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Abstract—LDPC (Low-Density Parity-Check) codes have be-
come a cornerstone of transforming a noise-filled physical
channel into a reliable and high-performance data channel in
communication and storage systems. FPGA (Field-Programmable
Gate Array) based LDPC hardware, especially for decoding with
high complexity, is essential to realizing the high-bandwidth
channel prototypes. HLS (High-Level Synthesis) is introduced
to speed up the FPGA development of LDPC hardware by
automatically compiling high-level abstract behavioral descrip-
tions into RTL-level implementations, but often sub-optimally
due to lacking effective low-level descriptions. To overcome this
problem, this paper proposes an HLS-friendly QC-LDPC FPGA
decoder architecture, HF-LDPC, that employs HLS not only to
precisely characterize high-level behaviors but also to effectively
optimize low-level RTL implementation, thus achieving both high
throughput and flexibility. First, HF-LDPC designs a multi-unit
framework with a balanced I/O-computing dataflow to adaptively
match code parameters with FPGA configurations. Second, HF-
LDPC presents a novel fine-grained task-level pipeline with inter-
leaved updating to eliminate stalls due to data interdependence
within each updating task. HF-LDPC also presents several HLS-
enhanced approaches. We implement and evaluate HF-LDPC
on Xilinx U50, which demonstrates that HF-LDPC outperforms
existing implementations by 4× to 84× with the same parameter
and linearly scales to up to 116 Gbps actual decoding throughput
with high hardware efficiency.

Index Terms—LDPC, FPGA, HLS

I. INTRODUCTION

LDPC (Low-Density Parity-Check) codes approaching the

Shannon limit of physical channel have been ubiquitously used

for error correction in communication and storage systems.

LDPC decoding is both data intensive and compute complex,

thus relying on FPGA (Field-Programmable Gate Array) based

hardware acceleration to achieve high performance.

LDPC decoders have been extensively studied in terms of

code structures, decoding algorithms, and hardware implemen-

tations [1] [2]. Most of the existing LDPC decoder designs

require manual coding in a Hardware Describe Language (e.g.,

Verilog) to accurately characterize Register-Transfer Level

(RTL) implementation. However, this manual development,

even for experts, generally takes a long design cycle with

continuous iterations to ensure functional correctness and high

quality of result (QoR) [3]. Recently, High-Level Synthesis

This work was supported in part by the National key research and develop-
ment program of China under Grant 2018YFA0701800, NSFC No.62172175,
Creative Research Group Project of NSFC No.61821003, Key Research and
Development Project of Hubei No.2022BAA042, and by the US National
Science Foundation grant CNS-2008835 and CCF-2226117.

(HLS) is introduced to automatically compile code written in

a high-level programming language, such as C/C++, into RTL

implementation, achieving high productivity and flexibility.

Using HLS, the designers can focus on precisely describing

the algorithmic logic and largely offload laborious circuit-level

layout (e.g., timing and routing control) to HLS.

However, it is challenging to use HLS to implement a

flexible LDPC decoder with high QoR. The high-level abstract

algorithmic logic description without a careful consideration

for features of the LDPC code and hardware configuration is

often compiled to a sub-optimal implementation. Specifically,

it is hard for HLS to precisely describe irregular LDPC with

high error correction capability. Furthermore, it is difficult for

HLS to fully optimize the small-sized decoding unit with low

quantization precision, thus decreasing the overall QoR of the

LDPC decoder.

To solve this problem, we propose HF-LDPC, an HLS-

friendly QC-LDPC FPGA decoder architecture, to achieve

both high throughput and high flexibility. To this end, HF-

LDPC designs a dataflow-centric multi-unit framework with-

out binding a specific code parameter with the FPGA con-

figuration. HF-LDPC consists of multiple decoding cores

(DCs), where each DC comprises an I/O module and multiple

decoding units (DUs) to maintain a balanced data stream.

Second, HF-LDPC presents a task-level pipeline with a novel

interleaved-update mechanism to exploit intra-/inter-block par-

allelism of QC-LDPC while eliminating stalls due to the data-

update dependence between the check node and value node.

Third, HF-LDPC also presents several key HLS-enhanced

techniques, such as HBM-aware data frame, DC placement,

vectorized data access, ping-pong update, and two-phase ad-

dressing, to enable further performance optimization.

The main contributions of this work are as follows:

• We design an HLS-friendly and well-modularized QC-

LDPC decoding architecture (HF-LDPC) to ensure both

flexibility and scalability.

• We propose a novel fine-grained pipeline with interleaved

updating for intra-/inter-block parallelism within the DU,

along with several performance-boosting techniques.

