
Scaling, Control and Generalization in
Reinforcement Learning Level Generators

Sam Earle
New York University

Game Innovation Lab

Brooklyn, NY

sam.earle@nyu.edu

Zehua Jiang
New York University

Game Innovation Lab

Brooklyn, NY

zehua.jiang@nyu.edu

Julian Togelius
New York University

Game Innovation Lab

Brooklyn, NY

julian@togelius.com

AbstractÐProcedural Content Generation via Reinforcement
Learning (PCGRL) has been introduced as a means by which
controllable designer agents can be trained based only on a set
of computable metrics acting as a proxy for the level’s quality
and key characteristics. While PCGRL offers a unique set of
affordances for game designers, it is constrained by the compute-
intensive process of training RL agents, and has so far been
limited to generating relatively small levels. To address this issue
of scale, we implement several PCGRL environments in Jax so
that all aspects of learning and simulation happen in parallel on
the GPU, resulting in faster environment simulation; removing
the CPU-GPU transfer of information bottleneck during RL
training; and ultimately resulting in significantly improved train-
ing speed. We replicate several key results from prior works in
this new framework, letting models train for much longer than
previously studied, and evaluating their behavior after 1 billion
timesteps. Aiming for greater control for human designers, we
introduce randomized level sizes and frozen ªpinpointsº of pivotal
game tiles as further ways of countering overfitting. To test the
generalization ability of learned generators, we evaluate models
on large, out-of-distribution map sizes, and find that partial
observation sizes learn more robust design strategies.

Index TermsÐprocedural content generation, reinforcement
learning

I. INTRODUCTION

In procedural content generation via reinforcement learning

(PCGRL), the process of iterative game design is frames as

a markov decision process, and reinforcement learning (RL)

agents are trained to generate game content. Instead of learning

to play a game by taking actions, observing states, and getting

rewards, these agents learn to generate (parts of) a game

by taking actions, observing states, and getting rewards. The

actions edit the content artifact, and the reward is based on

the quality of the artifact that is being created.

The advantage of PCGRL is that you can use it to create

not just game content, but game content generators. Compared

to search-based approaches, this means that almost all the

compute is front-loaded; first you train the generator, then

inference is fast and cheap. This makes it suitable for runtime

use in games. Compared to supervised or self-supervised

learning, PCGRL don’t need any existing content to train on.

This makes it suitable for use for games where any content

has yet to be produced.

Despite these considerable potential advantages, PCGRL

has only limited uptake since it was first proposed in [1].

This could be due to the difficulty of designing good reward

functions, the tendency to overfit to single solutions, the long

training time, and the problems with scaling to produce larger-

size levels and other content. In this paper, we propose and

evaluate several modifications to the basic PCGRL formulation

aimed at rectifying some of these issues.
Two novel elements we propose are randomizing level size

during training, and pinpointing locations of key elements.

Both of these interventions function to limit overfitting by

enforcing closed-loop policies, in other words, the agent must

take its observations into account and cannot rely on rote-

learning parts of levels. These add new degrees of controlla-

bility in addition on top of conditioning on high-level features

introduced in [2].
We also examine the effects of systematically changing

the size of the agent’s observation space. In the original

PCGRL formulation, the observation window typically covers

the whole level. From reinforcement learning experiments in

various domains, we know that observation and structure can

have large effects on overfitting and scalability. We hypothe-

size that the same is true for PCGRL, and that we can improve

generalization and scalability by choosing adequate observa-

tion windows. This hypothesis is largely confirmed by our

experiments. We find that smaller observation windows always

increase generalization to new level sizes. On a task involving

pinpoints and randomized map shapes during training, these

more local models additionally perform comparably or better

in-distribution.
To offset the high computational cost of training content-

generating agents, we reimplement the standard PCGRL li-

brary in jax [3], a framework that allows a high degree of

parallelization using the GPU to simulate the environment,

resulting for 15× speedups during training, making it feasible

to experiment with longer training times.
In sum, our contributions are as follows

• We re-implement the PCGRL code-base in jax, making

it practical to scale PCGRL to larger and more complex

domains.

