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Abstract—Number-theoretic transform (NTT) is an efficient polyno-
mial multiplication technique of lattice-based post-quantum cryptography
including Kyber which is standardized as the NIST key encapsulation
mechanism (KEM) in 2022. Prominent NTT architectures have recently
been implemented on hardware/software coprocessors. In this article, we
introduce new error detection schemes embedded efficiently in the NTT
accelerator architecture, detecting both transient and permanent faults.
By encoding the operands with two approaches, i.e., negating and swap-
ping, we detect the faults in such constructions after recomputing and
decoding. Through simulation, our schemes show high error coverage for
the stuck-at fault model. Moreover, we implement the schemes on field-
programmable gate array (FPGA) and assure that acceptable overhead
is achieved for performance and implementation metrics. The low over-
head and high efficiency of our schemes make them suitable for various
constrained usage models. Additionally, our schemes are also applicable
to similar classical and post-quantum sub-blocks to obtain more reliable
respective hardware constructions.

Index Terms—Field-programmable gate array (FPGA), number-
theoretic transform (NTT), post-quantum cryptography (PQC),
recomputing with negated operands (RENO).

1. INTRODUCTION

Hardware benchmarking is crucial to analyze the performance and
security of the different post-quantum cryptographic (PQC) algo-
rithms in NIST PQC standardization competition which is now
finalized with Kyber as the key encapsulation mechanism (KEM)
standard in 2022. To optimize performance, the inclusion of soft-
ware implementation along with hardware is an emerging research
topic of PQC [1], [2]. The software processor ranges from low-power
embedded system processors, e.g., RISC-V and ARM Cortex-M4, to
high-performance general-purpose processors, e.g., Intel core i7.

In the final round of the NIST PQC standardization project, lattice-
based cryptography was one of the most extensively researched
families including the decided standard, i.e., Kyber [3]. Number-
theoretic transform (NTT), a finite field modification of the fast
Fourier transform (FFT), is an elegant polynomial multiplication
technique, essential to lattice-based cryptosystem. As polynomial
multiplications are the most rigorous operations in such cryptosystems,
applying NTT results in an efficient quasi-linear time complexity
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O(nlogn), compared to the quadratic time complexity 0(n?) of the
schoolbook polynomial multiplication. Moreover, NTT is capable
of enhancing the security parameters of various signature schemes,
collision-resistant hash functions, and identification schemes. Because
of such versatile applications of NTT, the performance improvement of
NTT via hardware/software (HW/SW) co-design is gaining attention
in the research community, hence the secure operation of NTT
HW/SW design is crucial to boost the reliability and efficiency of
such architectures.

Full hardware implementations of NTT have been extensively
explored in prior works, such as [4], [5], and [6]. However, an
HW/SW co-design variant has been proposed in [7] generating
acceptable overheads with the ease of the benchmarking procedure.
Such HW/SW co-designs provide the first glimpse into each candi-
date’s suitability for hardware acceleration while achieving significant
speed-up. The prior works also establish an open source code based
on which optimized implementation protected against side channel
and fault attacks can be built in future. These approaches reduce the
development time by trading off a small increase in execution time.

In this article, we introduce error detection constructions for NTT
HW/SW co-design approaches to detect natural and malicious faults.
Former research works have explored error detection schemes on
various public and symmetric-key cryptosystems [8], [9], [10], [11].
Few other works on error detection for PQC have been performed
in previous works presented in [12], [13], and [14], including a fully
hardware NTT algorithm to detect error in the butterfly architecture,
an indispensable NTT component [15]. The main contributions of
this article are as follows.

1) We introduce error detection schemes for the hardware accel-

erator of fast polynomial multiplication found in NTT.

2) The proposed error detection schemes are based on recomput-
ing and decoding through two variants. We apply both schemes
to different segments of the NTT accelerator architecture, where
they are capable of detecting the faults injected with high error
coverage.

3) We simulate the proposed schemes injecting stuck-at faults at
inputs for both permanent and transient faults, to determine the
error coverage.

4) The proposed error detection schemes are assessed and the
results show acceptable error coverage. We implement our
schemes on field-programmable gate array (FPGA) to derive
the overhead and performance metrics.

II. PRELIMINARIES

Ideal lattices are defined by Ry = ([Zy/pZ[x]]1/[x"* + 1]) as a ring
of polynomial, with n — 1 degree and coefficients in Z;. Also, n is
a power of 2, and ¢ is a prime number where ¢ = 1 mod 2n. We
can define multiplication of two polynomials a(x), b(x) € Zg, as:
a().b@) = Y1 S aibp mod f (x).

