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Abstract—LDPC (Low-Density Parity-Check) codes have be-
come a cornerstone of transforming a noise-filled physical
channel into a reliable and high-performance data channel in
communication and storage systems. FPGA (Field-Programmable
Gate Array) based LDPC hardware, especially for decoding with
high complexity, is essential to realizing the high-bandwidth
channel prototypes. HLS (High-Level Synthesis) is introduced
to speed up the FPGA development of LDPC hardware by
automatically compiling high-level abstract behavioral descrip-
tions into RTL-level implementations, but often sub-optimally
due to lacking effective low-level descriptions. To overcome this
problem, this paper proposes an HLS-friendly QC-LDPC FPGA
decoder architecture, HF-LDPC, that employs HLS not only to
precisely characterize high-level behaviors but also to effectively
optimize low-level RTL implementation, thus achieving both high
throughput and flexibility. First, HF-LDPC designs a multi-unit
framework with a balanced I/O-computing dataflow to adaptively
match code parameters with FPGA configurations. Second, HF-
LDPC presents a novel fine-grained task-level pipeline with inter-
leaved updating to eliminate stalls due to data interdependence
within each updating task. HF-LDPC also presents several HLS-
enhanced approaches. We implement and evaluate HF-LDPC
on Xilinx U50, which demonstrates that HF-LDPC outperforms
existing implementations by 4x to 84 x with the same parameter
and linearly scales to up to 116 Gbps actual decoding throughput
with high hardware efficiency.

Index Terms—LDPC, FPGA, HLS

I. INTRODUCTION

LDPC (Low-Density Parity-Check) codes approaching the
Shannon limit of physical channel have been ubiquitously used
for error correction in communication and storage systems.
LDPC decoding is both data intensive and compute complex,
thus relying on FPGA (Field-Programmable Gate Array) based
hardware acceleration to achieve high performance.

LDPC decoders have been extensively studied in terms of
code structures, decoding algorithms, and hardware implemen-
tations [1] [2]. Most of the existing LDPC decoder designs
require manual coding in a Hardware Describe Language (e.g.,
Verilog) to accurately characterize Register-Transfer Level
(RTL) implementation. However, this manual development,
even for experts, generally takes a long design cycle with
continuous iterations to ensure functional correctness and high
quality of result (QoR) [3]. Recently, High-Level Synthesis
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(HLS) is introduced to automatically compile code written in
a high-level programming language, such as C/C++, into RTL
implementation, achieving high productivity and flexibility.
Using HLS, the designers can focus on precisely describing
the algorithmic logic and largely offload laborious circuit-level
layout (e.g., timing and routing control) to HLS.

However, it is challenging to use HLS to implement a
flexible LDPC decoder with high QoR. The high-level abstract
algorithmic logic description without a careful consideration
for features of the LDPC code and hardware configuration is
often compiled to a sub-optimal implementation. Specifically,
it is hard for HLS to precisely describe irregular LDPC with
high error correction capability. Furthermore, it is difficult for
HLS to fully optimize the small-sized decoding unit with low
quantization precision, thus decreasing the overall QoR of the
LDPC decoder.

To solve this problem, we propose HF-LDPC, an HLS-
friendly QC-LDPC FPGA decoder architecture, to achieve
both high throughput and high flexibility. To this end, HF-
LDPC designs a dataflow-centric multi-unit framework with-
out binding a specific code parameter with the FPGA con-
figuration. HF-LDPC consists of multiple decoding cores
(DCs), where each DC comprises an I/O module and multiple
decoding units (DUs) to maintain a balanced data stream.
Second, HF-LDPC presents a task-level pipeline with a novel
interleaved-update mechanism to exploit intra-/inter-block par-
allelism of QC-LDPC while eliminating stalls due to the data-
update dependence between the check node and value node.
Third, HF-LDPC also presents several key HLS-enhanced
techniques, such as HBM-aware data frame, DC placement,
vectorized data access, ping-pong update, and two-phase ad-
dressing, to enable further performance optimization.

The main contributions of this work are as follows:

o We design an HLS-friendly and well-modularized QC-
LDPC decoding architecture (HF-LDPC) to ensure both
flexibility and scalability.

o We propose a novel fine-grained pipeline with interleaved
updating for intra-/inter-block parallelism within the DU,
along with several performance-boosting techniques.

