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Abstract

Existing speech-to-speech translation (S2ST)
models fall into two camps: they either lever-
age text as an intermediate step or require hun-
dreds of hours of parallel speech data. Both
approaches are incompatible with textless lan-
guages or language pairs with limited parallel
data. We present PFB, a framework for training
textless S2ST models that require just dozens of
hours of parallel speech data. We first pretrain
a model on large-scale monolingual speech
data, finetune it with a small amount of parallel
speech data (20 — 60 hours), and lastly train
with an unsupervised backtranslation objective.
We train and evaluate our models for English-
to-German, German-to-English and Marathi-to-
English translation on three different domains
(European Parliament, Common Voice, and All
India Radio) with single-speaker synthesized
speech. Evaluated using the ASR-BLEU met-
ric, our models achieve reasonable performance
on all three domains, with some being within
1 — 2 points of our higher-resourced topline.

1 Introduction

Speech-to-speech translation (S2ST) systems map
input speech in the source language to output
speech in the target language. In many ways, S2ST
represents the holy grail of translation as it enables
natural, real-time, spoken communication. S2ST
has a rich history, from cascaded systems com-
bining Automatic Speech Recognition (ASR), Ma-
chine Translation (MT), and Text To Speech (TTS)
technologies (Nakamura et al., 2006) to recently
proposed neural end-to-end systems (Lee et al.,
2022a; Seamless Communication et al., 2023) that
directly map from input source language speech to
output target language speech. These systems (Jia
et al., 2019; Lee et al., 2022a,b; Jia et al., 2021;
Duquenne et al., 2022a; Seamless Communication
et al., 2023) have benefited from model and data
scaling, leveraging increasing amounts of paral-
lel speech and/or text data across languages. Yet,
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this is feasible only for a fraction of the world’s
7000 languages (Lewis et al., 2016); the majority
of world languages have low-resource or no paral-
lel translation data available (Haddow et al., 2022).
Furthermore, thousands of languages are primar-
ily spoken without standardized writing systems
(about 3000 languages in Ethnologue (Lewis et al.,
2016) have no reported writing system), necessitat-
ing textless language processing.

Recent work on textless speech translation (Lee
et al., 2022b; Kim et al., 2023) train end-to-end
models on large amounts of parallel speech data,
which is expensive to collect and makes these ap-
proaches difficult to adapt for low-resource speech
translation. Sentence embedding-based modular
approaches (Duquenne et al., 2022b, 2023) do not
require any parallel speech data, but still require
parallel text data to learn cross-lingual sentence
embedding spaces. On the other hand, unsuper-
vised S2ST approaches (Wang et al., 2022a; Fu
et al., 2023; Nachmani et al., 2023) do not need any
parallel speech or text data at all, instead relying
on unsupervised cross-lingual learning using large
amounts of monolingual speech and text datasets.
However, they either train cascaded models that
have intermediate text outputs or end-to-end mod-
els that use text supervision during training. As
a result, they are difficult to adapt for textless lan-
guages that are spoken, have non-standard orthogra-
phies or poor ASR systems.

In this work, we adapt the unsupervised S2ST
pipeline to work in a fully textless manner for
the first time. We formulate textless S2ST as a
unit-to-unit machine translation problem that re-
quires a modest amount (dozens of hours) of paral-
lel speech training data. We begin by pretraining
an encoder-decoder unit language model over self-
supervised speech units using monolingual speech
data, followed by finetuning it for S2ST on a low-
resource parallel dataset and finally performing un-
supervised backtranslation to further improve per-
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Figure 1: Overview of speech-to-speech translation systems. We compare our formulation to two relevant lines of
work. We present the first textless speech-to-speech system that does not require a large parallel training dataset.

formance, overall referred to as Pretrain-Finetune-
Backtranslate a.k.a PFB. Figure 1 illustrates our
method, comparing it to previous work. Modeling
real speech data with speech unit sequences poses
challenges, such as inherent unit sequence noise
and ambiguity, that are orthogonal to our research
questions. Thus, for simplicity, we use single-
speaker synthesized speech data to train and eval-
uate our models, following early S2ST work (Jia
etal., 2019).

We train two English <+ German S2ST models
in the European Parliament (Iranzo-Sénchez et al.,
2019) and Common Voice (Ardila et al., 2020)
domains and two English <+ Marathi S2ST mod-
els in the European Parliament (Iranzo-Sanchez
et al., 2019) and All India Radio (Bhogale et al.,
2022) domains, and evaluate the en—de, de—en
and mr—en translation directions. We find that
with just 20 hrs of parallel en—de and de—en data
and 60 hrs of parallel en—mr and mr—en data, our
models achievable reasonable performance on all
three domains, within 1-2 ASR-BLEU of our high-
resource supervised topline for the European Par-
liament domain for the de—en and mr—en direc-
tions. We release code and model weights at https:
//github.com/ajd12342/textless-s2st.

2 Methods

Unsupervised S2ST (Fu et al., 2023; Wang et al.,
2022b) tackles the problem of text-based low-
resource S2ST by representing input and output
speech as text sequences and training a cascade of
models consisting of unsupervised speech recog-
nition (Baevski et al., 2021) (UASR), unsuper-
vised machine translation (Liu et al., 2020) (UMT)

and unsupervised text-to-speech (Ni et al., 2022)
(UTTS). To adapt this for textless languages, we
represent the input and output speech utterances as
self-supervised discrete unit sequences rather than
text sequences. Instead of UASR, we use a speech-
to-unit encoder (S2U) and instead of UTTS, we use
a unit-to-speech vocoder (U2S), both largely based
on prior work (Hsu et al., 2021; Polyak et al., 2021).
Instead of text-based UMT, we train a unit encoder-
decoder (U2U) S2ST model using our three-step
Pretrain-Finetune-Backtranslate (PFB) approach il-
lustrated in Figure 2 adapted from the unsupervised
MT literature (Lample et al., 2018). We now de-
scribe each of these components below.

2.1 Speech-to-unit Encoder (S2U)

Past work (Hsu et al., 2021; Chung et al., 2021) has
explored learning self-supervised discrete speech
representations a.k.a speech units which preserve
much of the input signal’s semantic informa-
tion (Pasad et al., 2021), without needing text
transcriptions to discover these units. It is very
common to train autoregressive language mod-
els (Lakhotia et al., 2021; Borsos et al., 2022) over
these units, enabling NLP tasks to be performed
on spoken language without needing to transcribe
speech waveforms into text.

