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ABSTRACT

Our extensive experiments reveal that existing key-value stores

(KVSs) achieve high performance at the expense of a huge mem-

ory footprint that is often impractical or unacceptable. Even with

the emerging ultra-fast byte-addressable persistent memory (PM),

KVSs fall far short of delivering the high performance promised by

PM’s superior I/O bandwidth. To �nd the root causes and bridge

the huge performance/memory-footprint gap, we revisit the ar-

chitectural features of two representative indexing mechanisms

(single-stage and multi-stage) and propose a three-stage KVS called

FluidKV. FluidKV e�ectively consolidates these indexes by fast and

seamlessly running incoming key-value request stream from the

write-concurrent frontend stage to the memory-e�cient backend

stage across an intermediate stage. FluidKV also designs important

enabling techniques, such as thread-exclusive logging, PM-friendly

KV-block structures, and dual-grained indexes, to fully utilize both

parallel-processing and high-bandwidth capabilities of ultra-fast

storage hardware while reducing the overhead. We implemented a

FluidKV prototype and evaluated it under a variety of workloads.

The results show that FluidKV outperforms the state-of-the-art PM-

aware KVSs, including ListDB and FlatStore with di�erent indexes,

by up to 9× and 3.9× in write and read throughput respectively,

while cutting up to 90% of the DRAM footprint.
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1 INTRODUCTION

Persistent memory (PM) and solid-state drive (SSD) have made

great strides in both I/O bandwidth and latency over the past decade.

PM, with its byte-addressability and fast persistency, is providing

researchers with an opportunity to reshape the storage landscape.

Meanwhile, key-value stores (KVSs), as a building block of modern

data-processing platforms, maintain a global index on a series of

persistent key-value pairs (KVs) to support simple-semantic KV-

accesses (e.g., Get/Put/Scan). Therefore, KVS on ultra-fast storage

has become the eye of the KVS research storm.

At the heart of a KVS is its indexing structure, and, depending

on how keys are organized and operated on in this structure, for

the purpose of this paper we broadly divide KVSs into two cat-

egories, single-stage indexing KVS and multi-stage indexing KVS.

Speci�cally, the single-stage indexing KVSs have a monothetic data

structure (e.g., B+-tree) in DRAM, storage, or DRAM-storage hy-

brid, to index all persistent KVs. On the other hand, the multi-stage

indexing KVSs, e.g., Log-structured merge-tree (LSM-tree [40]), dy-

namically and periodically migrate the incoming KVs from a small

in-memory KV-set to in-storage large KV-sets, each of which has

its own corresponding index.

Existing PM-based KVSs, be they single-stage and multi-stage

indexing, fall far short of achieving the high performance promised

by ultra-fast storage (e.g., PM) without heavily relying on a huge

DRAM capacity, as elaborated by our in-depth experimental analy-

sis in §2 and summarized by the following 5 key observations.

For the single-stage indexing KVSs, the DRAM-only indexing

ones, where the entire pivot index resides in DRAM [3, 9, 53], show

superior concurrency and performance (Observation 1) at the cost

of a huge DRAM footprint, making it di�cult to adapt to the growth

of data volume (Observation 2). Storing part of the index (e.g., leaf

nodes) on PM [20, 31, 35, 57, 65] reduces DRAM footprint but sac-

ri�ces the overall performance.

The multi-stage indexing KVSs, such as LSM-tree, build an in-

memory KV-grained index only for a limited amount of incoming

unsorted data in the �rst stage and small coarse-grained indexes for

the other stages, making DRAM footprint controllable (Observation

3), while introducing the notorious write stalls and write/read am-

pli�cations due to the periodic compactions to merge KVs between
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adjacent stages. Recently, PM-aware LSM-trees [12, 30, 62] are de-

signed to optimize for PM idiosyncrasy and reduce write stalls.

However, both read and write performances of such multi-stage

indexing KVSs remain far lower than DRAM-only single-stage

indexing KVSs due to limited write-concurrency (Observation 4).

