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Abstract 
The proliferation of malware in today’s society 

continues to impact industry, government, and 
academic organizations. The Dark Web provides 
cyber criminals with a venue to exchange and store 
malicious code and malware. Hence, this research 
develops a crawler to harvest source code, scripts, and 
executable files that are freely available on the Dark 
Web to investigate the proliferation of malware. 
Harvested executable files are analyzed with publicly 
accessible malware analysis tool services, including 
VirusTotal, Hybrid Analysis, and MetaDefender 
Cloud. The crawler crawls over 15 million web pages 
and collects over 20 thousand files consisting of code, 
scripts, and executable files. Analysis of the data 
examines the distribution of files collected from the 
Dark Web, the differences in the results between the 
analysis services, and the malicious classification of 
files. The results reveal that about 30% of the 
harvested executable files are considered malicious by 
the malware analysis tools.  
 
Keywords: Dark Web, web crawler, malware 
analysis, hybrid analysis, public analysis tools. 

1. Introduction  

Cybersecurity is a major concern for the 
government, businesses, and the public (Biden, 2021). 
As society becomes increasingly dependent on 
technology and the Internet, the concern for data, 
systems, and network security continues to escalate. A 
decade ago, IBM announced that data would become 
a new natural resource for the 21st century (IBM, 
2013). 

Cybersecurity Ventures expressed that the attack 
surface for cyber threats has expanded extensively due 
to the increase in new technology (Cybersecurity 
Ventures, 2022). The attack surface includes 
everything from computer systems and networks to 
Internet of Things (IoT) devices like home automation 
systems and appliances, industry devices, and 
healthcare devices. 

The Federal Bureau of Investigation’s Internet 
Crime Report states that malware resulted in a total 
loss of 9,326,482 dollars in 2022 (Federal Bureau of 
Investigation, 2022). The 2023 Federal Bureau of 
Investigation’s Internet Crime Report states that the 
Internet Crime complaint center received 880,418 
complaints and estimates that the losses from these 
complaints will exceed $12.5 billion (Federal Bureau 
of Investigation, 2023). The report goes on to state that 
investment fraud, e-mail compromises, scams, and 
ransomware all contribute to the types of crimes 
contributing to the cost of cybercrime. 

Over the years, illicit markets on the Dark Web 
have been an area of interest to researchers. These 
markets include hacking tools (Cherqi et al., 2018), 
attack services (Hyslip & Holt, 2019), firearm 
purchasing (Holt & Lee, 2023), stolen data (Holt et al., 
2016), illicit drugs (Liggett et al., 2020) and illegal 
services (Campobasso & Allodi, 2023; Roddy & Holt, 
2022). It is estimated that between 2011 and 2017 the 
revenues from anonymous online markets were 
around $15M (Van Wegberg et al., 2018). 

The escalating impact of malware on 
organizations and the growth of the Dark Web 
prompts the hypothesis that crawlable executable files 
on the Dark Web have utility for malware analysis 
using VirusTotal, Hybrid Analysis, and MetaDefender 
Cloud. The hypothesis raises two questions: 1) Can 
executable files be collected from the Dark Web? 2) 
Can publicly accessible malware analysis tools 
characterize acquired executable files? 

The contribution of this research paper is two-
fold. First, the results show that about 30% of the 
executable files acquired from the Dark Web are 
portrayed as malicious by the malware analysis tools. 
Secondly, it provides necessary foundational research 
to perform additional malware analysis on files 
acquired from the Dark Web in the future. 

The structure of the paper is as follows: Section II 
introduces relevant dark web crawling and hybrid 
analysis research. Section III describes the 
methodology used in this controlled experiment. 
Section IV presents the data, analyzes the results, and 
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explores observations. Finally, Section V concludes 
and presents future work.  

2. Literature review 

While malware detection, identification, and 
analysis are of common interest in academics and to 
practitioners (Fitzgerald, 2023; Herron et al., 2021; 
Hightower et al., 2021; Luckett et al., 2018; Nguyen et 
al., 2017; Nguyen et al., 2020), research continues to 
investigate Dark Web crawlers (Aikhatib & Basheer, 
2019; Boshmaf et al., 2023; Dalvi et al., 2021) and 
hybrid analysis tools (Ijaz et al., 2019; Jamalpur et al., 
2018). 