Algorithm 1 shows the steps for deriving the iterative NTT. NTT
is a discrete Fourier transform, defined in a finite field, Z4. For a
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Algorithm 1 Iterative-NTT

Input: a € Zy[x] of length n = 2* with k€
n-th root of unity o € Z

Output: y = NTT,(a)
A <« Bit-reverse(a); m < 2

N and a primitive

1:

2: while m < N do

3 s <0

4 while s < N do

5: for i to m/2 — 1 do

6: N «—in/m;a<s+i;b <« s+i+m/2
7 c < Alal; d < A[b]

8 Ala) < ¢+ oV ™d7g mod ¢
9: A[b] < ¢ — &N ™947d mod ¢
10: end for

11: S <s+m

12:  end while
13:  m < m.2
14: end while
15: return A

given primitive nth root of unity in Zg4, A(x) and B(x) are poly-
nomials under Zg, where both are generic forward NTT,, (a) and
NTT,, (b), respectively: A; = NTTY (a(x)); = Z;:Ol ajwljmod q,i=
0,1,,...,n—1.

The NTT exists if and only if the block length n divides p — 1 for
every prime factor p of ¢, where ¢ is a prime and n is a power
of 2. Inverse NTT (INTT) is similar to computing NTT, replac-
ing @ with =1 and introducing n~!, ie., a; = INTTZ(A(x)); =
n Y Ajo~mod p, i =0, 1, ...
the inverse of n, i.e., nil, can be computed in mod p, where
nn~! = 1 mod p. Applying NTT and INTT to compute polyno-
mial multiplication reduces the time complexity from om?), ie.,
schoolbook polynomial multiplication, to O(nlogn).

Based on the design from [7], when logy(n) is odd, the signal
X allows the signals A, B, C, and D to pass directly to the SIPO
unit. On the contrary, for even log,(n), the multiplexers with the
select signal X can be eliminated. The NTT hardware architecture
loads four coefficients per clock cycle and places them into registers
A, B, C, and D. When the multiplexer select s = 0, the circuit operates
in the MUL mode only, whereas s = 1 performs NTT operation on
the circuit.

, n—1. As p is a prime,

III. PROPOSED ERROR DETECTION SCHEME

In this section, we present our schemes designed to detect fault
injections on the HW/SW co-design architecture of NTT. Our frame-
work is based on constructing recomputing schemes, which incur
low overhead and high error detection rate. We aim at detecting the
presence of faults, both permanent and transient, on the most compu-
tationally exhaustive mathematical operations of the NTT accelerator
architecture, i.e., the multiplication. Generally speaking, we incorpo-
rate our proposed error detection schemes, which perform encoded
and decoded rounds of operation, and then compare the recomputed
output with regular output (i.e., without any error detection circuit).
As our recomputing schemes fall under concurrent error detection
(CED) schemes, the recomputed output will be consistent with the
regular round of output if no fault is present. We perform error detec-
tion on all four registers, i.e., A, B, C, and D, using recomputing with
the encoded operands scheme.

A. Fault Model

Stuck-at fault models are popular for malicious fault injections,
preferably, single-bit fault injections. However, technological con-
straints might complicate such injection for the attacker, where
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Fig. 1. Proposed construction for RENO on D.

multiple-bit faults can be utilized. Repeated comparison of faulty
and fault-free outputs can compromise the secret key by deriving the
last subkey. Stuck-at faults can occur by both natural and malicious
faults, thus our fault model covers both types of faults, which can be
detected by the error detection schemes proposed in the following.

B. Proposed Recomputing Scheme for Operand D

We propose error detection schemes which will result in low-
complexity architectures while augmenting on top of the original
constructions. In the hardware implementation of the NTT unit of
hardware accelerator presented in the work of [7], we have applied
recomputing with negated operands (RENO) schemes on the coeffi-
cient of line D, as shown in Fig. 1. In the original operation (Norm
cycle of multiplexer), the data of register D is multiplied with RAMI,
and the output my is reduced using the Montgomery reduction. In
our proposed RENO cycle, we negated the data of register D, which
is mod ¢ negation in modular arithmetic, and multiply (—D) with
RAMI. The encoded operand is —D x RAMI. According to Fig. 1,
we again perform mod ¢ negation on the product of this multiplica-
tion, obtaining the output m’z, which should be consistent with the
Norm cycle output, my, in a fault-free scenario. We compare the out-
puts from both the cycles my and m’2 using a comparator and any
discrepancy flags presence of faults.

