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Abstract—Federated computing, including federated learning
and federated analytics, needs to meet certain task Service Level
Objective (SLO) in terms of various performance metrics, e.g.,
mean task response time and task tail latency. The lack of control
and access to client activities requires a carefully crafted client
selection process for each round of task processing to meet
a designated task SLO. To achieve this, one must be able to
predict task performance metrics for a given client selection per
round of task execution. In this paper, we develop, FedSLO
, a general framework that allows task performance in terms
of a wide range of performance metrics of practical interest
to be predicted for synchronous federated computing systems,
in line with the Google federated learning system architecture.
Specifically, with each task performance metric expressed as a
cost function of the task response time, a relationship between
the task performance measure — the mean cost and task/subtask
response time distributions is established, allowing for unified
task performance prediction algorithms to be developed. Practi-
cal issues concerning the computational complexity, measurement
cost and implementation of FedSLO are also addressed. Finally,
we propose preliminary ideas on how to apply FedSLO to the
client selection process to enable task SLO guarantee.

I. INTRODUCTION

Federated learning (FL), originally proposed by Google
engineers in 2016 [10], enables machine learning (ML) model
training to use massively distributed data available from
Internet-of-Things (IoT), mobile and edge devices, also known
as clients. A model training task involves multiple training
rounds. In each round, a central control unit, usually resided
in a cloud, dispatches a number of subtasks of the task to
different selected clients for local model training and the
subtask results are sent back to be aggregated for global
model update. Federated learning is data privacy preserving,
meaning that in each round, it does not require clients to
transmit their raw data, but rather the trained local model
parameters, to the aggregator for global model update. This
data privacy-preserving, distributed computing paradigm was
proposed, again by Google engineers in 2020 [1], to be used
for data-privacy-preserving data analytics as well, known as
federated analytics (FA). Different from FL, a task for FA only
consists of a single round, with clients computing the statistics
from the local data and the server drawing the conclusion from
the collective statistics. FL. and FA are collectively known as
federated computing (FC) [13].
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FC tasks generally have to meet certain Service Level
Objective (SLO), be it implicitly or explicitly. For example, an
FL model training task may need to finish training between,
midnight and S5am when a sufficient number of clients in the
client population are eligible for training, called the eligible
client population in this paper, i.e., they are idle, being charged
and connected to the Internet via an unmetered network, such
as a WiFi network [4]. With a given estimated number of
rounds needed to meet a target model loss or accuracy, an
upper bound of the mean task response time per round can
be estimated, serving as the task SLO per round to guard
against the possible training incompletion for the day. As
another example, FA-based mobile crowdsensing [17], such
as temperature, air quality, or water level sensing and alerting
in a city, may call for a stringent task tail-latency SLO, e.g.,
the 99th-percentile of task response time of 60 seconds.

The task scheduler in an FC system generally has neither
control nor access to the client activities [4] (Under certain
circumstances, cross-silo FC may be an exception, as will be
discussed in Section III). As such, FC has to rely on a well-
crafted client selection process that can identify a “right”
subset of clients from the eligible client population to meet
a given task SLO. This is challenging given (1) the lack of
efficient algorithms that can predict whether a given selection
can meet the task SLO or not; and (2) the high combi-
natorial complexity of the selection process, e.g., selecting
500 clients out of one million eligible clients. Consequently,
current practice mainly relies on random selection without task
SLO guarantee [4] and the existing research works on client
selection almost exclusively focus on how to strike a balance
between task response time, also known as wall-clock time
[9], and training quality, without task SLO guarantee [5], [9].
Although a client selection protocol for FL [11] does enforce
a task response time target per round, the target is a deter-
ministic, rather than statistic or probabilistic one. Given the
randomness and stochastic nature of the task processing and
communication processes, it is clear that setting a deterministic
response time target for a task may lead to either the worst-
case resource allocation, i.e., resource overprovisioning, or
target miss. This explains why typical SLOs for distributed
computing are expressed in terms of statistic or probabilistic
metrics, as evidenced by the wide adoption of job tail latency
(a probabilistic metric) SLOs for user-facing workloads and
mean job response time (a statistic metric) SLOs for batch
workloads [6], [15] for datacenter applications.