In addition, both single-stage and multi-stage indexing KVSs still

insu�ciently utilize the bandwidth of PM (Observation 5).

In other words, it is very challenging for existing KVS indexing

structures, single-stage or multi-stage, to achieve high write/read

throughput and controllable DRAM footprint simultaneously. For-

tunately, Observation 5 o�ers a hint to e�ectively and e�ciently

leverage the power of modern hardware. To this end, we propose a

fast-�owing three-stage KVS architecture, FluidKV, to seamlessly

consolidate such two indexing mechanisms. The key idea behind

FluidKV is to combine the high concurrency of single-stage indexes

and the controllable DRAM consumption of multi-stage indexes by

quickly and e�ciently merging KVs from the former to the latter.

FluidKV comprises three consecutive processing stages, i.e., Fast-

Store, Bu�erStore, and StableStore. FastStore employs a concurrent

and key-grained index, along with thread-exclusive logging, to

fast absorb incoming KVs in a sequential but unsorted manner,

thus achieving high write performance. Adapting to available hard-

ware bandwidth and �uctuating workload, Bu�erStore dynamically

�ushes FastStore data into a series of persisted and sorted KV-

sets and merge-sorts them into the backend StableStore, to control

the memory footprint in time. StableStore maintains a global key-

range-grained index on large-scale persistent data, thus minimizing

the DRAM footprint while maintaining read performance. FluidKV

presents a PM-friendly index and data block structure in Bu�erStore

and StableStore to store the persisted index and KVs to e�ciently

exploit the ultra-fast storage.

We implement a FluidKV prototype and evaluate it under a

variety of workloads. The results show that FluidKV outperforms

ListDB, a state-of-the-art PM-aware multi-stage indexing KVS, by

up to 9x and 3.8x in write and read throughput respectively while

cutting 90% of ListDB’s DRAM footprint. Compared to state-of-the-

art single-stage indexing KVSs, FluidKV also ensures a controllable

DRAM footprint with similar or higher read/write performance.

The contributions of this paper include:

• An in-depth experimental analysis of the performance/memory-

footprint gap among representative KVS indexing mechanisms;

• A three-stage fast-�owing KVS architecture that e�ectively uti-

lizes the I/O capacity and parallel-processing capability of ultra-

fast storage;

• A write-optimized �rst stage (FastStore), an adaptive second

stage for fast data migration (Bu�erStore), and a DRAM-footprint-

cutting PM-aware backend third stage (StableStore);

• Evaluation of a FluidKV prototype against representative PM-

aware KVSs demonstrating high write performance, low DRAM

footprint, and acceptable read performance.

2 BACKGROUND AND ANALYSIS

In this section, we provide the necessary background for and an in-

depth analysis of the characteristics of emerging high-performance

storage devices and indexing mechanisms of existing key-value

stores (KVSs), which help reveal their performance pitfalls.

(a) Single-stage indexing

…
(b) Multi-stage indexing

Figure 1: Classi�cation of KVS indexing mechanism.

2.1 Ultra-Fast Storage

The rapid development of solid-state drive (SSD) and persistent

memory (PM) technologies has unceasingly advanced both stor-

age capacity and performance, especially accelerating bandwidth

with increasing parallelism. Di�erent from traditional block devices

such as SSD and hard-disk drives (HDD), PM (e.g., PCM [52], STT-

MRAM [2], Memristor [59], 3DXPoint[23], Memory-Semantic SSD

[24, 25, 42, 60]) is capable of memory semantics (i.e., load/store) and

accesses to byte-level small-sized data at GB/s-level I/O bandwidth

and 100ns-level latency. Because of the superior byte-addressing

capability and fast persistency, KVSs as a fundamental building

block of modern data-processing infrastructure leverage PM to ac-

celerate intensive small-sized KV workloads [16, 27, 29, 61] that are

prevalent in industrial and commercial applications [5]. Nowadays,

PM not only works as main memory, which can be accessed via

memory bus for low latency, but can also be attached on the PCIe

bus with the emerging CXL technology [1] for high scalability.