• We add new featuresÐvariable map shapes and varied

(frozen) placement of pivotal ªpinpointº tilesÐto make979-8-3503-5067-8/24/$31.00 ©2024 IEEE

2
0
2
4
 I

E
E

E
 C

o
n
fe

re
n
ce

 o
n
 G

am
es

 (
C

o
G

)
| 9

7
9
-8

-3
5
0
3
-5

0
6
7
-8

/2
4
/$

3
1
.0

0
 ©

2
0
2
4
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9

/C
o
G

6
0
0
5
4
.2

0
2
4
.1

0
6
4
5
5
9
8

Authorized licensed use limited to: New York University. Downloaded on January 21,2025 at 21:47:48 UTC from IEEE Xplore. Restrictions apply.

(a) 8× 8 observations (b) 31× 31 (global) observations

(c) Evaluation on in-distribution 16× 16 maps.

(d) 8× 8 observations (e) 31× 31 (global) observations

(f) Evaluation on out-of-distribution 32× 32 maps.

Fig. 1: Evaluation in the MAZE domain with pinpoints (ran-

domly fixed player and door tiles). While models with large

global observations are better on small 16× 16 in-distribution

maps, models with smaller local observations learn scalable

patterns that generalize better to larger 32× 32 maps.

the task of level generation more complex, and to make

the result generators more controllable.

• We conduct a thorough investigation of the effects of

partial observations, finding that partial observations are

more successful in generalizing to large map sizes unseen

during training.

II. BACKGROUND

Video games featuring some form of content generation,

often level generation, have existed since the early 1980s.

Beneath Apple Manor, Rogue, and Elite were the early poster

children of early game content generation. PCG has become a

mainstay in modern games, with titles such as No Man’s Sky,

Hades, and the Civilization series that rely heavily on some

form of runtime content generation.

Academic research in content generation dates back to

the early 2000s [4]. Much of the early research focused

on search-based approaches [5]. Search-based approaches are

very versatile, but the computational demands at generation

time can be high, making such approaches harder to use for

runtime generation. Constraint satisfaction approaches [6; 7]

3 3
2 64 3

2

Conv2D-7×7–ReLu

64 1
6

Conv2D-7×7–ReLu
2
5
6

FC1–

ReLu

6
4

FC2–

ReLu

3
2

ActionFC–

ReLu

3 4

1

ValueFC–

ReLu

(a) CONV model. Both action and value branches process a single
local or global 2D observation with convolutional and fully connected
layers.

Fig. 2: Model architectures.

were also given considerable attention. While constraint satis-

faction approaches can be very powerful, it imposes particular

constraints on the shape of the content.

Supervised and self-supervised approaches to PCG started

being explored seriously at the dawn of the deep learning

era [8; 9; 10]. A variety of these machine learning methods

have been applied to game content generation, including Gen-

erative Adversarial Networks [11], LSTM networks [12], and

Markov models [13]. However, these methods generally have

large requirements on training data. This begs the question

that has been called the fundamental tension of PCGML: if

these methods only work well with enough existing content,

why would you need to generate it? [14].

Reinforcement learning approaches to PCG are more recent,

first proposed by [15] and [1]. There are significant advantages

to PCGRL over existing approaches:

1) No training data is necessary

2) Generators are very fast during inference time

3) The generator is iterative, allowing mixed-initiative so-

lutions [16]

With these advantages comes a unique set of considerations.

In principle, the same kind of evaluations used as fitness func-

tions for search-based PCG can be used as reward functions

in PCGRL. However, due to longer training times, a computa-

tionally lightweight reward function is needed in settings with

dense reward. There is also a tendency to mode collapse via

overfitting, which can be counteracted via limiting the number

of changes the model can make, or introducing conditional

inputs [2]. Because of these constraints, scaling PCGRL to

larger-sized levels or artefacts has proven a challenge [17].

One type of modification to the basic PCGRL formula

explored here concerns the size and shape of the observa-

tion. This draws on earlier results showing that limiting the

observation size and aligning it properly can greatly help with

generalization [18].

