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Abstract—Federated computing, including federated learning
and federated analytics, needs to meet certain task Service Level
Objective (SLO) in terms of various performance metrics, e.g.,
mean task response time and task tail latency. The lack of control
and access to client activities requires a carefully crafted client
selection process for each round of task processing to meet
a designated task SLO. To achieve this, one must be able to
predict task performance metrics for a given client selection per
round of task execution. In this paper, we develop, FedSLO
, a general framework that allows task performance in terms
of a wide range of performance metrics of practical interest
to be predicted for synchronous federated computing systems,
in line with the Google federated learning system architecture.
Specifically, with each task performance metric expressed as a
cost function of the task response time, a relationship between
the task performance measure – the mean cost and task/subtask
response time distributions is established, allowing for unified
task performance prediction algorithms to be developed. Practi-
cal issues concerning the computational complexity, measurement
cost and implementation of FedSLO are also addressed. Finally,
we propose preliminary ideas on how to apply FedSLO to the
client selection process to enable task SLO guarantee.

I. INTRODUCTION

Federated learning (FL), originally proposed by Google

engineers in 2016 [10], enables machine learning (ML) model

training to use massively distributed data available from

Internet-of-Things (IoT), mobile and edge devices, also known

as clients. A model training task involves multiple training

rounds. In each round, a central control unit, usually resided

in a cloud, dispatches a number of subtasks of the task to

different selected clients for local model training and the

subtask results are sent back to be aggregated for global

model update. Federated learning is data privacy preserving,

meaning that in each round, it does not require clients to

transmit their raw data, but rather the trained local model

parameters, to the aggregator for global model update. This

data privacy-preserving, distributed computing paradigm was

proposed, again by Google engineers in 2020 [1], to be used

for data-privacy-preserving data analytics as well, known as

federated analytics (FA). Different from FL, a task for FA only

consists of a single round, with clients computing the statistics

from the local data and the server drawing the conclusion from

the collective statistics. FL and FA are collectively known as

federated computing (FC) [13].
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FC tasks generally have to meet certain Service Level

Objective (SLO), be it implicitly or explicitly. For example, an

FL model training task may need to finish training between,

midnight and 5am when a sufficient number of clients in the

client population are eligible for training, called the eligible

client population in this paper, i.e., they are idle, being charged

and connected to the Internet via an unmetered network, such

as a WiFi network [4]. With a given estimated number of

rounds needed to meet a target model loss or accuracy, an

upper bound of the mean task response time per round can

be estimated, serving as the task SLO per round to guard

against the possible training incompletion for the day. As

another example, FA-based mobile crowdsensing [17], such

as temperature, air quality, or water level sensing and alerting

in a city, may call for a stringent task tail-latency SLO, e.g.,

the 99th-percentile of task response time of 60 seconds.

The task scheduler in an FC system generally has neither

control nor access to the client activities [4] (Under certain

circumstances, cross-silo FC may be an exception, as will be

discussed in Section III). As such, FC has to rely on a well-

crafted client selection process that can identify a ”right”

subset of clients from the eligible client population to meet

a given task SLO. This is challenging given (1) the lack of

efficient algorithms that can predict whether a given selection

can meet the task SLO or not; and (2) the high combi-

natorial complexity of the selection process, e.g., selecting

500 clients out of one million eligible clients. Consequently,

current practice mainly relies on random selection without task

SLO guarantee [4] and the existing research works on client

selection almost exclusively focus on how to strike a balance

between task response time, also known as wall-clock time

[9], and training quality, without task SLO guarantee [5], [9].

Although a client selection protocol for FL [11] does enforce

a task response time target per round, the target is a deter-

ministic, rather than statistic or probabilistic one. Given the

randomness and stochastic nature of the task processing and

communication processes, it is clear that setting a deterministic

response time target for a task may lead to either the worst-

case resource allocation, i.e., resource overprovisioning, or

target miss. This explains why typical SLOs for distributed

computing are expressed in terms of statistic or probabilistic

metrics, as evidenced by the wide adoption of job tail latency

(a probabilistic metric) SLOs for user-facing workloads and

mean job response time (a statistic metric) SLOs for batch

workloads [6], [15] for datacenter applications.