We base our speech-to-unit encoder on Hu-
BERT (Hsu et al., 2021). We train a k-means
clustering model over embeddings at an intermedi-
ate layer that maximizes the units’ PNMI score, a
metric that measures mutual information between
phones and units. We map each embedding to
its nearest k-means cluster center and apply run-
length encoding (Lee et al., 2022b). We train a
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Figure 2: Training a unit-based encoder-decoder model for S2ST. The first Pretrain step trains on large-scale
monolingual speech data using a denoising pretraining loss. The second Finetune step trains on low-resource
parallel speech translation data using a supervised finetuning loss. The third Backtranslate step trains using the
round-trip consistency loss (on monolingual data) and supervised finetuning replay (on parallel data).

shared English-German k-means model and a sepa-
rate Marathi one. We tried XLSR (Conneau et al.,
2020) and Indic-wav2vec (Javed et al., 2021), but
both underperformed HuBERT when evaluated for
PNMI scores. We describe training the clustering
model and the evaluation of the speech-to-unit en-
coder in Section 4.1.

2.2 Unit Encoder-Decoder (U2U)

We train our unit encoder-decoder S2ST model
using PFB ak.a. Pretrain-Finetune-Backtranslate
(Figure 2). We describe our general approach here
and provide implementation details in Section 4.2.

Pretrain We initialize with mBART-50 (Liu
et al., 2020) (a text encoder-decoder model), reini-
tializing the input/output embedding layers for our
unit vocabulary. Since units can be computationally
treated as text tokens with a different vocabulary,
we can easily adapt the training pipeline to train on
unit sequences rather than text. We pretrain using
the mBART denoising objective: given a dataset
D and a noising function g(-) (we use one that
samples contiguous spans and masks them until
a fixed ratio of tokens are masked), the decoder
generates the original sequence X given noised en-
coder input g(X), optimizing model weights 6 as
argming > yep —log Pr(X[g(X); 0).

We train two bilingual unit LMs, one for English-
German, and one for English-Marathi. They are
trained on unit sequences, derived from monolin-
gual speech corpora in the three languages, gener-
ated by their respective S2U encoders. To tokenize
unit sequences, we train one Sentencepiece (Kudo
and Richardson, 2018) BPE tokenizer per LM.

Finetune We perform supervised training on the
pretrained unit LM using a small parallel S2ST cor-
pus, where the input is a spoken utterance in the
source language, and the target is a translated ver-

sion spoken in the target language. During this fine-
tuning process, we use the standard cross-entropy
loss of the decoder generating the target unit se-
quence when the ground truth source unit sequence
is provided to the encoder.

Backtranslate Finally, we perform unsupervised
backtranslation (Lample et al., 2018) on our fine-
tuned model. We follow the standard recipes used
in unsupervised text backtranslation, with minor
modifications to stabilize training in the speech do-
main. While similar to DUB (Zhang et al., 2023),
we perform backtranslation entirely over speech
unit sequences in a textless fashion, while DUB
performs backtranslation between speech and text
sequences. Our backtranslation approach recon-
structs a unit sequence from a model-generated
synthetic translation of the same unit sequence us-
ing a round-trip translation consistency loss (visu-
alized in Figure 2). We start with the initial model
M (the ‘backward’ model) and make a copy of
it, calling it M’ (the ‘forward” model). Then, for
every training step, we run:

1. Get two batches of utterances in the two lan-
guages, By and Bs.

2. Use M’ to translate B to translations B/, and
By to translations BY; this step is inference
only and no gradient updates occur.

3. Given B!, B/ as input respectively, com-
pute the decoder cross-entropy loss for the
model M to reconstruct the original utter-
ances By, Bo. Using this loss, perform a gra-
dient update on M’s parameters.

4. Copy the updated parameters of M to M’.
The above corresponds to online backtranslation,
where the ‘forward” model M’ (generating the syn-
thetic translation) is the same as the ‘backward’
model M (used to compute the cross-entropy loss).
We also explored offline backtranslation, which
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updates the forward model every epoch, but did
not see much difference in performance. Unlike in
unsupervised text backtranslation, the training was
unstable in both settings. To resolve this, we mix in
some supervised data (used in the finetuning step)
with online backtranslation during this last stage,
which stabilizes learning and shows gains.

2.3 Unit-to-speech Vocoder (U2S)

We adapt prior work (Polyak et al., 2021) on speech
resynthesis from discrete units to build our unit-
to-speech vocoder!; please refer to this work for
details of their approach. Given a dataset consist-
ing of speech waveforms and their corresponding
unit sequences generated by the S2U encoder, the
model trains two submodules; a duration prediction
module and a HiFi-GAN (Kong et al., 2020) that
converts unit sequences back to speech waveforms.
We train separate U2S vocoders for each language
(English, German, Marathi).

3 Experimental Setup
3.1 Datasets

Table 1 summarizes datasets used in our work. Du-
rations reported for parallel translation datasets cor-
respond to durations of the source speech. More
dataset details are available in Table 4.

English-German For pretraining, we use the
union of the transcribed set of Voxpopuli (Wang
et al., 2021) and randomly-sampled subsets of the
Europarl v3 (Koehn, 2005) train set that we call
Europarl-small and Europarl-mid (statistics in Ta-
ble 4 of Appendix A), collected from European
Parliament recordings. For finetuning, we use two
datasets: (1) randomly-sampled 20-hr (10-hr per
translation direction i.e. en—de and de—>en) sub-
set of the Europarl-ST (Iranzo-Sanchez et al., 2019)
train set and (2) randomly-sampled 20-hr (10-hr per
translation direction) subset of the CVSS (Jia et al.,
2022) train set. For the last backtranslation step,
we use Voxpopuli and Common Voice 4 (Ardila
et al., 2020) data for the round-trip consistency
loss. Common Voice and CVSS are collected us-
ing the Mozilla Common Voice project and consist
of recordings of crowd-sourced workers reading
out sentences primarily derived from Wikipedia;
they do not belong to the European Parliament do-
main. For evaluation, we use Europarl-ST (Iranzo-
"https://github.com/facebookresearch/

speech-resynthesis/tree/main/examples/speech_
to_speech_translation

Sanchez et al., 2019) (for both de—en and en—de)
and CVSS (Jia et al., 2022) (for de—ren) test sets.