Authorized licensed use limited to: New York University. Downloaded on January 21,2025 at 21:47:48 UTC from IEEE Xplore. Restrictions apply.

n. envs 1 10 50 100 200 400 600
CPU binary 189 420 520 524 525 529 522

dungeon 206 416 505 511 509 511 496
jax binary 256 1,256 1,098 3,993 6,076 7,814 8,943

maze 471 2,099 6,159 8,039 9,319 9,456 10,961
dungeon 292 1,463 4,042 5,375 6,851 7,502 8,798

TABLE I: Environment steps per second on various domains

in the CPU and jax implementations of [2] during training, on

10 CPUs or an RTX-8000 respectively, under varying numbers

of parallelized environments.

n. envs 50 100 200 400 600

binary 6846.73 11979.56 21478.48 37072.85 46498.75
maze 6867.30 12325.76 21902.67 37745.91 47323.79
dungeon 6923.89 12349.95 21882.25 37770.10 46839.11

TABLE II: Environment steps per second on various domains

in the jax implementation of PCGRL while taking random

actions, on an RTX-8000, under varying numbers of paral-

lelized environments. Frames per-second exceed 45k, despite

the relative complexity of the pathfinding operations required

to compute reward in these domains.

III. METHODS

A. Training

To train RL level generators, we use Proximal Policy

Optimization (PPO) [19] with the same reward function and

neural network as in [1; 2], using the ªnarrowº representation

of observations and actions. In each episode, the model is

rewarded by minimizing the loss value between current state

and target state (where the user or a training curriculum can

vary target solution path length or nearest enemy). The agent

observes an egocentric patch of the level (in which the board

may be padded to allow for global observations), and may

change the state of its current tile, then is moved to an adjacent

tile in an iterative scan of the map.

B. Task

We extend PCGRL [1], in which level design is framed

as a reinforcement learning task. This task is decomposed

into a ªproblemºÐthe level design task at handÐand a

ªrepresentationºÐthe interface via which the agent edits the

level. In this paper, we adapt the narrow representation to

support new features, and use the binary maze and dungeon

problems and as toy tasks with which to verify our proposed

method. We initialize the map with the elements of the

tasks using the weighted uniform distribution as in [1], or

simply leave it empty, depending on the configuration of the

environment. At each timestep, we compute the metrics of

interest (i.e. the diameter and number of connected empty

regions) if the agent has made any modification to the map.

a) Binary domain: The agent’s goal is to create a maze

with maximum diameter (i.e. the longest shortest path between

any two points in the maze). There are only two types of

tile in the maze: wall and air. We approximate the diameter

(a) Fixed map shapes during training.

(b) Randomized per-episode map shapes during training.

Fig. 3: Reward curve of the CONV model on the MAZE

domain with pinpoints (randomly frozen player and door).

On a more challenging task involving randomized per-episode

map shapes, the performance gap between models with global

and partial observations shrinks.

by applying Dijkstra’s algorithm twice1 and the number of

connected components using a flood fill algorithm.
b) Maze domain: In this problem, the RL agent needs

to use ªwallº and ªairº tiles to create a traversable maze

from one ªplayerº tile to ªdoorº tile in the game map. The

generated maze should just have one connected component

and the solution should be maximized.
c) Dungeon domain: Expanding on the MAZE domain,

we consider a task in where the agent’s goal is to create a

playable dungeon game level. The generated dungeon should

1First, we select a random empty tile x in the maze. We apply Dijkstra’s
algorithm to find the longest shortest path of which x is an endpoint. We then
take y, the other endpoint of this shortest path, and apply Dijkstra’s algorithm
starting from y to find the longest shortest path of which y is an endpoint,
under the assumption that y is an endpoint of the diameter.

Authorized licensed use limited to: New York University. Downloaded on January 21,2025 at 21:47:48 UTC from IEEE Xplore. Restrictions apply.

have a maximally long shortest path from player, to key, to

door. There are 6 types of tile in dungeon problem: wall, air,

enemy, key, door, and player. There can be 2 to 5 enemy

tiles, and only one key, door, and player tile. Additionally, the

distance between the player and the nearest enemy should not

be less than 4 tiles. We use Dijkstra’s algorithm to find the

shortest player-key-door path.

d) Pinpoint tiles: We add additional complexity to our

tasks, modifying the MAZE and DUNGEON domains so that

important tiles can be frozen in arbitrary positions on the

board. This freezing can be done programmatically during

training, or at inference time via a human designer. These

fixed-position tiles provide a more controllable way to prevent

agents fromoverfitting to a single optimal output, and allow the

problem to become open-looped.

e) Randomized map shapes: To train agents that scale to

larger and more variable map shapes w.r.t those seen during

training, we expose the agent to a variety of map shapes

throughout training. So, when training on a 16 × 16 map

(as in prior PCGRL work) we randomly sample a rectangular

map shape from a uniform distribution. The dimensions of this

shape are bounded by 3× 3 and 16× 16. Another alternative

might be to progressively train on maps of increasing size.

