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Abstract

The proliferation of malware in today’s society
continues to impact industry, government, and
academic organizations. The Dark Web provides
cyber criminals with a venue to exchange and store
malicious code and malware. Hence, this research
develops a crawler to harvest source code, scripts, and
executable files that are freely available on the Dark
Web to investigate the proliferation of malware.
Harvested executable files are analyzed with publicly
accessible malware analysis tool services, including
VirusTotal, Hybrid Analysis, and MetaDefender
Cloud. The crawler crawls over 15 million web pages
and collects over 20 thousand files consisting of code,
scripts, and executable files. Analysis of the data
examines the distribution of files collected from the
Dark Web, the differences in the results between the
analysis services, and the malicious classification of
files. The results reveal that about 30% of the
harvested executable files are considered malicious by
the malware analysis tools.

Keywords: Dark Web, web crawler, malware
analysis, hybrid analysis, public analysis tools.

1. Introduction

Cybersecurity is a major concern for the
government, businesses, and the public (Biden, 2021).
As society becomes increasingly dependent on
technology and the Internet, the concern for data,
systems, and network security continues to escalate. A
decade ago, IBM announced that data would become
a new natural resource for the 21st century (IBM,
2013).

Cybersecurity Ventures expressed that the attack
surface for cyber threats has expanded extensively due
to the increase in new technology (Cybersecurity
Ventures, 2022). The attack surface includes
everything from computer systems and networks to
Internet of Things (IoT) devices like home automation
systems and appliances, industry devices, and
healthcare devices.
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The Federal Bureau of Investigation’s Internet
Crime Report states that malware resulted in a total
loss of 9,326,482 dollars in 2022 (Federal Bureau of
Investigation, 2022). The 2023 Federal Bureau of
Investigation’s Internet Crime Report states that the
Internet Crime complaint center received 880,418
complaints and estimates that the losses from these
complaints will exceed $12.5 billion (Federal Bureau
of Investigation, 2023). The report goes on to state that
investment fraud, e-mail compromises, scams, and
ransomware all contribute to the types of crimes
contributing to the cost of cybercrime.

Over the years, illicit markets on the Dark Web
have been an area of interest to researchers. These
markets include hacking tools (Cherqi et al., 2018),
attack services (Hyslip & Holt, 2019), firearm
purchasing (Holt & Lee, 2023), stolen data (Holt et al.,
2016), illicit drugs (Liggett et al., 2020) and illegal
services (Campobasso & Allodi, 2023; Roddy & Holt,
2022). It is estimated that between 2011 and 2017 the
revenues from anonymous online markets were
around $15M (Van Wegberg et al., 2018).

The escalating impact of malware on
organizations and the growth of the Dark Web
prompts the hypothesis that crawlable executable files
on the Dark Web have utility for malware analysis
using VirusTotal, Hybrid Analysis, and MetaDefender
Cloud. The hypothesis raises two questions: 1) Can
executable files be collected from the Dark Web? 2)
Can publicly accessible malware analysis tools
characterize acquired executable files?

The contribution of this research paper is two-
fold. First, the results show that about 30% of the
executable files acquired from the Dark Web are
portrayed as malicious by the malware analysis tools.
Secondly, it provides necessary foundational research
to perform additional malware analysis on files
acquired from the Dark Web in the future.

The structure of the paper is as follows: Section II
introduces relevant dark web crawling and hybrid
analysis research. Section III describes the
methodology used in this controlled experiment.
Section IV presents the data, analyzes the results, and
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explores observations. Finally, Section V concludes
and presents future work.

2. Literature review

While malware detection, identification, and
analysis are of common interest in academics and to
practitioners (Fitzgerald, 2023; Herron et al., 2021;
Hightower et al., 2021; Luckett et al., 2018; Nguyen et
al., 2017; Nguyen et al., 2020), research continues to
investigate Dark Web crawlers (Aikhatib & Basheer,
2019; Boshmaf et al., 2023; Dalvi et al., 2021) and
hybrid analysis tools (Ijaz et al., 2019; Jamalpur et al.,
2018).

