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ABSTRACT
The recently proposed visually grounded speech model Speech-

CLIP is an innovative framework that bridges speech and text
through images via CLIP without relying on text transcription.
On this basis, this paper introduces two extensions to SpeechCLIP.
First, we apply the Continuous Integrate-and-Fire (CIF) module to
replace a fixed number of CLS tokens in the cascaded architecture.
Second, we propose a new hybrid architecture that merges the cas-
caded and parallel architectures of SpeechCLIP into a multi-task
learning framework. Our experimental evaluation is performed on
the Flickr8k and SpokenCOCO datasets. The results show that in
the speech keyword extraction task, the CIF-based cascaded Speech-
CLIP model outperforms the previous cascaded SpeechCLIP model
using a fixed number of CLS tokens. Furthermore, through our
hybrid architecture, cascaded task learning boosts the performance
of the parallel branch in image-speech retrieval tasks.

Index Terms— SpeechCLIP, visually grounded, self-supervised
learning, multimodal.

1. INTRODUCTION

Recent research in speech processing has focused on self-supervised
learning (SSL), which pre-trains upstream models on different pre-
text tasks [1], such as generation or reconstruction [2, 3], contrastive
learning [4, 5], prediction [6, 7], and knowledge distillation [8, 9].
These pre-trained models have been shown to outperform supervised
models on certain downstream tasks, like speech recognition [6]. In
addition to unimodal SSL methods, it may be beneficial to leverage
different modalities, e.g., contextual image information can help
speech models recognize similar-sounding words, thereby boosting
the model’s performance on speech recognition [10]. Therefore,
some studies have utilized image-speech or image-text pairs for
multi-modal training.

Speech processing models trained using image-speech paired
data are known as Visually Grounded Speech (VGS) models. Many
studies [11, 12] have found that these VGS models are beneficial
for many tasks. The recently proposed SpeechCLIP [13] is a VGS
model that leverages the pre-trained CLIP [14] image-text model
and the speech SSL model HuBERT [6]. HuBERT is trained with
a masked language modeling strategy, which provides good initial-
ization for general speech processing tasks [15]. CLIP employs
contrastive learning to pre-train robust image and text encoders by
aligning semantically related images and text captions. By align-
ing speech-image pairs during training, SpeechCLIP learns to trans-

form speech representations into the same embedding space as the
pre-trained CLIP, thereby aligning speech and text together without
transcriptional supervision. Moreover, M-SpeechCLIP [16], an ex-
tension of SpeechCLIP, demonstrates the capability of multilingual
speech-to-image retrieval.

SpeechCLIP employs two architectures: parallel and cascaded.
Parallel SpeechCLIP aligns semantically related images and spoken
captions with utterance-level information, while cascaded Speech-
CLIP aligns them with intermediately extracted subword-level infor-
mation. Each architecture has its strengths: cascaded SpeechCLIP
is capable of extracting a fixed number of keywords directly from
speech without any text supervision and image tagging system. On
the other hand, parallel SpeechCLIP excels at image-speech retrieval
tasks. In this paper, we aim to further improve two types of architec-
tures in terms of their strengths. Regarding the keyword extraction
task, we have identified some issues in [13]. First, the K CLS to-
kens in the original cascaded architecture tend to attend to similar
segments in the input speech, resulting in duplicate keywords in the
output. Additionally, the fixed number of CLS tokens may not be
flexible enough when the duration of the input speech varies signifi-
cantly.

To address these issues, we apply the Continuous Integrate-and-
Fire (CIF) [17] module to replace a fixed number of CLS tokens in
the original cascaded architecture. We believe that CIF’s monotonic
alignment method will alleviate the issue of duplicate keywords.
Furthermore, CIF enables the ability to output a dynamic number
of keywords. The experimental results also manifest improvement
when we do not consider duplicate keywords in the speech keyword
extraction task. For the image-speech retrieval tasks, we posit that
meaningful subwords’ information could be beneficial in addition
to the summary of the entire utterance. Thus, we propose a hy-
brid architecture, a multi-task learning framework that integrates the
learning objectives of SpeechCLIP from both cascaded and parallel
architectures. Experimental results manifest the improvements on
Flickr8k [18].