English-Marathi For pretraining, we use the
union of the Shrutilipi (Bhogale et al., 2022)
Marathi dataset, collected from All India Radio
broadcasts and the English transcribed Voxpop-
uli set. We were unable to find domain-matched
speech translation datasets for Marathi-English.
Thus, we synthetically generate parallel datasets
by translating the source language utterance to tar-
get language utterance using the Google Translate
API?. An author of this paper, who speaks both
Marathi and English, manually checked a few ut-
terances and found the translations to be of high
quality. We construct two such datasets, each con-
sisting of train and test sets: (1) Synth-Europarl-ST:
translating the English side of the English-German
Europarl-ST train and test sets to Marathi. (2)
Synth-Shrutilipi-ST: translating 100-hr and 10-hr
subsets of the Shrutilipi dataset to English, creating
a train and test set respectively.

For finetuning, we randomly sampled 60-hr (30-
hr per translation direction) subsets of the train
sets of these two datasets. We empirically found
that we need more data in English-Marathi com-
pared to English-German, which we hypothesize
is due to greater language and domain dissimi-
larities. For the backtranslation step, we use the
union of Voxpopuli and Shrutilipi datasets for the
round-trip consistency loss. For evaluation, we use
the test sets of these Synth-Europarl-ST (where
Marathi is translated from English), and Synth-
Shrutilipi-ST datasets, (where English is translated
from Marathi). We only evaluate the mr—en trans-
lation direction for both. None of the targets in
the test sets of either dataset have been seen during
pretraining, making them suitable for use.

3.2 Model Configurations

Table 1 describes training and evaluation datasets
for each of our four models. Mde®" is trained
and evaluated entirely within the European Parlia-
ment domain: it is pretrained on the union of Vox-
populi and Europarl v3, finetuned on Europarl-ST,
backtranslated with Voxpopuli, and evaluated on
Europarl-ST. Mde® uses the same pretraining, but
is finetuned on CVSS, backtranslated with Com-
mon Voice 4.0, and evaluated on CVSS. Common
Voice and CVSS consist of crowd-sourced speech

2https://cloud.google.com/translate/docs/
advanced/batch-translation
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Model Name Languages  Pretrain Finetune Backtranslate Evaluation
Mde®? deen VP (777h)+ EP-ST(20h) VP (777h)  EP-ST (%h)en¢>de
Mde® ’ EP (5381h)  CVSS (20h) CV (382h) CVSS (15h) de—en
MmrEP mren VP (529h) + S-EP-ST (60hr) VP (529h) + S-EP-ST (%9h) mr—en
MmrShr ’ Shr (1000h) S-Shr-ST (60hr) Shr (1000h) S-Shr-ST (10h) mr—en

Table 1: Model configurations. For each dataset, we mark their duration in parentheses. Abbreviations: VP =
Voxpopuli, EP = Europarl, EP-ST = Europarl-ST, CV = CommonVoice, Shr = Shrutilipi, S-EP-ST = Synth-Europarl-

ST, S-Shr-ST = Synth-Shrutilipi-ST.

recordings reading aloud sentences primarily de-
rived from Wikipedia, which differ from the Euro-
pean Parliament domain. MmrE® and MmrS"" are
both pretrained and backtranslated with the union
of Voxpopuli and Shrutilipi i.e. English European
Parliament data and Marathi All India Radio data.
MmrE? is finetuned and evaluated on the European
Parliament domain using Synth-Europarl-ST while
MmrSP is finetuned and evaluated on the All India
Radio domain using Synth-Shrutilipi-ST.

3.3 Generating Synthetic Speech Data

We use single-speaker synthesized speech data
for both training and evaluation, following early
S2ST work (Jia et al., 2019). All of our training
datasets have ground truth transcripts; thus, we
use TTS models to regenerate the speech from
them and use the synthesized speech. We use
Coqui-Al's TTS software for English and Ger-
man.> These are VITS (Kim et al., 2021) mod-
els, trained on LJSpeech (Ito and Johnson, 2017)
and Thorsten (Miiller and Kreutz, 2020); each
have 24 hrs of clean read speech. We use In-
dicTTS (Kumar et al., 2023) for Marathi; this is a
FastPitch (Lancucki, 2021) model trained on the In-
dicTTS Database (Baby et al., 2016) that contains
around 3 hrs of clean read speech.

4 Model Implementation

4.1 Speech-to-Unit Encoder (S2U)

To choose the speech encoder model and optimal
layer, we compare the unit-phoneme PNMI scores
of different choices. We decide upon using Hu-
BERT (Hsu et al., 2021), with a shared English-
German k-means model (with 200 clusters) and
a standalone Marathi k-means model (with 100
clusters). We use the 6th HuBERT layer for En-

3We use the en/1ljspeech/vits model for English and
de/thorsten/vits model for German. https://github.
com/coqui-ai/TTS)

glish and German and the 8th HuBERT layer for
Marathi; more details in Appendix D.

4.2 Unit Encoder-Decoder (U2U)

Preprocessing We train one Sentencepiece BPE
tokenizer per LM on speech units with a 10000-
size vocab, using Voxpopuli for English-German
and Voxpopuli plus Shrutilipi for English-Marathi.

Pretrain Both LMs are initialized with
mbart-large-50 (Liu et al., 2020); we reini-
tialize input/output embedding layers.  The
noising function ¢ is similar to mBART; until
35% masked tokens, we sample a span length [
from a mean-A Poisson distribution and replace
a random contiguous sequence of length [ with
a MASK token. For English-German model, we
pretrain it in several stages with increasing task
difficulty. We first train on Voxpopuli for 900k
steps with A = 2. Then, we train on Voxpopuli
plus Europarl-small for 5400k steps (2700k with
A = 2 and 2700k with A = 8). We finally train
on Voxpopuli plus Europarl-mid for 2700k steps.
For English-Marathi, we train on Voxpopuli plus
Shrutilipi with A = 2 for 900k steps.