2.1 Dark Web crawlers 

Previous work includes a variety of web crawlers 
that harvest data on Dark Web pages. Dalvi et al. 
(2021) implement a Dark Web crawler called SpyDark 
that utilizes The Onion Router (Tor) Browser to crawl 
a fixed set of pages based on keywords and site depth. 
The author states the crawler implements a text-
filtering algorithm and eliminates irrelevant pages 
using Artificial Neural Network classifiers. The 
crawler analyzes the results through link activity and 
generates graphical representations of collected 
hyperlinks.  

Aikhatib and Basheer (2019) create a web crawler 
called Darky that crawls the Dark Web markets for 
product and vendor information using the Tor Browser 
with Privoxy virtual private network software to 
provide security and anonymity. The authors state 
their web crawler lacks automatic generation of login 
credentials and login bypass. Aikhatib and Basheer 
manually create the credentials for the web crawler. 
The web crawler features bypass of the login 
CAPTCHA verification using XPath and optical 
character recognition analysis. If the bypass fails, the 
web crawler allows for manual verification. The web 
crawler iterates through each product category to 
collect individual product information and vendor 
information such as name, price, origin, reviews, and 
number of sales. Their results contained 179 total 
vendors and 6,387 total products in 16 hours. Digital 
items, drugs/chemicals, and guides/tutorials are the 
top three categories observed.  

Boshmaf et al. (2023) develops an open-source 
crawler for onion services called Dizzy. Dizzy 
crawled  63,267,542 web pages. The crawler hashes 
images to identify and group them, extracts public 
blockchain transactions, identifies wallets, and 
calculates cash flow for those wallets. Overall, the 
research provides data on domain operations, web 
content, cryptocurrency usage, and a web graph. 

2.2 Hybrid analysis tools 

Ijaz et al. (2019) apply static and dynamic analysis 
techniques on executable binary samples and then use 
the resulting reports for machine learning. For 
dynamic analysis, the authors use Cuckoo Sandbox, 
while for static analysis, they use the Python library 
PEFILE. From both analysis approaches, the authors 
utilize several machine learning methods and apply 
them to the analysis results. The highest percentage 
accuracy is the Gradient Classifier, with an area under 
the curve at 95%, where the false positive rate is 5.6% 
and the false negative rate is 14%. The authors state 
that the dynamic environment analysis failed to be 
efficient since several samples detected the 
environment. In addition, performing static analysis 
before the execution of malware is not efficient due to 
obfuscated samples. 

Jamalpur et al. (2018) perform static and dynamic 
malware analysis on a malware sample. The authors 
use VirusTotal to inspect the properties of the sample 
and then use DependencyWalker and IDAPro to 
analyze the code of the sample. They create an isolated 
environment using Cuckoo Sandbox to perform a 
dynamic analysis of the sample. The environment 
consists of an Ubuntu Linux Cuckoo host, Windows 
XP and Windows 7 Cuckoo guests, and the Cuckoo 
agent to communicate between the host and guest 
systems. A distributed firewall with updated iptables 
is added as additional protection for the host. The 
Cuckoo guest systems use the VirtualBox hypervisor. 
After malware execution, they discover the sample 
was ransomware that created a message for the user on 
how to pay the ransom and decrypt their hard drive. It 
encrypts files on the machine with certain extensions, 
deletes all shadow volume files, and displays the 
instruction message again.  

The aforementioned research spans hybrid 
analyses of previous experiments on malware using 
various techniques and tools. However, minimal 
research exists that implements a web crawler to 
specifically harvest executable files, source code, and 
scripts from the Dark Web and use publicly accessible 
hybrid malware analysis tools to analyze the harvested 
files. 

 
3. Methodology 

To investigate the hypothesis that crawlable 
executable files on the Dark Web have utility for 
malware analysis, the research approach was divided 
into two parts: (1) crawler development and data 
collection and (2) hybrid malware analysis. The first 
part explains how the Dark Web crawler functions. 
The crawler developer applied an incremental 
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software development approach to program the Dark 
Web crawler (Karlsson, 2001). The incremental model 
includes four stages: requirements and analysis, 
design, coding and implementation, and testing. This 
part details how the crawler harvested executable files 
and recorded statistics. The second part outlines the 
application of malware analysis tools which include 
VirusTotal, Hybrid Analysis, and MetaDefender 
Cloud. The harvested data from the crawler provides 
the input for a controllable experiment as defined by  
(Shadish et al., 2002) for the hybrid malware analysis. 