2.2 Key-value Store Indexing

A KVS generally consists of indexes and persistent data. In this

paper, we focus on the index structure, which is the core of KVS

for accurate and quick access to the persistent data on storage. To

understand the impact of di�erent indexing mechanisms on the

overall performance of a KVS, we �rst classify the existing KVS

indexes into two groups, i.e., single-stage indexing (e.g., B+-tree)

and multi-stage indexing (e.g., LSM-tree) as shown in Figure 1, and

identify their respective performance characteristics and pitfalls

(Observation 1~5) through experiments.

2.2.1 Single-stage indexing. A single-stage indexing KVS main-

tains a monolithic KV-grained index to precisely record the location

of each KV in the persistent data, as shown in Figure 1a. Common

single-stage indexes include range indexes (e.g., B-tree variants,

trie, and skiplist) and hash indexes. Considering that KVSs require

support for range queries, this paper focuses only on range indexes.

Most KVSs optimized for ultra-fast storage keep the whole index

in DRAM to prevent the indexing from becoming a bottleneck. For

example, KVell [32] adopts a large B+-tree index and page cache

in memory to ensure read performance on fast SSDs. Flatstore [9]

builds an e�cient multi-log structure on PM for persistent KVs and

employs an existing volatile index for fast searching.

To demonstrate the impact of single-stage indexing on KVS per-

formance, we test the read and write performances of Flatstore with

di�erent numbers of user threads under workloads of 200M writes

and reads respectively. The sizes of key and value are equal and

8 bytes each (see §6.1 for detailed experimental setup). As shown

in Figure 2, Masstree, which denotes Flatstore with a DRAM-only

B+-tree (i.e., Masstree [38]), achieves read and write throughputs
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Figure 2: Scalability of single-stage indexing KVSs [OB1].
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of over 20 MOPS, demonstrating extremely high performance and

parallelism of single-stage indexing. This leads to Observation 1

(OB1): modern single-stage indexing has good concurrency

and scalability in both reads and writes.

However, in the face of ever-increasing KV data volumes, even

when the PM space is su�cient, the ever-expanding index con-

sumes a vast DRAM space. Especially for small-sized KVs, the

DRAM footprint of the index may be larger than the amount of KV

data itself because there are many inner nodes within the index

besides the leaf nodes. Figure 3 illustrates the DRAM consump-

tions of Masstree as a function of dataset size. The results reveal

Observation 2 (OB2): the DRAM footprint of single-stage in-

dexing KVS increases linearly with the dataset size at a steep

slope. When inserting about 1,600M 8+8 byte KVs (24GB in total),

its index runs out of the 64GB DRAM of our hardware platform,

demonstrating the dominant impact of the index DRAM footprint

on KVS data capacity.

Although accommodating all or part of a KVS index in byte-

addressable PM [35, 36, 41] can reduce DRAM consumption, it

incurs the high cost of very noticeable performance degradation

for two reasons. First, it causes I/O contention between index up-

dates and KV data accesses. Second, small-sized accesses to PM are

signi�cantly more ine�cient than to DRAM [54, 56]. As shown in

Figure 2, Flatstore with Fast&Fair B+-tree [20] (denoted as FFTree),

which is a persistent B+-tree on PM, underperforms its DRAM-only

counterpart Masstree in write performance by 40%~70% and read

performance by 35%~40%. Figure 3 also shows that FFTree trades

read/write performance for reduced memory footprint, which is

still proportional to data size. In summary, the performance of a

given single-stage indexing KVS is dominated by its index structure,

which needs to strike a careful balance between performance and

DRAM footprint to accommodate an increasing data volume.

2.2.2 Multi-stage indexing. LSM-tree [40] is the most classic and

representativemulti-stage indexing structure in the last three decades.
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Figure 4: The performance of LSM-tree-based KVS [OB4].