As a first step towards providing task SLO guarantee for

FC applications, in this paper, we develop, FedSLO, a general

framework for task performance prediction for synchronous

FC systems, in line with the Google federated learning system

architecture. In FedSLO, with each performance metric ex-

pressed as a cost function of the task response time, a relation-

ship between the task performance measure – the mean cost,

and task/subtask response time distributions is established,

allowing for unified task performance prediction algorithms to

be developed for a wide range of task performance metrics of

practical interest. In FedSLO, practical issues concerning the

estimation of the mean cost, i.e., computational complexity,

measurement cost and implementation, are also addressed.

Finally, we discuss preliminary ideas on how to apply FedSLO

to the client selection process to enable task SLO guarantee.

II. FEDSLO

A. System Model

While FA is synchronous by design, meaning that with a

single round, a task is not complete until the results from

all the subtasks are aggregated, FL may be synchronous or

asynchronous1 [2]. Since data privacy enhancement mecha-

nisms for FL, such as Security Aggregation and differentiated

privacy, require some sort of synchronization per training

round, the most popular implementation of FL is synchronous

by design, including the Google FL production system [4].

Hence, for FedSLO, we only consider synchronous FC, where

a round is incomplete until either all the subtask results are

aggregated or a timeout occurs. We further assume that for an

FL task, the task SLO is already partitioned into per-round task

SLOs for individual rounds. These two assumptions allow us

to focus on a single round of task processing that may involve

the following processing phases:

1) Central control unit selects participating clients in the

eligible client population;

2) Central control unit dispatches subtasks of the task to the

selected clients;

3) Clients process the subtasks and send the results to central

control unit;

4) Central control unit aggregates the results.

we further assume that (a) only the task delays in phases 2)

and 3) contribute to the task response time, i.e., from the

instant the subtasks are dispatched to the selected clients to

the instant when either the results of the slowest subtask reach

the control unit or a timeout occurs, and the task SLO only

applies to these two phases; and (b) the task processing delays

due to phases 1) and 4) can be estimated and their impact

on task performance can be accounted for separately. There

are two main reasons for making this assumption. First, the

task processing delays in phases 1) and 4) are much easier

to predict than those in phases 2) and 3). This is because

the selection and aggregation processes are typically carried

out with dedicated computing resources, whereas phases 2)

and 3) typically involve subtask processing in a large number

1Note that in this paper, we don’t consider FL based on a fully distributed,
peer-to-peer paradigm [7].

Fig. 1: FedSLO system model

of heterogeneous clients in parallel and incur highly variable

communication delays for subtask dispatching and returning

of subtask results. Second, the task delays in phases 1) and

4) may need to be estimated on a case-by-case basis. For

example, for FL, depending on how one implements it, phase

1) may or may not overlap with the previous round [4] and

thus may not contribute to the task response time except for

the first round, and for FA, phase 1) may not always exist, as

the task may involve the entire client population. As another

example, for aggregation in terms of statistic measures, such

as mean, it may be done incrementally, overlapping with the

subtask results arrival process. In this case, the task delay in

phase 4) may be negligible.

In the FedSLO system model, the central control unit is

composed of a coordinator and aggregator (CA) in the cloud,

and N client selectors with each covering a subset of the client

population, which may be collocated with CA or placed close

to the clients they cover, as shown in Fig. 1. It is a two-

tier star network with a CA-to-selector star network at the

upper tier and N selector-to-client star networks at the lower

tier. CA communicates with N selectors and the jth selector

(j = 1, ..., N ), in turn, communicates with a subset of the

client population and selects Nj clients from the subset (note

that Nj may differ from one round to another) on behalf of

CA in phase 1). Hence, the total number of clients selected, or

equivalently, the total number of subtasks of the task for the

round, Ns =
∑N

j=1 Nj , also known as task fanout. A client

is a selected one if it is connected with the selector by a solid

line, otherwise, it is not selected (a dotted box). Without loss

of generality, we label the selected ones as, cj,k, for k =
1, ..., Nj and j = 1, ..., N . In phases 2)-3), the selectors serve

as the proxies to relay the communication and data exchanges

between CA and selected clients. A round is not complete

until phase 3) finishes.