• We implement and validate the effectiveness of HF-

LDPC on Xilinx U50 terms of performance, flexibility,

scalability, and efficiency.
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II. BACKGROUND AND MOTIVATION

A. FPGA and High-level Synthesis

FPGA developers traditionally write Hardware Describe

Language (e.g. Verilog) code to implement Register-Transfer

Level (RTL) hardware, which is generally tedious and error-

prone [3]. Recently, High-Level Synthesis (HLS) is advanc-

ing to automatically compile an algorithmic-logic behavioral

description (e.g., C/C++) into an RTL implementation. Such

HLS-based hardware development with high productivity and

flexibility has been broadly used in large-scale and new

functionality scenarios, e.g., machine learning [4], graph com-

puting [5], and domain-specific accelerators [6]. However,

the high-level abstract behavior without detailed low-level

descriptions can map to many low-level implementations, most

of them are sub-optimal. HLS offers pragmas to precisely

characterize the behavior-description to improve the quality

of HLS results (QoR) [7], [8].

B. QC-LDPC

H =

⎡

⎢

⎢

⎣

Ia1,1 Ia1,2 · · · Ia1,L

Ia2,1 Ia2,2 · · · Ia2,L

· · · · · · · · · · · ·
IaJ,1 IaJ,2 · · · IaJ,L

⎤

⎥

⎥



(a) PCM Structure
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(b) QC-LDPC PCM
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(c) Tanner graph

Fig. 1: An example of QC-LDPC parity check matrix (PCM)

and the corresponding tanner graph

LDPC codes have superior error-correction capability at the

cost of computation complexity. LDPC is defined by a parity

check matrix (PCM). Each row in PCM corresponds to a check

node (CN), each column corresponds to a variable node (VN)

and a “1” in the PCM indicates the existence of an edge

between VN and CN. All VNs, CNs, and edges constitute

a tanner graph. Quasi-Cyclic LDPC (QC-LDPC) [9] codes

with well-structured PCM are suitable for hardware imple-

mentation without significant error-correction loss, which has

been widely used in the communication and storage fields.

Fig. 1 gives an example of QC-LDPC and its tanner graph.

The PCM of example QC-LDPC consists of 2× 3 I(n) sub-

matrices. The size of I(n) is Z × Z. An I(n) sub-matrix is

an n-step circulant permutation matrix from the unit matrix

(I(0)). I(−1) represents a zero matrix.

Therefore, a specific base matrix and the size of the sub-

matrix (expansion factor) determine a specific PCM and the

corresponding QC-LDPC code.

C. QC-LDPC Decoding Algorithm and Structure

The QC-LDPC decoding typically employs the message-

passing based min-sum algorithm, which converts the complex

posterior probability calculations into the logarithmic form,

thus simplifying the computational complexity. Each bit in the

codeword is actually represented by the log-likelihood ratio

(LLR) value. The decoding process updates LLR messages

between CN and VN iteratively, until the stop-condition or

a predefined iterative threshold is met. These sub-matrices of

PCM are also referred to as blocks [10]. Since the initialization

values for each column in the block come from the correspond-

ing LLR at the corresponding positions “1” in the PCM as

shown in Fig. 1b. Each block corresponds to a memory block,

and block-wise circular shifting is achieved by addressing each

block with a different address offset. The memory block stores

the received messages after each update.

The QC-LDPC decoding algorithms are classified into the

two categories of flood and layered update scheduling. The

flood scheduling updates all VNs before updating CNs, and

vice versa, which has high error correction performance but

low decoding convergence speed. In contrast, the layered

scheduling has a faster decoding convergence speed at the cost

of error-correction performance without scaling circuits [11].

Moreover, the data dependence among layers causes memory-

access contention [12].
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(a)
Example Check Matrix
and Related Codeword
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(b)
A QC-LDPC
Decoder Unit

Fig. 2: The Inter-block Parallel Structure of a QC-LDPC

Decoder

The decoding parallel algorithms also fall into the intra-

block and inter-block categories. The former parallelizes the

update of information within a block but serially traverses

all blocks in the PCM. They typically require Z serial-update

units and parallel shifters. On the contrary, the latter serially

processes a block but multiple blocks in parallel, as shown in

Fig. 2b. They typically require the numbers of parallel CN

and VN update units to be equal to the numbers of rows

and columns in the base matrix, achieving high hardware

efficiency, but at lower flexibility by binding to a specific code.

D. Motivation

Most of the RTL-based prior works focus on designing

a decoding unit to fully exploit hardware resources but are

strictly dedicated to a specific QC-LDPC code and FPGA

hardware. Existing HLS-based implementations ease develop-

ment tasks but generally exhibit low QoR. We are motivated to

effectively leverage HLS to design scalable and flexible QC-

LDPC adapting varied code parameters to FPGA configuration

to achieve high decoding performance and hardware efficiency.