2.1 Dark Web crawlers

Previous work includes a variety of web crawlers
that harvest data on Dark Web pages. Dalvi et al.
(2021) implement a Dark Web crawler called SpyDark
that utilizes The Onion Router (Tor) Browser to crawl
a fixed set of pages based on keywords and site depth.
The author states the crawler implements a text-
filtering algorithm and eliminates irrelevant pages
using Artificial Neural Network classifiers. The
crawler analyzes the results through link activity and
generates graphical representations of collected
hyperlinks.

Aikhatib and Basheer (2019) create a web crawler
called Darky that crawls the Dark Web markets for
product and vendor information using the Tor Browser
with Privoxy virtual private network software to
provide security and anonymity. The authors state
their web crawler lacks automatic generation of login
credentials and login bypass. Aikhatib and Basheer
manually create the credentials for the web crawler.
The web crawler features bypass of the login
CAPTCHA verification using XPath and optical
character recognition analysis. If the bypass fails, the
web crawler allows for manual verification. The web
crawler iterates through each product category to
collect individual product information and vendor
information such as name, price, origin, reviews, and
number of sales. Their results contained 179 total
vendors and 6,387 total products in 16 hours. Digital
items, drugs/chemicals, and guides/tutorials are the
top three categories observed.

Boshmaf et al. (2023) develops an open-source
crawler for onion services called Dizzy. Dizzy
crawled 63,267,542 web pages. The crawler hashes
images to identify and group them, extracts public
blockchain transactions, identifies wallets, and
calculates cash flow for those wallets. Overall, the
research provides data on domain operations, web
content, cryptocurrency usage, and a web graph.

2.2 Hybrid analysis tools

Jjaz et al. (2019) apply static and dynamic analysis
techniques on executable binary samples and then use
the resulting reports for machine learning. For
dynamic analysis, the authors use Cuckoo Sandbox,
while for static analysis, they use the Python library
PEFILE. From both analysis approaches, the authors
utilize several machine learning methods and apply
them to the analysis results. The highest percentage
accuracy is the Gradient Classifier, with an area under
the curve at 95%, where the false positive rate is 5.6%
and the false negative rate is 14%. The authors state
that the dynamic environment analysis failed to be
efficient since several samples detected the
environment. In addition, performing static analysis
before the execution of malware is not efficient due to
obfuscated samples.

Jamalpur et al. (2018) perform static and dynamic
malware analysis on a malware sample. The authors
use VirusTotal to inspect the properties of the sample
and then use DependencyWalker and IDAPro to
analyze the code of the sample. They create an isolated
environment using Cuckoo Sandbox to perform a
dynamic analysis of the sample. The environment
consists of an Ubuntu Linux Cuckoo host, Windows
XP and Windows 7 Cuckoo guests, and the Cuckoo
agent to communicate between the host and guest
systems. A distributed firewall with updated iptables
is added as additional protection for the host. The
Cuckoo guest systems use the VirtualBox hypervisor.
After malware execution, they discover the sample
was ransomware that created a message for the user on
how to pay the ransom and decrypt their hard drive. It
encrypts files on the machine with certain extensions,
deletes all shadow volume files, and displays the
instruction message again.

The aforementioned research spans hybrid
analyses of previous experiments on malware using
various techniques and tools. However, minimal
research exists that implements a web crawler to
specifically harvest executable files, source code, and
scripts from the Dark Web and use publicly accessible
hybrid malware analysis tools to analyze the harvested
files.

3. Methodology

To investigate the hypothesis that crawlable
executable files on the Dark Web have utility for
malware analysis, the research approach was divided
into two parts: (1) crawler development and data
collection and (2) hybrid malware analysis. The first
part explains how the Dark Web crawler functions.
The crawler developer applied an incremental
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software development approach to program the Dark
Web crawler (Karlsson, 2001). The incremental model
includes four stages: requirements and analysis,
design, coding and implementation, and testing. This
part details how the crawler harvested executable files
and recorded statistics. The second part outlines the
application of malware analysis tools which include
VirusTotal, Hybrid Analysis, and MetaDefender
Cloud. The harvested data from the crawler provides
the input for a controllable experiment as defined by
(Shadish et al., 2002) for the hybrid malware analysis.