The above FedSLO system model closely follows the

Google FL production system architecture [4]. Specifically,

a selector in this model plays the same role as a selector in

the Google FL system. The CA in this model corresponds

to the coordinator, together with the master aggregator and

aggregators it spawns for a given FL training model in

the Google FL system, which collectively enable rounds in

lockstep and scalable aggregation.
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B. Problem Statement

In FedSLO, the problem is formulated as finding the average

cost, C̄, for a cost function, c(t), of task response time, t, for

a given round. Mathematically, we have,

C̄ =

∫ ∞

0

c(t)
dF (t)

dt
dt (1)

where F (t) is the cumulative density function (CDF) of the

task response time t for the round.

The above problem statement is a general one, covering a

wide range of task performance metrics of practical interest.

With a given performance metric or cost function c(t), be

it continuous, piecewise continuous, or single-valued, the

corresponding task performance measure or mean cost, C̄, can

be estimated by Eq. (1). The following are three examples.

1. For the task performance metric in terms of task response

time, a continuous cost function,

c(t) = t, (2)

we have C̄ = mean task response time.

2. For the task performance metric in terms of customer

disengagement rate or churn rate [8], e.g., expressed as a

piecewise continuous step cost function,

c(t) =



























0 if t ≤ 100ms

0.01 if 100ms < t ≤ 500ms

0.05 if 500ms < t ≤ 1, 000ms

0.1 if 1, 000ms < t,

(3)

i.e., the probability a customer may quit the service when the

task response time falls in a given range, C̄ = mean customer

churn rate or the percentage of customers who may quit the

service.

3. For the task performance metric in terms of task tail latency,

a single-valued step cost function,

c(t) =

{

0 if t ≤ tt

1 if t > tt,
(4)

we have C̄ = 1 − F (tt), i.e., the probability that the task

response time exceeds the task tail latency, tt,
Once a given task performance measure, C̄, is estimated

for a given selection of Ns clients, it can then be compared

against the corresponding task SLO in terms of a cost target

CSLO to determine whether the selection meets the task SLO

or not. For a task tail-latency SLO expressed in terms of

the pth-percentile task latency of tp, or equivalently, a target

probability, CSLO = 1 − p/100, for task response time to

exceed tp, C̄ = 1− F (tt) at tt = tp must be no greater than

CSLO in order to meet the task tail-latency SLO, or

F (tp) ≥ p/100. (5)

For the other two types of task performance metrics, i.e.,

task response time and customer churn rate, the corresponding

CSLO’s are expressed in terms of a target mean task response

time and a target mean churn rate, respectively. Again, the task

SLO in terms of CSLO is met, if C̄ ≤ CSLO.

The above problem statement and examples indicate that

for a wide range of task performance metrics of practical

interest, the problem boils down to how to estimate F (t) for

a given client selection in a round. A naive solution is to

estimate F (t) by constructing its histogram using historical

training samples from different rounds of a training model in

FL or samples from different tasks (also known as queries)

in FA. This approach only works when the client selection

algorithm for different rounds in FL or different tasks in FA

selects exactly the same number of clients randomly from the

eligible client population, so that F (t) thus estimated can be

applied to any round in FL or any task in FA. Unfortunately,

this assumption does not hold true in general, as different

rounds in FL and different tasks in FA may have different

task fanouts, thus having different F (t)’s (as we shall see

shortly, F (t), is a function of task fanout). Moreover, non-

random client selection algorithms (e.g., [5], [9]) in FL may

be used to enhance the training performance, which generally

leads to very different statistic behaviors for different rounds,

even when the task fanout stays the same and hence, cannot

be adequately characterized using the same F (t). Instead, we

consider the following solution.

Since the slowest subtask determines the task response time

and subtasks are dispatched to and processed at the selected

clients in parallel, the well-known order statistic [3] applies

[4] and we have,

F (t) =

N
∏

j=1

Nj
∏

k=1

Fj,k(t), (6)

where Fj,k(t) is the CDF of the subtask response time for

subtasks corresponding to client cj,k. Instead of attempting to

estimate F (t), one may estimate Fj,k(t) for k = 1, ..., Nj and

j = 1, ..., N . Note that subtask response times for different

subtasks of different rounds for a given FL training model or

different tasks for a given FA application at the same client,

cj,k, are expected to share similar statistic behaviors and hence

can be characterized by the same CDF, Fj,k(t). Therefore,

Fj,k(t)’s may be estimated based on the samples collected

from different rounds for FL or different queries for FA. This

expression also shows that F (t) indeed is a function of task

fanout in general.