3.1 Crawler development 

The objective of the Dark Web crawler is to 
identify any executable files in pages on the Dark 
Web. The crawler is designed to collect executable 
files, source code, and scripts. For this research 
endeavor, all harvested file types are considered for 
data collection, while only executable files are 
considered in scope for hybrid malware analysis. The 
crawler is designed in Go and uses supplementary 
Python and Bash scripts (Google; Python Software 
Foundation; Ramey, 2023). Go was chosen due to its 
lightweight nature with native concurrency and 
libraries that balance ease of use with performance 
(Rouse, 2017). 

A virtual machine was created in VMware 
vSphere Client to deploy the crawler program 
(Broadcom). Throughout the development and testing 
of the crawler program, specific amounts of hardware 
were dedicated to the execution of the crawler. Tor 
was used to access the Dark Web (Tor Project). 
VSCodium was utilized as a code editor to develop the 
crawler. The tools and hardware used to implement the 
web crawler are presented in Table 1. 

 
Table 1. Development toolset 

Hardware & 
Software 

Version 

Virtual Machine - VMware vSphere Client 
v7.0.3.00500 
- Intel Xeon Gold 5318Y CPU 
@ 2.10GHz x70 processor 
- Ubuntu 20.04 LTS (64-bit) OS 
- 256 GB Memory 
- 2 TB Hard Disk 

Go 1.18.2 linux/amd64 
Python 3.8.13 
GNU Bash 5.0.17(1)-release 
Tor 0.4.2.7 
VSCodium 1.75.1 

 
The incremental software development model 

steps for developing the crawler are presented below. 

For step one, the objective of the crawler project is to 
identify any files that can be executed, including 
executable files, source code, and scripts. Source code 
and scripts are included in the data collection since 
they can have executable forms. The files collected 
from the crawler do not bypass login restrictions. The 
definition of the objectives and scope includes the 
outline of phases to complete the project.  

The primary logic of the crawler is developed 
from steps two to five. To efficiently crawl executable 
files without the concern of resource exhaustion, the 
crawling approach developed in step two revolves 
around MIME types found in the HTTP response body 
of web pages. This approach minimizes resource 
usage and optimizes the crawling process.  

Next, the goal is to extract onion links from the 
page content for step three. Onion links are a specific 
domain that can only be reached using the Tor (Tor 
Project). Using Go’s IO library to download a web 
page as a stream of bytes and a regular expression 
(regex) parser from the Regex module, onion links can 
be identified and extracted from the page content. 

 In step four, the logic for the classification of 
page content and executable files is defined. To 
classify the page content and any possible executable 
files, it needs to correspond to a parsable MIME type. 
Once the MIME type is parsed, the logic to determine 
if the MIME type is a valid executable file MIME type 
is implemented. Valid MIME types include the 
following: 

 Executable files like Portable Executable 
(PE), Executable Linkable Format (ELF), 
Apple Disk Image files (DMG), Mach object 
files (Mach-O), etc. 

 Source code like Python, Java, Go, Perl, etc. 
 Scripts like Borne Again Shell (Bash), Z 

Shell scripts, etc. 
 Additional file types like OS data and 

compressed files 
Only source code, scripts, and executable files are 

downloaded for further analysis, while any other file 
types are considered out of scope for the purposes of 
this research. The SHA256 hashing function from the 
Crypto module is used to hash the onion links to avoid 
links that point to unwanted content. The module is 
also used to name the valid files as their respective 
hashes, resulting in a naming system without 
collisions. In step five, a proxy system is integrated 
using Tor daemons to ensure anonymous and secure 
connections. A SOCKS5 proxy is added to the Go 
HTTP clients. During this step, a queue system is 
created to manage link processing. New links are 
prioritized, while timed-out links are moved to a 
secondary queue. The timed-out links are processed at 
a later time with a longer timeout. The entire system 
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functions as a complete priority queue, which 
optimizes system speed and prevents potential 
disruptions caused by dead links. 

Additional features such as statistics and 
monitoring are added in step six. The statistics are 
displayed at specified intervals to the terminal and to 
a Discord channel via webhook to provide the live 
progress of the crawler over time. The Discord module 
relays crawler statistics to a predefined Discord 
webhook that provides automated updates. The 
webhook is attached to a Discord server where the data 
statistics are posted to a text channel in the server. The 
statistics are saved for future reference and analysis. 