As a first step towards providing task SLO guarantee for
FC applications, in this paper, we develop, FedSLO, a general
framework for task performance prediction for synchronous
FC systems, in line with the Google federated learning system
architecture. In FedSLO, with each performance metric ex-
pressed as a cost function of the task response time, a relation-
ship between the task performance measure — the mean cost,
and task/subtask response time distributions is established,
allowing for unified task performance prediction algorithms to
be developed for a wide range of task performance metrics of
practical interest. In FedSLO, practical issues concerning the
estimation of the mean cost, i.e., computational complexity,
measurement cost and implementation, are also addressed.
Finally, we discuss preliminary ideas on how to apply FedSLO
to the client selection process to enable task SLO guarantee.

II. FEDSLO
A. System Model

While FA is synchronous by design, meaning that with a
single round, a task is not complete until the results from
all the subtasks are aggregated, FL. may be synchronous or
asynchronous' [2]. Since data privacy enhancement mecha-
nisms for FL, such as Security Aggregation and differentiated
privacy, require some sort of synchronization per training
round, the most popular implementation of FL is synchronous
by design, including the Google FL production system [4].
Hence, for FedSLO, we only consider synchronous FC, where
a round is incomplete until either all the subtask results are
aggregated or a timeout occurs. We further assume that for an
FL task, the task SLO is already partitioned into per-round task
SLOs for individual rounds. These two assumptions allow us
to focus on a single round of task processing that may involve
the following processing phases:

1) Central control unit selects participating clients in the
eligible client population;

2) Central control unit dispatches subtasks of the task to the
selected clients;

3) Clients process the subtasks and send the results to central
control unit;

4) Central control unit aggregates the results.

we further assume that (a) only the task delays in phases 2)
and 3) contribute to the task response time, i.e., from the
instant the subtasks are dispatched to the selected clients to
the instant when either the results of the slowest subtask reach
the control unit or a timeout occurs, and the task SLO only
applies to these two phases; and (b) the task processing delays
due to phases 1) and 4) can be estimated and their impact
on task performance can be accounted for separately. There
are two main reasons for making this assumption. First, the
task processing delays in phases 1) and 4) are much easier
to predict than those in phases 2) and 3). This is because
the selection and aggregation processes are typically carried
out with dedicated computing resources, whereas phases 2)
and 3) typically involve subtask processing in a large number

Note that in this paper, we don’t consider FL based on a fully distributed,
peer-to-peer paradigm [7].
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Fig. 1: FedSLO system model

of heterogeneous clients in parallel and incur highly variable
communication delays for subtask dispatching and returning
of subtask results. Second, the task delays in phases 1) and
4) may need to be estimated on a case-by-case basis. For
example, for FL, depending on how one implements it, phase
1) may or may not overlap with the previous round [4] and
thus may not contribute to the task response time except for
the first round, and for FA, phase 1) may not always exist, as
the task may involve the entire client population. As another
example, for aggregation in terms of statistic measures, such
as mean, it may be done incrementally, overlapping with the
subtask results arrival process. In this case, the task delay in
phase 4) may be negligible.

In the FedSLO system model, the central control unit is
composed of a coordinator and aggregator (CA) in the cloud,
and NV client selectors with each covering a subset of the client
population, which may be collocated with CA or placed close
to the clients they cover, as shown in Fig. 1. It is a two-
tier star network with a CA-to-selector star network at the
upper tier and NN selector-to-client star networks at the lower
tier. CA communicates with [NV selectors and the jth selector
(3 = 1,...,N), in turn, communicates with a subset of the
client population and selects N; clients from the subset (note
that IV; may differ from one round to another) on behalf of
CA in phase 1). Hence, the total number of clients selected, or
equivalently, the total number of subtasks of the task for the
round, N, = Zjvzl N;, also known as task fanout. A client
is a selected one if it is connected with the selector by a solid
line, otherwise, it is not selected (a dotted box). Without loss
of generality, we label the selected omes as, c;, for k =
1,..,Njand j = 1,..., N. In phases 2)-3), the selectors serve
as the proxies to relay the communication and data exchanges
between CA and selected clients. A round is not complete
until phase 3) finishes.