C. Proposed Recomputing Scheme for Operands B and A

In lines A and B of the same NTT unit, the select s = 0/1
determines the input of the multiplication with RAM2, which is B
or A, during multiplication or NTT operation, respectively. Using our
recomputing scheme (Fig. 2), we can detect faults during both these
operations for both A and B.

During the Norm operation, i.e., at s = 0, the multiplication output
is B x RAM?2, defined as outp. In our proposed RENO cycle of
multiplexer, we negate the operand B using mod ¢ negation. In the
same line of logic as the previous scheme, we negate the product
of —B and RAM?2, stored as out’z, and compare it with outp, as shown
in Fig. 2. The error flag will be high to demonstrate any presence of
faults.
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Fig. 2. Proposed construction for RENO on B and A.

Moreover, during s = 1, the NTT operation is performed, which
multiplies A with RAM?2 during the Norm cycle. Our RENO oper-
ation will negate the input A using mod ¢ negation and perform
the multiplication. Another mod ¢ reduction on this product should
be consistent with the Norm cycle output; otherwise, the proposed
construction will detect any deviations due to fault injection.

D. Proposed Recomputing Scheme for Operands C and D

Finally, we perform error detection on both C and D of the NTT
unit in the hardware accelerator, through the last registers of their
respective lines, Reg2 and Regl, as shown in Fig. 3. During Norm
cycle, where no error detection schemes are inserted, line D performs
out3 = Regl — Reg2, whereas line C provides outy = Regl + Reg2
as output, depicted by the boldface dashed lines of Fig. 4(a). We
can check injection of faults in these operations by incorporating
both recomputing with negated and swapped operands. In our RENO
operation, as shown by the boldface dashed lines in Fig. 4(b), we
negate Reg2 using a modular negation, which is then fed at both
the subtractor and adder of lines D and C, respectively. In a fault-
free scenario, the output at this stage from line D and C are out’3 =
Regl + Reg2 and outﬁt = Regl — Reg2, respectively. The final result
is computed after swapping the outputs of these intermediate steps,
which should be consistent with the Norm cycle output, in a fault-free
scenario. We compare Norm/RENO output of line D, i.e., out3 /out’3
and outy /outﬁt, using a comparator.

IV. ERROR COVERAGE AND FPGA ASSESSMENTS

In this section, we present the results of our error simulations
and ASIC assessments using Xilinx Vivado and VHDL for three
of our architectures to assess the overhead. We have injected faults
on the basis of our fault models and observed the error flag in the
error simulation section. We implemented our proposed techniques
on Zynq UltraScale+ and Spartan-7 FPGA families which provide
us the performance metrics, i.e., area, delay, and power overhead.
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Fig. 3. Proposed construction for recomputing on C and D.

A. Fault Simulations

Using VHDL, we simulate the error coverage of our proposed
work. We inject three types of stuck-at faults, i.e., 1) single; 2) two-
bit; and 3) multiple-bit faults, all of which are injected at the input of
the algorithm. Technological constraints might make it difficult for
the adversary to flip just one bit and collect confidential information,
which is why we are considering multiple-bit faults as well. We sim-
ulate both stuck-at 0 and stuck-at 1 faults. We injected 36 867 faults
at each of our schemes at the input (a total of 110601 faults). For the
schemes presented in Sections III-B-III-D, the error coverage rates
are 99.51%, 99.67%, and 99.41%, respectively.

Our schemes provide high error coverage and detect permanent
and transient faults. Assuming the comparators are hardened, i.e.,
the comparators are not compromised, the schemes can detect fault
injections successfully, according to the simulation results. However,
compromised comparison units, i.e., voters, will deteriorate the
error coverage, which can be solved by using other fault-tolerant
techniques.

B. FPGA Assessments and Comparisons

In this section, we present the results of our FPGA assessments
using Xilinx Vivado and VHDL with Zynq UltraScale+ (xczudeg-
fbvb900-1LV-i) as well as Spartan-7 (xc7s100fgga676-11L) FPGA
families. We choose the parameters used in NewHope, a well-known
PQC algorithm, where, n = 512, ¢ = 12289, and k = 3. The over-
heads are presented in Table I, the proposed RENO operations on
A, B, and D as well as the recomputing scheme incorporated on C
and D. The benchmarking is performed for the error detection archi-
tectures and also for the original constructions. As shown in Table I,
the area is presented in LUTs and flip-flops (FFs), and the power
consumption is calculated at 50-MHz frequency. Here, the term delay
refers to maximum working frequency.