For both LMs, the LR scheduler starts with 10~7,
linearly warms up to 10~°, and then exponentially
decays to 1076, We train on 4 NVIDIA A40 GPUs
with a batch size of 3125 tokens per language for
English-German and 6250 tokens per language for
English-Marathi.

Finetune We use label smoothing, dropout of 0.2
and a learning rate of 3 x 107°. We train for 40
epochs with a total batch size of 3748 tokens on
4 GPUs. We finetune all parameters of the mod-
els except for Mde", for which we finetune only
the last 5 layers of both encoder and decoder as it
shows performance gains.

Backtranslate When sampling forward transla-
tions, we use nucleus sampling (Holtzman et al.,
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2019) with top-p value of 0.9 and the temperature
of 0.5. We use label smoothing of 0.2, learning rate
of 3e-5 and train for 3 epochs with a total batch
size of 3748 tokens on 4 GPUs.

4.3 Unit-to-Speech Vocoder (U2S)

A separate vocoder is trained for each language,
mapping from the unit vocabulary (size 200 for
English-German, size 100 for Marathi) to speech
clips at 16kHz, trained on the (speech, unit se-
quence) pairs generated by the S2U encoder,
largely following Polyak et al. (2021). We eval-
uate the resynthesis quality of cascading S2U+U2S
in Appendix E.

5 Results

5.1 Evaluation Setup

We evaluate the semantics of the speech translation
(whether it preserves the input speech meaning)
and leave non-content aspects like naturalness
to future work. We use the ASR-BLEU metric
following prior work (Lee et al., 2022a,b): the
BLEU between the ASR transcript of the hypoth-
esis speech translation and the ground truth text
translation. We evaluate the de—en, en—de and
mr—en language directions. We opted to not
evaluate the en—mr direction due to poor Marathi
ASR models that resulted in excessively noisy
ASR-BLEU scores. When evaluating on Europarl-
ST dataset, we use wav2vec2.0 based ASR models
with greedy decoding (Huggingface models
facebook/wav2vec2-large-960h-1v60-self,
jonatasgrosman/wav2vec2-xls-r-1b-german)
used by prior S2ST work on Europarl-ST
(Duquenne et al. (2022a); Wang et al. (2022b) and
others). When evaluating on CVSS dataset, we
use a medium-sized Whisper ASR model used by
prior S2ST work on CVSS (Fu et al., 2023). When
evaluating Marathi-English translation, we use
facebook/wav2vec2-large-960h-1v60-self.
For computing BLEU, we use SacreBLEU with
default parameters. We generate translations from
our models using beam search decoding with a
beam size of 10.

5.2 Comparison Systems

We categorize S2ST models based on whether they
leverage text as an intermediate step or not (text-
based or textless) and how much parallel translation
data they use (parallel-high-resource or parallel-
low-resource). Our models belong to the textless,

parallel-low-resource setting. Due to the lack of
baselines in this setting, we instead contrast our
models with existing topline models trained with
more resources, which serve as upper bounds:

Text-based Parallel-Low-Resource S2ST mod-
els: @ is a cascaded ASR — MT — TTS system
where the MT model is text mBART finetuned
on the transcripts of the 20-hr low-resource par-
allel speech data used by our models. We use the
ASR systems used for computing ASR-BLEU (Sec-
tion 5.1) and the TTS systems used for generating
our data (Section 3.3). ® (Fu et al., 2023) uses a
cascaded unsupervised ASR - unsupervised MT -
unsupervised TTS model that is trained on large
amounts of monolingual speech and text data.

Textless Parallel-High-Resource S2ST mod-
els: (© is a bilingual S2ST model trained on a large,
mined SpeechMatrix dataset (= 2600 hrs of source
speech for the en—de and the de—en directions
combined) by Duquenne et al. (2022a). @ (Kim
et al., 2023) is a multilingual S2ST model trained
on 650h of parallel aligned English-German Vox-
populi data, and about 12k hours of parallel aligned
data in 18 other X-to-English language pairs. (&)
and (D are our pretrained unit LMs fine-tuned on
more data than our parallel-low-resource models i.e.
the Europarl-ST train set (110 hours), the CVSS
train set (180 hours), the Synth-Europarl-ST train
set (125h) and the Synth-Shrutilipi-ST train set
(176h) using the same hyperparameters as our four
parallel-low-resource models.

Our Textless Parallel-Low-Resource S2ST
models consist of four models trained on different
domains: Mdef” Mde®,MmrE® and Mmrs"" as
described in Section 3.2. We evaluate each model
with its in-domain evaluation data, i.e., Mde”
model on Europarl-ST, M de® model on CVSS,
Mmrt® on Synth-Europarl-ST, and the Mmrsh"
model on Synth-Shrutilipi-ST. @ and @ report
the model performance after our pretraining and
finetuning steps. (@) and @ report the model per-
formance after performing backtranslation.

5.3 Main Results

We present results for the English-German pair in
Table 2 and the English-Marathi pair in Table 3.
We first observe that the text-based parallel-low-
resource S2ST topline models (@-®) trained with
at most 20 hrs of parallel data outperform the best

*“In addition to 650h of parallel German-English data,
UTUT is trained on X-to-English translation data from 18
other languages, totaling ~ 12000 hours of parallel data.
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Model

ASR-BLEU 1
Europarl-ST CVSS

Parallel #hrs de—en en—de de—en

Topline models
Text-based Parallel-Low-Resource S2ST

(@ ASR — MT — TTS (Section 5.2) 20h 237 213 -

® UASR — UMT — UTTS (Fu et al., 2023) Oh - - 14.7
Textless Parallel-High-Resource S2ST

(© Bilingual S2S (Duquenne et al., 2022a) ~22600h 163  10.1 -

@ Multilingual UTUT (Kim et al., 2023) 650h 15.8 9.8 -

(© Pretrain + Full Finetune (Ours) 110h[180h  12.0 134 13.6
Textless Parallel-Low-Resource S2ST

(D Pretrain + Finetune (Ours) 20h 7.8 6.8 5.8

(@ + Backtranslate (Ours) 20h 10.0 8.3 7.7
Ablations

@ Text mBART + Finetune 20h 1.0 0.3 -

@ + Backtranslate 20h 1.3 04 -

(D Pretrain + Backtranslate Oh 0.4 0.1 -

& Pretrain + Finetune + Backtranslate w/o replay 20h 4.3 4.0 -

Table 2: English-German S2ST evaluation using ASR-BLEU on Europarl-ST (Iranzo-Séanchez et al., 2019) and
CVSS (Jia et al., 2022) test sets; higher is better. Topline models use more resources by either needing high-resource
parallel data or being text-based (Section 5). The Parallel #hrs column denotes the size of parallel translation
training data. In (@ it denotes that 110h of EP-ST data and 180h of CVSS data is used to train two separate toplines.

textless S2ST topline models trained with far more
parallel speech data ((©-(©)). This underscores the
inherent task difficulty of learning purely textless
S2ST models in the speech domain, even with ac-
cess to far more training data.