As shown in Figure 1b, a typical LSM-tree implementation on tra-

ditional block devices, such as LevelDB [15] and RocksDB [14],

comprises a small DRAM-storage hybrid stage 0 and multiple per-

sistent stages with exponentially increasing capacities. Stage 0

consists of an in-memory index called memtable and a persistent

write-ahead log (WAL) to fast persist user writes with sequential

I/O. The other stages store sorted KVs with small coarse-grained

persistent indexes (e.g., each index entry for 4KB block). The back-

ground threads asynchronously and periodically merge the KVs in

one stage into the next stage and update the persistent indexes. We

measured the DRAM footprint of RocksDB1 at di�erent data vol-

umes. As shown in Figure 3, its DRAM consumption is consistently

within 1GB and is primarily derived from memtable. Therefore, we

conclude Observation 3 (OB3): multi-stage indexing KVS can

decouple DRAM footprint from data volume.

The key drawback of LSM-tree, namely, the I/O (write/read)

ampli�cation, means that each KV written by the user is rewrit-

ten multiple times among stages, and a read request sequentially

queries multiple stages to retrieve the target KV. Many prior works

[6, 43, 55] have been proposed to alleviate I/O ampli�cation for

LSM-tree on high-performance storage devices. ListDB [30] is a

state-of-the-art LSM-tree optimized for PM, replacing the sorted

structure with persistent skiplists. Therefore, the background com-

paction can update the skiplist index by modifying pointers instead

of rewriting all merged KV data to reduce data copying. We also

test the performance of RocksDB and ListDB on PM. The results

shown in Figure 4 uncover Observation 4 (OB4): the read/write

performance of multi-stage indexing KVS is limited. The per-

formances of RocksDB and ListDB are signi�cantly lower than that

of single-stage indexing KVSs such as Masstree and FFTree. Partic-

ularly, both RocksDB and ListDB exhibit limited write parallelism.

One reason is the ine�ciency of logging and index, e.g., the shared

logging that imposes synchronization overhead and the persistent

skiplist that induces small random I/Os. Another reason is the ten-

sion between write and read ampli�cation. For example, increasing

the number of stages e�ectively reduces write ampli�cation (e.g., by

using tiering structure[10, 11, 44]), but increases read ampli�cation.

2.2.3 Indexes on ultra-fast storage. To understand the actual I/O

bandwidth-usage of the underlying PM, we loaded 200M KVs (3 GB)

to all the aforementioned KVSs. As shown in Figure 5, the KVSs

use less than 1GB/s read and 0.2GB/s write bandwidth with a single

thread. Even with 32 threads, the utilizations of write and read band-

width are only up to 30% and 70% respectively. Among them, FFTree

and ListDB utilize more bandwidth because they build persistent

indexes on PM. Whereas Masstree uses a DRAM-only index and

1We use pmem-rocksdb[22], a RocksDB version adopted for PM, to run on our platform.
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Figure 5: I/O bandwidth utilizations of single- and multi-

stage indexing KVSs when loading 200M KVs (3 GB) [OB5].

RocksDB has poor parallelism, which results in their insu�cient

utilization of PM bandwidth. Through the experimental results we

obtain Observation 5 (OB5): for both single-stage and multi-

stage indexing, the bandwidth of PM is not a performance

bottleneck.

In summary, the performance pitfalls and di�erences between

single-stage and multi-stage indexing KVSs lie in their architec-

tural features. The former achieves excellent concurrency on both

read and write [OB1] at the cost of signi�cant DRAM consumption

[OB2]. In contrast, the latter controls DRAM footprint by moving

incoming writes through stages [OB3] but su�ers from a low over-

all performance and unbalanced read/write ampli�cation [OB4].

Moreover, both indexes underutilize the high PM bandwidth [OB5].

3 MOTIVATION AND OPPORTUNITY

Based on the above comparative analysis of the two types of KVS

indexing mechanisms, we pose and attempt to answer the question

of: how to build a balanced key-value store on PM that accomplishes

the three design goals of read performance, write performance and

DRAM e�ciency simultaneously, as shown in Figure 6?