The above FedSLO system model closely follows the
Google FL production system architecture [4]. Specifically,
a selector in this model plays the same role as a selector in
the Google FL system. The CA in this model corresponds
to the coordinator, together with the master aggregator and
aggregators it spawns for a given FL training model in
the Google FL system, which collectively enable rounds in
lockstep and scalable aggregation.



B. Problem Statement

In FedSLO, the problem is formulated as finding the average
cost, C, for a cost function, ¢(t), of task response time, ¢, for
a given round. Mathematically, we have,

L[ dF(t)

where F(t) is the cumulative density function (CDF) of the
task response time ¢ for the round.

The above problem statement is a general one, covering a
wide range of task performance metrics of practical interest.
With a given performance metric or cost function ¢(t), be
it continuous, piecewise continuous, or single-valued, the
corresponding task performance measure or mean cost, C, can
be estimated by Eq. (1). The following are three examples.
1. For the task performance metric in terms of task response
time, a continuous cost function,

c(t) =t, )

we have C' = mean task response time.
2. For the task performance metric in terms of customer
disengagement rate or churn rate [8], e.g., expressed as a
piecewise continuous step cost function,

0 if ¢t <100ms
0.01 if 100ms <t < 500ms
ct) = . 3)
0.05 if 500ms <t < 1,000ms
0.1 if 1,000ms < t,

i.e., the probability a customer may quit the service when the
task response time falls in a given range, C' = mean customer
churn rate or the percentage of customers who may quit the
service.

3. For the task performance metric in terms of task tail latency,
a single-valued step cost function,

0 if t<t;
=1 “)
1 if t> tt7

we have C = 1 — F(t;), i.e., the probability that the task
response time exceeds the task tail latency, t,

Once a given task performance measure, C, is estimated
for a given selection of NN clients, it can then be compared
against the corresponding task SLO in terms of a cost target
CS5LO to determine whether the selection meets the task SLO
or not. For a task tail-latency SLO expressed in terms of
the pth-percentile task latency of ¢,, or equivalently, a target
probability, C¥%© = 1 — p/100, for task response time to
exceed t,, C =1 — F(t;) at t, = t,, must be no greater than
CS5L9 in order to meet the task tail-latency SLO, or

F(tp) > p/100. )

For the other two types of task performance metrics, i.e.,
task response time and customer churn rate, the corresponding
CSTO°s are expressed in terms of a target mean task response
time and a target mean churn rate, respectively. Again, the task
SLO in terms of C5L0 is met, if C < C'SLO,

The above problem statement and examples indicate that
for a wide range of task performance metrics of practical
interest, the problem boils down to how to estimate F'(t) for
a given client selection in a round. A naive solution is to
estimate F'(t) by constructing its histogram using historical
training samples from different rounds of a training model in
FL or samples from different tasks (also known as queries)
in FA. This approach only works when the client selection
algorithm for different rounds in FL or different tasks in FA
selects exactly the same number of clients randomly from the
eligible client population, so that F'(¢) thus estimated can be
applied to any round in FL or any task in FA. Unfortunately,
this assumption does not hold true in general, as different
rounds in FL and different tasks in FA may have different
task fanouts, thus having different F'(¢)’s (as we shall see
shortly, F'(t), is a function of task fanout). Moreover, non-
random client selection algorithms (e.g., [5], [9]) in FL may
be used to enhance the training performance, which generally
leads to very different statistic behaviors for different rounds,
even when the task fanout stays the same and hence, cannot
be adequately characterized using the same F'(t). Instead, we
consider the following solution.

Since the slowest subtask determines the task response time
and subtasks are dispatched to and processed at the selected
clients in parallel, the well-known order statistic [3] applies
[4] and we have,

<.

N N;

Ft) =TT TI E ), (6)

j=1k=1

e

where Fj;(t) is the CDF of the subtask response time for
subtasks corresponding to client c; ;. Instead of attempting to
estimate F'(t), one may estimate F} ;(¢) for k =1,..., N, and
7 = 1,...,N. Note that subtask response times for different
subtasks of different rounds for a given FL training model or
different tasks for a given FA application at the same client,
cj,k» are expected to share similar statistic behaviors and hence
can be characterized by the same CDF, Fj (). Therefore,
F; 1(t)’s may be estimated based on the samples collected
from different rounds for FL or different queries for FA. This
expression also shows that F'(t) indeed is a function of task
fanout in general.