2. METHOD

As with the training of SpeechCLIP [13], the input to the model is
a batch of paired images and audio waveforms. Images are passed
to CLIP’s image encoder to extract image features, and audio wave-
forms are passed to a pre-trained SSL speech encoder. CLIP’s text
and image encoders are frozen during SpeechCLIP training. They
serve as projectors of the pre-trained image-text semantic space. We
follow SpeechCLIP by using HuBERT as our speech encoder. We
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Fig. 1: Illustration of the proposed models. BN and VQ denote batch normalization and vector quantization processes, respectively. (a) In
hybrid SpeechCLIP, the training loss combines the contrastive loss between the leftmost CLS token and the output image representation of the
CLIP image encoder (the parallel branch same as parallel SpeechCLIP [13]) and the contrastive loss between the output speech representation
of the CLIP text encoder for the remaining K CLS tokens and the output image representation of the CLIP image encoder (the cascaded branch
same as cascaded SpeechCLIP [13]). (b) In cascaded SpeechCLIP+, instead of extracting keyword information through a fixed number of
learnable CLS tokens, CIF is used to segment frame-level features into subword-level keyword sequences. In hybrid SpeechCLIP+, the
parallel branch is based on parallel SpeechCLIP, and the cascaded branch is based on cascaded SpeechCLIP+.

also freeze it during model training but employ a set of learnable
weights to perform a weighted sum of all its hidden states for audio
feature extraction.

2.1. Continuous Integrate-and-Fire (CIF)

CIF is a soft, monotonic alignment method used to segment input
sequential features with assigned weights. Its effectiveness has been
demonstrated in previous speech segmentation tasks [19, 20]. Given
sequential features x = (x1, x2, · · · , xT ), CIF uses a convolution
layer followed by a feed-forward layer with a sigmoid function to
generate the corresponding weights ↵ = (↵1,↵2, · · · ,↵T ). Seg-
mentation boundaries are determined by accumulating ↵t. As a re-
sult, CIF generates a sequence c = (c1, c2, · · · , cL) based on its
segmentation and aggregation process.

During training, for each input speech, a target segmentation
number L is required, which determines the desired output length
of c. Therefore, in [17], the following quantity loss LQUA is used to
encourage CIF to produce the correct cumulative sum of ↵,

LQUA =

�����

TX

t=1

↵t � L

����� . (1)

Additionally, since the segmentation number may sabotage the train-
ing stability, in [17], a scaling strategy is used to generate ↵0 =
(↵0

1,↵
0
2, · · · ,↵0

T ), where

↵0
j =

↵jPT
t=1 ↵t

⇥ L, (2)

for performing segmentation and aggregation. The scaling strategy
ensures that the output length of c is adjusted to the desired L.

2.2. Cascaded SpeechCLIP+

As shown in Fig. 1b, in cascaded SpeechCLIP+, instead of extract-
ing keyword information through a fixed number of learnable CLS

tokens, we apply CIF mechanism to segment frame-level features
into a subword-level keyword sequence. During training, we set
the target length of the quantity loss in Eq. (1) to 5% of the input
length, based on the average ratio between the length of the Byte-
Pair Encoding (BPE) token sequence and the output feature length
of HuBERT, as observed during our experimentation. Additionally,
we apply the scaling strategy in Eq. (2) to enhance training stability
in the first 5k steps. After the CIF mechanism, the same as cascaded
SpeechCLIP, we employ batch normalization and vector quantiza-
tion to generate BPE tokens. These tokens are then input into the
CLIP text encoder to extract representations, which are used to gen-
erate representations for computing contrastive loss Lcascaded with
image features. The overall loss L for training cascaded Speech-
CLIP+ is the linear combination of Lcascaded and LQUA,

L = �c ⇥ Lcascaded + �q ⇥ LQUA, (3)

where �c and �q are adjustable weights.

2.3. Hybrid SpeechCLIP

Two types of SpeechCLIP are expected to benefit speech encoders
from semantically related images through different alignment meth-
ods. Parallel SpeechCLIP enables speech encoders to benefit from
utterance summarization, while cascaded SpeechCLIP enables
speech encoders to benefit from capturing subword-level infor-
mation from utterances. The advantages of combining the two
approaches are quite intuitive. As shown in Fig. 1a, there is a to-
tal K + 1 CLS tokens in hybrid SpeechCLIP, the parallel branch
refers to the path with the leftmost single CLS, while the cascaded
branch refers to the path with the remaining K CLS tokens. The
parallel branch is the same as the parallel SpeechCLIP, the first CLS
representation of the transformer encoder’s output is used to com-
pute the contrastive loss Lparallel with image features. The cascaded
branch is also the same as the cascaded SpeechCLIP, the remaining
K CLS representations of the transformer encoder’s output will be
batch-normalized to match the mean and variance of CLIP’s BPE



token embeddings and vector-quantized into BPE tokens and then
used as input for the CLIP text encoder. The output of the text
encoder is used to compute the contrastive loss Lcascaded with image
features. The parallel and cascaded branches are trained jointly, and
the overall loss L is the linear combination of Lparallel and Lcascaded,