« We implement and validate the effectiveness of HF-
LDPC on Xilinx U50 terms of performance, flexibility,
scalability, and efficiency.



II. BACKGROUND AND MOTIVATION
A. FPGA and High-level Synthesis

FPGA developers traditionally write Hardware Describe
Language (e.g. Verilog) code to implement Register-Transfer
Level (RTL) hardware, which is generally tedious and error-
prone [3]. Recently, High-Level Synthesis (HLS) is advanc-
ing to automatically compile an algorithmic-logic behavioral
description (e.g., C/C++) into an RTL implementation. Such
HLS-based hardware development with high productivity and
flexibility has been broadly used in large-scale and new
functionality scenarios, e.g., machine learning [4], graph com-
puting [5], and domain-specific accelerators [6]. However,
the high-level abstract behavior without detailed low-level
descriptions can map to many low-level implementations, most
of them are sub-optimal. HLS offers pragmas to precisely
characterize the behavior-description to improve the quality
of HLS results (QoR) [7], [8].

B. QC-LDPC
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(a) PCM Structure  (b) QC-LDPC PCM

Fig. 1: An example of QC-LDPC parity check matrix (PCM)
and the corresponding tanner graph

(c) Tanner graph

LDPC codes have superior error-correction capability at the
cost of computation complexity. LDPC is defined by a parity
check matrix (PCM). Each row in PCM corresponds to a check
node (CN), each column corresponds to a variable node (VN)
and a “1” in the PCM indicates the existence of an edge
between VN and CN. All VNs, CNs, and edges constitute
a tanner graph. Quasi-Cyclic LDPC (QC-LDPC) [9] codes
with well-structured PCM are suitable for hardware imple-
mentation without significant error-correction loss, which has
been widely used in the communication and storage fields.
Fig. 1 gives an example of QC-LDPC and its tanner graph.
The PCM of example QC-LDPC consists of 2 x 3 I(n) sub-
matrices. The size of I(n) is Z x Z. An I(n) sub-matrix is
an n-step circulant permutation matrix from the unit matrix
(1(0)). I(—1) represents a zero matrix.

Therefore, a specific base matrix and the size of the sub-
matrix (expansion factor) determine a specific PCM and the
corresponding QC-LDPC code.

C. QC-LDPC Decoding Algorithm and Structure

The QC-LDPC decoding typically employs the message-
passing based min-sum algorithm, which converts the complex
posterior probability calculations into the logarithmic form,
thus simplifying the computational complexity. Each bit in the
codeword is actually represented by the log-likelihood ratio
(LLR) value. The decoding process updates LLR messages
between CN and VN iteratively, until the stop-condition or
a predefined iterative threshold is met. These sub-matrices of
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PCM are also referred to as blocks [10]. Since the initialization
values for each column in the block come from the correspond-
ing LLR at the corresponding positions “1” in the PCM as
shown in Fig. 1b. Each block corresponds to a memory block,
and block-wise circular shifting is achieved by addressing each
block with a different address offset. The memory block stores
the received messages after each update.

The QC-LDPC decoding algorithms are classified into the
two categories of flood and layered update scheduling. The
flood scheduling updates all VNs before updating CNs, and
vice versa, which has high error correction performance but
low decoding convergence speed. In contrast, the layered
scheduling has a faster decoding convergence speed at the cost
of error-correction performance without scaling circuits [11].
Moreover, the data dependence among layers causes memory-
access contention [12].
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(a) Example Check Matrix (b) A QC-LDPC
and Related Codeword Decoder Unit
Fig. 2: The Inter-block Parallel Structure of a QC-LDPC
Decoder

The decoding parallel algorithms also fall into the intra-
block and inter-block categories. The former parallelizes the
update of information within a block but serially traverses
all blocks in the PCM. They typically require Z serial-update
units and parallel shifters. On the contrary, the latter serially
processes a block but multiple blocks in parallel, as shown in
Fig. 2b. They typically require the numbers of parallel CN
and VN update units to be equal to the numbers of rows
and columns in the base matrix, achieving high hardware
efficiency, but at lower flexibility by binding to a specific code.

D. Motivation

Most of the RTL-based prior works focus on designing
a decoding unit to fully exploit hardware resources but are
strictly dedicated to a specific QC-LDPC code and FPGA
hardware. Existing HLS-based implementations ease develop-
ment tasks but generally exhibit low QoR. We are motivated to
effectively leverage HLS to design scalable and flexible QC-
LDPC adapting varied code parameters to FPGA configuration
to achieve high decoding performance and hardware efficiency.