To avoid excessively long or unbounded task response
time due to subtask stragglers or unresponsive subtasks, two
common practices are: (a) redundant subtask issues, i.e., issue
N, subtasks and aggregate the results from the first r subtasks
with the rest N, — r discarded; and (b) Subtask timeout,
i.e., subtask results that arrive at the aggregator after a given
timeout, 7’p, will not be included in the aggregation [4]. To
account for the two common practices, we use a single index
i to identify a selected client, i.e., use G;(¢t) (: = 1,2, ..., Ny)
to replace Fjj ;(t), e.g., Gi(t) = F1,1(t), Ga(t) = Fi2(t) ...,
GN1+1(t) = F271(t), GN1+2(t) = F2,2(t) . and so on. Then
to account for common practice (a), i.e., F'(t) represents the
CDF when at least r subtasks finish within ¢, we have the



TABLE I: Prediction error versus number of samples M

M 2 5 10 20 31 75
Error | 51% | 20% | 10% | 5% | 3% | 1%

following [14],

Y 3 Tl [T

1=r {[1712}6Pi k=1 k=1

-G, )], D

where P; is the set of all two-set partitions D, E of
{1,2,..., Ns} with |D| = i and |E| = Ns — i, and Iy, is
the kth selected client of the client vector [, for h = 1,2
corresponding to D and F, respectively. Clearly, Eq. (6) is a
special case of Eq. (7) at r = N;.

To also account for common practice (b), what we need
to know is Fip(t) = F(t|t < Tp), i.e., the CDF of the task
response time, given that the task finishes before 7, or

) 5f < Tp

Fp(t)y=3¢ ") =~ ®)
0 if t>1p.

In summary, in general, F'(¢) in Eq. (1) should be replaced
by Fp(t) and F(¢t) in Eq. (8) is given by Eq. (7). Assuming
Gi(t)’s, or equivalently, F; 1 (t)’s, are known, the next question
is how to estimate C' at low sampling and computational costs
for different task performance metrics.

C. Cost Analysis

We first convert Eq. (1) approximately into the following
discretized form,

M
C = S IFp(t) ~ Ep(tbo)le(), @)
=1

where M is the number of sampled Fpp(t)’s taken in between
to and T, not including ty; = Tp as Fp(Tp) = 1, and tg is
the largest ¢ below which F'(t) = 0. In general, as M grows
larger, the approximation becomes more accurate.

Sampling Cost: For the task tail latency SLO with a single-
valued cost function, only one sample of Fp(t) at t = ¢, is
needed to predict C, since C' = 1 — Fp(t,), or one sample of
Gi(t) att =t, for i = 1, ..., Ny, according to Eq. (7). For the
churn rate with a piecewise continuous cost function given by
Eq. (3), only three samples of G;(t) are needed to predict C,
ie., at t; = 100ms, to = 500ms and t3 = 1,000ms.

In contrast, for the mean task SLO corresponding to a
continuous cost function in Eq. (2), the prediction error for
C reduces as the number of samples M increases. To get
a rough idea how many samples should be taken, Table I
lists the prediction errors for the mean task response time
at different M (evenly sampled) for an FL task CDF given
in Fig. 2 (see Section III for detailed description). As one
can see, the prediction error reduces quickly initially and then
levels off as M increases. Since the mean task performance
metric is normally applied to non-realtime applications, a 10%
prediction error should be tolerable, which translates into about
M = 10 samples.

Computational Cost: Besides the sampling cost, the other
major potential cost is the combinatorial computing cost
for the evaluation of Eq. (7) per sampling point ¢ = ¢t;
(@ = 1,...,M). This is because the sum in Eq. (7) involves
22_7 s ﬁ terms, which grows much faster than expo-
nential as N, and Ny — r increase. For example, consider
1% redundant subtask issues for an FL training round. At
Ng = 100 and hence, Ny — r = 1, we only have 101 terms
to be added per sampling point. In contrast, at Ny = 200 and
Ng —r = 2, it grows to 20,001 terms, and at Ny = 500
and Ny —r = 5, it grows to 2.6x10'! terms! To mitigate
combinatorial cost, we propose two possible approximate
solutions.