Steps seven to ten included various aspects of 
crawler optimization and improvements. In step seven, 
live tests and adjustments are conducted to optimize 
the queue system's structure. These adjustments 
ensure effective handling of excessive dead links from 
large web pages or quick responses. For step eight, to 
optimize the resource utilization and performance of 
the crawler, live code tests are performed, and 
adjustments to the number of Tor daemons and 
workers are made to determine the best parameters 
based on the CPU cores and bandwidth of the machine.  

Two major improvements to the crawler are 
added in step nine. Recognizing that executable files 
are often stored in compressed or archived files, a 
decompression daemon system is implemented to 
harvest more executable files. This system enables 
immediate decompression or downloading of files into 
memory to determine valid executable contents 
without issues like zip bombs or irrelevant files. The 
Archiver module assists in extracting files from those 
archives. The Ranger module saves resources by 
partially parsing archives without downloading the 
entire archive using the HTTP request body. The 
second improvement to the crawler is a queue 
observing system that continuously monitors and 
manages the queue to optimize memory usage and 
maintain efficient crawling operations. The system 
removes links that reached maximum page limits, 
links that were unresponsive, or dead links.  

In the final phase, the crawler program is 
deployed to a dedicated server. Specifications of the 
dedicated server are shown in Table 1. The storage of 
the dedicated server is adjusted to support the data 
harvested from the crawler. The overall process of the 
crawler program consists of the engine and workers. 
The core of the program is called the engine and 
contains the main execution loop, while the workers 
are individual processes. The engine employs the 
workers to utilize concurrent threads to scrape, 
enqueue, and process new links.  

3.2 Data collection 

The development toolset information is available 
in Table 1. The source links to start the crawler are 
gathered from a custom crawling script for onion and 
Tor-related subreddits. To start the data collection 
process, any existing Tor daemons are killed. A 
custom script to create new daemons is executed. 
Given the amount of Tor daemons, the script creates a 
Tor configuration file for every daemon and creates a 
bash script to start the daemons. After three to five 
minutes, the latest version of the source code is built 
and executed. The wait time allows the Tor daemons 
to start up completely. 

The data collection consists of two executions. 
The first initial data collection occurred for about a 
week. The data collection ended earlier than expected 
due to Tor daemons reaching timeout in domains. To 
fix this issue, a domain timeout was added to prevent 
the crawler from getting stuck on pages with massive 
amounts of links. Each domain has a maximum 
number of pages crawled before it is purged from the 
queue. After resolving the issue, the crawler was 
executed again. The second data collection occurred 
for approximately three weeks. After there was no 
change in collected executable files for three days, 
data was extracted from the crawler.  

The Discord application is used throughout data 
collection to monitor the crawler statistics from 
another device. The program outputs the statistics of 
the crawler every minute to the Discord channel in a 
private server via webhook. The statistics include 
information about the data collected and the crawler's 
efficiency.  

3.3 Hybrid malware analysis 

To determine the executable files for analysis, the 
collected files needed to be categorized. The Linux 
file, grep, sort, and uniq commands were used to 
categorize the collected files. The file command is 
used to determine the file type, and the output is piped 
into the awk command to parse the file type name. The 
resulting output is piped into the sort command to sort 
the file types, then the uniq command with the count 
option is used to count each file type. The output from 
the commands is used to determine the executable files 
in the data. They are copied from the entire dataset to 
make a new dataset for hybrid analysis. To determine 
malicious behavior about the executable files, the 
analysis services (VirusTotal), (Hybrid Analysis), and 
(MetaDefender Cloud) are used to analyze each 
executable file.  

Source code or script files are not used since these 
files are not in their executable form. Therefore, they 
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are out of scope for this analysis. VirusTotal (VT), 
Hybrid Analysis (HA), and MetaDefender Cloud 
(MD) were chosen due to their public accessibility, 
automation ability using Application Programming 
Interface (API) access, and request limits. To automate 
the process of analyzing each executable and its 
results, Python is used to create scripts utilizing each 
analysis service’s API.  

The analysis algorithm features three primary 
methods for all analysis services: hash querying, 
executable file uploading, and analysis retrieving. The 
SHA256 hash of the executable file is used to query 
the analysis service’s database, and the status of the 
analysis is recorded as queried. If the file hash is found 
in their database, then the analysis of the file is saved. 
The analysis status is marked as completed, and the 
algorithm iterates to the next executable file. If the file 
hash is not identified in their database, it is recorded as 
unknown. The file is uploaded to the analysis service, 
and the analysis status is marked as uploaded. If the 
analysis of the file is completed, then the analysis of 
the file is saved, and the analysis status is recorded as 
completed. If the analysis of the file is not completed, 
then the analysis script is executed to retrieve the 
missing analysis information and complete the 
analysis for that file. Once the analysis is saved, the 
algorithm iterates to the next executable file.  