3.1 Crawler development

The objective of the Dark Web crawler is to
identify any executable files in pages on the Dark
Web. The crawler is designed to collect executable
files, source code, and scripts. For this research
endeavor, all harvested file types are considered for
data collection, while only executable files are
considered in scope for hybrid malware analysis. The
crawler is designed in Go and uses supplementary
Python and Bash scripts (Google; Python Software
Foundation; Ramey, 2023). Go was chosen due to its
lightweight nature with native concurrency and
libraries that balance ease of use with performance
(Rouse, 2017).

A virtual machine was created in VMware
vSphere Client to deploy the crawler program
(Broadcom). Throughout the development and testing
of the crawler program, specific amounts of hardware
were dedicated to the execution of the crawler. Tor
was used to access the Dark Web (Tor Project).
VSCodium was utilized as a code editor to develop the
crawler. The tools and hardware used to implement the
web crawler are presented in Table 1.

Table 1. Development toolset

Hardware & Version
Software

Virtual Machine - VMware vSphere Client
v7.0.3.00500

- Intel Xeon Gold 5318Y CPU
@ 2.10GHz x70 processor

- Ubuntu 20.04 LTS (64-bit) OS
- 256 GB Memory

- 2 TB Hard Disk

Go 1.18.2 linux/amdé4
Python 3.8.13

GNU Bash 5.0.17(1)-release
Tor 0.4.2.7

VSCodium 1.75.1

The incremental software development model
steps for developing the crawler are presented below.

For step one, the objective of the crawler project is to
identify any files that can be executed, including
executable files, source code, and scripts. Source code
and scripts are included in the data collection since
they can have executable forms. The files collected
from the crawler do not bypass login restrictions. The
definition of the objectives and scope includes the
outline of phases to complete the project.

The primary logic of the crawler is developed
from steps two to five. To efficiently crawl executable
files without the concern of resource exhaustion, the
crawling approach developed in step two revolves
around MIME types found in the HTTP response body
of web pages. This approach minimizes resource
usage and optimizes the crawling process.

Next, the goal is to extract onion links from the
page content for step three. Onion links are a specific
domain that can only be reached using the Tor (Tor
Project). Using Go’s 10 library to download a web
page as a stream of bytes and a regular expression
(regex) parser from the Regex module, onion links can
be identified and extracted from the page content.

In step four, the logic for the classification of
page content and executable files is defined. To
classify the page content and any possible executable
files, it needs to correspond to a parsable MIME type.
Once the MIME type is parsed, the logic to determine
if the MIME type is a valid executable file MIME type
is implemented. Valid MIME types include the
following:

e Executable files like Portable Executable

(PE), Executable Linkable Format (ELF),
Apple Disk Image files (DMG), Mach object
files (Mach-0O), etc.

e  Source code like Python, Java, Go, Perl, etc.

e Scripts like Borne Again Shell (Bash), Z

Shell scripts, etc.

e Additional file types like OS data and

compressed files

Only source code, scripts, and executable files are
downloaded for further analysis, while any other file
types are considered out of scope for the purposes of
this research. The SHA256 hashing function from the
Crypto module is used to hash the onion links to avoid
links that point to unwanted content. The module is
also used to name the valid files as their respective
hashes, resulting in a naming system without
collisions. In step five, a proxy system is integrated
using Tor daemons to ensure anonymous and secure
connections. A SOCKSS5 proxy is added to the Go
HTTP clients. During this step, a queue system is
created to manage link processing. New links are
prioritized, while timed-out links are moved to a
secondary queue. The timed-out links are processed at
a later time with a longer timeout. The entire system
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functions as a complete priority queue, which
optimizes system speed and prevents potential
disruptions caused by dead links.

Additional features such as statistics and
monitoring are added in step six. The statistics are
displayed at specified intervals to the terminal and to
a Discord channel via webhook to provide the live
progress of the crawler over time. The Discord module
relays crawler statistics to a predefined Discord
webhook that provides automated updates. The
webhook is attached to a Discord server where the data
statistics are posted to a text channel in the server. The
statistics are saved for future reference and analysis.

Steps seven to ten included various aspects of
crawler optimization and improvements. In step seven,
live tests and adjustments are conducted to optimize
the queue system's structure. These adjustments
ensure effective handling of excessive dead links from
large web pages or quick responses. For step eight, to
optimize the resource utilization and performance of
the crawler, live code tests are performed, and
adjustments to the number of Tor daemons and
workers are made to determine the best parameters
based on the CPU cores and bandwidth of the machine.