III. HF-LDPC DECODER DESIGN
A. HF-LDPC Architecture

We propose an HLS-friendly decoder architecture, HF-
LDPC that combines a high-level dataflow-centric multi-
unit framework and a low-level interleaved-update task-level
pipeline that exploits inter-/intra-block parallelism. HF-LDPC
comprises multiple decoding cores (DCs), as shown in Fig. 3.
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Fig. 3: HF-LDPC Architecture

A DC with a limited scale consists of an input/output
(I/O) module and an array of decoding units (DUs), which
is connected to an HBM channel. The I/O module reads the
codeword from HBM to the DUs and writes decoded data from
the DUs to HBM, to meet the data-processing capacity of DUs.
HF-LDPC employs the inter-block parallel flood scheduling
that decodes all blocks in parallel. We design an interleaved-
updating task-level pipeline within a DU to eliminate the stalls
due to cyclic data dependence between VNU and CNU in the
flood scheduling.

At the high level, we employ HLS to design a dataflow-
centric framework, adapting to different quantization preci-
sions and PCM. The codeword stream sequentially flows
through the input module, multiply DUs, and output mod-
ule, which are well described by HLS with the DATAFLOW
pragma.

Additionally, we also take full advantage of HLS to opti-
mize the RTL-level implementation at the circuit level within
well-defined units. For DU, HF-LDPC also leverages HLS
to not only accurately characterize intra-/inter-block parallel
algorithms, but also to automatically optimize the RTL-level
implementation with HLS-enhanced expressions, thus improv-
ing hardware efficiency.

B. Multi-unit Decoding Core

Considering that modern FPGAs are evolving with HBM
and multi-die layouts, the HF-LDPC design fully utilizes these
FPGAs by adopting a multi-DUs structure in each DC so that
a DU has a limited scale and fixed iterative-update pipeline.
Note that a given LDPC code and the decoding algorithms
determine the input/output bit-width of each DU. Therefore,
the bit-width of the HBM channel dictates its supportable
number of DUs. As a result, DCs are completely independent
of one another without data correlation and are entirely placed
within an FPGA die.

To well balance data access and data process in terms of
both data width and decoding time, the IO module needs to
connect HBM and the DUs to form a complete data path.
However, this will be challenging for manual RTL-level design
to accomplish due to strict cycle-and-circuit level constraints
of complex protocols when accessing off-chip memory using
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high-speed buses in FPGA. Fortunately, HLS can analyze the
function interfaces and I/O behaviors of the user code to
automatically generate a high-speed bus interface module.

Moreover, HLS’ ability to allow users to use the same code
with different pragma directives to flexibly adjust microarchi-
tectures makes it possible to decouple the high-level DC from
the low-level DU while providing flexible support to tolerate
different delay characteristics, interface bit width and internal
parallelism of DU.

For example, Xilinx FPGA acceleration cards employ the
AXI-MM protocol with XDMA to access HBM. Efficient
utilization of high-speed buses requires an appropriate burst
transfer length. In HLS, the burst transfer length can be
automatically configured by analyzing the user code. The mod-
ularized multi-module architecture can be described by HLS
accurately and efficiently. For example, HF-LDPC designs a
module-level pipeline using the DATAFLOW pragma to mask
the HBM latency (approximately 70 cycles or more). The high-
level pipeline also employs inter-module buffering (e.g., ping-
pong or FIFO) without modify the interface of DU.

LLR Codeword Block
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Frame 512 bit
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f Data Frame L

Fig. 4: HBM-aware Data-Frame Format

1) HBM-aware Data-Frame: Note that different code pa-
rameters have their corresponding sizes of the codeword and
bit-access patterns. When multiple DUs process codewords
in parallel, the I/O module needs multiple cycles to read
codewords from and write decoded words to the HBM channel
respectively. Furthermore, the number of cycles for data-in and
data-out should be lower than that of the cycles for DU.

Besides, each DU pipeline needs to read multiple LLRs
simultaneously from different blocks in the codeword. This
means that the order in which bits are accessed is different
from the order of bits in the codeword. This bit-order mismatch
needs additional buffers, addressing hardware and extra cycles
to re-order the bits.