Next, we discuss our textless parallel-low-
resource models (rows ), @, @ and @). Rows (D
and @ show that our models, given only 20 hr of
parallel data (for English-German) and 60 hr of par-
allel data (for English-Marathi), learn S2ST models
with reasonable BLEU scores which consistently
improve post-backtranslation in rows (g) and @.
Our de—en Europarl-ST and the mr—en Synth-
Europarl-ST models are even within 1-2 BLEU of
our supervised toplines (&) and () despite being
trained on much less data. Another observation
is regarding domain effects: the gap between our
textless low-resource models and the textless high-
resource toplines is smaller for European Parlia-
ment domain as compared to the Common Voice
and All India Radio domains, likely due to pretrain-
finetune domain mismatch as during pretraining,
the models only ever see European Parliament do-

main English data. Finally, a qualitative analy-
sis, based on manually looking at example outputs
in Appendix G shows that our models often pre-
serve the semantics of the input utterance, but make
egregious grammatical and language modeling mis-
takes.

Overall, while some of our models show encour-
aging results close to supervised toplines in the
European Parliament domain, they underperform
text-based and textless high-resource toplines.

5.4 Ablations

We perform ablations on the M def” model.

Ablating pretraining Our LM is initialized from
the text mBART checkpoint, and then trained on
a unit-based denoising objective. Without this pre-
training (i.e., finetuning and backtranslating with
the base mBART checkpoint), as seen in rows ()
and (D), we obtain very low ASR-BLEUs less than
2 points. These results suggest that unit LM pre-
training is essential in order to learn good S2ST
systems in parallel-low-resource settings.
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ASR-BLEU 1

EP-ST Shr-ST

Model Par. #hrs mr—en

Topline models
Textless Par.-High-Res.

(D Full FT (Ours) 125/1176h 109 17.8

Textless Par.-Low-Res.
@ Pretrain + FT (Ours)
@ + BackT (Ours)

60h 8.3 9.6
60h 9.2 10.0

Table 3: Marathi-English S2ST evaluation using ASR-
BLEU on Synth-Europarl-ST and Synth-Shrutilipi-ST
test sets; higher is better. The Par. #hrs column denotes
the size of parallel training data. In (©) it denotes that
125h of Synth-Europarl-ST data and 176h of Synth-
Shrutilipi-ST data is used to train two separate toplines.

Ablating finetuning We finetune the pretrained
unit LM with the backtranslation round-trip con-
sistency loss without first finetuning with parallel
data. The result, (), shows that this does not work,
with near-zero BLEU scores. This suggest some
amount of parallel speech is necessary.

Ablating replay in backtranslation We have
already seen that adding backtranslation after fine-
tuning boosts performance by 1-2 BLEU; compare
row () to () or row @ to @. We replay the su-
pervised low-resource parallel finetuning data dur-
ing backtranslation to stabilize training. We ablate
training with this replay by running the backtrans-
lation step with just the round-trip consistency loss.
The result, row &), shows that the performance
worsens compared to the initialization of row (.
With replay, however, we get the results in row (g),
which improve upon the initialization.

6 Related Work

6.1 Speech-to-Speech Translation (S2ST)

While cascaded S2ST models (Nakamura et al.,
2006; Wahlster, 2000) with intermediate text trans-
lations have existed for a long time, end-to-end
S2ST models start with Jia et al. (2019), a model
that directly translates source language speech
waveforms to speech waveforms in the target lan-
guage. Several S2ST models (Jia et al., 2019, 2021;
Lee et al., 2022a; Inaguma et al., 2022) are text-
based i.e. they use textual supervision to stabi-
lize training or improve performance, while other
S2ST models (Lee et al., 2022b; Li et al., 2022;

Kim et al., 2023; Zhu et al., 2023; Zhang et al.,
2020) are textless, usually by representing speech
using phonemes (which require some level of lin-
guistic supervision) or self-supervised speech units.
Most textless S2ST models require large training
datasets of parallel speech translation data. One
exception is work on S2ST for the textless lan-
guage Hokkien (Chen et al., 2022b); while it does
not require parallel speech translation data and
supports a textless language, it does require the
use of a text-based pivot language (Mandarin Chi-
nese) and large-scale parallel text data involving
this pivot language. Sentence-embedding based ap-
proaches like T-Modules (Duquenne et al., 2022b)
and SONAR (Duquenne et al., 2023) circumvent
the need for parallel speech translation data but still
require parallel text translation data to construct
strong cross-lingual embedding spaces.

In order to reduce this dependency on parallel
data, unsupervised S2ST systems (Wang et al.,
2022b; Fu et al., 2023; Nachmani et al., 2023)
that do not use any parallel data at all have been
recently proposed. However, none of them are
textless; they either train cascaded S2ST models
(ASR—MT—TTS) using unsupervised ASR (Liu
et al., 2022b), unsupervised MT (Liu et al., 2020)
and unsupervised TTS (Liu et al., 2022a), or use
text during training (Nachmani et al., 2023). Thus,
the crucial cross-lingual translation component
is learned over text tokens, limiting applicability
to spoken languages. Our textless, parallel-low-
resource S2ST model aims to bridge these camps.