Two major improvements to the crawler are
added in step nine. Recognizing that executable files
are often stored in compressed or archived files, a
decompression daemon system is implemented to
harvest more executable files. This system enables
immediate decompression or downloading of files into
memory to determine valid executable contents
without issues like zip bombs or irrelevant files. The
Archiver module assists in extracting files from those
archives. The Ranger module saves resources by
partially parsing archives without downloading the
entire archive using the HTTP request body. The
second improvement to the crawler is a queue
observing system that continuously monitors and
manages the queue to optimize memory usage and
maintain efficient crawling operations. The system
removes links that reached maximum page limits,
links that were unresponsive, or dead links.

In the final phase, the crawler program is
deployed to a dedicated server. Specifications of the
dedicated server are shown in Table 1. The storage of
the dedicated server is adjusted to support the data
harvested from the crawler. The overall process of the
crawler program consists of the engine and workers.
The core of the program is called the engine and
contains the main execution loop, while the workers
are individual processes. The engine employs the
workers to utilize concurrent threads to scrape,
enqueue, and process new links.

3.2 Data collection

The development toolset information is available
in Table 1. The source links to start the crawler are
gathered from a custom crawling script for onion and
Tor-related subreddits. To start the data collection
process, any existing Tor daemons are killed. A
custom script to create new daemons is executed.
Given the amount of Tor daemons, the script creates a
Tor configuration file for every daemon and creates a
bash script to start the daemons. After three to five
minutes, the latest version of the source code is built
and executed. The wait time allows the Tor daemons
to start up completely.

The data collection consists of two executions.
The first initial data collection occurred for about a
week. The data collection ended earlier than expected
due to Tor daemons reaching timeout in domains. To
fix this issue, a domain timeout was added to prevent
the crawler from getting stuck on pages with massive
amounts of links. Each domain has a maximum
number of pages crawled before it is purged from the
queue. After resolving the issue, the crawler was
executed again. The second data collection occurred
for approximately three weeks. After there was no
change in collected executable files for three days,
data was extracted from the crawler.

The Discord application is used throughout data
collection to monitor the crawler statistics from
another device. The program outputs the statistics of
the crawler every minute to the Discord channel in a
private server via webhook. The statistics include
information about the data collected and the crawler's
efficiency.

3.3 Hybrid malware analysis

To determine the executable files for analysis, the
collected files needed to be categorized. The Linux
file, grep, sort, and uniq commands were used to
categorize the collected files. The file command is
used to determine the file type, and the output is piped
into the awk command to parse the file type name. The
resulting output is piped into the sort command to sort
the file types, then the unig command with the count
option is used to count each file type. The output from
the commands is used to determine the executable files
in the data. They are copied from the entire dataset to
make a new dataset for hybrid analysis. To determine
malicious behavior about the executable files, the
analysis services (VirusTotal), (Hybrid Analysis), and
(MetaDefender Cloud) are used to analyze each
executable file.

Source code or script files are not used since these
files are not in their executable form. Therefore, they
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are out of scope for this analysis. VirusTotal (VT),
Hybrid Analysis (HA), and MetaDefender Cloud
(MD) were chosen due to their public accessibility,
automation ability using Application Programming
Interface (API) access, and request limits. To automate
the process of analyzing each executable and its
results, Python is used to create scripts utilizing each
analysis service’s API.

The analysis algorithm features three primary
methods for all analysis services: hash querying,
executable file uploading, and analysis retrieving. The
SHA256 hash of the executable file is used to query
the analysis service’s database, and the status of the
analysis is recorded as queried. If the file hash is found
in their database, then the analysis of the file is saved.
The analysis status is marked as completed, and the
algorithm iterates to the next executable file. If the file
hash is not identified in their database, it is recorded as
unknown. The file is uploaded to the analysis service,
and the analysis status is marked as uploaded. If the
analysis of the file is completed, then the analysis of
the file is saved, and the analysis status is recorded as
completed. If the analysis of the file is not completed,
then the analysis script is executed to retrieve the
missing analysis information and complete the
analysis for that file. Once the analysis is saved, the
algorithm iterates to the next executable file.