III. HF-LDPC DECODER DESIGN

A. HF-LDPC Architecture

We propose an HLS-friendly decoder architecture, HF-

LDPC that combines a high-level dataflow-centric multi-

unit framework and a low-level interleaved-update task-level

pipeline that exploits inter-/intra-block parallelism. HF-LDPC

comprises multiple decoding cores (DCs), as shown in Fig. 3.
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Fig. 3: HF-LDPC Architecture

A DC with a limited scale consists of an input/output

(I/O) module and an array of decoding units (DUs), which

is connected to an HBM channel. The I/O module reads the

codeword from HBM to the DUs and writes decoded data from

the DUs to HBM, to meet the data-processing capacity of DUs.

HF-LDPC employs the inter-block parallel flood scheduling

that decodes all blocks in parallel. We design an interleaved-

updating task-level pipeline within a DU to eliminate the stalls

due to cyclic data dependence between VNU and CNU in the

flood scheduling.

At the high level, we employ HLS to design a dataflow-

centric framework, adapting to different quantization preci-

sions and PCM. The codeword stream sequentially flows

through the input module, multiply DUs, and output mod-

ule, which are well described by HLS with the DATAFLOW

pragma.

Additionally, we also take full advantage of HLS to opti-

mize the RTL-level implementation at the circuit level within

well-defined units. For DU, HF-LDPC also leverages HLS

to not only accurately characterize intra-/inter-block parallel

algorithms, but also to automatically optimize the RTL-level

implementation with HLS-enhanced expressions, thus improv-

ing hardware efficiency.

B. Multi-unit Decoding Core

Considering that modern FPGAs are evolving with HBM

and multi-die layouts, the HF-LDPC design fully utilizes these

FPGAs by adopting a multi-DUs structure in each DC so that

a DU has a limited scale and fixed iterative-update pipeline.

Note that a given LDPC code and the decoding algorithms

determine the input/output bit-width of each DU. Therefore,

the bit-width of the HBM channel dictates its supportable

number of DUs. As a result, DCs are completely independent

of one another without data correlation and are entirely placed

within an FPGA die.

To well balance data access and data process in terms of

both data width and decoding time, the IO module needs to

connect HBM and the DUs to form a complete data path.

However, this will be challenging for manual RTL-level design

to accomplish due to strict cycle-and-circuit level constraints

of complex protocols when accessing off-chip memory using

high-speed buses in FPGA. Fortunately, HLS can analyze the

function interfaces and I/O behaviors of the user code to

automatically generate a high-speed bus interface module.

Moreover, HLS’ ability to allow users to use the same code

with different pragma directives to flexibly adjust microarchi-

tectures makes it possible to decouple the high-level DC from

the low-level DU while providing flexible support to tolerate

different delay characteristics, interface bit width and internal

parallelism of DU.

For example, Xilinx FPGA acceleration cards employ the

AXI-MM protocol with XDMA to access HBM. Efficient

utilization of high-speed buses requires an appropriate burst

transfer length. In HLS, the burst transfer length can be

automatically configured by analyzing the user code. The mod-

ularized multi-module architecture can be described by HLS

accurately and efficiently. For example, HF-LDPC designs a

module-level pipeline using the DATAFLOW pragma to mask

the HBM latency (approximately 70 cycles or more). The high-

level pipeline also employs inter-module buffering (e.g., ping-

pong or FIFO) without modify the interface of DU.
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Fig. 4: HBM-aware Data-Frame Format

1) HBM-aware Data-Frame: Note that different code pa-

rameters have their corresponding sizes of the codeword and

bit-access patterns. When multiple DUs process codewords

in parallel, the I/O module needs multiple cycles to read

codewords from and write decoded words to the HBM channel

respectively. Furthermore, the number of cycles for data-in and

data-out should be lower than that of the cycles for DU.

Besides, each DU pipeline needs to read multiple LLRs

simultaneously from different blocks in the codeword. This

means that the order in which bits are accessed is different

from the order of bits in the codeword. This bit-order mismatch

needs additional buffers, addressing hardware and extra cycles

to re-order the bits.

To avoid the reordering within the critical DU, we define an

HBM-aware data-frame matching the HBM width. As shown

in Fig. 4, the decoder-frame packs LLRs with the same address

offset in different blocks of a single codeword. One or more

decoder-frames in a data-frame can be filled up to ensure

multiple DUs working in parallel.