To avoid the reordering within the critical DU, we define an
HBM-aware data-frame matching the HBM width. As shown
in Fig. 4, the decoder-frame packs LLRs with the same address
offset in different blocks of a single codeword. One or more
decoder-frames in a data-frame can be filled up to ensure
multiple DUs working in parallel.

For example, suppose a decoder uses a base matrix with a
column size of 24 and quantization precisions of 2 bits. In this
case, a DU has 48 bits input width. Since the HBM interface
width is 512 bits, we can transfer 10 decode-frames in a data-
frame, thus inputting data into 10 DUs in parallel.

HF-LDPC offers a flexible and modularized approach to
feeding data to multiple DUs with different parameters without



modifying its architecture. Furthermore, due to the match
between frame formats and the input order of DU, it does not
need additional buffers or scheduling, improving the hardware
efficiency.

Dtype Mem[...][LEN];
#pragma HLS ARRAY_RESHAPE ...

Dtype Mem[...][LEN];
#pragma HLS ARRAY_RESHAPE ...

4 offset = expression(i);

expression(i);
oxy [LEN] ;

i=0"

proxy [offset]

[
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(a) original HLS code (b) optimized HLS code

Fig. 5: Indirect Vectorization

2) Indirect Vectorization: The DU decoding pipeline reads
data from different blocks in parallel. To meet the parallel-
access requirements of read and write operations, the pragma
array_partition is commonly used to divide a memory
block into multiple partitions with multiple read and write
ports. When accessing the same offset addresses in those mem-
ory partitions in parallel, the memory can be implemented as
vectorized memory block sharing a single addressing circuit.

However, when accessing multiple elements in the vector-
ized memory block, HLS can mistakenly detect the existence
of data dependency and must serialize the multiple accesses.
To avoid this misunderstanding, we temporarily interpret the
vector as separate scalars, which is referred to in this paper as
vector proxy.

Specifically, as shown in Fig. 5a, the pseudocode reads
data from a vectorized memory block. Line 1 and 2 together
represent a vectorized array, which is implemented by HLS
as a vector memory block with a width of LEN. Due to
the complex expression of line 4, the accesses to the vector
memory block in Line 11 may be analyzed by HLS as I/O
contention (can happen whether the of fset is on the left or
right side of =).

Therefore, we introduce Indirect Vectorization, for which
the code can be modified as shown in Fig. 5b. Lines 5 and 6
define a vector proxy of the same width as the vector memory
block with array_partition. Line 8 rewrites the original
assignment to the vector memory block to assign to the vector
proxy. Line 11 further assigns the elements of the vector proxy
to the vector memory block one by one.

After this code modification, HLS does not mistakenly
detect data dependency and correctly implements a vectorized
memory block with parallel accessing. Since the additional
array only performs assignment operations, it may only add a
small number of registers or is expressed as a wire connection,
resulting in small or no increase in hardware consumption.

3) DC Hardware Allocation: When the design of the DC
is determined, we consider scaling multiple DCs to efficiently
utilize the resources on the FPGA for high actual decoding
throughput.

Specifically, each DC is connected to an independent HBM
to avoid memory channel contention. Additionally, all DCs are
evenly placed in different Super Logic Region (SLR) areas
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to avoid high circuit delays caused by crossing SLRs and
circuit congestion that may occur prematurely due to uneven
SLR utilization during automatic placement. This approach
can keep a high implementation frequency of the FPGA.

C. Decoding Unit

Within the decoding unit, we employ a task-level pipeline
with interleaved updating to eliminate the stalls caused by
flood scheduling. Additionally, we design a two-stage ad-
dressing approach to effectively jointly exploit inter-block
parallelism with intra-block parallelism.

Dtype MA[...];

bool init = iter < 1;
boo.

end = iter > N - 1;

[...] = init? 0:MA[...];

CNUA “ VNUA MA[...] = vnu_output[...];
9 if(end) out[..]=vnu_output[..]>0;
11 Shu_input[...] = MA[...];

12 cnu(...);

13 MA[...] =

cnu_output[...1;

(a) Decoder Structure (b) HLS code

Fig. 6: The Decoding Process of Iterative Update

1) Interleaved Update: In DU, groups of CNUs and VNUs
are referred to as CNU array (CNUA) and VNU array (VNUA)
respectively. The memory block, referred to as memory array
(MA), stores messages passed between CNUA and VNUA, as
shown in Fig. 6a, the corresponding HLS code is shown in
Fig. 6b.