To simplify analysis and data clustering, the
results were saved as a dictionary in a YAML file. The
format made it easier to index specific values of the
analysis to identify and cluster data for the results of
the experiment. Each analysis file's name is the
executable file's name with the .yml file extension.
SHA256 hash was used to hash the file. Since there
were two data collections, there are two datasets from
which the executable file originated. Hence, the
dataset _id field can either be 1 or 2, with 1
representing the first data collection and 2 representing
the second collection. The analysis from each analysis
service is saved in separate sections of the file.

An analysis_id field is used to identify the results
after file upload. Executable files that have been
identified via hash analysis have a null analysis_id
value since file upload is not required to analyze the
file. Valid values for the status field of the analysis are
queried, uploaded, or completed. The is_hash_known
field is used to identify if the analysis services are
aware of the file using its SHA256 hash. The data from
the analysis service is saved in the analysis_data field.

For the hash query method, if the request limit is
reached, the program sleeps or exits, depending on
which limit is exceeded. The request limits for VT are
4 requests per minute, 240 per hour, and 500 per day.
VT is the only analysis service that combines the file
reputation and file submission request limits. With

HA, the file reputation request limits are 200 scans per
minute and 2,000 scans per hour with no daily limit.
Meanwhile, HA allows 100 file submissions per day
with no minute or hour limits. For MD, 1,000 scans for
file reputation are allowed daily with no minute or
hourly limits. However, 10 submissions are allowed
per minute for file submission requests, while 100 file
submissions are allowed daily.

If the request limit has not been reached, the
program loads the dictionary from the analysis file and
determines if the hash has already been queried to the
analysis service. The hash will iterate to the next file
if it has been queried. If it has not been queried, it
queries the hash to the analysis service, changes the
analysis status field to queried, and logs the results in
a log file. Each entry in the log file contains the time
and date of the action, the file hash, the performed
action, and the HTTP code response of the performed
action. If the hash is found in the analysis service’s
database, then the is_hash_known field is changed to
true, status is changed to completed, and analysis_data
is changed to the data saved from the query to the
analysis service. The analysis file is overwritten with
changes to the dictionary. This process repeats until all
hashes are queried to the analysis service.

For the upload file method, the structure of the
process is like the hash query method with some minor
differences. First, the request limit is checked to
ensure it has not been exceeded. Using the dictionary
in the analysis file, the is hash known field is
checked. If the is_hash_known field is true, then the
program iterates to the next file. Otherwise, it uploads
the file to the analysis service. Each analysis service
has differences for uploading files. For example, when
uploading a file to VT, if the file size was larger than
32 MB, then a large upload link was required to upload
the file. HA requires an environment ID when
uploading a file. Additionally, HA had a file size
upload limit, so files larger than 100 MB were
excluded from uploading. Once a file is uploaded, the
analysis_id field is changed to the analysis ID returned
in the response from the request, and the analysis
status field is changed from queried to uploaded. The
analysis file is updated with changes to the dictionary.
The process repeats for all files until all unidentified
files have been uploaded to each analysis vendor.

To gather the results from the file uploads, queries
are made to retrieve the analysis data from each
analysis service. The request limits are checked, and
the program reads the contents of the analysis file. If
the analysis status field is uploaded, then a request is
made to the analysis service and the results are saved
into the analysis_data field. The status field is updated
to completed, and the updated dictionary is saved to
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the analysis file. The process repeats until all uploaded
files have analysis results.

To cluster the data and analyze the results, several
functions are written to identify data relations between
analysis services such as the number of files found and
not found, file classification (benign, malicious,
suspicious, etc.), and analysis service comparison. The
scripts index the dictionary in each analysis file to
gather data for analysis.

The count known_hashes function counts the
number of hashes known or not known for each
analysis service and writes the results to a dictionary.
The function iterates through all the analysis files and
sums the is hash_known field in the resulting
dictionary. The get file classification_info _and
details function iterates through all the analysis files
and determines the classification of the file using the
analysis_data field. The possible classifications for
each file are benign, malicious, suspicious, error, and
timeout. The file classification count dictionary
records the sum of each classification per analysis
service. Analysis services provide different levels of
analysis, so the file classification info dictionary
holds the additional details from each analysis service.
When a file is classified, the count is increased for that
classification. The SHA256 hash of the file and its
classification is updated as a key-value pair in the
hash_to_classification_mapping dictionary. The file
hash to classification mapping is used to perform
additional analysis for other functions. The file
classification method varies for each analysis service.