From Table I, the area overhead for Zynq UltraScale+ is 27.44%,
14.63%, and 18.25% for RENO on D, B, and A, and recomputing on
C and D, respectively. We can also notice the delay overhead being
the minimum of 9.32% for Fig. 1, whereas the lowest power overhead
being 13.27% for the scheme of Fig. 3. The area overhead is lower
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Fig. 4. Hardware architecture of recomputing on C and D. (a) Norm cycle, the select of multiplexer is normal. (b) RENO cycle, the select of multiplexer is

RENO.

TABLE I
IMPLEMENTATION RESULTS FOR FPGA THROUGH ZYNQ ULTRASCALE+ (XCZU4EG-FBVB900-1LV-1) AND
SPARTAN-7 (XC7S100FGGA676-11L) FOR THE THREE PROPOSED ARCHITECTURES, I.E., (a) RENO ON D,
(b) RENO ON B AND A, AND (c) RECOMPUTING ON C AND D FORn =512, ¢ = 12289, ANDk =3

Zynq UltraScale+ (xczudeg-fbvb900-1LV-i) Spartan-7 (xc7s100fgga676-11L)
Architecture Area Delay Power Area Delay Power
LUT | FF (ns) (W) LUT | FF (ns) (W)

Original (a) 277 235 15.78 1.27 429 398 13.07 1.03
RENO (a) 353 285 17.25 1.53 523 469 14.18 1.19

(27.44%) | (21.28%) (9.32%) (20.47%) 21.91%) | (17.84%) (8.46%) (15.62%)
Original (b) 265 212 19.87 1.13 376 344 17.39 0.96
RENO (b) 303 238 23.77 1.28 424 417 20.15 1.03

(14.63%) | (12.26%) | (19.66%) | (13.27%) || (12.74%) | (21.22%) | (15.88%) | (7.62%)
Original (c) 389 345 40.31 7.82 318 293 30.12 6.33
RENO (c) 460 399 49.09 9.17 395 336 34.25 7.04

(18.25%) | (15.65%) | (21.78%) | (17.26%) (24.21%) | (14.68%) | (13.71%) (11.22%)

in flip flops compared to LUTs for all the schemes. Table I also
shows that RENO on B and A provides lower overall overheads than
other two schemes. To conclude, the overheads are acceptable and
can be incorporated for both high-performance and low-complexity
architectures.

To the authors’ knowledge, this is the first work to explore fault
detection on the NTT HW/SW co-design approach. Thus, there
is no existing article to compare with our implementation results.
Some previous works have performed recomputing on NTT butterfly
unit [15]. However, the RENO presented in [15] requires a decoding
stage, which adds additional hardware cost, compared to the RENO
we presented in Fig. 3 with no extra decode stage. The same logic
applies to the recomputing presented in [14]. Such hardware improve-
ment in the RENO scheme can be beneficial for resource-constrained
hardware applications.

In absence of any compensation, the total time of the recom-
puted scheme will be twice that of the original, i.e., 2n cycles. To
improve the data path delay and throughput, we incorporate sub-
pipelining, which reduces the path delay by doubling the frequency.

While such a technique incurs higher area overhead, we can highly
compensate the throughput degradation via subpipelining. By insert-
ing registers in the respective locations, the timing paths can be
broken into approximately equal halves in a subpipelined architecture,
thus improving throughput and frequency degradation. As a result, we
can improve the efficiency and throughput of recomputing schemes
using pipelines, with the tradeoff of slightly higher area overhead.
Our proposed architectures are standard-cell library oblivious, as a
result we expect similar results for ASIC platforms as well.

V. CONCLUSION

In this article, we present error detection schemes for the NTT
found on HW/SW co-design constructions. We prove through our
error simulation that our designs ensure high error coverage with
low overheads. We implement the proposed schemes on FPGA Zynq
UltraScale+ as well as Spartan-7, and our performance metrics add
acceptable hardware overhead, e.g., 12.74%, 8.46%, and 7.62% being
the best case area, delay, and power overheads, respectively, for
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Spartan-7 FPGA family. HW/SW codesign approaches are receiv-
ing popularity due to flexibility, shorter development time, and easier
benchmarking process. Hence, error detection schemes are crucial for
the secure operation of PQC algorithms under adversarial attacks.
As our schemes are platform oblivious, we expect similar results
for ASIC for both permanent and transient faults. The error detec-
tion schemes can be employed on compact and resource constraint
devices, e.g., Internet of Nano-Things and deeply embedded systems.
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