction of 
vugular carbonates using multi-scale imaging techniques. Adv. Water Resour. 147, 
103795 https://doi.org/10.1016/j.advwatres.2020.103795. 

Okabe, H., Blunt, M.J., 2004. Prediction of permeability for porous media reconstructed 
using multiple-point statistics. Phys. Rev. E 70, 066135. https://doi.org/10.1103/ 
PhysRevE.70.066135. 
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