In the flood scheduling, the LLRs are updated by VNUA
and CNUA iteratively. There exists data dependence between
the CN and VN updates within the decoding pipeline, causing
stalls. To eliminate such data dependence, CNUA and VNUA
update two codewords simultaneously in an interleaved man-
ner.
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Fig. 7: The Decoding Pipeline of Interleaved Update

Specifically, as shown in Fig. 7, first, the number of it-
erations is extended to K = N + N — 1 according to the
number of cyclic dependency tasks K, and the original number
of iterations IN. For example, if there are only VN and CN
updating tasks involved in the cyclic dependency, then K = 2.
And the number of iterations is extended to 2N + 1. In
terms of scheduling, pipeline initialization is performed during
iterations 1 to 2, normal iterations occur from iteration 2 to
2N, and pipeline output from iteration 2N — 1 to 2N + 1.

We design the decoder structure as shown in Fig. 8a, and
the corresponding HLS code is shown in Fig. 8b. M A is
divided into M A4 and M Apg in Lines 1 and 2. The read
interface of VNUA is connected to M Ap in Line 7, while its
write interface is connected to M A4 in Line 11. Similarly,
the read interface of CNUA is connected to M A 4 in Line 8,
and its write interface is connected to M Ap in Line 13. The



Dtype MA_A[...];
Dtype MA_B[...1;

R

CNUA
MA_B i

12
13

(a) Decoder Structure (b) HLS code

Fig. 8: The Decoding Process of Interleaved Update

data inter-dependency is eliminated. Furthermore, to obtain
correct pipeline initialization and output, the extra scheduling
statements in Lines 4 and 5 are necessary to redirect the output
and input of modules in Lines 8 and 12.

After modifying the code in this way, since there is no
longer a read-after-write operation as shown in Fig. 6b in
Lines 11 and 8, the dependency is eliminated, so that HLS
can schedule CNUA and VNUA for parallel operations.

2) Ping-pong updating: In fact, the update operations take
multiple cycles, and CNU and VNU have different traversal
orders for their updates. An incorrect update order causes
erroneous decoding results.

For example, when updating position x, CNU reads an LLR
of the first codeword from M A 4 and writes it to M Apg, thus
overwriting the corresponding LLR of the second codeword
required by VNU. When updating position x, VNU should
have read the LLR of the second codeword from M Apg, but
VNU will read a wrong LLR overwritten by CNU.

To avoid such order-induced errors, it is necessary to ensure
that the memory address ranges for CN and VN operations do
not overlap during the update process. Considering that CN
and VN operations are always parallel, we have designed a
ping-pong update approach, as shown in Fig. 7, to achieve the
correct decoding process with minimal hardware overhead.

CNUA

L] =
15| A Blpingl[...]

(b) HLS code

(a) Decoder Structure
Fig. 9: The Decoding Process of Ping-pong Updating

Specifically, as shown in Fig. 9b we introduce two single-
bit control variables as ping and pong, which always have
different values that are switched at each iteration. In terms
of code, the values of ping and pong are calculated based on
the current iteration count in Lines 6 and 7. The stride of the
array representing MA is increased to 2 in Lines 1 and 2.
The expressions for the read and write operations related to
MA are modified to set ping and pong to fill the stride for
addressing offset in read and write operations in Lines 9, 10,
13 and 15.

This approach guarantees the correctness of results by only
adding one bit for addressing and doubling the memory depth.

3) Two-stage Addressing: Since the number of CNUs and
VNUs in inter-block parallel decoders is usually much smaller
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than that of the intra-block parallel decoders, the proportion of
decoding components is limited. Even if the parallel CNU and
parallel VNU are more efficient, the entire decoder remains
inefficient. To address this issue, we attempt to combine intra-
block parallelism with inter-block parallelism to increase the
number of decoding components, improving the efficiency of
the HF-LDPC decoder.

%N R W —

(b) HLS code

(a) Structure

Fig. 10: The Potential IO Competition of Intra-block Parallel

Intuitively, as shown in Fig. 10a, increasing the intra-block
parallelism only adds appropriate pragma unroll in the
serial loops to increase the number of node update components
as Line 4, and splits the corresponding memory block using
array_partition pragma as Line 2 to satisfy the I/O
requirements of the decoding components. However, when
implementing this optimization, HLS is unable to generate
an expected pipeline design with the initiation interval (I1)
being equal to 1, resulting in a suboptimal pipeline schedule
and decreasing the decoding throughput.