Although intuitive, this approach introces two failrue modes.

First, it risks catastrophic forgetting of smaller map sizes seen

earlier during training. Conversely, it may incentivise the agent

to learn faulty representations on smaller maps that do not

transfer to larger ones.

C. Jax implementation

We use the jax python library [3] to implement our PCGRL

environments and training algorithm. Jax exposes a wide vari-

ety of tensor-based operations to the user, mirroring much of

the functionality of numpy and/or libraries like pytorch or ten-

sorflow, compiling operations to XLA just-in-time. Provided

that the size of tensors is fixed at compile-time, and with some

limitations on logical operations like if conditions, Jax can

improve runtime efficiency by ªfusingº lower-level operations.

Our Jax implementation of PCGRL builds on gymnax [20] and

the PureJaxRL code base [21], which implements a number

of simple embodied game-playing environments in Jax.

To pathfind in jax, we can flood activation out to adjacent

traversible tiles in parallel across the board using convolutional

kernels. Similar logic can be used to compute the number of

regions.

IV. RESULTS

a) Speed Comparison: In Table I we calculate the FPS

during training of the prior CPU implementation (splitting

environments across 11 cores), and jax-pcgrl respectively.

We find that the jax implementation leads to speedups of

over 15× relative to the CPU implementation. While the

CPU implementation plateaus as the number of environments

reaches between 50-100, the FPS of the jax version continues

to increase significantly up to at least 600 workers.

In Table II, we calculate the speed of our jax implementa-

tions of the BINARY MAZE and DUNGEON domains in frames

per second given actions from a random agent, achieving 45k

FPS.

b) Observation size: In the following experiments, we

train the agents in a fixed size map setting and evaluate them

on different map shapes. From these thorough experiment con-

figurations, we can answer the question about how observation

size influence the model performance on in-distribution and

out-distribution map and the how well the agents generalize.

In Table III we evaluate the performance of the CONV

model on the DUNGEON task. We evaluate different obser-

avtion input of the model on varying maximum random map

widths and random per-episode map shapes. Performance of

models with smaller observation windows is slightly weaker

than models with full observations on in-distribution max-

imum map widths. But smaller observations lead to better

generalization to larger maximum map widths, despite these

models having fewer parameters then their fully-observing

counterparts.

In Table IV, we evaluate the CONV model on the DUNGEON

domain with random target path length for learning control-

lability. Looking at evaluation scenarios without randomized

per-episode map shapes, we see that on in-distribution 16×16

maps, global observations perform the best. On larger maps,

however, more local partial observations generalize better,

despite the fact that models with smaller observation windows

have significantly fewer parameters. When evaluating with

randomized per-episode map shapes, however, models of all

observation sizes generalize comparably.

We repeat this experiment in Table V, where we systemati-

cally add hidden nodes to each layer of each network until

it has almost as many (but no more) learnable parameters

than the model with full observationsÐeffectively separating

the effect of partial observations from model size. Here, we

see that models with smaller observation size but comparable

numbers of parameters tend to outperform models with larger

observations across all maximum map sizes.

In Figure 5, we plot the reward curves of the experiments

in Table IV and Table V during training, and similarly observe

that the addition of learnable parameters to models with

smaller observation sizes improves their performance.

c) Randomized map shapes during training: In Table VI,

we examine the performance of the CONV model on the MAZE

domain, with pinpoints (randomized fix placement of player

and door tiles). In these experiments, we show how random-

izing the map shape during training will affect the model

performance of generalization under different observation size.