Goal 1 (GO1): high write scalability. E�ciently handling

highly concurrent requests is critical for enhancing write through-

put. This requires an e�cient indexing structure that avoids per-

formance bottlenecks due to multiple threads competing for the

in-memory index and the shared WAL as discussed in §2.2.2.

Goal 2 (GO2): controllable DRAM footprint. To rationalize

the use of memory space and avoid unlimited growth of DRAM

footprint with the increasing data volume, a memory-e�cient in-

dexing mechanism is needed to carefully store the vast portion of

the global index of KVS in PM, thus reducing the actual DRAM

requirement.

Goal 3 (GO3): low read latency. The read latency of LSM-tree

consists of the index querying and PM accesses on multiple stages.

Because current commodity PM exhibits 5× higher read latency

than DRAM [54, 56], it is important to reduce PM accesses in the

critical read path of the multi-stage querying.

While it is very challenging to achieve all three goals simultane-

ously, our observations demonstrate two important opportunities

to design a KVS with improved overall performance.

First, it is an opportunity to combine the techniques of ex-

isting single-stage and multi-stage indexing to obtain their

respective advantages. As aforementioned, single-stage index

and multi-stage index exhibit di�erent performance advantages

due to their di�erent structures and techniques. Therefore, a KVS

design that combines their advantages [OB1, OB3] is expected to

achieve an overall performance improvement over both.

Write performance

Read performance DRAM efficiency

FluidKV
FFTree
ListDB
RocksDB
Masstree

1Figure 6: FluidKV design goals compared with the existing

KVSs (veri�ed and detailed in §6.2.1).

Second, with the prevalence of high-performance hardware in-

cluding multi-core CPUs and fast PMs [OB5], it is an opportunity

to leverage hardware parallelism to amortize and reduce the

overhead of consolidating the two indexing schemes. The su-

perior processing power of modern hardware can perform multiple

stages quickly and simultaneously. Also, index structures with good

concurrency are likely to make full use of hardware parallelism.

These opportunities inspire and motivate us to design a dynamic

multi-stage KVS to fast and seamlessly �ow incoming data from a

frontend small-scale write-optimal index to a backend large-scale

memory-e�cient index across an intermediate bridging stage.

4 FLUIDKV DESIGN

4.1 Overview

We propose FluidKV, a dynamically balanced and parallelized key-

value store, to achieve both high performance and low DRAM con-

sumption on ultra-fast storage such as PM. FluidKV is designed as a

three-stage architecture that includes a small and high-performance

FastStore at the frontend, a large and memory-e�cient StableStore

at the backend, and a Bu�erStore bridging the frontend and backend

stages to provide the �uidity, as shown in Figure 7.

FastStore (§4.2) adopts a KV-grained concurrent volatile range

index and multiple thread-exclusive logs. FastStore is responsible

for the fast processing of highly concurrent user writes and allows

dynamically trading more memory for throughput under write-

intensive workloads [GO1].

StableStore (§4.3) stores and indexes sorted key-value pairs

using a set of data blocks and their index nodes on PM, respectively.

The structures of the index node and data block are I/O-e�cient

for PM. As a result, StableStore maintains large-scale KV data and

a read-optimized index with extremely low DRAM consumption

[GO2] while guaranteeing acceptable query latency [GO3].

Bu�erStore (§4.4) is an adjustable stage between FastStore and

StableStore, enabling the seamless �ow and �uidity of FluidKV. It

converts the KV-grained indexes of FastStore into small sorted-

block-grained indexes to quickly reduce memory overhead [GO2]

while merging these sorted block indexes into StableStore to reduce

read ampli�cation [GO3].

FluidKV o�ers standard KV interfaces such as Get, Put, and

Delete, and also supports range scan, variable-sized values, and

crash consistency. FluidKV prototype employs the commodity Intel

Optane DCPMM as a practical PM device for the proof-of-concept
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Figure 7: Architecture of FluidKV.

purpose, but FluidKV’s design principles and key techniques can

be applied to other types of PM such as ultra-fast CXL-based SSDs.