Divide-and-conquer solution: Divide N selected clients with
a given percentage of redundant subtask issues into a number
of subsets of clients of equal size. Then evaluate the CDF
for each subset by Eq. (7). Finally, take the products of the
CDFs of all subsets as F'(t). It can be shown that the estimated
F(t) is smaller than that estimated directly, and serves as a
conservative estimation of F'(¢) and a conservative estimation
of the task performance measure, C.

Using the above example to illustrate the idea, instead of
directly calculating the sum of 20,001 terms for the case where
Ng =200 and Ns—r = 2, one may split Ny = 200 clients into
two subsets with Ny = 100 and N, —7 = 1 each and calculate
the sum of 101 terms for each and then take the product of
the two to be F'(t) for Ny = 200 and N, — r = 2, reducing
the total number of terms from 20,001 to only 202. By the
same token, by splitting Ny = 500 clients into 5 subsets and
following the same procedure, the total number of terms for
N, =500 and N, — r = 5 is reduced from 2.6x10'! to only
505.

Least-cost solution: Given that timeout, T, sets an upper limit
as to how much subtask stragglers may negatively impact the
task performance, the primary role of redundant subtask issues
is to ensure with a high probability, at least r subtasks will
successfully finish before timeout. This is important because
a round of FL task or an FA task may fail if the number of
successfully completed subtasks before timeout drops below a
certain threshold [4]. Understanding this, for a case where N
is large or the cost is high, one may consider using Eq. (6),
instead of Eq. (7), with N; replaced by r to estimate F(t),
which involves only one term, incurring the lowest possible
cost while still allowing Ny — r redundant subtask issues,
which may be adjusted based on measurement, to ensure that
with a high probability, » subtasks will indeed finish before
timeout. C' thus estimated is again conservative, i.e., higher
than the actual one, as the possible deduction of task response
time due to redundant subtask issues are not accounted for in
the estimation of F'(t).

Both solutions are conservative ones and hence, can lead to
task SLO guarantee. Nevertheless, their potential impact on
the possible client overprovisioning (i.e., using a larger Ny —r
than actually needed) will be carefully studied as part of our
future work.



D. Subtask CDF Estimation

The last point to address for FedSLO is how to estimate
subtask response time CDFs, G;(t)’s or F}y(t)’s for the
entire client population. We propose a combined initial offline
estimation and continuous online updating approach.

Offline Estimation: Before running an FC application in a
production system, it normally has to go through an initial
testing phase involving modeling, simulation and small scale
system testing, using sample test data or other proxy data as
inputs [4]. We propose to leverage this phase for the offline
estimation of CDFs. The offline estimation may be performed
on emulated or real devices that emulate the clients typically
seen in the production system. Then different CDFs thus
estimated are assigned to the devices in the production system
as their initial CDFs based on the device types and models. In
this phase, parameterized CDF models may also be developed
to fit the measured CDFs for the FC application to further
reduce the memory footprints of the CDFs. In what follows,
we present some preliminary testing results for model fitting.

We experiment with two applications, i.e., FL. model train-
ing for FedML’s FedloT: Anomaly Detection for Cybersecurity
FL model training [16] and FA for temperature sensing. The
experiments are performed in a testbed with Raspberry Pi
2’s, Pi 3’s and Pi 4’s with temperature sensing capability
serving as clients and a remote laptop running Ubuntu 22.04
as colocated CA and selectors. For both applications, we set
Ny = 5. In particular, to test the impact of both system and
statistic heterogeneities on the model fitting accuracy, for the
FL application, we use a mixture of Pi models with one or two
cores as clients and for the FA application, we use Pi 4 for
all 5 clients with varied data sets. The subtask response time
samples are collected for each FL round and different queries
for temperature means of the temperature readings taken over
different randomly selected periods of times. Then the CDF
histograms are constructed using the collected samples as
input.