6.2 Large-Scale Speech-Text Models

Several large-scale speech-text models (Rubenstein
et al., 2023; Dong et al., 2023) excel at multiple
speech tasks, including speech-to-speech transla-
tion. These models are trained on large-scale mono-
lingual speech and text data as well as speech recog-
nition, machine translation, speech translation and
text-to-speech data; while they do not fit in a text-
less, low-resource data regime, they serve as foun-
dation models that can be potentially used to extend
to new textless, low-resource languages.

6.3 Textless and Unit-Based NLP

While we tackle textless S2ST, textless speech pro-
cessing has studied in other tasks such as spoken
language modeling (Borsos et al., 2022; Lakho-
tia et al., 2021; Hassid et al., 2024), emotion
conversion (Kreuk et al., 2021), image-speech re-
trieval (Harwath et al., 2016; Peng and Harwath,
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2022), spoken question answering (Lin et al., 2022)
and speech evaluation (Chen et al., 2022a; Besacier
etal., 2023). Furthermore, progress in several other
speech tasks like TTS (Wang et al., 2023) that in-
volve both speech and text has been achieved by us-
ing powerful self-supervised units (semantic units
like HuBERT (Hsu et al., 2021) and acoustic units
like EnCodec (Défossez et al., 2022)).

7 Conclusion

We present the first textless low-resource speech-
to-speech translation system, capable of learning
from dozens of hours of parallel translation data,
built by pretraining, finetuning, and backtranslat-
ing a language model over self-supervised speech
unit sequences rather than text. We demonstrate
its efficacy on 2 language pairs (English-German
and English-Marathi) across 3 different domains.
While our models achieve a decent translation per-
formance, close to supervised toplines in some
cases, they still underperform models trained on far
more data or models that make use of text data, im-
plying that several challenges still remain to make
these models highly performant. However, our
approach holds great promise for modelling low-
resource, primarily spoken languages. We hypoth-
esize, based on similar findings for text machine
translation, that scaling our approach to a larger
unit LM pretrained on more data will improve per-
formance and may unlock unsupervised textless
S2ST akin to unsupervised text MT (Liu et al.,
2020). Future work can investigate use of better
S2U unit encoders for training better unit LMs, and
training unit LMs on a larger set of languages.

Limitations

Textless S2ST models, including ours, still lag in
performance behind their text-based counterparts.
Therefore, while they work for all languages in the-
ory, they are currently useful only for fully textless
languages and should not be used in cases where
text data is readily available. Strong open-source
pretrained multilingual unit language models are as
yet unavailable; as a consequence, the unit LMs we
use via our own pretraining have been trained on
our limited compute budget and cannot yet benefit
from the scale of modern text-based LLMs. Our
models are trained and evaluated on synthesized
single-speaker data, following early S2ST work.
They do not fully generalize to real speech data
that has noise and unseen speakers.
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A Datasets

We provide a summary of all the datasets used in
this paper in Table 4.

B Compute Details

We train all our models on 4 NVIDIA A40s (often
using 2 GPUs with gradient accumulation of 2, or
1 GPU with gradient accumulation of 1, which is
equivalent to 4 GPUs).

C Length-wise ASR-BLEU Breakdown

In order to investigate how our model performance
differs for short, medium and long test examples,
for each test dataset (Europarl-ST, CVSS, Synth-
EP-ST and Synth-Shruti-ST) we compute the char-
acter lengths of every target example and compute
the 33rd and 66th percentiles of the length distri-
bution. We call all examples with a length shorter
than the 33rd percentile ‘short’, ones in between
the two ‘medium’, and longer than the 66th per-
centile ‘long’. We then evaluate our best models,
row (@) (for English-German) and @ (for English-
Marathi) from Tables 2 and 3 on each test data
subset in Table 5. We see that the model does bet-
ter on short/medium utterances as compared to long
utterances. The performance of the long utterances
is within 1 BLEU point of the overall performance.

D S2U Encoder Ablations

We decide (a) which speech encoder model to use,
(b) whether to learn separate per-language k-means
models or a joint k-means model and (c) which
encoder layer to take embeddings from, based on
the average Pointwise Normalized Mutual Informa-
tion (PNMI) between unit sequences and phoneme
sequences extracted from the same datasets, fol-
lowing Hsu et al. (2021). Our best configuration
uses a single Marathi k-means model and a shared
English-German k-means model. We find that this
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Module Dataset Duration Lang
S2U Encoder: Pretraining Librispeech 960h en
S2U Encoder: k-means Clustering L1brlss}1::§tci{1ii)1i\/[LS 481}8(;;? h er;,l;ie
Voxpopuli 529h, 248h en, de
.. Europarl-small 811h, 975h en, de
U2U Pretraining Europarl-mid  2463h, 2018h en, de
Shrutilipi 1000h mr
Europarl-ST 83h,27h en—de, de—en
. . . CVSS 91h,88h en—de, de—en
U2U Finetuning (Toplines) Synth-EP-ST 83h,42h en—-mr, mr—en
Synth-Shr-ST 76h,100h en—mr, mr—en
Europarl-ST 10h,10h en—de, de—en
. . CVSS 10h,10h en—de, de—en
U2U Finetuning (Low-Resource) g pp g 30h30h  en—smr, mr—sen
Synth-Shr-ST 30h,30h en—mr, mr—en
Voxpopuli 529h, 248h en, de
U2U Backtranslation Common Voice 294h, 8%9h en, de
Shrutilipi 1000h mr
Voxpopuli 529h, 248h en, de
U2S Vocoder Shrutilipi 1000h mr
Europarl-ST 3h,6h en—de, de—en
Evaluation CVSS 15h de—en
Synth-EP-ST %h mr—-en
Synth-Shr-ST 10h mr—en

Table 4: Summary of datasets used to develop our system, with datasets used by base pretrained models colored red.
Datasets in the U2U Finetune and U2U Evaluation sections are parallel translation datasets, and we report duration
statistics for both translation directions separately, the duration being that of the source speech.

Model Test Set ASR-BLEU 1

short med long all

Row (® EP-STde—en 10.1 10.6 9.5 10.0
Row (® EP-STen—de 9.6 9.0 7.7 83
Row () CVSSde—en 6.5 83 7.7 7.7

Row @ S-EP-ST mr—en 10.9 10.1 8.0 9.2
Row @ S-Shr-ST mr—sen 10.9 13.0 8.0 10.0

Table 5: S2ST evaluation using ASR-BLEU, broken
down by test set lengths (short, medium, long) as well
as the overall ASR-BLEU (all).

works better than training three individual models
or a single model, which we hypothesize is due to
language similarities.