VT reports the results of each scan engine’s
indications. There can be any number of engines, some
well-known or some that are not. Since VT does not
specifically ~ determine  maliciousness  through
cumulative engine results, a threshold value is
implemented to determine maliciousness and avoid
false positive classified malicious files. The function
iterates through the engines and their results. If 15%
or more engines report the file as malicious, then the
file is classified as malicious.

Additionally, the threshold approach is
implemented for errors and timeouts with a 25% value.
Hence, if 25% or more engines report the file with an
error or timeout, then the file is classified with an error
or timeout, respectively. VT provides additional data
such as the imported libraries and functions and
exports for PE and ELF files. MD specifies the file
classification in their analysis.

If a file is reported as infected and has a malware
family, malware type, or threat name, then it is
classified as malicious. If the file is reported as
suspicious, then it is classified as suspicious. If the file
is reported with no threat detected, then it is classified
as benign. If the results are unknown, the scan is

aborted, or the scan has failed, then it is classified as
an error. MD reports additional data such as malware
family, type, and threat. Like MD, HA reports file
classification.

If the file is reported as malicious and has a
malware family, reported as no specific threat and has
a malware family, or reported as malicious and has no
malware family, then it is classified as malicious. If
the file is reported as suspicious, then it is classified as
suspicious. If the file is reported as having no specific
threat and does not have a malware family, reported as
no verdict, or reported as whitelisted, then the file is
classified as benign. If the file is reported with an error,
then the file is reported as an error. HA specifies
additional information such as malware families.

An error occurred when saving the exports for PE
and ELF files from the analysis data. The export name
was over 128 characters for the dictionary key in the
YAML file. The implicit block mapping was
converted to an explicit block mapping due to the
maximum character length being reached. To resolve
this issue, the maximum string length was changed
from 128 to 1,024 characters in the yaml module
configuration files.

The count_agreements_between_analysis_
services function uses the hash to_classification
mapping dictionary to compare the file classification
results between analysis services. For the malicious,
suspicious, and benign classifications, the wvalid
comparisons are displayed below in Table 2.

Table 2. Agreements between analysis services

Agreement Definition

None None of the analysis services
agreed on classification

Only VT Only one analysis service

Only HA classified differently

Only MD

Only VT and  Only VT and HA agreed on

HA classification

Only VT and  Only VT and MD agreed on

MD classification

Only HA and  Only HA and MD agreed on

MD classification

All All the analysis services agreed

on classification

The sort_file classification_info_by frequency
function sorts the file classification info dictionary
by value. This function provides better visualization of
the additional information from each analysis service.

The count_malicious _executables per os
function sums the number of malicious executables
per operating system for each analysis service. The
function uses the hash to classification_mapping
dictionary to read the file classification. Then, it uses
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the file and awk commands to determine the type of
executable. MS-DOS, PE32, and PE32+ are classified
as Windows OS while ELF files are Linux OS and
Mach-O files are Mac OS.

4. Results and analysis

In total, two crawls were conducted to collect
executable files, source code, and scripts. In the first
crawler execution, 8,717,948 pages on the Dark Web
crawled and 68 target files are downloaded. Table 3
shows the results of the first crawler execution. As
mentioned earlier, the first execution of the crawler
was unresponsive due to Tor daemons reaching
timeout in domains, resulting in a significantly smaller
number of executable files.

In the second crawler execution, more files are
discovered. 7,152,104 pages on the Dark Web are
crawled and 184,657 executable files are downloaded.
Table 4 shows the number of crawled resources for the
second execution. The total number of crawled pages
and downloaded files are shown in Table 5.