To avoid excessively long or unbounded task response

time due to subtask stragglers or unresponsive subtasks, two

common practices are: (a) redundant subtask issues, i.e., issue

Ns subtasks and aggregate the results from the first r subtasks

with the rest Ns − r discarded; and (b) Subtask timeout,

i.e., subtask results that arrive at the aggregator after a given

timeout, TD, will not be included in the aggregation [4]. To

account for the two common practices, we use a single index

i to identify a selected client, i.e., use Gi(t) (i = 1, 2, ..., Ns)

to replace Fj,k(t), e.g., G1(t) = F1,1(t), G2(t) = F1,2(t) ...,

GN1+1(t) = F2,1(t), GN1+2(t) = F2,2(t) ..., and so on. Then

to account for common practice (a), i.e., F (t) represents the

CDF when at least r subtasks finish within t, we have the

3



TABLE I: Prediction error versus number of samples M

M 2 5 10 20 31 75

Error 51% 20% 10% 5% 3% 1%

following [14],

F (t) =

Ns
∑

i=r

∑

{l1,l2}∈Pi

i
∏

k=1

Gl1k(t)

Ns−r
∏

k=1

[1−Gl2k(t)], (7)

where Pi is the set of all two-set partitions D,E of

{1, 2, ..., Ns} with |D| = i and |E| = Ns − i, and lhk is

the kth selected client of the client vector lh for h = 1, 2
corresponding to D and E, respectively. Clearly, Eq. (6) is a

special case of Eq. (7) at r = Ns.

To also account for common practice (b), what we need

to know is FD(t) = F (t|t ≤ TD), i.e., the CDF of the task

response time, given that the task finishes before TD, or

FD(t) =

{

F (t)
F (TD) if t ≤ TD

0 if t > TD.
(8)

In summary, in general, F (t) in Eq. (1) should be replaced

by FD(t) and F (t) in Eq. (8) is given by Eq. (7). Assuming

Gi(t)’s, or equivalently, Fj,k(t)’s, are known, the next question

is how to estimate C̄ at low sampling and computational costs

for different task performance metrics.

C. Cost Analysis

We first convert Eq. (1) approximately into the following

discretized form,

C̄ ≈

M
∑

i=1

[FD(ti)− FD(ti=1)]c(
ti + ti−1

2
), (9)

where M is the number of sampled FD(t)’s taken in between

t0 and TD, not including tM = TD as FD(TD) = 1, and t0 is

the largest t below which F (t) = 0. In general, as M grows

larger, the approximation becomes more accurate.

Sampling Cost: For the task tail latency SLO with a single-

valued cost function, only one sample of FD(t) at t = tp is

needed to predict C̄, since C̄ = 1−FD(tp), or one sample of

Gi(t) at t = tp for i = 1, ..., Ns, according to Eq. (7). For the

churn rate with a piecewise continuous cost function given by

Eq. (3), only three samples of Gi(t) are needed to predict C̄,

i.e., at t1 = 100ms, t2 = 500ms and t3 = 1, 000ms.

In contrast, for the mean task SLO corresponding to a

continuous cost function in Eq. (2), the prediction error for

C̄ reduces as the number of samples M increases. To get

a rough idea how many samples should be taken, Table I

lists the prediction errors for the mean task response time

at different M (evenly sampled) for an FL task CDF given

in Fig. 2 (see Section III for detailed description). As one

can see, the prediction error reduces quickly initially and then

levels off as M increases. Since the mean task performance

metric is normally applied to non-realtime applications, a 10%
prediction error should be tolerable, which translates into about

M = 10 samples.

Computational Cost: Besides the sampling cost, the other

major potential cost is the combinatorial computing cost

for the evaluation of Eq. (7) per sampling point t = ti
(i = 1, ...,M ). This is because the sum in Eq. (7) involves
∑i=Ns

i=r
Ns!

(Ns−i)!i! terms, which grows much faster than expo-

nential as Ns and Ns − r increase. For example, consider

1% redundant subtask issues for an FL training round. At

Ns = 100 and hence, Ns − r = 1, we only have 101 terms

to be added per sampling point. In contrast, at Ns = 200 and

Ns − r = 2, it grows to 20,001 terms, and at Ns = 500
and Ns − r = 5, it grows to 2.6x1011 terms! To mitigate

combinatorial cost, we propose two possible approximate

solutions.