To obtain the phoneme sequences for English
and German, we use English and German phone-
mizers from the Montreal Forced Aligner”. For
Marathi, we use a Kaldi-based ASR model trained
on Shrutilipi data. To train the k-means models, we

use =~ 50 hrs of speech data from each language, ob-

5https://montreal—forced—aligner.readthedocs.
io/en/latest/

tained from a random subset of Librispeech (Panay-
otov et al., 2015) for English, MLS (Pratap et al.,
2020) for German, and Shrutilipi (Bhogale et al.,
2022) for Marathi.

First, we describe our ablations for English-
German. We experiment with different base
speech models (HuBERT (Hsu et al., 2021) vs.
XLSR (Conneau et al., 2020)), layer indices, num-
ber of clusters (100 vs. 200) and types of cluster-
ings (one clustering for both languages jointly v.s.
separate clusterings) and choose the configuration
that achieves the highest Pointwise Normalized
Mutual Information (PNMI). We report PNMI re-
sults for these English-German configurations in
Figure 3.

For Marathi, we experiment with differ-
ent base speech models (HUBERT vs Indic-
wav2vec2.0 (Javed et al., 2021)) and layer indices.
We fix the number of clusters at 100. We choose
the configuration that achieves the highest PNMI.
We report PNMI results for these Marathi configu-
rations in Figure 4.
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Figure 3: PNMI vs. layer index, comparing different clustering settings for English and German. Higher is better.

PNMI Values for HuBERT and Indic-wav2vec2.0
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Figure 4: PNMI with HuBERT and Indic wav2vec2.0
evaluated on Shrutilipi, computed for different layer
indices, for Marathi. Higher is better.

E U2S Modeling and Evaluation

Using the unit sequences for the Voxpopuli
(English and German) and Shrutilipi (Marathi)
datasets, generated from our S2U encoder, we train
vocoders to generate the speech from these unit
sequences. We train across 4 GPUs with a learning
rate of 2e — 4 with a batch size of 128 (for en-de)
and 240 (for mr) and train for 60k updates; other

hyperparameters follow Polyak et al. (2021). As a
sanity check, we evaluate S2U and U2S by com-
puting the resynthesis WER, which measures how
well passing a given speech signal through S2U
and U2S preserves the content of the input speech
signal.

We compute the resynthesis WER as follows:
(1) pass input speech to the S2U encoder and gen-
erate the unit sequence, (2) pass the generated
unit sequence to our U2S vocoder to synthesize
speech, (3) transcribe the synthesized speech using
ASR (4) compute the Word Error Rate between
the transcript and the ground truth transcript of
the input speech. To account for the errors from
ASR, we compute the WER between the ASR tran-
script of the input speech utterance (‘ground-truth’
speech) and the ground truth transcript as a lower
bound. We use test sets from English and Ger-
man Voxpopuli (Wang et al., 2021) and English
LJSpeech (Ito and Johnson, 2017) with our syn-
thetic single-speaker speech. Table 6 presents these
results. We find that the resynthesis WERs are
fairly good for English, and worse for German.
Based on qualitative analysis of the German input

16221



Method enVP deVP enl]
Ground Truth 4.89 8.44 3.80
(Lee et al., 2022a) 10.56 - 7.69
Ours 8.53 1946 6.72

Table 6: S2U + U2S resynthesis performance; WER
computed between resynthesized speech transcribed by
ASR model and ground truth transcripts. Lower WER
is better. We also include the ground-truth speech WER
as a lower bound. VP = Voxpopuli, LJ = LISpeech

speech (which is already single-speaker synthetic
speech) and resynthesized speech (passed through
S2U and U2S), we find that the input speech itself
makes stress and pronunciation errors, driving up
the Ground Truth WER, which further cascades
into the model resynthesis WER. We still use this
model because it is the best we could build with
existing tools.

F Text-based, Parallel-High-Resource
S2T/S2ST models

For completeness, we describe existing text-based,
parallel-high-resource models in the literature and
showcase their results in Table 7. These mod-
els date to 2021 and underperform the text-based
parallel-low-resource models in our main results
(Table 2) but outperform textless parallel-high-
resource models. Rows (©-(@ are S2T models
while @) is an S2ST model. (© (Iranzo-Sanchez
et al., 2019) is an ASR-MT cascade model whose
MT component is trained on a large-scale text trans-
lation dataset OPUS (Tiedemann, 2012). (p) and
(@ are Transformer-based models from Wang et al.
(2021) trained on the union of Europarl-ST and
CVSS (total duration 226h) with (@) being addi-
tionally trained on ~300h of Voxpopuli aligned
speech translation data. () is the Translatotron
2 (Jia et al., 2021), a spectrogram-to-spectrogram
encoder-synthesizer model trained with text su-
pervision for the decoder with 120h of German-
English data and about 360h of aligned data in 3
other X-to-English language pairs.

G Example Outputs

We present example outputs from our models. First,
we showcase 10 cherry-picked examples, 2 ex-
amples from each evaluated language pair and
domain in Table 8. Our best models, the post-
backtranslation models (rows (g) and @ in Tables 2
and 3) perform well on these examples. We present

the ground-truth transcripts of the source and target
utterances, the ASR transcript of the target utter-
ance predicted by the pre-backtranslation finetuned
models (rows (D) and @ in Tables 2 and 3) and
the ASR transcript of the target utterance predicted
by our best models, the post-backtranslation mod-
els. We can observe that our post-backtranslation
models are able to nearly perfectly translate these
cherry-picked examples, which can be categorized
into examples with (a) no mistakes (rows 1, 5, 7,
9), (b) valid replacements that largely preserve sen-
tence meaning (rows 2, 4, 8) and (c) minor pro-
nunciation errors (rows 6, 10). On the other hand,
predictions from the finetuned model are overall
worse, categorized into (a) no mistakes (row 1), (b)
valid meaning-preserving replacements (row 2), (c)
large meaning changes (row 3, 4, 7, 9, 10) and (d)
incoherent output (row 5, 6, 8).