To simplify analysis and data clustering, the 
results were saved as a dictionary in a YAML file. The 
format made it easier to index specific values of the 
analysis to identify and cluster data for the results of 
the experiment. Each analysis file's name is the 
executable file's name with the .yml file extension. 
SHA256 hash was used to hash the file. Since there 
were two data collections, there are two datasets from 
which the executable file originated. Hence, the 
dataset_id field can either be 1 or 2, with 1 
representing the first data collection and 2 representing 
the second collection. The analysis from each analysis 
service is saved in separate sections of the file. 

An analysis_id field is used to identify the results 
after file upload. Executable files that have been 
identified via hash analysis have a null analysis_id 
value since file upload is not required to analyze the 
file. Valid values for the status field of the analysis are 
queried, uploaded, or completed. The is_hash_known 
field is used to identify if the analysis services are 
aware of the file using its SHA256 hash. The data from 
the analysis service is saved in the analysis_data field. 

For the hash query method, if the request limit is 
reached, the program sleeps or exits, depending on 
which limit is exceeded. The request limits for VT are 
4 requests per minute, 240 per hour, and 500 per day. 
VT is the only analysis service that combines the file 
reputation and file submission request limits. With 

HA, the file reputation request limits are 200 scans per 
minute and 2,000 scans per hour with no daily limit. 
Meanwhile, HA allows 100 file submissions per day 
with no minute or hour limits. For MD, 1,000 scans for 
file reputation are allowed daily with no minute or 
hourly limits. However, 10 submissions are allowed 
per minute for file submission requests, while 100 file 
submissions are allowed daily.  

If the request limit has not been reached, the 
program loads the dictionary from the analysis file and 
determines if the hash has already been queried to the 
analysis service. The hash will iterate to the next file 
if it has been queried. If it has not been queried, it 
queries the hash to the analysis service, changes the 
analysis status  field to queried, and logs the results in 
a log file. Each entry in the log file contains the time 
and date of the action, the file hash, the performed 
action, and the HTTP code response of the performed 
action. If the hash is found in the analysis service’s 
database, then the is_hash_known field is changed to 
true, status is changed to completed, and analysis_data 
is changed to the data saved from the query to the 
analysis service. The analysis file is overwritten with 
changes to the dictionary. This process repeats until all 
hashes are queried to the analysis service.  

For the upload file method, the structure of the 
process is like the hash query method with some minor 
differences. First, the request limit is checked to 
ensure it has not been exceeded. Using the dictionary 
in the analysis file, the is_hash_known field is 
checked. If the is_hash_known field is true, then the 
program iterates to the next file. Otherwise, it uploads 
the file to the analysis service. Each analysis service 
has differences for uploading files. For example, when 
uploading a file to VT, if the file size was larger than 
32 MB, then a large upload link was required to upload 
the file. HA requires an environment ID when 
uploading a file. Additionally, HA had a file size 
upload limit, so files larger than 100 MB were 
excluded from uploading. Once a file is uploaded, the 
analysis_id field is changed to the analysis ID returned 
in the response from the request, and the analysis 
status field is changed from queried to uploaded. The 
analysis file is updated with changes to the dictionary. 
The process repeats for all files until all unidentified 
files have been uploaded to each analysis vendor.  

To gather the results from the file uploads, queries 
are made to retrieve the analysis data from each 
analysis service. The request limits are checked, and 
the program reads the contents of the analysis file. If 
the analysis status field is uploaded, then a request is 
made to the analysis service and the results are saved 
into the analysis_data field. The status field is updated 
to completed, and the updated dictionary is saved to 
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the analysis file. The process repeats until all uploaded 
files have analysis results.  

To cluster the data and analyze the results, several 
functions are written to identify data relations between 
analysis services such as the number of files found and 
not found, file classification (benign, malicious, 
suspicious, etc.), and analysis service comparison. The 
scripts index the dictionary in each analysis file to 
gather data for analysis. 