Divide-and-conquer solution: Divide Ns selected clients with

a given percentage of redundant subtask issues into a number

of subsets of clients of equal size. Then evaluate the CDF

for each subset by Eq. (7). Finally, take the products of the

CDFs of all subsets as F (t). It can be shown that the estimated

F (t) is smaller than that estimated directly, and serves as a

conservative estimation of F (t) and a conservative estimation

of the task performance measure, C̄.

Using the above example to illustrate the idea, instead of

directly calculating the sum of 20,001 terms for the case where

Ns = 200 and Ns−r = 2, one may split Ns = 200 clients into

two subsets with Ns = 100 and Ns−r = 1 each and calculate

the sum of 101 terms for each and then take the product of

the two to be F (t) for Ns = 200 and Ns − r = 2, reducing

the total number of terms from 20,001 to only 202. By the

same token, by splitting Ns = 500 clients into 5 subsets and

following the same procedure, the total number of terms for

Ns = 500 and Ns − r = 5 is reduced from 2.6x1011 to only

505.

Least-cost solution: Given that timeout, TD, sets an upper limit

as to how much subtask stragglers may negatively impact the

task performance, the primary role of redundant subtask issues

is to ensure with a high probability, at least r subtasks will

successfully finish before timeout. This is important because

a round of FL task or an FA task may fail if the number of

successfully completed subtasks before timeout drops below a

certain threshold [4]. Understanding this, for a case where Ns

is large or the cost is high, one may consider using Eq. (6),

instead of Eq. (7), with Ns replaced by r to estimate F (t),
which involves only one term, incurring the lowest possible

cost while still allowing Ns − r redundant subtask issues,

which may be adjusted based on measurement, to ensure that

with a high probability, r subtasks will indeed finish before

timeout. C̄ thus estimated is again conservative, i.e., higher

than the actual one, as the possible deduction of task response

time due to redundant subtask issues are not accounted for in

the estimation of F (t).
Both solutions are conservative ones and hence, can lead to

task SLO guarantee. Nevertheless, their potential impact on

the possible client overprovisioning (i.e., using a larger Ns−r
than actually needed) will be carefully studied as part of our

future work.
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D. Subtask CDF Estimation

The last point to address for FedSLO is how to estimate

subtask response time CDFs, Gi(t)’s or Fj,k(t)’s for the

entire client population. We propose a combined initial offline

estimation and continuous online updating approach.

Offline Estimation: Before running an FC application in a

production system, it normally has to go through an initial

testing phase involving modeling, simulation and small scale

system testing, using sample test data or other proxy data as

inputs [4]. We propose to leverage this phase for the offline

estimation of CDFs. The offline estimation may be performed

on emulated or real devices that emulate the clients typically

seen in the production system. Then different CDFs thus

estimated are assigned to the devices in the production system

as their initial CDFs based on the device types and models. In

this phase, parameterized CDF models may also be developed

to fit the measured CDFs for the FC application to further

reduce the memory footprints of the CDFs. In what follows,

we present some preliminary testing results for model fitting.

We experiment with two applications, i.e., FL model train-

ing for FedML’s FedIoT: Anomaly Detection for Cybersecurity

FL model training [16] and FA for temperature sensing. The

experiments are performed in a testbed with Raspberry Pi

2’s, Pi 3’s and Pi 4’s with temperature sensing capability

serving as clients and a remote laptop running Ubuntu 22.04

as colocated CA and selectors. For both applications, we set

Ns = 5. In particular, to test the impact of both system and

statistic heterogeneities on the model fitting accuracy, for the

FL application, we use a mixture of Pi models with one or two

cores as clients and for the FA application, we use Pi 4 for

all 5 clients with varied data sets. The subtask response time

samples are collected for each FL round and different queries

for temperature means of the temperature readings taken over

different randomly selected periods of times. Then the CDF

histograms are constructed using the collected samples as

input.