First, we look at evaluation of models on fixed square map

sizes. In this setting, models exposed to similarly fixed square

map shapes during training tend to outperform those trained

on variable per-episode map shapes. Next, we evaluate models

while randomly sampling shapes within these maximum sizes

on each evaluation episode (right side of the table). Models

trained without randomized map shapes are broadly unable to

adapt to variable map shapes during evaluationÐwith the only

Authorized licensed use limited to: New York University. Downloaded on January 21,2025 at 21:47:48 UTC from IEEE Xplore. Restrictions apply.

mean ep reward
rand. map shape False True
eval map width 8 16 24 32 8 16 24 32

obs size

15 20.43 ± 0.94 281.57 ± 74.31 282.40 ± 1.95 497.95 ± 6.65 6.19 ± 0.33 38.48 ± 0.38 96.22 ± 2.02 140.16 ± 4.83
20 22.82 ± 0.39 193.72 ± 21.75 272.26 ± 11.14 486.20 ± 20.73 7.06 ± 0.62 37.56 ± 1.89 97.18 ± 1.50 135.03 ± 2.00
25 24.89 ± 2.22 338.47 ± 6.41 276.06 ± 13.81 474.13 ± 33.43 8.64 ± 1.70 39.44 ± 3.18 96.55 ± 0.76 136.51 ± 1.12
31 18.04 ± 0.66 269.86 ± 29.98 273.20 ± 4.02 492.98 ± 6.93 7.51 ± 1.08 30.35 ± 3.28 91.37 ± 2.24 132.96 ± 5.04

TABLE III: Performance on the DUNGEON domain, of models with varying observation size. Models are trained on 16× 16

maps of fixed shape during training, and evaluated on larger and variable-shaped maps. Smaller observation windows lead to

better generalization on these tasks.

mean ep reward
rand. map shape False True
eval map width 8 16 24 32 8 16 24 32

obs size

3 23.77 ± 2.21 175.03 ± 14.62 318.68 ± 24.37 548.01 ± 36.50 7.70 ± 1.56 35.65 ± 2.71 99.90 ± 4.11 138.22 ± 3.69
5 22.66 ± 1.24 175.48 ± 2.56 288.45 ± 0.68 514.73 ± 2.17 8.40 ± 1.46 37.56 ± 1.74 100.57 ± 5.48 139.29 ± 3.46
8 19.69 ± 0.71 140.76 ± 2.66 285.70 ± 0.67 509.28 ± 2.80 7.23 ± 0.88 36.82 ± 1.16 99.73 ± 1.72 145.10 ± 4.09

16 18.53 ± 2.14 183.15 ± 13.76 282.80 ± 4.51 490.29 ± 6.66 5.34 ± 0.88 36.46 ± 1.59 98.90 ± 3.11 136.70 ± 1.52
31 20.40 ± 0.55 184.12 ± 28.38 273.73 ± 0.69 492.11 ± 1.62 8.60 ± 0.85 35.48 ± 0.38 93.54 ± 2.61 136.60 ± 3.06

TABLE IV: Performance on the DUNGEON domain, with controllable path length, of the CONV model with varying observation

size. Smaller observation windows often lead to better generalization.

mean ep reward
rand. map shape False True
eval map width 8 16 24 32 8 16 24 32

obs size hid dims

3 37.21 ± 9.46 188.29 ± 8.83 372.66 ± 3.49 582.95 ± 30.90 10.89 ± 2.20 39.89 ± 1.92 103.75 ± 0.95 141.59 ± 2.10
5 24.26 ± 0.89 193.17 ± 17.19 295.83 ± 6.47 517.08 ± 0.72 9.87 ± 0.60 41.39 ± 3.70 103.48 ± 5.41 145.19 ± 5.50
8 27.00 ± 0.78 181.41 ± 15.48 316.44 ± 17.98 520.65 ± 6.83 8.53 ± 0.17 38.99 ± 2.88 103.19 ± 1.98 139.42 ± 0.81
16 19.25 ± 0.72 182.88 ± 8.26 265.95 ± 11.06 451.51 ± 24.09 5.80 ± 0.14 44.19 ± 3.45 100.01 ± 6.53 135.75 ± 6.24
31 17.43 ± 0.77 206.98 ± 21.27 276.81 ± 5.06 490.94 ± 15.53 5.03 ± 0.81 31.03 ± 1.30 92.21 ± 3.50 133.53 ± 1.93

TABLE V: Performance on the DUNGEON domain, with controllable path length, of the CONV model with varying observation

sizeÐwhile fixing the number of learnable model parameters. Relative to Table IV, increasing the number of parameters in

partially-observing models leads to improvements on certain out-of-distribution scenarios (though not on randomized map

shapes).