After analyzing the HLS logs and code behaviors, we find
that VNU and CNU in each iteration have different address
offsets when using array_partition. Therefore, HLS
interprets this as VNU and CNU accessing the same sub-
memories, as shown in Fig. 10a. HLS is unable to determine
whether there exists I/O competition, thus can not give a
11 =1 pipeline scheduling.

Dtype MA[...] [IN_P] [BLOCK_SIZE/IN_P];

MA[. .. [

CScxuousuwn—

(a) Structure

(b) HLS code
Fig. 11: The Two-stage Addressing for Intra-block Parallel

However, due to the cyclic characteristic of sub-matrices in
QC-LDPC, such I/O competition will not occur actually. When
partitioning each memory block in MA, circular shifting can
be achieved by a two-stage addressing process, as shown in
Fig. 11a. Therefore, we guide HLS to explicitly partition the
memory blocks using the two-stage addressing approach.

We modify the original HLS code as shown in Fig.10b.
Specifically, we introduce an additional dimension to the
arrays, which allows for explicit data layout, and then decom-
poses the original addressing variable into a constant address
and a variable address offset. This explicitly informs HLS that
a barrel shifter in combination with address offsetting should
be used to access the multiple sub-memories.

In this way, at the cost of increasing one pipeline stage, we
ensure that HLS can achieve an optimal pipeline design while
exploiting the intra-block parallelism.



IV. EXPERIMENT AND EVALUATION

A. Experimental Configuration

TABLE I: Hardware Resources and Memory of FPGA Plat-
form A-U50-PO0G-PQ-G

Platform information Value
User budget (LUT) 750k
Max clock frequency (MHz) 500

HBM2 total capacity (GB) 8
HBM2 bandwidth (GB/s) 201

We use the Xilinx Vitis 2020.2 hardware development
platform to implement HF-LDPC on Xilinx Alveo U50 data
center accelerator card (A-U50-PO0G-PQ-G) with an official
firmware (Xilinx_u50_gen3x16_xdma_201920_3). This plat-
form integrates Vivado HLS, Vivado, XRT middleware, and
a semi-automatic configuration generator. FPGA is connected
to the host via PClIe3.0.

The key parameters are listed in Table I. All the actual
throughputs are measured running on FPGA instead of cal-
culated by delay and frequency (throughput).

B. Overall Performance

In our evaluation, the HF-LDPC prototype is compared
against the state-of-the-art (SOTA) decoders with their best-
performing versions, as listed in Table. II. Furthermore, for
a fair comparison, we have implemented multiple versions of
our HF-LDPC decoder with the same hardware parameters
and QC-LDPC parameters as the SOTA decoders.

Table. II demonstrates that HF-LDPC achieves very high
actual throughput, surpassing the performance of SOTA de-
coders by a factor ranging from 4x to 84 x with the same set
of parameters. Moreover, the efficiency (throughput or actual
throughput divided by hardware consumption) of HF-LDPC
also exceeds existing HLS-based solutions, even surpassing
RTL-based solutions.

These results indicate that HF-LDPC can efficiently utilize
the hardware resources of modern FPGAs to achieve high
actual decoding throughput.

C. HF-LDPC Decoder Scalability

1) HF-LDPC Decoder DC Hardware Allocation: In this
experiment, we fix a specific set of parameters to evaluate the
optimizations in a multi-DC decoder.

Fig. 12 illustrates the effects of different allocation strate-
gies: no specified HBM channel allocation and DC placement

TABLE II: Decoder Performance Comparison

Method Technology Code  Quant Iter.  Throughput Efficiency
Rate /bit /Gbps /Mbps per KLUT
HF-LDPC HLS(C++) 172 2 5 116.51 311.65
HF-LDPC HLS(C++) 172 6 10 16.97 47.75
HE-LDPC HLS(C++) 3/4 6 10 11.87 39.26
HF-LDPC HLS(C++) 3/4 6 10 16.70 36.69
[13] RTL 3/4 6 10 0.85 35.20
[14] RTL /8 6 14 2.00 35.00
[15] RTL 12 3 20 3.36 42.84
[16] HLS(C++) 12 6 10 0.19 7.68
[171 HLS(Labview)  1/2 6 5 0.28 14.95
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Fig. 12: Multi-DC HF-LDPC Decoder

(a) Throughput

(baseline), only specifying HBM channel allocation (no SLR),
and simultaneously specifying HBM channel allocation and
DC placement (HF-LDPC). As the number of DCs increases,
the actual throughput of baseline remains almost unchanged
due to IO bus contention. The actual throughput of no SLR
exhibits nearly linear growth with the number of DCs, reaching
up to 11x actual throughput. This indicates that the memory
channel allocation is efficient.