L = �p ⇥ Lparallel + �c ⇥ Lcascaded, (4)

where �p and �c are adjustable weights.

2.4. Hybrid SpeechCLIP+

As shown in Fig. 1b, in hybrid SpeechCLIP+, the parallel branch
is the parallel SpeechCLIP model, and the cascaded branch is the
cascaded SpeechCLIP+ model. In the parallel branch, we apply one
CLS token to compute the contrastive loss Lparallel with image fea-
tures. In the cascaded branch, same as cascaded SpeechCLIP+, we
apply CIF to segment frame-level features into a subword-level key-
word sequence. During training, we set the target length of the quan-
tity loss in Eq. (1) to 5% of the input length and apply the scaling
strategy in Eq. (2) in the first 5k steps. After the CIF mechanism,
we employ batch normalization and vector quantization to generate
BPE tokens. These tokens are then input into the CLIP text encoder
to extract representations, which are subsequently used to generate
representations for computing the contrastive loss Lcascaded with im-
age features. The parallel and cascaded branches are trained jointly
with the overall loss L as follows,

L = �p ⇥ Lparallel + �c ⇥ Lcascaded + �q ⇥ LQUA, (5)

where �p, �c, and �q are adjustable weights.

3. EXPERIMENTS AND RESULTS

3.1. Experimental setups

Datasets. Our models are trained on two image-audio datasets,
namely the Flickr8k Audio Captions Corpus [18] and Spoken-
COCO [21]. Each image in both datasets is paired with five spoken
captions collected by humans reciting the corresponding text cap-
tions. The training, development, and test sets in Flickr8k contain
30k, 5k, and 5k utterances, respectively, while SpokenCOCO has
565k, 25k, and 25k utterances in its training, development, and test
sets. Following SpeechCLIP [13], we use the Karpathy split for
SpokenCOCO [21].
Compared models. In the following experiments, the baseline cas-
caded SpeechCLIP, the proposed cascaded SpeechCLIP+, cascaded
SpeechCLIP in hybrid SpeechCLIP, and cascaded SpeechCLIP+ in
hybrid SpeechCLIP+ are denoted as Cascaded, Cascaded+, Cas-
caded(h) and Cascaded(h)+, respectively. Parallel SpeechCLIP can
be trained jointly with cascaded SpeechCLIP in hybrid SpeechCLIP
or cascaded SpeechCLIP+ in hybrid SpeechCLIP+. The model
trained in the former way is represented as Parallel(h) to distinguish
it from the Parallel(h)+ model trained in the latter way. Both models
are compared with the baseline parallel SpeechCLIP (denoted as
Parallel). All models are trained using the base or large model size
setting in [13]. When the large model size setting is used, the model
is marked “Large”, e.g., Cascaded+ Large.
Implementation details. We use the same transformer encoder and
the CLIP [14] model as in SpeechCLIP [13]. The convolution layer
of CIF consists of a single one-dimensional convolution with dmodel

channels, a stride of 1, and a kernel width of 3. Here, dmodel is set
to 768 for the base models and 1024 for the large models. The one-
dimensional convolution is followed by a dropout with a probability

Table 1: BPE extraction performance on the Flickr8k and Spoken-
COCO test sets.

w/o stop words w/ stop words

Model R P F1 R P F1

Flickr8k

Cascaded [13] 7.39 0.94 1.66 8.3 1.68 2.79
Cascaded+ 27.16 3.55 6.29 18.11 3.62 6.04
Cascaded(h) 7.01 0.85 1.52 5.41 1.06 1.77
Cascaded(h)+ 16.52 2.16 3.82 11.40 2.23 3.73

Cascaded Large [13] 5.27 0.75 1.31 14.84 3.10 5.13
Cascaded+ Large 27.27 3.73 6.56 20.74 4.2 6.99
Cascaded(h) Large 6.73 0.86 1.53 6.18 1.25 2.08
Cascaded(h)+ Large 21.69 2.92 5.15 15.48 3.08 5.14