The count_known_hashes function counts the 
number of hashes known or not known for each 
analysis service and writes the results to a dictionary. 
The function iterates through all the analysis files and 
sums the is_hash_known field in the resulting 
dictionary. The get_file_classification_info_and_ 
details function iterates through all the analysis files 
and determines the classification of the file using the 
analysis_data field. The possible classifications for 
each file are benign, malicious, suspicious, error, and 
timeout. The file_classification_count dictionary 
records the sum of each classification per analysis 
service. Analysis services provide different levels of 
analysis, so the file_classification_info dictionary 
holds the additional details from each analysis service. 
When a file is classified, the count is increased for that 
classification. The SHA256 hash of the file and its 
classification is updated as a key-value pair in the 
hash_to_classification_mapping dictionary. The file 
hash to classification mapping is used to perform 
additional analysis for other functions. The file 
classification method varies for each analysis service.  

VT reports the results of each scan engine’s 
indications. There can be any number of engines, some 
well-known or some that are not. Since VT does not 
specifically determine maliciousness through 
cumulative engine results, a threshold value is 
implemented to determine maliciousness and avoid 
false positive classified malicious files. The function 
iterates through the engines and their results. If 15% 
or more engines report the file as malicious, then the 
file is classified as malicious.  

Additionally, the threshold approach is 
implemented for errors and timeouts with a 25% value. 
Hence, if 25% or more engines report the file with an 
error or timeout, then the file is classified with an error 
or timeout, respectively. VT provides additional data 
such as the imported libraries and functions and 
exports for PE and ELF files. MD specifies the file 
classification in their analysis.  

If a file is reported as infected and has a malware 
family, malware type, or threat name, then it is 
classified as malicious. If the file is reported as 
suspicious, then it is classified as suspicious. If the file 
is reported with no threat detected, then it is classified 
as benign. If the results are unknown, the scan is 

aborted, or the scan has failed, then it is classified as 
an error. MD reports additional data such as malware 
family, type, and threat. Like MD, HA reports file 
classification.  

If the file is reported as malicious and has a 
malware family, reported as no specific threat and has 
a malware family, or reported as malicious and has no 
malware family, then it is classified as malicious. If 
the file is reported as suspicious, then it is classified as 
suspicious. If the file is reported as having no specific 
threat and does not have a malware family, reported as 
no verdict, or reported as whitelisted, then the file is 
classified as benign. If the file is reported with an error, 
then the file is reported as an error. HA specifies 
additional information such as malware families. 

An error occurred when saving the exports for PE 
and ELF files from the analysis data. The export name 
was over 128 characters for the dictionary key in the 
YAML file. The implicit block mapping was 
converted to an explicit block mapping due to the 
maximum character length being reached. To resolve 
this issue, the maximum string length was changed 
from 128 to 1,024 characters in the yaml module 
configuration files. 

The count_agreements_between_analysis_ 
services function uses the hash_to_classification_ 
mapping dictionary to compare the file classification 
results between analysis services. For the malicious, 
suspicious, and benign classifications, the valid 
comparisons are displayed below in Table 2. 

 
Table 2. Agreements between analysis services 
Agreement Definition 
None None of the analysis services 

agreed on classification 
Only VT 
Only HA 
Only MD 

Only one analysis service 
classified differently 

Only VT and 
HA 

Only VT and HA agreed on 
classification 

Only VT and 
MD 

Only VT and MD agreed on 
classification 

Only HA and 
MD 

Only HA and MD agreed on 
classification 

All All the analysis services agreed 
on classification 

 
The sort_file_classification_info_by_frequency 

function sorts the file_classification_info dictionary 
by value. This function provides better visualization of 
the additional information from each analysis service. 

The count_malicious_executables_per_os 
function sums the number of malicious executables 
per operating system for each analysis service. The 
function uses the hash_to_classification_mapping 
dictionary to read the file classification. Then, it uses 
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the file and awk commands to determine the type of 
executable. MS-DOS, PE32, and PE32+ are classified 
as Windows OS while ELF files are Linux OS and 
Mach-O files are Mac OS. 

4. Results and analysis  

In total, two crawls were conducted to collect 
executable files, source code, and scripts. In the first 
crawler execution, 8,717,948 pages on the Dark Web 
crawled and 68 target files are downloaded. Table 3 
shows the results of the first crawler execution. As 
mentioned earlier, the first execution of the crawler 
was unresponsive due to Tor daemons reaching 
timeout in domains, resulting in a significantly smaller 
number of executable files. 

In the second crawler execution, more files are 
discovered. 7,152,104 pages on the Dark Web are 
crawled and 184,657 executable files are downloaded. 
Table 4 shows the number of crawled resources for the 
second execution. The total number of crawled pages 
and downloaded files are shown in Table 5. 