We find that the following two different normalized (i.e.,
scale to the range of [0,1]), two-parameter functions, both
are variations of the logistic function [12], actually match the
subtask CDFs for the two applications pretty accurately. They
are: For FL application,

14+e®ito,i 14+e®it0,i .
T+e— it 14e @ito,i if
Gi(t) =

0 if t <ty

t >t (10)

where «; and ¢y ; are the two parameters to be fixed, capturing
the steepness of the CDF curve and the smallest possible sub-
task response time at client ¢, respectively. For the temperature
sensing application,

1+ efﬁitc,i

— _ o= Bitei
1 + e_ﬁi(t_tc,i)

Gi(t) (1)

e

where f3; and t. ; are also two parameters to be fixed, capturing
the steepness of the CDF curve and the average of the subtask
response time, respectively. Figs. 2 and 3 give the matched
subtask CDFs using a least-mean-square algorithm, along with
task response time CDF (i.e., F'(¢t) model), calculated by
Eq. (6), using the matched subtask CDFs as input, together

with the measured task CDF, F'(¢). It turns out that the one
calculated from the model matches the measured one very
well, within 7% error for the FL application and 3% for the
FA application. One also notes that both system and statistic
heterogeneities result in the dominance of the slowest client in
determining the task response time. This implies that out of a
potentially large number of selected clients, N, it is likely that
only a small number of clients will effectively determine the
task response time distribution in practice. This observation,
if further confirmed, may open up opportunities for the design
of low complexity algorithms for the evaluation of Egs. (6)
and (7).

The above results also suggest that the CDF corresponding
to a given client ¢ may be represented by only a few param-
eters, such as {a;,to,;} or {8, t.;}, called the fingerprint of
client ¢ in this paper. To avoid having to maintain a large
array of histogram data for each client CDF, it is possible to
only maintain a fingerprint per client for the client popula-
tion. With the client population potentially reaching billions
[4], this means potentially huge savings of memory/storage
spaces to accommodate the CDFs for the client population.
Moreover, by grouping the clients based on the proximity of
their fingerprints, effective client selection algorithms may be
developed, as discussed briefly in Section 3.

Online Updating: At the beginning of the production phase,
based on the type and model of the device for each client in
the client population, an initial CDF with a given fingerprint
or histogram is assigned to aid the early client selection pro-
cesses. Then the CDF for a client is updated over time as the
corresponding subtask response time samples are accumulated,
making the subsequent selection processes more and more
accurate.

The online updating process can be easily incorporated in
a production system with low cost. Using the Google FL
production system [4] as an example, the subtask response
time samples can be easily extracted from the logs in the
analytics layer in a CA, which ”logs an event in every state
of a training round and uses these logs to generate ASCII
visualizations of the sequence of state transitions happening
across all devices” [4]. With the samples extracted over time,
the CDFs for all the clients in the client population can then
be updated on a continuous basis with low measurement cost.

III. ON CLIENT SELECTION PROCESS

Here are some preliminary ideas on how to apply FedSLO
to enable task-SLO-guaranteed client selection. The problem
can be stated as follows: Maximizing the mean cost C, among
all possible client selections of N clients from a given Eligible
client Population set (EP) of size |EP|, provided that C' does
not exceed C'SLO, or Mathematically,

Mazy,cpp C (12)

Subject to:

C < oo, (13)

Succinctly, the objective is to select the most costly, or
equivalently, the slowest possible Ny clients including Ng —r
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Fig. 2: Model fitting for FL application

redundant ones” from £ P that meets the target, C7©. Doing
so0, leaves as many fast clients in FP for other FL round or
FA tasks to meet their targets.

A key challenge for solving the above client selection prob-

lem is how to cope with the combinatorial computing com-
plexity as the problem size in terms of | EP| and Ny increases
as the total number of possible selections is 1B P‘EZ“?, -
what follows, we first sketch a low-time- complex1ty a orlthm
that solves the above problem approximately in the case of
CSLO being a task tail-latency SLO, and then propose the
ideas of a possible low-time-complexity heuristic solution to
the above problem in general.
Client selection with task tail-latency SLO Guarantee: As
explained earlier, for task tail-latency SLO, C' = 1—Fp(t,,) for
any given client selection, where F'p(t,) is in turn determined
by Gi(tp), for i = .,Ns. The algorithm works as
follows.