SpokenCOCO

Cascaded Large [13] 2.08 0.39 0.65 12.96 2.89 4.72
Cascaded+ Large 20.30 2.74 4.83 18.42 3.39 5.73
Cascaded(h) Large 1.68 0.45 0.71 20.37 4.48 7.35
Cascaded(h)+ Large 20.56 3.73 6.32 26.21 4.95 8.33

of 0.5 and a ReLU activation function. Regarding the loss weights
in Eqs. (3), (4), and (5), we set �c = �p = 1.0 and �q = 0.25.
We employ the same optimization strategy as in SpeechCLIP [13].
All models are trained with a batch size of 256 using two NVIDIA
RTX 3090 GPUs with 24GB of memory. The hybrid+ Large model
trained on SpokenCOCO took 4 days to converge, while model train-
ing under other conditions took less than two days.

3.2. Keyword extraction

As discussed in SpeechCLIP [13], we evaluate the keyword extrac-
tion ability of cascaded SpeechCLIP+ through qualitative and quan-
titative analyses. Although there are other some previous works [22,
23] on unsupervised Bag of Words prediction, it is challenging to
compare them in this task because we use different levels of tokens
(BPE tokens) for training, whereas they use word tokens. Moreover,
they require an image tagging system, while we do not. So we only
compare with [13] in this section.

For qualitative analysis, from the example from the Flickr8k test
set in Fig. 2, we can observe the ability of cascaded SpeechCLIP+
to capture semantically aligned keywords and their corresponding
boundaries in the input speech. For example, our model successfully
extracted the words “MAN” and “ROCK” and found their fragments
in the audio waveform. In addition, the extracted word “CLIMB-
ING” is semantically correlated to ”CLIMB”.

For the quantitative analysis, the results are shown in Table 1. In
this experiment, the top 5 BPEs closest in cosine similarity to each
CLS token (for Cascaded and Cascaded(h)) or each CIF-segmented
token (for Cascaded+ and Cascaded(h)+) are retrieved. Performance
is evaluated in terms of recall, precision, and F1-score to the BPE se-
quence of the transcription of the spoken caption. Considering that
stop words in a sentence usually have little impact on the semantics
of the sentence, we provide complete evaluation results (see w/ stop
words) and evaluation results that ignore stop words (see w/o stop
words). Stop words are pronouns, articles, prepositions, and con-
junctions. We use the stop word set from the nltk python package.

It is clearly seen from the table that the proposed Cascaded+
models significantly outperform their corresponding baseline Cas-
caded models (Cascaded+ vs Cascaded, Cascaded(h)+ vs Cas-



Fig. 2: An example of keywords extracted by Cascaded SpeechCLIP+ from the Flickr8k test set, showing the image, spoken caption, and
extracted keywords with corresponding segments.

Table 2: Word and BPE extraction performance of Cascaded+ Large
on the Flickr8k test set. “Type” refers to the granularity of the units
considered, while “Top K” represents the top K BPEs retrieved by
each CLS.

w/o stop words w/ stop words

Type Top K R P F1 R P F1

Word 1 19.81 12.06 14.99 14.12 13.66 13.89
2 22.80 6.84 10.53 16.54 7.86 10.65
3 25.07 4.95 8.27 18.74 5.85 8.91
4 26.76 3.92 6.83 19.97 4.61 7.49
5 27.59 3.20 5.74 20.86 3.82 6.45

BPE 1 19.17 12.99 15.49 13.79 13.97 13.88
2 22.29 7.53 11.26 16.29 8.25 10.96
3 24.52 5.54 9.03 18.46 6.24 9.32
4 26.31 4.46 7.63 19.77 5.01 7.99
5 27.27 3.73 6.56 20.74 4.2 6.99

caded(h), Cascaded+ Large vs Cascaded Large, and Cascaded(h)+
Large vs Cascaded(h) Large). Surprisingly, joint training of parallel
and cascaded branches did not always bring performance improve-
ments to Cascaded and Cascaded+ models. The reason remains to
be further studied.