4.2 FastStore: Fast and Concurrent Writing

FastStore, as the frontend of FluidKV, is designed to fast process

highly concurrent writes. It primarily uses an in-memory B+-tree

index with high parallelism and employs the logging mechanism

from LSM-tree, which can provide storage-friendly sequential I/O.

Furthermore, FastStore uses the log structure to quickly persist user

data but employs a thread-exclusive logging mechanism to reduce

the log contention by exploiting parallelism.

FastStore Structure. As shown in Figure 8, FastStore stores

incoming KVs into multiple thread-exclusive logs on PM and main-

tains a volatile index in DRAM. For small �xed-sized KV (e.g., 8+8

bytes), FastStore stores all KV data in both index and PM-logs for

crash recovery. This approach is similar to LSM-tree’s memtable

and WAL, thus avoiding slow PM access when querying bu�ered

KVs. For variable-sized KVs, FluidKV applies a key-value separation

mechanism [37], storing a full-length KV in a PM-log while only

recording its PM address as the value of the key in the in-memory

index. In addition to the KV length and data, the log record also

includes a 1-bit Valid �ag to indicate whether the KV is deleted,

and a 31-bit log sequence number (LSN) to record the written order

of records for crash consistency. For PM consistency and cache

locality, all records are designed to be easily aligned to the size of

64 bytes. To save PM space, when there are log records smaller

than 32 bytes, multiple consecutive small records are allowed to be

packed into one cacheline.

Volatile range index. Although many hybrid PM-DRAM in-

dexes [8, 35, 41] store leaf nodes in PM to keep persistency without

logging, their performances are still low because of the small ran-

dom PM accesses induced. So, FastStore uses a fast DRAM-only

range index, leaving the responsibility of persistence to the IO-

friendly logging mechanism. Because the latency of current PM

is an order of magnitude higher than that of DRAM, the DRAM-

only index is unlikely to become a performance bottleneck of Fast-

Store. Therefore, FastStore can in principle use all kinds of existing

volatile range indexes. However, for performance purposes, the

index must meet requirements for high concurrency and range

query performance. For concurrency, indexing with �ne-grained

locks or optimistic concurrency control are used to avoid sudden

performance degradation due to thread contention. Range query

performance is important not only for standard scan operations,

but also for the fact that FluidKV requires range scans of the whole

index when �ushing FastStore data to Bu�erStore (§4.4 and §5.4).

…

Figure 8: Data structures of the volatile index and thread-

exclusive log in FastStore.

; …}

Figure 9: Data structures in StableStore.

Thread-exclusive logging. As mentioned in §2.2.2, the root

cause of poor write parallelism of LSM-tree is the contention among

multiple user threads for the same shared log endings. To im-

prove the concurrency of log writes for GO1, we propose a thread-

exclusive logging mechanism. Instead of sharing a single log, Fast-

Store allocates an exclusive per-thread log for each user thread to

mitigate I/O contention. This enables FastStore to fully utilize the

I/O parallelism of PM.

Coarse-grained allocator. FluidKV employs a coarse-grained

PM allocator to allocate/recycle log space for each write thread.

The allocator partitions the PM space into �xed-sized chunks (e.g.,

4 MB) and maintains the allocation states of the chunks with a

persistent bitmap. When a thread writes new data to the PM, the

allocator exclusively assigns a free PM chunk to the corresponding

thread, thus avoiding write contention between multiple threads.

This mechanism facilitates not only the parallel logging in FastStore,

but also the PM-block writing in Bu�erStore and StableStore.

4.3 StableStore: Memory-E�cient Indexing

StableStore is designed to achieve a competitive read performance at

a lowmemory footprint. StableStore is designed as a PM+DRAM hy-

brid structure, consisting of a volatile B+-tree and persistent sorted

blocks, to index the largest portion of KVs in FluidKV. The small-

scale upper-level B+-tree provides su�cient parallelism and the

large-scale sorted blocks e�ectively reduce the memory footprint

of upper-level indexes with data locality. Meanwhile, StableStore

adjusts the size of persistent blocks based on I/O a�nity to further

optimize read performance.