First, sample, Q(t,), the CDF at, t,, for all eligible clients,

k, for k = .,|EP|, and then sort them in an ordered
list. Without loss of generality, assume Q(t,)’s are already
ordered, meaning Qx(t,) < Qr41(tp), fork =1,2, ..., |EP|—
1. Then do the binary search of the client selectlons, w1th each
selection being N, consecutive Q) (t,)’s assigned as G;(t,)’s
It starts with assigning the middle N, consecutive Qx(t,)’s
and calculate C. If C' < CS©9, do the binary search in the
first half of the ordered list, otherwise the second half, until
finding the selection corresponding to the largest C' smaller
than or equal to C°F©, The time complexity of this algorithm
is O(log2(|EP| — Ns). For example, for |EP| = 1,000,000
and Ng; = 500, the number of search steps is about 20, which
is well manageable, e.g., 20x500 = 10,000 multiplications,
plus 20 comparisons, when C'is estimated using the least-cost
solution proposed in Section II-C.
A General Solution: Finding a low-time-complexity solution
to the problem given in Eq. (12) in general (i.e., for arbitrary
cost functions, be it continuous or piecewise continuous) can
be difficult, if not impossible. In this paper, we present some
initial ideas about how a heuristic algorithm may solve the
problem approximately at low time complexity.

The idea is to sample the subtask response time, % g,
at a given gth-percentile for eligible client, k, for k£ =
1,2,...,|EP|. For example, one may set, ¢ = 50, capturing
the center point of subtask response time distribution, tx 50,

This is true because the cost is an increasing function of task response
time.

0.8 / /
/ /

1 08 [/ /
5 A
0.4 / /
/ /f £
/ 4 i __F
02 /5/ / Pid < F(t) model F(1) model
" 7 4 ,&5‘ F(t)
0+ Pt 00080o-0eRE O
6.9 7 71 7.2 7.3

Fig. 3: Model fitting for FA application

for subtask, k, i.e., with 50 : 50 chance the subtask response
time will be below or above, ¢, 50. Then sort ¢, ,’s in a ordered
list. Again, without loss of generality, assume that ¢; ,’s are
already in order with ;4 > tj41,4 for k =1,2,...,|[EP| - 1.
The proposed heuristic algorithm then works exactly the same
way as the one for the task tail latency SLO above, by simply
replacing Q(t,)’s in the list with ¢ 4’s. Of course, for each
selection in the algorithm, C' must be calculated using M
samples in general. The time complexity of this algorithm
is M times the time complexity of the previous algorithm,
which again should be manageable, given that we only need
M = 10— 30 to attain reasonably high prediction accuracy of
C (within 3 — 10% prediction errors according to Table T).

Note that the above heuristic algorithm cannot guarantee
that the client selection found maximizes the average cost
in Eq. (12), as C for the selected clients corresponding to
the largest N, consecutive #j,’s, subject to C' < C9LO,
is not necessarily the largest among all possible selections.
Nevertheless, the client selection obtained guarantees that
C < CSLO je., the selection will indeed lead to task SLO
guarantee. A possibly better solution is to order the eligible
clients based on their fingerprints, as they capture the entire
CDFs, which will be investigated as part of our future work.
A Remark: The above did not consider the case when a
feasible client selection that satisfies C < CSL© cannot be
found. When this happens, in general, there are two options:
(a) to relax the task SLO by setting a larger C°1© and
then rerun the algorithm iteratively until at least one feasible
selection becomes available; and (b) to add more resources to
clients to reduce C'. For cross-device FC [7] where the central
control unit or CA has no control over the clients’ resources,
option (a) is the only way to go, however, at the cost of reduced
task performance and hence reduced customer satisfaction.

IV. CONCLUSIONS

In this paper, we develop, FedSLO, a general framework
that allows task performance in terms of a wide range of
performance metrics of practical interest to be predicted for
synchronous federated computing systems. Practical issues
concerning the computational complexity, measurement cost
and implementation of FedSLO are also addressed. Finally,
we propose preliminary ideas on how to apply FedSLO to the
client selection process to enable task SLO guarantee.
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