mean ep reward
rand. map shape False True
eval map width 8 16 24 32 8 16 24 32

rand. map shape obs size

False 8 7.18 ± 0.97 22.45 ± 6.02 44.57 ± 4.79 59.07 ± 3.78 1.23 ± 0.59 4.82 ± 1.59 9.57 ± 4.40 6.10 ± 7.43
16 3.93 ± 4.43 48.17 ± 2.70 39.53 ± 9.98 20.08 ± 8.51 0.27 ± 0.48 -1.28 ± 4.50 -3.15 ± 2.87 -8.14 ± 3.09
24 2.31 ± 1.42 41.87 ± 1.70 18.55 ± 7.21 0.43 ± 8.78 0.87 ± 0.64 1.07 ± 1.08 1.11 ± 0.92 0.79 ± 0.46
31 3.19 ± 0.95 51.37 ± 7.41 -10.18 ± 5.56 -14.73 ± 9.70 0.93 ± 0.03 -2.33 ± 3.87 -5.97 ± 5.22 -6.71 ± 6.92

True 8 9.24 ± 0.30 22.13 ± 3.08 29.88 ± 9.93 30.48 ± 9.47 6.61 ± 0.16 20.09 ± 2.70 26.11 ± 4.08 25.12 ± 1.85

16 5.36 ± 1.36 13.38 ± 2.82 0.42 ± 4.86 -9.63 ± 6.02 5.93 ± 0.39 21.75 ± 1.76 16.57 ± 2.79 16.87 ± 4.97
24 5.05 ± 1.13 -3.97 ± 4.97 -19.45 ± 5.74 -31.21 ± 16.32 5.08 ± 0.76 18.31 ± 1.93 5.67 ± 3.70 -0.84 ± 3.65
31 4.25 ± 1.43 -1.48 ± 1.82 -9.69 ± 7.61 -16.08 ± 11.71 3.76 ± 0.21 18.69 ± 0.55 3.82 ± 1.73 -0.68 ± 2.19

TABLE VI: Performance on the pinpointed MAZE domain, of the CONV model, with varying observation size and with

or without exposure to randomized map shapes during training. When map shapes are randomized during training, the in-

distribution performance gap between local and global models closes.

Authorized licensed use limited to: New York University. Downloaded on January 21,2025 at 21:47:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: On the DUNGEON domain with controllable path length the CONV model with 3× 3 observation generalizes a design

pattern to larger map sizes.

(a) Models with smaller observation windows have fewer parameters. (b) Models with smaller observation windows have greater hidden
dimensions and a similar number of learnable parameters.

Fig. 5: Effect of different observation sizes on reward curves during training of the CONV model on the DUNGEON domain

with control targets.

consistent positive reward in this setting coming from models

with the smallest observation window (8× 8). Of the models

trained on variable map shapes, smaller observation windows

generally outperform larger ones.

In Figure 3, we plot reward curves of these models. When

map shapes are fixed between episodes (Figure 3a), models

with full observations outperform those with local observa-

tions. But when map shapes are randomized over each episode

(Figure 3b), smaller observation windows lead to comparable

or better performance than those with full observations. This

trend is also replicated at evaluation time in Table VI, and can

be observed qualitatively in Figure 1

V. DISCUSSION

To the best of our knowledge, no prior jax RL environments

involving path-finding, which could also be a useful addition

to player environments (e.g. to simulate enemy navigation in

[22]). If the speedups Table II of our jax implementations of

PCGRL environments are less than those of other, still simpler

environments, this might come from the added complexity of

our path-finding implementation.

Table VI shows us that in general, smaller observation

windows lead to higher performance on out-of-distribution

settings, either for larger scale or per-episode map shapes. We

contend that this is likely a result of overfitting under global

observation: models that are accustomed to seeing the padding

of unique ªborderº tiles surrounding the effective map region

are disrupted when, during evaluation on larger maps, these

tiles are suddenly not present in their egocentric observations.

These models are likely using the placement of these border

tiles to infer global coordinates, allowing it to consistently

construct one optimal global level (or a set of global levels,

when dealing with randomized map shapes, controllable path-

length metrics, or frozen ªpinpointº tiles). With such global

coordinates at hand, these levels can theoretically be generated

in one shot (or one scan over the board).