For example, suppose a decoder uses a base matrix with a

column size of 24 and quantization precisions of 2 bits. In this

case, a DU has 48 bits input width. Since the HBM interface

width is 512 bits, we can transfer 10 decode-frames in a data-

frame, thus inputting data into 10 DUs in parallel.

HF-LDPC offers a flexible and modularized approach to

feeding data to multiple DUs with different parameters without

568



modifying its architecture. Furthermore, due to the match

between frame formats and the input order of DU, it does not

need additional buffers or scheduling, improving the hardware

efficiency.

1 Dtype Mem[...][LEN];

2 #pragma HLS ARRAY_RESHAPE ...

3 ...

4 offset = expression(i);

5
6
7
8
9

10 for(i = 0 ˜ LEN){

11 Mem[...][offset] = ...;

12 }

13 ...

(a) original HLS code

1 Dtype Mem[...][LEN];

2 #pragma HLS ARRAY_RESHAPE ...

3 ...

4 offset = expression(i);

5 Dtype proxy[LEN];

6 #... ARRAY_PARTITION var=proxy

7 for(i = 0 ˜ LEN){

8 proxy[offset] = ...;

9 }

10 for(i = 0 ˜ LEN){

11 Mem[...][i] = proxy[i];

12 }

13 ...

(b) optimized HLS code

Fig. 5: Indirect Vectorization

2) Indirect Vectorization: The DU decoding pipeline reads

data from different blocks in parallel. To meet the parallel-

access requirements of read and write operations, the pragma

array_partition is commonly used to divide a memory

block into multiple partitions with multiple read and write

ports. When accessing the same offset addresses in those mem-

ory partitions in parallel, the memory can be implemented as

vectorized memory block sharing a single addressing circuit.

However, when accessing multiple elements in the vector-

ized memory block, HLS can mistakenly detect the existence

of data dependency and must serialize the multiple accesses.

To avoid this misunderstanding, we temporarily interpret the

vector as separate scalars, which is referred to in this paper as

vector proxy.

Specifically, as shown in Fig. 5a, the pseudocode reads

data from a vectorized memory block. Line 1 and 2 together

represent a vectorized array, which is implemented by HLS

as a vector memory block with a width of LEN . Due to

the complex expression of line 4, the accesses to the vector

memory block in Line 11 may be analyzed by HLS as I/O

contention (can happen whether the offset is on the left or

right side of =).

Therefore, we introduce Indirect Vectorization, for which

the code can be modified as shown in Fig. 5b. Lines 5 and 6

define a vector proxy of the same width as the vector memory

block with array_partition. Line 8 rewrites the original

assignment to the vector memory block to assign to the vector

proxy. Line 11 further assigns the elements of the vector proxy

to the vector memory block one by one.

After this code modification, HLS does not mistakenly

detect data dependency and correctly implements a vectorized

memory block with parallel accessing. Since the additional

array only performs assignment operations, it may only add a

small number of registers or is expressed as a wire connection,

resulting in small or no increase in hardware consumption.
3) DC Hardware Allocation: When the design of the DC

is determined, we consider scaling multiple DCs to efficiently

utilize the resources on the FPGA for high actual decoding

throughput.

Specifically, each DC is connected to an independent HBM

to avoid memory channel contention. Additionally, all DCs are

evenly placed in different Super Logic Region (SLR) areas

to avoid high circuit delays caused by crossing SLRs and

circuit congestion that may occur prematurely due to uneven

SLR utilization during automatic placement. This approach

can keep a high implementation frequency of the FPGA.

C. Decoding Unit

Within the decoding unit, we employ a task-level pipeline

with interleaved updating to eliminate the stalls caused by

flood scheduling. Additionally, we design a two-stage ad-

dressing approach to effectively jointly exploit inter-block

parallelism with intra-block parallelism.

���� �� ����

(a) Decoder Structure

1 Dtype MA[...];

2 ...

3 bool init = iter < 1;

4 bool end = iter > N - 1;

5 ...

6 vnu_input[...] = init? 0:MA[...];

7 vnu(...);

8 MA[...] = vnu_output[...];

9 if(end) out[..]=vnu_output[..]>0;

10 ...

11 cnu_input[...] = MA[...];

12 cnu(...);

13 MA[...] = cnu_output[...];

(b) HLS code

Fig. 6: The Decoding Process of Iterative Update

1) Interleaved Update: In DU, groups of CNUs and VNUs

are referred to as CNU array (CNUA) and VNU array (VNUA)

respectively. The memory block, referred to as memory array

(MA), stores messages passed between CNUA and VNUA, as

shown in Fig. 6a, the corresponding HLS code is shown in

Fig. 6b.