 
Table 3. First crawler execution results 

First Crawl 
Crawled pages 8,717,948 
Downloaded files 68 
Unique files 68 

 
Table 4. Second crawler execution results 

Second Crawl 
Crawled pages 7,152,104 
Downloaded files 184,657 
Unique files 20,000 

 
Table 5. Total crawler execution results 

Combined Crawls 
Crawled pages 15,870,052 
Downloaded files 184,725 
Unique files 20,068 

 
Figure 1 displays the distribution of file types 

crawled. Source code files are the biggest category of 
collected files at about 47%. The biggest source code 
language collected is Java at 8,823 files with Python 
following at 959 files. The smallest source code 
language collected is Assembly at one file. The 
smallest category of collected files is executable files 
at about 5%. The most collected executable file type is 
ELF files at 635 files while the smallest is Mach-O 
files at 24 files. Scripts and text files are the next 
biggest collected file categories at about 7% and 39%, 
respectively. 

 

 
Figure 1. Total distribution of file types crawled 

 
Executable files categorized from the crawled 

target files are analyzed using the publicly accessible 
analysis tools: VirusTotal (VT), Hybrid Analysis 
(HA), and MetaDefender Cloud (MD) Cloud. There 
are 1,225 total executable files in the entire dataset. 
Three duplicate files changed the total number of 
executable files to 1,222 files. The duplicate files were 
identified by SHA256 when combining both datasets 
into one directory. Custom scripts are made to cluster 
the analysis data collected from the analysis services. 
Linux has the most executable files at 635 files while 
Mac has the smallest executable files at 24 files. 
Windows is in the middle of both at 563 files. 

Each file hash is queried to each analysis service. 
Either the file hash is known or not known in each 
analysis service’s database. If the file hash is known, 
then the analysis results are retrieved. Otherwise, the 
file is uploaded to the service for further analysis. 
Figure 2 shows the number of hashes known and not 
known to each analysis service. 

 

 
Figure 2. Hashes from each analysis service 
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As seen in Figure 2, VT has the most identified 
file hashes out of the three analysis services. MD has 
the second most identified file hashes while HA has 
the least identified file hashes.  VT did not identify 
approximately 5% of the file hashes submitted while 
HA and MD did not identify approximately 75% and 
34% of the file hashes, respectively. Figure 3 presents 
the file classification counts from each analysis 
service.  

Each analysis service reports different 
classifications for the entire dataset. VT reports 
approximately 24% of the files as malicious, while HA 
and MD report approximately 35% and 32% of the 
files as malicious. Only HA and MD report files as 
suspicious, with 12% from HA and 2% from MD. HA 
encounters the most errors with 30% of the files during 
classification. The results of the classification are 
interesting since only 30% of the executable files are 
classified as malicious and malware contributes to the 
Dark Web’s bad reputation. This result could be 
because not all of the Dark Web contains illegal 
content. (Kaur & Randhawa, 2020; Nazah et al., 2020) 

Upon further investigation of the large error 
amount, it is determined that it is due to inconclusive 
analysis. HA already knows about the files, but it 
could not conclude the classification of the files due to 
insufficient analysis. VT classifies 75% of the files as 
benign, while HA and MD classify 21% and 61% of 
the files as benign, respectively. VT is the only 
analysis service to report timeout errors at less than 1% 
of the entire dataset.  

 

 
Figure 3. Total distribution of file classification 

 
Figure 4 displays the breakdown of malicious 

classified files per operating system. Out of the entire 
dataset, Windows is classified as the operating system 
with the most malicious files. Linux follows Windows 
with a smaller number of malicious files, while Mac 
has no malicious files. Only VT reports malicious files 

for Windows, while HA and MD report malicious files 
for Windows and Linux. None of the analysis services 
report malicious files for Mac. 

  

 
Figure 4. Distribution of malicious files  

 
Although all vendors provide classification 

details about each executable file, not all vendors 
provide the same level of detail. Table 6 shows the top 
5 malware families that were identified from HA. 
Most of these malware families are classified as 
cryptocurrency miners. Table 7 shows the top 5 
malware families identified from MD. Most of the 
identified malware families are risk tools, crypto-
miners, general malware, and risk ware.  