By restricting the observation space, on the other hand,

models could only infer global coordinates by editing the

Authorized licensed use limited to: New York University. Downloaded on January 21,2025 at 21:47:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: A model taking local 8× 8 observations generalizes a

design strategy across varied map shapes.

entire board multiple times, communicating relative coordi-

nates via patterns that cascade across the map in an iterative

way. The fact that these local-observation models perform

better out of distribution suggests that such an approach to

iteratively passing local information across the board leads

to more general representations and strategies for designing

good levels. In other words, these constrained models are less

likely to memorize what one or a set of optimal levels should

look like, and instead may learn general strategies for how to

improve or modify maps along certain axes.

Meanwhile, models trained on fixed-size square maps are

not able to adapt well to per-episode variation of map shape.

Models with full observations exhibit particularly pronounced

failure in this case, and our reasoning would expect that a

model that has observed only square border shapes is disrupted

when it observes rectangular shapes during evaluation. But

models with local observations are also thrown off by variable

per-episode map shapes, suggesting that their strategies for

iteratively transmitting local information are not robust to non-

square map shapes. Conversely, maps trained on variable per-

episode map shapes do not quite attain the performance of

models trained strictly on fixed-size square mapsÐeven on

out-of-distribution sizes. We expect that this is merely a result

of insufficient training time given the larger task distribution

on which these models are trained, and that further training

would allow them to better cover this distribution with good

performance.

The reward curves in Figure 3, along with the in-distribution

columns of Table VI, reveal that when per-episode map shapes

are randomized, models taking full observations seem to lose

the advantage they have when map shapes are fixed. This

would seem to suggest that knowing the overall shape of

the map is actually a disadvantage, even on in-distribution

tasks, when this distribution is diverse enough. In other words,

we hypothesize that models that are forced to learn general

level-editing strategies, adaptive to a range of possible map

shapes, arrive more quickly at optimal performance on the

set of training map shapes, while models that have access

to this information are effectively distract, and drawn away

from more general and robust strategies. Or, when the training

distribution is wide enough, limiting a model’s direct access

to information about precisely which training task it is in at a

given moment can render it more effective, because this model

is forced to find similarities between tasks and effectively learn

compressed representations of this distribution.

VI. CONCLUSION

The over 15× speedups achieved by our jax reimple-

mentions of PCGRL environments allow us to train models

for many more timesteps (1 billion) than in previous works

(around 200 million). By randomizing map shapes and the

placement of pivotal items in initial layouts, we allow for

training of more robust and controllable level generator agents.

In our experiments, we find that limiting the observation

window of trained agents leads to stronger generalization.

By evaluating on held-out initial map layouts and constraints,

pcgrl-jax can serve as a scalable benchmark for RL agents,

with real-world applications for human level designers.

REFERENCES

[1] A. Khalifa, P. Bontrager, S. Earle, and J. Togelius,

ªPcgrl: Procedural content generation via reinforcement

learning,º in Proceedings of the AAAI Conference on

Artificial Intelligence and Interactive Digital Entertain-

ment, vol. 16, no. 1, 2020, pp. 95–101.

[2] S. Earle, M. Edwards, A. Khalifa, P. Bontrager, and

J. Togelius, ªLearning controllable content generators,º

in 2021 IEEE Conference on Games (CoG). IEEE, 2021,

pp. 1–9.

[3] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson,

C. Leary, D. Maclaurin, G. Necula, A. Paszke,

J. VanderPlas, S. Wanderman-Milne, and Q. Zhang,

ªJAX: composable transformations of Python+NumPy

programs,º 2018. [Online]. Available: http://github.com/

google/jax

[4] N. Shaker, J. Togelius, and M. J. Nelson, ªProcedural

content generation in games,º 2016.

[5] J. Togelius, G. N. Yannakakis, K. O. Stanley, and

C. Browne, ªSearch-based procedural content generation:

A taxonomy and survey,º IEEE Transactions on Compu-

Authorized licensed use limited to: New York University. Downloaded on January 21,2025 at 21:47:48 UTC from IEEE Xplore. Restrictions apply.

tational Intelligence and AI in Games, vol. 3, no. 3, pp.