In the flood scheduling, the LLRs are updated by VNUA

and CNUA iteratively. There exists data dependence between

the CN and VN updates within the decoding pipeline, causing

stalls. To eliminate such data dependence, CNUA and VNUA

update two codewords simultaneously in an interleaved man-

ner.
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Fig. 7: The Decoding Pipeline of Interleaved Update

Specifically, as shown in Fig. 7, first, the number of it-

erations is extended to K ∗ N + N − 1 according to the

number of cyclic dependency tasks K, and the original number

of iterations N . For example, if there are only VN and CN

updating tasks involved in the cyclic dependency, then K = 2.

And the number of iterations is extended to 2N + 1. In

terms of scheduling, pipeline initialization is performed during

iterations 1 to 2, normal iterations occur from iteration 2 to

2N , and pipeline output from iteration 2N − 1 to 2N + 1.

We design the decoder structure as shown in Fig. 8a, and

the corresponding HLS code is shown in Fig. 8b. MA is

divided into MAA and MAB in Lines 1 and 2. The read

interface of VNUA is connected to MAB in Line 7, while its

write interface is connected to MAA in Line 11. Similarly,

the read interface of CNUA is connected to MAA in Line 8,

and its write interface is connected to MAB in Line 13. The
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(a) Decoder Structure

1 Dtype MA_A[...];

2 Dtype MA_B[...];

3 ...

4 bool init = iter < 2;

5 bool end = iter > N - 2;

6 ...

7 vnu_input[...] = init? 0:MA_B[...];

8 cnu_input[...] = MA_A[...];

9 vnu(...);

10 cnu(...);

11 MA_A[...] = vnu_output[...];

12 if(end) out[..] = vnu_output[..] > 0;

13 MA_B[...] = cnu_output[...];

(b) HLS code

Fig. 8: The Decoding Process of Interleaved Update

data inter-dependency is eliminated. Furthermore, to obtain

correct pipeline initialization and output, the extra scheduling

statements in Lines 4 and 5 are necessary to redirect the output

and input of modules in Lines 8 and 12.

After modifying the code in this way, since there is no

longer a read-after-write operation as shown in Fig. 6b in

Lines 11 and 8, the dependency is eliminated, so that HLS

can schedule CNUA and VNUA for parallel operations.

2) Ping-pong updating: In fact, the update operations take

multiple cycles, and CNU and VNU have different traversal

orders for their updates. An incorrect update order causes

erroneous decoding results.

For example, when updating position x, CNU reads an LLR

of the first codeword from MAA and writes it to MAB , thus

overwriting the corresponding LLR of the second codeword

required by VNU. When updating position x, VNU should

have read the LLR of the second codeword from MAB , but

VNU will read a wrong LLR overwritten by CNU.

To avoid such order-induced errors, it is necessary to ensure

that the memory address ranges for CN and VN operations do

not overlap during the update process. Considering that CN

and VN operations are always parallel, we have designed a

ping-pong update approach, as shown in Fig. 7, to achieve the

correct decoding process with minimal hardware overhead.
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(a) Decoder Structure

1 Dtype MA_A[2][...];

2 Dtype MA_B[2][...];

3 ...

4 bool init = iter < 2;

5 bool end = iter > N - 2;

6 bool ping = iter%2;

7 bool pong = (iter+1)%2;

8 ...

9 vnu_input[...] = init? 0:MA_B[ping][...];

10 cnu_input[...] = MA_A[pong][...];

11 vnu(...);

12 cnu(...);

13 MA_A[pong][...] = vnu_output[...];

14 if(end) out[..] = vnu_output[..] > 0;

15 MA_B[ping][...] = cnu_output[...];

(b) HLS code

Fig. 9: The Decoding Process of Ping-pong Updating

Specifically, as shown in Fig. 9b we introduce two single-

bit control variables as ping and pong, which always have

different values that are switched at each iteration. In terms

of code, the values of ping and pong are calculated based on

the current iteration count in Lines 6 and 7. The stride of the

array representing MA is increased to 2 in Lines 1 and 2.

The expressions for the read and write operations related to

MA are modified to set ping and pong to fill the stride for

addressing offset in read and write operations in Lines 9, 10,

13 and 15.

This approach guarantees the correctness of results by only

adding one bit for addressing and doubling the memory depth.

3) Two-stage Addressing: Since the number of CNUs and

VNUs in inter-block parallel decoders is usually much smaller

than that of the intra-block parallel decoders, the proportion of

decoding components is limited. Even if the parallel CNU and

parallel VNU are more efficient, the entire decoder remains

inefficient. To address this issue, we attempt to combine intra-

block parallelism with inter-block parallelism to increase the

number of decoding components, improving the efficiency of

the HF-LDPC decoder.
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(a) Structure

1 Dtype MA[...][BLOCK_SIZE];

2 #pragma ARRAY_PARTITION ...