However, at the maximum number of DCs, there exists
an actual throughput decrease for no SLR. This is because
when no specific SLR is specified, the default placement
strategy prioritizes placing the DCs in a particular SLR near
the HBM channel. This can lead to circuit congestion in
that SLR, thus resulting in a decrease in implementation
frequency and reduce actual throughput. By specifying the
SLR for each DC, HF-LDPC successfully improved the im-
plementation frequency, and the actual throughput increases
from 108.06Gbps to 116.51Gbps, achieving an 11.8x actual
throughput improvement over the baseline.

The experiments demonstrate that the DC hardware alloca-
tion of HF-LDPC enables linear scalability.

2) Decoding Core: In this experiment, we fix a specific set
of parameters to evaluate the optimization effect of multi-DU
DC and vectorized buffer.

All decoders in this experiment consist of one DC with a
different number of DUs. Each DU applies all optimizations.

—e— Basecline
—®— Vectorized

—e— Baseline

304 —o— Vectorized
10

1 2 3 4 5 1
Number of DU

g
8

—e— Baseline
—o— Vectorized

Throughput /Gbps

2
8

Hardware consume /kLUT
-
Efficiency /Mbps per KLUT
3
2

e
>
°

2 3 4 5 1
Number of DU

2 3 4 5
Number of DU

(a) Hardware (b) Throughput (c) Efficiency

Fig. 13: Multi-DU Decoding Core

Fig. 13a and Fig. 13b show that the actual throughput of
DC scales linearly with the number of DUs. The hardware
consumption of DC increases by 2.83x while the actual
throughput improves by 4.95x, thus resulting in a reduction
of 18.2% in hardware consumption compared to the baseline.

Furthermore, when linearly fitting on the data in Fig. 13a,
the intercept of the fitted line as the hardware consumption of
the 10 module in the DC is small, only 6.22% in 5-unit DC.
This indicates that our designed 10 module efficiently supports
the scalability of the DUs, shown in Fig. 13c.

In conclusion, we leverage HLS to design an efficient DC



while improving the Quality of Results (QoR).
D. Decoder Unit

In this experiment, we evaluate several key optimizations
applied in the decoder unit. The QC-LDPC PCM in the
experiments uses a code rate of 1/2 in the 802.16e standard
with an expansion factor of 64.

1) Interleaved Update: In this experiment, with a specific
set of parameters, we evaluate the optimization effect of the
interleaved update mechanism in the decoder. All decoders
in this experiment consist of one DC, one DU per DC, and
no intra-block parallelism applied in each DU. The compared
items include the Baseline without the interleaved update, the
IU with only interleaved update, and the ping-pong with both
interleaved update and ping-pong scheduling.
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Fig. 14: Interleaved Update

Fig. 14a and Fig. 14b demonstrate that the interleaved
update mechanism roughly doubles the actual throughput.
And the ping-pong addresses the issue of data overlap during
decoding at the cost of a small hardware consumption. Fig. 14¢
illustrates that the interleaved update mechanism improves the
efficiency by less than 2x. Considering that modern RTL
toolchains often incorporate dozens of optimization steps, even
if the baseline design is not ideal, it may be optimized during
the FPGA implementation phase by the RTL toolchain, thus
enhancing the efficiency of the baseline.

However, our experimental results indicate that relying
solely on the automatic optimizations provided by HLS and
RTL toolchains is insufficient. A well-considered coarse-
grained dataflow design can further enhance the Quality of
Results (QoR) of HLS designs.