We find that the following two different normalized (i.e.,

scale to the range of [0, 1]), two-parameter functions, both

are variations of the logistic function [12], actually match the

subtask CDFs for the two applications pretty accurately. They

are: For FL application,

Gi(t) =

{

1+e
αit0,i

1+e−αit
− 1+e

αit0,i

1+e
−αit0,i

if t ≥ t0,i

0 if t < t0,i,
(10)

where αi and t0,i are the two parameters to be fixed, capturing

the steepness of the CDF curve and the smallest possible sub-

task response time at client i, respectively. For the temperature

sensing application,

Gi(t) =
1 + e−βitc,i

1 + e−βi(t−tc,i)
− e−βitc,i (11)

where βi and tc,i are also two parameters to be fixed, capturing

the steepness of the CDF curve and the average of the subtask

response time, respectively. Figs. 2 and 3 give the matched

subtask CDFs using a least-mean-square algorithm, along with

task response time CDF (i.e., F (t) model), calculated by

Eq. (6), using the matched subtask CDFs as input, together

with the measured task CDF, F (t). It turns out that the one

calculated from the model matches the measured one very

well, within 7% error for the FL application and 3% for the

FA application. One also notes that both system and statistic

heterogeneities result in the dominance of the slowest client in

determining the task response time. This implies that out of a

potentially large number of selected clients, Ns, it is likely that

only a small number of clients will effectively determine the

task response time distribution in practice. This observation,

if further confirmed, may open up opportunities for the design

of low complexity algorithms for the evaluation of Eqs. (6)

and (7).

The above results also suggest that the CDF corresponding

to a given client i may be represented by only a few param-

eters, such as {αi, t0,i} or {βi, tc,i}, called the fingerprint of

client i in this paper. To avoid having to maintain a large

array of histogram data for each client CDF, it is possible to

only maintain a fingerprint per client for the client popula-

tion. With the client population potentially reaching billions

[4], this means potentially huge savings of memory/storage

spaces to accommodate the CDFs for the client population.

Moreover, by grouping the clients based on the proximity of

their fingerprints, effective client selection algorithms may be

developed, as discussed briefly in Section 3.

Online Updating: At the beginning of the production phase,

based on the type and model of the device for each client in

the client population, an initial CDF with a given fingerprint

or histogram is assigned to aid the early client selection pro-

cesses. Then the CDF for a client is updated over time as the

corresponding subtask response time samples are accumulated,

making the subsequent selection processes more and more

accurate.

The online updating process can be easily incorporated in

a production system with low cost. Using the Google FL

production system [4] as an example, the subtask response

time samples can be easily extracted from the logs in the

analytics layer in a CA, which ”logs an event in every state

of a training round and uses these logs to generate ASCII

visualizations of the sequence of state transitions happening

across all devices” [4]. With the samples extracted over time,

the CDFs for all the clients in the client population can then

be updated on a continuous basis with low measurement cost.

III. ON CLIENT SELECTION PROCESS

Here are some preliminary ideas on how to apply FedSLO

to enable task-SLO-guaranteed client selection. The problem

can be stated as follows: Maximizing the mean cost C̄, among

all possible client selections of Ns clients from a given Eligible

client Population set (EP) of size |EP |, provided that C̄ does

not exceed CSLO, or Mathematically,

MaxNs∈EP C̄ (12)

Subject to:

C̄ ≤ CSLO. (13)

Succinctly, the objective is to select the most costly, or

equivalently, the slowest possible Ns clients including Ns− r
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Fig. 2: Model fitting for FL application Fig. 3: Model fitting for FA application

redundant ones2 from EP that meets the target, CSLO. Doing

so, leaves as many fast clients in EP for other FL round or

FA tasks to meet their targets.

A key challenge for solving the above client selection prob-

lem is how to cope with the combinatorial computing com-

plexity as the problem size in terms of |EP | and Ns increases,

as the total number of possible selections is
|EP |!

(|EP |−Ns)!Ns!
. In

what follows, we first sketch a low-time-complexity algorithm

that solves the above problem approximately in the case of

CSLO being a task tail-latency SLO, and then propose the

ideas of a possible low-time-complexity heuristic solution to

the above problem in general.

Client selection with task tail-latency SLO Guarantee: As

explained earlier, for task tail-latency SLO, C̄ = 1−FD(tp) for

any given client selection, where FD(tp) is in turn determined

by Gi(tp), for i = 1, 2, ..., Ns. The algorithm works as

follows.

First, sample, Qk(tp), the CDF at, tp, for all eligible clients,

k, for k = 1, 2, ..., |EP |, and then sort them in an ordered

list. Without loss of generality, assume Qk(tp)’s are already

ordered, meaning Qk(tp) ≤ Qk+1(tp), for k = 1, 2, ..., |EP |−
1. Then do the binary search of the client selections, with each

selection being Ns consecutive Qk(tp)’s assigned as Gi(tp)’s.