3 for(i = 0 ˜ BLOCK_SIZE){

4 #pragma HLS unroll ...

5 index = ...;

6 cnu_in[...] = MA[...][index];

7 ...

8 }

(b) HLS code

Fig. 10: The Potential IO Competition of Intra-block Parallel

Intuitively, as shown in Fig. 10a, increasing the intra-block

parallelism only adds appropriate pragma unroll in the

serial loops to increase the number of node update components

as Line 4, and splits the corresponding memory block using

array_partition pragma as Line 2 to satisfy the I/O

requirements of the decoding components. However, when

implementing this optimization, HLS is unable to generate

an expected pipeline design with the initiation interval (II)

being equal to 1, resulting in a suboptimal pipeline schedule

and decreasing the decoding throughput.

After analyzing the HLS logs and code behaviors, we find

that VNU and CNU in each iteration have different address

offsets when using array_partition. Therefore, HLS

interprets this as VNU and CNU accessing the same sub-

memories, as shown in Fig. 10a. HLS is unable to determine

whether there exists I/O competition, thus can not give a

II = 1 pipeline scheduling.

���

���

���

���

���

���

���

���

���

���

���

���

��		�
�
�������

(a) Structure

1 Dtype MA[...][IN_P][BLOCK_SIZE/IN_P];

2
3 for (ii = 0 ˜ IN_P)

4 for (i = 0 ˜ BLOCK_SIZE / IN_P) {

5 index = ...;

6 sub_index = index / IN_P;

7 const_idx = (ii+const_para)%IN_P;

8 cnu_in[...] =

9 MA[...][const_index][sub_index];

10 ...

11 }

(b) HLS code

Fig. 11: The Two-stage Addressing for Intra-block Parallel

However, due to the cyclic characteristic of sub-matrices in

QC-LDPC, such I/O competition will not occur actually. When

partitioning each memory block in MA, circular shifting can

be achieved by a two-stage addressing process, as shown in

Fig. 11a. Therefore, we guide HLS to explicitly partition the

memory blocks using the two-stage addressing approach.

We modify the original HLS code as shown in Fig.10b.

Specifically, we introduce an additional dimension to the

arrays, which allows for explicit data layout, and then decom-

poses the original addressing variable into a constant address

and a variable address offset. This explicitly informs HLS that

a barrel shifter in combination with address offsetting should

be used to access the multiple sub-memories.

In this way, at the cost of increasing one pipeline stage, we

ensure that HLS can achieve an optimal pipeline design while

exploiting the intra-block parallelism.
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IV. EXPERIMENT AND EVALUATION

A. Experimental Configuration

TABLE I: Hardware Resources and Memory of FPGA Plat-

form A-U50-P00G-PQ-G

Platform information Value

User budget (LUT) 750k
Max clock frequency (MHz) 500
HBM2 total capacity (GB) 8
HBM2 bandwidth (GB/s) 201

We use the Xilinx Vitis 2020.2 hardware development

platform to implement HF-LDPC on Xilinx Alveo U50 data

center accelerator card (A-U50-P00G-PQ-G) with an official

firmware (Xilinx u50 gen3x16 xdma 201920 3). This plat-

form integrates Vivado HLS, Vivado, XRT middleware, and

a semi-automatic configuration generator. FPGA is connected

to the host via PCIe3.0.

The key parameters are listed in Table I. All the actual

throughputs are measured running on FPGA instead of cal-

culated by delay and frequency (throughput).

B. Overall Performance

In our evaluation, the HF-LDPC prototype is compared

against the state-of-the-art (SOTA) decoders with their best-

performing versions, as listed in Table. II. Furthermore, for

a fair comparison, we have implemented multiple versions of

our HF-LDPC decoder with the same hardware parameters

and QC-LDPC parameters as the SOTA decoders.

Table. II demonstrates that HF-LDPC achieves very high

actual throughput, surpassing the performance of SOTA de-

coders by a factor ranging from 4× to 84× with the same set

of parameters. Moreover, the efficiency (throughput or actual

throughput divided by hardware consumption) of HF-LDPC

also exceeds existing HLS-based solutions, even surpassing

RTL-based solutions.

These results indicate that HF-LDPC can efficiently utilize

the hardware resources of modern FPGAs to achieve high

actual decoding throughput.

C. HF-LDPC Decoder Scalability

1) HF-LDPC Decoder DC Hardware Allocation: In this

experiment, we fix a specific set of parameters to evaluate the

optimizations in a multi-DC decoder.