Table 3. First crawler execution results
First Crawl

Crawled pages 8,717,948
Downloaded files 68
Unique files 68

Table 4. Second crawler execution results
Second Crawl

Crawled pages 7,152,104
Downloaded files 184,657
Unique files 20,000

Table 5. Total crawler execution results
Combined Crawls

Crawled pages 15,870,052
Downloaded files 184,725
Unique files 20,068

Figure 1 displays the distribution of file types
crawled. Source code files are the biggest category of
collected files at about 47%. The biggest source code
language collected is Java at 8,823 files with Python
following at 959 files. The smallest source code
language collected is Assembly at one file. The
smallest category of collected files is executable files
at about 5%. The most collected executable file type is
ELF files at 635 files while the smallest is Mach-O
files at 24 files. Scripts and text files are the next
biggest collected file categories at about 7% and 39%,
respectively.

ASCI Text
Assembly | 1

BASH

Bap2 | 1

(of

C++

ELF

HTML

Java

MS-DOS | 1

Mach-O
Mobipocket E-Book | 1
PE32

PE32+
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Palm OS Patch Data
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8823

Flle Types

Perl

Perl5

Python
ReStructuredText
Ruby | &

SGML

UTF-8

o 2500 5000 7500 10000

MNumber of Files Crawled

Figure 1. Total distribution of file types crawled

Executable files categorized from the crawled
target files are analyzed using the publicly accessible
analysis tools: VirusTotal (VT), Hybrid Analysis
(HA), and MetaDefender Cloud (MD) Cloud. There
are 1,225 total executable files in the entire dataset.
Three duplicate files changed the total number of
executable files to 1,222 files. The duplicate files were
identified by SHA256 when combining both datasets
into one directory. Custom scripts are made to cluster
the analysis data collected from the analysis services.
Linux has the most executable files at 635 files while
Mac has the smallest executable files at 24 files.
Windows is in the middle of both at 563 files.

Each file hash is queried to each analysis service.
Either the file hash is known or not known in each
analysis service’s database. If the file hash is known,
then the analysis results are retrieved. Otherwise, the
file is uploaded to the service for further analysis.
Figure 2 shows the number of hashes known and not
known to each analysis service.

100%

5%

50%

Percentage of Category

25%

0%

VirusTotal Hybrid Analysis MetaDefender

Analysis Services

® NotFound M Found

Figure 2. Hashes from each analysis service
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As seen in Figure 2, VT has the most identified
file hashes out of the three analysis services. MD has
the second most identified file hashes while HA has
the least identified file hashes. VT did not identify
approximately 5% of the file hashes submitted while
HA and MD did not identify approximately 75% and
34% of the file hashes, respectively. Figure 3 presents
the file classification counts from each analysis
service.

Each analysis service reports different
classifications for the entire dataset. VT reports
approximately 24% of the files as malicious, while HA
and MD report approximately 35% and 32% of the
files as malicious. Only HA and MD report files as
suspicious, with 12% from HA and 2% from MD. HA
encounters the most errors with 30% of the files during
classification. The results of the classification are
interesting since only 30% of the executable files are
classified as malicious and malware contributes to the
Dark Web’s bad reputation. This result could be
because not all of the Dark Web contains illegal
content. (Kaur & Randhawa, 2020; Nazah et al., 2020)

Upon further investigation of the large error
amount, it is determined that it is due to inconclusive
analysis. HA already knows about the files, but it
could not conclude the classification of the files due to
insufficient analysis. VT classifies 75% of the files as
benign, while HA and MD classify 21% and 61% of
the files as benign, respectively. VT is the only
analysis service to report timeout errors at less than 1%
of the entire dataset.
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Figure 3. Total distribution of file classification

Figure 4 displays the breakdown of malicious
classified files per operating system. Out of the entire
dataset, Windows is classified as the operating system
with the most malicious files. Linux follows Windows
with a smaller number of malicious files, while Mac
has no malicious files. Only VT reports malicious files

for Windows, while HA and MD report malicious files
for Windows and Linux. None of the analysis services
report malicious files for Mac.
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Figure 4. Distribution of malicious files

Although all vendors provide classification
details about each executable file, not all vendors
provide the same level of detail. Table 6 shows the top
5 malware families that were identified from HA.
Most of these malware families are classified as
cryptocurrency miners. Table 7 shows the top 5
malware families identified from MD. Most of the
identified malware families are risk tools, crypto-
miners, general malware, and risk ware.