Logical Sorted Table. As shown in Figure 9, the volatile B+-tree

builds indexes for persistent objects named Logical Sorted Tables



Table 1: Read latency (us) of PM with di�erent I/O sizes.

I/O size 64B 128B 256B 512B 1024B 2048B 4096B

4 PMs 0.687 0.727 0.731 0.768 0.932 1.292 1.598
6 PMs 0.655 0.688 0.695 0.741 0.897 1.256 1.529

(LST). Each LST consists of an index block and the multiple data

blocks it indexes. Each data block stores a set of sorted KVs, and the

key and value of an index entry in the index block are the minimum

key of its indexed data blocks and the address of the data block,

respectively. When key-value separation is enabled, the value for

a key in the data block is a pointer to the corresponding PM-log

record. Empty entries at the end of an index block are �lled with

the last valid entry in the block to facilitate binary search (the same

goes for a data block). The maximal number of KVs stored in each

LST is the product of the number of entries in an index block and

the number of entries in a data block. For example, if we use 512-

byte-sized blocks, i.e., one block stores 32 entries (8+8 bytes). Then

the DRAM consumption of StableStore’s volatile indexes is reduced

to 1/1024 that of a KV-grained index like FastStore.

I/O friendly PM block. As mentioned in §2.2.1, while most

persistent indexes leverage the byte-addressability of PM to perform

�ne-grained (e.g., 8-byte pointer) accesses, StableStore chooses 512

bytes as the size of both index and data blocks because of the I/O

a�nity of PM. As shown in Table 1, the random access latency of

PM remains roughly the same in the I/O size range of 64B to 512B,

and then rises signi�cantly with increasing I/O size, due to the 256-

byte XPBu�er inside the PM [23, 50]. Therefore, when querying

the index of StableStore, at most two PM accesses with minimum

read latency are required in the critical path.

In addition to the stable read latency and low memory footprint,

the hybrid structure of StableStore also simpli�es crash recovery.

Rather than rebuilding a huge KV-grained index, StableStore only

needs to recover the volatile B+-tree with LST metadata persisted

in Manifest (detailed in §5.5), while the LSTs are persistently stored

on the PM and do not need to be recovered.

4.4 Bu�erStore: Dynamic Data Migration

Bu�erStore between FastStore and StableStore is responsible for

seamlessly fast migrating the KV data from memory-intensive

FastStore into memory-e�cient StableStore, enabling FluidKV to

achieve the advantages of high concurrent write, stable read latency,

and low memory footprint simultaneously.

In Bu�erStore, key-value data are indexed by multiple bu�er-

trees structurally identical to StableStore. When FastStore reaches

its capacity (determined by memory constraints), the volatile index

will be converted into a bu�er-tree to quickly release memory

resources by the �ush operation. Then one or more bu�er-trees

are sorted and merged into StableStore when the number of bu�er-

trees reaches a certain threshold, through the compaction operation,

which is a time-consuming process. The detailed work�ows of �ush

and compaction are described in §5.4. The �ush and compaction

operations are performed concurrently and do not block the front-

end processing of user requests, fully leveraging the parallelism

of multi-core CPUs and ultra-fast storage to accelerate the data

�owing from FastStore to StableStore.

…

Figure 10: Load-awareness by adjusting the threshold for the

number of bu�er-trees. RA denotes read ampli�cation.

Dynamic load-awareness. Rather than maintaining KV data

distributed across multiple levels with exponentially increasing

data capacity like LSM-tree, which helps reduce write ampli�cation

[GO3], Bu�erStore adopts a di�erent data migration strategy at

runtime, adapting to the workload dynamics. FluidKV calculates the

read/write ratio (R:W) of the workload by pro�ling requests from

user threads. As shown in Figure 10, under read-intensive work-

loads (e.g., R:W > 1), FluidKV triggers �ush and compaction more

aggressively to reduce the number of indexes and thus alleviate read

ampli�cation. Any bu�er-tree in Bu�erStore will be opportunis-

tically merged into StableStore via compaction (i.e., threshold=1).