Fig. 12 illustrates the effects of different allocation strate-

gies: no specified HBM channel allocation and DC placement

TABLE II: Decoder Performance Comparison

Method Technology Code
Rate

Quant
/bit

Iter. Throughput
/Gbps

Efficiency
/Mbps per kLUT

HF-LDPC HLS(C++) 1/2 2 5 116.51 311.65

HF-LDPC HLS(C++) 1/2 6 10 16.97 47.75

HF-LDPC HLS(C++) 3/4 6 10 11.87 39.26

HF-LDPC HLS(C++) 3/4 6 10 16.70 36.69

[13] RTL 3/4 6 10 0.85 35.20

[14] RTL 7/8 6 14 2.00 35.00

[15] RTL 1/2 3 20 3.36 42.84

[16] HLS(C++) 1/2 6 10 0.19 7.68

[17] HLS(Labview) 1/2 6 5 0.28 14.95

(a) Throughput (b) Efficiency

Fig. 12: Multi-DC HF-LDPC Decoder

(baseline), only specifying HBM channel allocation (no SLR),

and simultaneously specifying HBM channel allocation and

DC placement (HF-LDPC). As the number of DCs increases,

the actual throughput of baseline remains almost unchanged

due to IO bus contention. The actual throughput of no SLR

exhibits nearly linear growth with the number of DCs, reaching

up to 11× actual throughput. This indicates that the memory

channel allocation is efficient.

However, at the maximum number of DCs, there exists

an actual throughput decrease for no SLR. This is because

when no specific SLR is specified, the default placement

strategy prioritizes placing the DCs in a particular SLR near

the HBM channel. This can lead to circuit congestion in

that SLR, thus resulting in a decrease in implementation

frequency and reduce actual throughput. By specifying the

SLR for each DC, HF-LDPC successfully improved the im-

plementation frequency, and the actual throughput increases

from 108.06Gbps to 116.51Gbps, achieving an 11.8× actual

throughput improvement over the baseline.

The experiments demonstrate that the DC hardware alloca-

tion of HF-LDPC enables linear scalability.

2) Decoding Core: In this experiment, we fix a specific set

of parameters to evaluate the optimization effect of multi-DU

DC and vectorized buffer.

All decoders in this experiment consist of one DC with a

different number of DUs. Each DU applies all optimizations.

(a) Hardware (b) Throughput (c) Efficiency

Fig. 13: Multi-DU Decoding Core

Fig. 13a and Fig. 13b show that the actual throughput of

DC scales linearly with the number of DUs. The hardware

consumption of DC increases by 2.83× while the actual

throughput improves by 4.95×, thus resulting in a reduction

of 18.2% in hardware consumption compared to the baseline.

Furthermore, when linearly fitting on the data in Fig. 13a,

the intercept of the fitted line as the hardware consumption of

the IO module in the DC is small, only 6.22% in 5-unit DC.

This indicates that our designed IO module efficiently supports

the scalability of the DUs, shown in Fig. 13c.

In conclusion, we leverage HLS to design an efficient DC
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while improving the Quality of Results (QoR).

D. Decoder Unit

In this experiment, we evaluate several key optimizations

applied in the decoder unit. The QC-LDPC PCM in the

experiments uses a code rate of 1/2 in the 802.16e standard

with an expansion factor of 64.

1) Interleaved Update: In this experiment, with a specific

set of parameters, we evaluate the optimization effect of the

interleaved update mechanism in the decoder. All decoders

in this experiment consist of one DC, one DU per DC, and

no intra-block parallelism applied in each DU. The compared

items include the Baseline without the interleaved update, the

IU with only interleaved update, and the ping-pong with both

interleaved update and ping-pong scheduling.

(a) Hardware (b) Throughput (c) Efficiency

Fig. 14: Interleaved Update

Fig. 14a and Fig. 14b demonstrate that the interleaved

update mechanism roughly doubles the actual throughput.

And the ping-pong addresses the issue of data overlap during

decoding at the cost of a small hardware consumption. Fig. 14c

illustrates that the interleaved update mechanism improves the

efficiency by less than 2×. Considering that modern RTL

toolchains often incorporate dozens of optimization steps, even

if the baseline design is not ideal, it may be optimized during

the FPGA implementation phase by the RTL toolchain, thus

enhancing the efficiency of the baseline.

However, our experimental results indicate that relying

solely on the automatic optimizations provided by HLS and

RTL toolchains is insufficient. A well-considered coarse-

grained dataflow design can further enhance the Quality of

Results (QoR) of HLS designs.