It starts with assigning the middle Ns consecutive Qk(tp)’s
and calculate C̄. If C̄ < CSLO, do the binary search in the

first half of the ordered list, otherwise the second half, until

finding the selection corresponding to the largest C̄ smaller

than or equal to CSLO. The time complexity of this algorithm

is O(log2(|EP | −Ns). For example, for |EP | = 1, 000, 000
and Ns = 500, the number of search steps is about 20, which

is well manageable, e.g., 20x500 = 10, 000 multiplications,

plus 20 comparisons, when C̄ is estimated using the least-cost

solution proposed in Section II-C.

A General Solution: Finding a low-time-complexity solution

to the problem given in Eq. (12) in general (i.e., for arbitrary

cost functions, be it continuous or piecewise continuous) can

be difficult, if not impossible. In this paper, we present some

initial ideas about how a heuristic algorithm may solve the

problem approximately at low time complexity.

The idea is to sample the subtask response time, tk,q ,

at a given qth-percentile for eligible client, k, for k =
1, 2, ..., |EP |. For example, one may set, q = 50, capturing

the center point of subtask response time distribution, tk,50,

2This is true because the cost is an increasing function of task response
time.

for subtask, k, i.e., with 50 : 50 chance the subtask response

time will be below or above, tk,50. Then sort tk,q’s in a ordered

list. Again, without loss of generality, assume that tk,q’s are

already in order with tk,q ≥ tk+1,q for k = 1, 2, ..., |EP | − 1.

The proposed heuristic algorithm then works exactly the same

way as the one for the task tail latency SLO above, by simply

replacing Qk(tp)’s in the list with tk,q’s. Of course, for each

selection in the algorithm, C̄ must be calculated using M
samples in general. The time complexity of this algorithm

is M times the time complexity of the previous algorithm,

which again should be manageable, given that we only need

M = 10− 30 to attain reasonably high prediction accuracy of

C̄ (within 3− 10% prediction errors according to Table I).

Note that the above heuristic algorithm cannot guarantee

that the client selection found maximizes the average cost

in Eq. (12), as C̄ for the selected clients corresponding to

the largest Ns consecutive tk,q’s, subject to C̄ ≤ CSLO,

is not necessarily the largest among all possible selections.

Nevertheless, the client selection obtained guarantees that

C̄ ≤ CSLO, i.e., the selection will indeed lead to task SLO

guarantee. A possibly better solution is to order the eligible

clients based on their fingerprints, as they capture the entire

CDFs, which will be investigated as part of our future work.

A Remark: The above did not consider the case when a

feasible client selection that satisfies C̄ ≤ CSLO cannot be

found. When this happens, in general, there are two options:

(a) to relax the task SLO by setting a larger CSLO and

then rerun the algorithm iteratively until at least one feasible

selection becomes available; and (b) to add more resources to

clients to reduce C̄. For cross-device FC [7] where the central

control unit or CA has no control over the clients’ resources,

option (a) is the only way to go, however, at the cost of reduced

task performance and hence reduced customer satisfaction.

IV. CONCLUSIONS

In this paper, we develop, FedSLO, a general framework

that allows task performance in terms of a wide range of

performance metrics of practical interest to be predicted for

synchronous federated computing systems. Practical issues

concerning the computational complexity, measurement cost

and implementation of FedSLO are also addressed. Finally,

we propose preliminary ideas on how to apply FedSLO to the

client selection process to enable task SLO guarantee.

6



REFERENCES

[1] Federated Analytics: Collaborative Data Science with-
out Data Collection. https://research.google/blog/
federated-analytics-collaborative-data-science-without-data-collection/.
Accessed on 9/5/2024.

[2] P. Bellavista, L. Foschini, and A. Mora. Decentralised learning in
federated deployment environments: A system-level survey. ACM

Comput. Surv., 54(1), feb 2021.

[3] G. Bolch, S. Greiner, H. de Meer, and K. Trivedi. Queueing Networks

and Markov Chains: Modeling and Performance Evaluation with Com-

puter Science Applications. Wiley-Interscience publication. Wiley, 2006.

[4] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečný, S. Mazzocchi, B. McMahan,
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