172–186, 2011.

[6] A. M. Smith and M. Mateas, ªAnswer set programming

for procedural content generation: A design space ap-

proach,º IEEE Transactions on Computational Intelli-

gence and AI in Games, vol. 3, no. 3, pp. 187–200, 2011.

[7] G. Smith, J. Whitehead, and M. Mateas, ªTanagra: Reac-

tive planning and constraint solving for mixed-initiative

level design,º IEEE Transactions on computational in-

telligence and AI in games, vol. 3, no. 3, pp. 201–215,

2011.

[8] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgård,

A. K. Hoover, A. Isaksen, A. Nealen, and J. Togelius,

ªProcedural content generation via machine learning

(pcgml),º IEEE Transactions on Games, vol. 10, no. 3,

pp. 257–270, 2018.

[9] J. Liu, S. Snodgrass, A. Khalifa, S. Risi, G. N. Yan-

nakakis, and J. Togelius, ªDeep learning for procedural

content generation,º Neural Computing and Applications,

vol. 33, no. 1, pp. 19–37, 2021.

[10] M. Guzdial, S. Snodgrass, and A. J. Summerville, Pro-

cedural Content Generation Via Machine Learning: An

Overview. Springer, 2022.

[11] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and

S. Risi, ªEvolving mario levels in the latent space of

a deep convolutional generative adversarial network,º in

Proceedings of the genetic and evolutionary computation

conference, 2018, pp. 221–228.

[12] A. J. Summerville and M. Mateas, ªSuper mario as a

string: Platformer level generation via lstms,º in Proceed-

ings of FDG/DiGRA, 2016.

[13] S. Snodgrass and S. OntanÂon, ªLearning to generate

video game maps using markov models,º IEEE trans-

actions on computational intelligence and AI in games,

vol. 9, no. 4, pp. 410–422, 2016.

[14] I. Karth and A. M. Smith, ªAddressing the fundamen-

tal tension of pcgml with discriminative learning,º in

Proceedings of the 14th International Conference on the

Foundations of Digital Games, 2019, pp. 1–9.

[15] M. Guzdial, N. Liao, and M. Riedl, ªCo-creative

level design via machine learning,º arXiv preprint

arXiv:1809.09420, 2018.

[16] O. Delarosa, H. Dong, M. Ruan, A. Khalifa, and J. To-

gelius, ªMixed-initiative level design with rl brush,º in

Artificial Intelligence in Music, Sound, Art and Design:

10th International Conference, EvoMUSART 2021, Held

as Part of EvoStar 2021, Virtual Event, April 7–9, 2021,

Proceedings 10. Springer, 2021, pp. 412–426.

[17] Z. Jiang, S. Earle, M. Green, and J. Togelius, ªLearning

controllable 3d level generators,º in Proceedings of the

17th International Conference on the Foundations of

Digital Games, 2022, pp. 1–9.

[18] C. Ye, A. Khalifa, P. Bontrager, and J. Togelius, ªRota-

tion, translation, and cropping for zero-shot generaliza-

tion,º in 2020 IEEE Conference on Games (CoG). IEEE,

2020, pp. 57–64.

Fig. 7: On the DUNGEON domain the CONV model with full

observation mutates the board through a series of playable

levels.

[19] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and

O. Klimov, ªProximal policy optimization algorithms,º

arXiv preprint arXiv:1707.06347, 2017.

[20] R. T. Lange, ªgymnax: A jax-based reinforcement learn-

ing environment library, 2022b,º URL http://github.

com/RobertTLange/gymnax, 2022.

[21] C. Lu, J. Kuba, A. Letcher, L. Metz, C. Schroeder de

Witt, and J. Foerster, ªDiscovered policy optimisation,º

Advances in Neural Information Processing Systems,

vol. 35, pp. 16 455–16 468, 2022.

[22] M. Matthews, M. Beukman, B. Ellis, M. Samvelyan,

M. Jackson, S. Coward, and J. Foerster, ªCraftax: A

lightning-fast benchmark for open-ended reinforcement

learning,º arXiv preprint arXiv:2402.16801, 2024.

APPENDIX

Authorized licensed use limited to: New York University. Downloaded on January 21,2025 at 21:47:48 UTC from IEEE Xplore. Restrictions apply.