Table 6. Top 10 Hybrid Analysis malware families

Top 10 Malware Families Amount
CoinMiner.KA potentially unwanted 112
application
Win64/CoinMiner.GG potentially 52
unwanted application
Win64/CoinMiner.MW potentially 24
unwanted application
Win64/CoinMiner.JI potentially 21
unwanted application
RiskTool.CryptoMiner 17

Table 7. Top 10 Metadefender malware families
Top 10 Malware Families Amount
Risktool 95
Coinminer 68
Monero 68
Malware 65
Riskware 60

VT did not report a category for malware families
but included data about imported functions and
libraries for PEs. VT reports that the top 287 imported
functions utilized by malicious files have been used
297 times. As observed from Figure 3, VT reports 297
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of the files as malicious. So, all the malicious files
from VT use the same top 287 imported functions.
Those malicious files use a variety of functions. PE
functions are used for common tasks but could be used
by malware for malicious purposes such as privilege
escalation, recording keystrokes and displays, data
exfiltration, process injection, and persistence. All the
malicious PE files from VT use ADVAPI32,
IPHLPPAPI, KERNEL32, SHELL32, USER32,
WS2 32, and MSVCRT Dynamic-Link Libraries
(DLLs). Most of the malicious files use CRYPT32,
SETUPAPI32, and GDI32 libraries.

To investigate the agreements between each
analysis service on malicious files, the results of each
analysis service were compared. All the analysis
services disagree on 285 malicious files, while all the
analysis services agree on 148 malicious files. HA and
MD agree the most on malicious files with 72 files. VT
and MD agree on the second most common, with 59
malicious files, while VT and HA agree on the third
most common, with 29 malicious files. For each
analysis service, only HA classifies 169 files as
malicious differently compared to the other analysis
services. MD and VT classify differently 57 and three
malicious files, respectively.

All the analysis services disagree the most for 645
suspicious files. Only HA and MD agree on four
suspicious files. Only HA classifies 146 files
differently and only MD classifies 27 files differently.

All the analysis services agree that 176 files are
benign, while all of them disagree that 161 are benign.
VT and MD agreed the most on benign files at 261
files. VT and HA agree the second most at 16 benign
files while HA and MD agree the third most at one
benign file. Only VT classifies the most files
differently at 129 benign files, HA classifies
differently the second most at 60 benign files, and MD
classifies differently the third most at 17 benign files.

5. Conclusion and future work

The proliferation of malware in today’s society
continues to impact industry, government, and
academic organizations. The web crawler successfully
harvested executable files from the Dark Web. The
results from the experiment indicate that public
malware analysis tools can agree on classifying
executable files as malicious and benign. All three
analysis services detect an approximate average of
30% of the entire dataset as malicious files. Only
Hybrid Analysis and MetaDefender Cloud classified
an approximate average of 7% of the dataset as
suspicious files. All three analysis services identified
an approximate average of 52% of the dataset as
benign files. The most identified malware family from

Hybrid Analysis and MetaDefender Cloud is the
crypto miner family. The results from VT reveal that
common DLLs are used to perform malicious actions.
The Windows operating system had the most
malicious files with an average of 327 files between
all analysis services. Data collected from this research
supports the hypothesis that crawlable executable files
on the Dark Web have utility for malware analysis.

The research conducted provides the foundation
for future research on Dark Web crawlers and malware
analysis. Future research will investigate the graphical
representation of the pages crawled. This could depict
the percentage of the Dark Web crawled compared to
the actual surface of the Dark Web. Additional work
will investigate expanding the source links for the
crawler to provide a comprehensive dataset. The
research will also investigate the application of classes
of malware seen in cyber attacks and on the surface
web in conjunction with the malware seen on the Dark
Web. The idea is to identify and investigate trends to
determine if the Dark Web is ahead or behind in
malware development and distribution.

Future research will investigate acquired source
code, scripts, and their executable forms for malicious
functionality using static analysis and publicly
accessible analysis tools such as VirusTotal, Hybrid
Analysis, and MetaDefender Cloud. In addition to
these research activities, future work will explore
extending the crawler to bypass login restrictions to
collect more data and tailoring the crawler to acquire
data from the Dark Web in the areas of drug
trafficking, human trafficking, sale of stolen weapons,
and identity theft. More work will explore extending
the scope of the crawler to non-Dark Web pages to
analyze the impact of malicious executable files on
regular users.
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