2) Intra-block parallelism: After applying the two-stage
addressing, we can adjust the internal parallelism of the DU
and utilize HLS for automatic pipeline redesign. Therefore,
in this experiment, we designed DUs with different internal
parallelism. All decoders in this experiment consist of one
DC, one DU per DC, and each DU applies interleaved update

and ping-pong scheduling.
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Fig. 15a shows that intra-block parallelism is linearly
scaling with hardware. When the internal parallelism (the
numbers of CNUAs and VNUAs) is low, the update units
without two-stage addressing only consume a small portion
of the hardware resource. With two-stage addressing, HLS
successfully improves the internal parallelism and efficiency
of DU, as depicted in Fig. 15c.

Note that, as shown in Fig. 15b, when the internal paral-
lelism exceeds 4, the actual throughput of the decoder reaches
the peak, due to a good speed-matching between the I/O
module and the update units in the DC. When the internal
parallelism surpasses the number of decoder’s iterations, the
I/0 module becomes the bottleneck.

Therefore, for a decoding unit with 5 iterations, internal
parallelism of 4 achieves an optimal design balance. The
optimal balance point may vary with different numbers of
iterations.

E. Decoder Unit Flexibility

To assess flexibility, we implemented three sets of decoders
with different parameters. The first set consists of baseline
decoders without any optimization, the second set of decoders
use interleaved update only, and the third set of decoders
further incorporates the two-stage addressing. Each set consists
of 15 decoders, representing various combinations of code
rates and quantization precisions to demonstrate the flexibility
of our approach. Each decoder is a complete HF-LDPC
decoder with only one DU.
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Fig. 16: Decoder Unit Flexibility

Quant. precision

Focusing on the green bars in Fig. 16, we can observe that
HF-LDPC not only adapts to different decoder parameters but
also achieves similar efficiency with similar parameters, which
demonstrates flexibility. When comparing all the decoders
as a whole, low quantization precision decoders primarily
improve efficiency through two-stage addressing, while high
quantization precision decoders primarily improve efficiency
through interleaved update.

This is because when the quantization precision is lower, the
scale of the update units is smaller, and MA and the interface
modules in the HF-LDPC decoder consume most of the hard-
ware resources. However, when the quantization precision is
higher, the update units are larger, and the hardware efficiency
primarily comes from increased internal parallelism.

The result shows that the proposed DU of HF-LDPC is an
effective and general optimization, and improves efficiency by
1.9% to 2.4x.



V. RELATED WORK
A. Interleaving-based QC-LDPC decoder

Amaricai et al. [18] and Kumawat et al. [19] use a layered
algorithm, with each layer performing a specific update. It is
close to a fully-parallel algorithm and achieves high through-
put. However, adjusting QC-LDPC codes also change the
number of layers, hence the pipeline needs to be redesigned.
Furthermore, when there are a large number of LLRs that
need to be updated in parallel in the CNU, the implementation
frequency becomes significantly low. In some cases, it may not
even be possible to complete the routing.

Milicevic et al. [11] use the flooding algorithm, but only
one type of update is performed per iteration. The number of
iterations can only be a multiple of the number of interleaved
sets, causing a lower actual throughput.

Weiner et al. [20] use the flooding algorithm, where each
row of the base matrix corresponds to a specific task. Similar
to the layered interleaved approach, it requires a redesign of
the pipeline when changing the QC-LDPC code.

B. HLS-based QC-LDPC decoder

Mhaske et al. [21], [22] propose a layered decoder based
on LabVIEW-based HLS. This HLS approach represents the
hardware design using circuit diagrams, which has a larger
semantic gap than mainstream HLS based on software pro-
gramming languages. Additionally, due to the insufficient
exploitation of inter-block and intra-block parallelism, the
throughput per unit of hardware is generally lower.

Wang et al. [16] implement a performance-balanced
general-purpose QC-LDPC decoder design using Vivado HLS,
which is similar to the expert design in 2007 [10]. However,
this work only adopts inter-block parallelism and does not
eliminate the dependency between VNU and CNU in the
flooding decoding algorithm. As a result, the throughput per
unit of hardware is relatively low.

VI. CONCLUSION

By leveraging HLS ability and enhancing detailed hardware
behavior descriptions, we present an HLS-friendly QC-LDPC
decoding architecture to improve QoR of HLS, achieving
efficiency comparable to RTL solutions while maintaining
the flexibility of HLS. With key optimization methods, HF-
LDPC’s actual throughput performance surpasses SOTA de-
coders with similar parameters by 4x to 84, up to 116 Gbps.
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