Table 2 shows the performance of word extraction. Since the
previous experiment shows that cascade SpeechCLIP+ Large (Cas-
caded+ Large) performs best on the Flickr8k test set, we use it in
this experiment. We use the extracted neighboring BPEs to construct
words. Top K BPEs with K from 1 to 5 are evaluated. The corre-
sponding BPE extraction performance is also provided for reference.
As can been seen from Table 2, Top 1 BPE gives the best F1 score
for word extraction with or without considering stop words. An in-
crease in K can slightly improve the recall rate (R), but decrease the
precision rate (P). BPE extraction performance has the same trend as
word extraction performance.

3.3. Image-Speech retrieval

Next, we evaluate Parallel(h)+ and Parallel(h) on image-speech re-
trieval tasks. The “Speech ! Image” task is to retrieve the corre-
sponding image given a spoken caption, and the “Image ! Speech”
task is to retrieve the corresponding spoken caption given an image.

From Table 3, we can see that on the Frickr8k dataset, the par-
allel branches in hybrid SpeechCLIP are mostly better than the cor-
responding baseline parallel models (Parallel(h) vs Parallel, Paral-
lel(h)+ vs Parallel, Parallel(h) Large vs Parallel Large, and Paral-
lel(h)+ Large vs Parallel Large). The results show that through a hy-
brid architecture, cascaded task learning improves the performance
of parallel branches in image-speech retrieval tasks. The perfor-
mance of Parallel(h) and Parallel(h)+ is comparable, suggesting that
both cascaded SpeechCLIP and cascaded SpeechCLIP+ can effec-
tively enhance the parallel branch in joint training. However, on the

Table 3: Image-speech retrieval performance on the Flickr8k and
SpokenCOCO test sets. Parallel(h) refers to the parallel branch in
hybrid SpeechCLIP (Fig. 1a), while Parallel(h)+ refers to the parallel
branch in hybrid SpeechCLIP+ (Fig. 1b).

Speech ! Image Image ! Speech

Model R@1 R@5 R@10 R@1 R@5 R@10

Flickr8k

Parallel [13] 26.7 57.1 70.0 41.3 73.9 84.3
Parallel(h) 29.8 60.8 73.5 40.9 71.6 83.9
Parallel(h)+ 29.3 60.1 73.7 39.7 72.8 83.4

Parallel Large [13] 39.1 72.0 83.0 54.5 84.5 93.2
Parallel(h) Large 43.1 75.6 85.2 54.3 85.1 93.5
Parallel(h)+ Large 41.7 73.7 84.1 54.2 86.8 94.2

SpokenCOCO

FaST-VGSCTF [24] 35.9 66.3 77.9 48.8 78.2 87.0
Parallel Large [13] 35.8 66.5 78.0 50.6 80.9 89.1

Parallel(h) Large 32.5 60.9 72.9 44.2 73.9 83.8
Parallel(h)+ Large 36.5 66.3 77.9 51.0 80.0 88.5

SpokenCOCO dataset, the performance of Parallel(h) Large and Par-
allel(h)+ Large is disappointing, especially Parallel(h) Large. The
results in Table 1 show that Cascaded(h) Large and Cascaded(h)+
Large trained on SpokenCOCO have a relatively better ability to ex-
tract stop word information than models under other experimental
settings. This may make Parallel(h) Large (or Parallel(h)+ Large)
dominated by stop words captured by Cascaded(h) Large (or Cas-
caded(h)+ Large) jointly trained under the hybrid architecture.

4. CONCLUSIONS

In this paper, we attempt to boost the performance of pre-trained
speech models on downstream tasks by leveraging visual content and
other pre-trained modalities. We propose two extensions to Speech-
CLIP. First, we apply the Continuous Integrate-and-Fire (CIF) mod-
ule to replace a fixed number of CLS tokens in the cascaded archi-
tecture. Second, we propose a new hybrid architecture that merges
the cascaded and parallel architectures of SpeechCLIP into a multi-
task learning framework. In the keyword extraction task, our cas-
caded SpeechCLIP+ model significantly outperforms the baseline
cascaded SpeechCLIP model [13]. Experimental results show that
using CIF-segmented representations are more effective and flexible
than adding a fixed number of CLS tokens when extracting subword
and word information in speech. In the image-speech retrieval task,
experimental results show that both cascaded SpeechCLIP and cas-
caded SpeechCLIP+ can effectively enhance the parallel branch in
hybrid SpeechCLIP through joint training. In future work, we will
investigate other unsupervised speech segmentation [19] and multi-
task learning methods [25].
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