2) Intra-block parallelism: After applying the two-stage

addressing, we can adjust the internal parallelism of the DU

and utilize HLS for automatic pipeline redesign. Therefore,

in this experiment, we designed DUs with different internal

parallelism. All decoders in this experiment consist of one

DC, one DU per DC, and each DU applies interleaved update

and ping-pong scheduling.

(a) Hardware (b) Throughput (c) Efficiency

Fig. 15: Two-stage Addressing

Fig. 15a shows that intra-block parallelism is linearly

scaling with hardware. When the internal parallelism (the

numbers of CNUAs and VNUAs) is low, the update units

without two-stage addressing only consume a small portion

of the hardware resource. With two-stage addressing, HLS

successfully improves the internal parallelism and efficiency

of DU, as depicted in Fig. 15c.

Note that, as shown in Fig. 15b, when the internal paral-

lelism exceeds 4, the actual throughput of the decoder reaches

the peak, due to a good speed-matching between the I/O

module and the update units in the DC. When the internal

parallelism surpasses the number of decoder’s iterations, the

I/O module becomes the bottleneck.

Therefore, for a decoding unit with 5 iterations, internal

parallelism of 4 achieves an optimal design balance. The

optimal balance point may vary with different numbers of

iterations.

E. Decoder Unit Flexibility

To assess flexibility, we implemented three sets of decoders

with different parameters. The first set consists of baseline

decoders without any optimization, the second set of decoders

use interleaved update only, and the third set of decoders

further incorporates the two-stage addressing. Each set consists

of 15 decoders, representing various combinations of code

rates and quantization precisions to demonstrate the flexibility

of our approach. Each decoder is a complete HF-LDPC

decoder with only one DU.

Fig. 16: Decoder Unit Flexibility

Focusing on the green bars in Fig. 16, we can observe that

HF-LDPC not only adapts to different decoder parameters but

also achieves similar efficiency with similar parameters, which

demonstrates flexibility. When comparing all the decoders

as a whole, low quantization precision decoders primarily

improve efficiency through two-stage addressing, while high

quantization precision decoders primarily improve efficiency

through interleaved update.

This is because when the quantization precision is lower, the

scale of the update units is smaller, and MA and the interface

modules in the HF-LDPC decoder consume most of the hard-

ware resources. However, when the quantization precision is

higher, the update units are larger, and the hardware efficiency

primarily comes from increased internal parallelism.

The result shows that the proposed DU of HF-LDPC is an

effective and general optimization, and improves efficiency by

1.9× to 2.4×.
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V. RELATED WORK

A. Interleaving-based QC-LDPC decoder

Amaricai et al. [18] and Kumawat et al. [19] use a layered

algorithm, with each layer performing a specific update. It is

close to a fully-parallel algorithm and achieves high through-

put. However, adjusting QC-LDPC codes also change the

number of layers, hence the pipeline needs to be redesigned.

Furthermore, when there are a large number of LLRs that

need to be updated in parallel in the CNU, the implementation

frequency becomes significantly low. In some cases, it may not

even be possible to complete the routing.

Milicevic et al. [11] use the flooding algorithm, but only

one type of update is performed per iteration. The number of

iterations can only be a multiple of the number of interleaved

sets, causing a lower actual throughput.

Weiner et al. [20] use the flooding algorithm, where each

row of the base matrix corresponds to a specific task. Similar

to the layered interleaved approach, it requires a redesign of

the pipeline when changing the QC-LDPC code.

B. HLS-based QC-LDPC decoder

Mhaske et al. [21], [22] propose a layered decoder based

on LabVIEW-based HLS. This HLS approach represents the

hardware design using circuit diagrams, which has a larger

semantic gap than mainstream HLS based on software pro-

gramming languages. Additionally, due to the insufficient

exploitation of inter-block and intra-block parallelism, the

throughput per unit of hardware is generally lower.

Wang et al. [16] implement a performance-balanced

general-purpose QC-LDPC decoder design using Vivado HLS,

which is similar to the expert design in 2007 [10]. However,

this work only adopts inter-block parallelism and does not

eliminate the dependency between VNU and CNU in the

flooding decoding algorithm. As a result, the throughput per

unit of hardware is relatively low.

VI. CONCLUSION

By leveraging HLS ability and enhancing detailed hardware

behavior descriptions, we present an HLS-friendly QC-LDPC

decoding architecture to improve QoR of HLS, achieving

efficiency comparable to RTL solutions while maintaining

the flexibility of HLS. With key optimization methods, HF-

LDPC’s actual throughput performance surpasses SOTA de-

coders with similar parameters by 4× to 84×, up to 116 Gbps.
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