 
Table 6. Top 10 Hybrid Analysis malware families 
 Top 10 Malware Families Amount 
CoinMiner.KA potentially unwanted 
application 

112 

Win64/CoinMiner.GG potentially 
unwanted application 

52 

Win64/CoinMiner.MW potentially 
unwanted application 

24 

Win64/CoinMiner.JI potentially 
unwanted application 

21 

RiskTool.CryptoMiner 17 
 

Table 7. Top 10 Metadefender malware families 
Top 10 Malware Families Amount 
Risktool 95 
Coinminer 68 
Monero 68 
Malware 65 
Riskware 60 

 
VT did not report a category for malware families 

but included data about imported functions and 
libraries for PEs. VT reports that the top 287 imported 
functions utilized by malicious files have been used 
297 times. As observed from Figure 3, VT reports 297 
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of the files as malicious. So, all the malicious files 
from VT use the same top 287 imported functions. 
Those malicious files use a variety of functions. PE 
functions are used for common tasks but could be used 
by malware for malicious purposes such as privilege 
escalation, recording keystrokes and displays, data 
exfiltration, process injection, and persistence. All the 
malicious PE files from VT use ADVAPI32, 
IPHLPPAPI, KERNEL32, SHELL32, USER32, 
WS2_32, and MSVCRT Dynamic-Link Libraries 
(DLLs). Most of the malicious files use CRYPT32, 
SETUPAPI32, and GDI32 libraries.  

To investigate the agreements between each 
analysis service on malicious files, the results of each 
analysis service were compared. All the analysis 
services disagree on 285 malicious files, while all the 
analysis services agree on 148 malicious files. HA and 
MD agree the most on malicious files with 72 files. VT 
and MD agree on the second most common, with 59 
malicious files, while VT and HA agree on the third 
most common, with 29 malicious files. For each 
analysis service, only HA classifies 169 files as 
malicious differently compared to the other analysis 
services. MD and VT classify differently 57 and three 
malicious files, respectively.  

All the analysis services disagree the most for 645 
suspicious files. Only HA and MD agree on four 
suspicious files. Only HA classifies 146 files 
differently and only MD classifies 27 files differently.  

All the analysis services agree that 176 files are 
benign, while all of them disagree that 161 are benign. 
VT and MD agreed the most on benign files at 261 
files. VT and HA agree the second most at 16 benign 
files while HA and MD agree the third most at one 
benign file. Only VT classifies the most files 
differently at 129 benign files, HA classifies 
differently the second most at 60 benign files, and MD 
classifies differently the third most at 17 benign files. 

5. Conclusion and future work 

The proliferation of malware in today’s society 
continues to impact industry, government, and 
academic organizations. The web crawler successfully 
harvested executable files from the Dark Web. The 
results from the experiment indicate that public 
malware analysis tools can agree on classifying 
executable files as malicious and benign. All three 
analysis services detect an approximate average of 
30% of the entire dataset as malicious files. Only 
Hybrid Analysis and MetaDefender Cloud classified 
an approximate average of 7% of the dataset as 
suspicious files. All three analysis services identified 
an approximate average of 52% of the dataset as 
benign files. The most identified malware family from 

Hybrid Analysis and MetaDefender Cloud is the 
crypto miner family. The results from VT reveal that 
common DLLs are used to perform malicious actions. 
The Windows operating system had the most 
malicious files with an average of 327 files between 
all analysis services. Data collected from this research 
supports the hypothesis that crawlable executable files 
on the Dark Web have utility for malware analysis.  

The research conducted provides the foundation 
for future research on Dark Web crawlers and malware 
analysis. Future research will investigate the graphical 
representation of the pages crawled. This could depict 
the percentage of the Dark Web crawled compared to 
the actual surface of the Dark Web. Additional work 
will investigate expanding the source links for the 
crawler to provide a comprehensive dataset. The 
research will also investigate the application of classes 
of malware seen in cyber attacks and on the surface 
web in conjunction with the malware seen on the Dark 
Web. The idea is to identify and investigate trends to 
determine if the Dark Web is ahead or behind in 
malware development and distribution. 

Future research will investigate acquired source 
code, scripts, and their executable forms for malicious 
functionality using static analysis and publicly 
accessible analysis tools such as VirusTotal, Hybrid 
Analysis, and MetaDefender Cloud. In addition to 
these research activities, future work will explore 
extending the crawler to bypass login restrictions to 
collect more data and tailoring the crawler to acquire 
data from the Dark Web in the areas of drug 
trafficking, human trafficking, sale of stolen weapons, 
and identity theft. More work will explore extending 
the scope of the crawler to non-Dark Web pages to 
analyze the impact of malicious executable files on 
regular users.  
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