We also sample 5 randomly-picked examples,
one from each setting to again compare our pre-
backtranslation finetuned models and our best post-
backtranslation models in Table 9. The examples
show that the models are getting several of the
words and semantics right, but often mistranslate
certain words and make egregious grammatical and
language modelling mistakes. We can see that our
post-backtranslation model is overall better than
the finetuned model for English-German in row (1),
(2), worse in row (3), and performs similarly for
rows (4) and (5).
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ASR-BLEU 1
Europarl-ST CVSS

Model Parallel #hrs de—en en—de de—en
(© Cascaded ASR-MT (Iranzo-Sdnchez et al., 2019) N/A 213 224 -
@ E2E S2T (Wang et al., 2021) 226h 17.5 - -
@ E2E S2T w/ Voxpop-Aligned (Wang et al., 2021)  ~500h 18.8 - -
(© Translatotron 2 (Jia et al., 2021) 120h - - 19.7

Table 7: English-German translation evaluation using BLEU for topline S2T models (rows ©-() and ASR-BLEU
for S2ST model, row () on Europarl-ST (Iranzo-Sénchez et al., 2019) test set; higher is better. The Parallel #hrs
column denotes the size of parallel translation training data.

Source Utterance

Target Utterance (Gold)

Prediction from finetuned
model

Prediction from
backtranslation model

post-

en—de (Europarl-ST)

(1) you can take initiatives sie konnen initiativen ergreifen  sie konnen initiativen ergreifen  sie konnen initiativen ergreifen

(2) 'madam president i supported this ~frau prisidentin ich habe diesen frau prisidentin ich unterstiitze frau prisidentin ich habe diesen
report bericht unterstiitzt diesen bericht bericht gestimmt
de—en (Europarl-ST)

(3) ich denke da sind wir auf dem i think we are on the right track i think we should be aware of this i think we are on the right track
richtigen weg here

(4) ich denke es ist klar dass die i think it is clear that the i think that it is clear that the citi- i think it is clear that the cit-
biirger und biirgerinnen der eu- citizens of the european zens of the european union want izens of the european union
ropdischen union diese steuer union want thistax and to do with these tasks and to do want tobe taxed and i think
wollen und ich denke dass i think we have a great  with the european union what it it is a major responsibility
es eine grofie verantwortung ist  responsibility here wants to do
de—en (CVSS)

(5) stellst du die musik bitte auf zim- are you turning the volume down are you turning the music albert are you turning the volume down
merlautstirke albert rief seine toroom volume albert his mother towards its mountain rock to room volume albert his mother
mutter screamed screamed

(6) los angeles liegt an der westkiiste los angeles is located on the west loosen hot air line at the west rose angeles is located on the

coast coast west coast
mr—sen (S-EP-ST)

(7) IT FEUTHS HI AT 37E-  for these reasons i cannot vote in ~ for this reason i am in favour of ~ for these reasons i cannot vote in
FTAT=AT a-miﬁ- Oa &3 & favour of this report the report favour of this report

@®) T a‘nﬁ? it has already been modified but it is improving barrowness im- it has already
quF{—cr FT T AT 9% more work needs to be done proving but it must be forgotten = made improvements but more
ATTET FH FOT ATITAT work needs to be done
mr—en (S-Shr-ST)

9) I=SETSE = all those above forty five years more than forty five years of vac- all those above forty five years
AR ATIT FeT AT must get vaccinated cination papers must get vaccinated

(10) T FTT HIsd FIAHIETOHT  he was talking to reporters in he was talking to reporters in he was talking to reporters in

mumbai yesterday

mabay to day

mumba yesterday

Table 8: Cherry-picked examples picked for our best S2ST models (the post-backtranslation models), reporting
predictions for both finetuned and post-backtranslation models. We manually annotate the differences between
the gold utterance and the prediction from the post-backtranslation model, align them to the source utterance and
underline the differences.
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Source Utterance

Target Utterance (Gold)

Prediction from finetuned
model

Prediction from
backtranslation model

post-

1)

en—de (Europarl-ST)

goods and cargo have been de-
layed or not transported at all and
businesses both large and small
have been affected

waren und giiterlieferungen
wurden verschoben oder ganz
gestoppt und sowohl kleine als
auch grofie unternehmen sind
betroffen

kosovo und konsum wurden zer-
stort oder wurden nicht erwihnt
oder angemessen sein konnen

giinstige und kunden wurden im
vorle von kmos nicht erwihnt
oder noch nicht erwihnt von
allen unternehmen grofen un-
ternehmen

)

de—en (Europarl-ST)
wir sollten hier nicht mit zweier-
lei maf} messen

we must not apply double stan-
dards here

we should not do so with these
matters

we should not be here with the
two sides

3)

de—en (CVSS)
ihr schalldeckel trégt herabhin-
gende quasten und ist mit einem
pelikan bekront

their sounding board has loose
hanging tassels and is crowned
with a pelican

year study teacher however re-
maining costs and an ice and hob-
bies

child dictatorial territorial castes
and is managed by a pellikov

“)

mr—sen (S-EP-ST)
EGIRED i sTfur
ey gvwor &var-
qTET  SATIeATAT  THET
GEHUT=AT &ATT HaETar=T
ATIIIHRAT ATH

we need dialogue in the field of
environmental protection in order
to conserve natural resources and
nature

in order to protect natural re-
sources and defense quality basis
we need a clear signal of environ-
mental protection

we need collectively in the area
of protection resources for natu-
ral resources and jobs

(5)

mr—sen (S-Shr-ST)
qag e

T e feaE SRET
THH FAES a6
TATAT=AT  TUETT AU
e HATT HagaT Jerd
T AfgT  9IUT g¥Eer
GLATAI &% ARVTT ATE

heavy rains in mumbai and its
suburbs in the last few days have
significantly increased the wa-
ter level in the seven main lakes
ensuring smooth water supply
to mumbai for the next twelve
months

in the last few days ero people
who have done in mumba mum-
bai soon reins have done in the
last few days in the last few days
mumbai

in mumba and opportunities of
mumba and mumba who have
received water in seventeen t h
needs water in the last few days
by the water in the mumbai

Table 9: Randomly sampled examples comparing our finetuned and post-backtranslation models.
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