Moreover, under read-only workloads, FluidKV even ignores the

threshold on the FastStore capacity to trigger �ush for merging

FastStore data to the later stages. On the contrary, under write-

intensive workloads, FluidKV temporarily tolerates more bu�er-

trees in Bu�erStore to improve write performance, and triggers

compaction when the number of bu�er-trees reaches a high thresh-

old (e.g., 4). This is because the write ampli�cation of compaction

is determined by the capacity ratio of Bu�erStore and StableStore.

Therefore, enlarging the Bu�erStore capacity reduces write am-

pli�cation at the cost of read ampli�cation. In summary, FluidKV

dynamically balances read and write performances by adjusting

the relative spaces and processing capacities of its three stages.

5 IMPLEMENTATION

In this section, we provide the prototype implementation details of

key operations in FluidKV. We implemented a FluidKV prototype

with over 5,000 lines of original code and employed libraries such

as Masstree and RocksDB thread pool.

5.1 Volatile Index

In the FluidKV prototype, we implement the volatile indexes of

FastStore, Bu�erStore, and StableStore based on Masstree [38], a

volatile B+-tree variant2. Our reasons for choosing Masstree are as

follows. First, B+-tree is optimized for the scan operation, which

facilitates iterating through all KVs of FastStore during �ush op-

erations. Second, Masstree o�ers a high level of concurrency and

performance. Furthermore, the Masstree code is easy to modify, and

its slab-based memory allocator helps us further control the DRAM

usage. We reimplement the memory recycling mechanism in the

destructor of Masstree to fast recycle all of its memory footprint

2Masstree is a trie where each node is a B+-tree, inheriting the advantages of both
B+-tree and trie. In this paper, we consider it to be a B+-tree because with 8-byte keys
it degrades to only one trie node, i.e., a B+-tree



Algorithm 1 Put operation (KV-separation is enabled).

1: function Put(:, E)
2: ;B= ← 2>D=C4AB [ℎ0Bℎ (: ) mod 256] + + ² Get LSN
3: ;>6_?CA ←,A8C4!>6'42>A3 (:, E, ;B=)
4: 8=34G .%DC+0;830C4 (:, ;B=, ;>6_?CA )
5: return
6: functionMasstree::PutValidate(k,lsn,log_ptr)
7: ? ← CA44.�8=3�=3!>2: (: ) ² Find the position for the inserted key and

lock the node
8: if the target key already exists then
9: E0;D4 ← ?.E0;D4
10: if E0;D4.!(# > ;B= then
11: *=;>2: ( )
12: return
13: ?.E0;D4 ← {+0;83 : 1, !(# : ;B=, !>6%CA : ;>6_?CA }
14: *=;>2: ( )
15: return

in batch, since FluidKV deletes the entire index frequently during

�ush and compaction. Also, we add a validation mechanism for

consistency (see §5.2).

We also evaluated Bwtree [34], a lock-free B+-tree, and HOT

[4], a concurrent trie, but did not use them. Bwtree underperforms

Masstree in both read and write [51]. HOT achieves better read

performance but slightly worse write and scan performance than

Masstree. However, since it does not recycle memory during delete

operations, it is not e�cient for StableStorewhich frequently deletes

the index entries due to compactions.

5.2 Write

Put operation. The Put operation is shown in Algorithm 1. First,

an LSN is generated by a global incremental counter (line 2) to

distinguish the global order of log records in multiple per-thread

logs during crash recovery. Since sharing a single global counter

causes signi�cant synchronization overheads of concurrent user

threads, each Put request uses one of multiple (e.g., 256) separate

counters by hashing its key. Therefore, the order of the log records

for the same key can still be distinguished by the LSNs. Second,

FluidKV builds a log record with the key-value pair and LSN and

persists it into the per-thread log (line 3). Finally, the volatile index

is updated using the log record address and the LSN as value (line

4).

Because log writing and index updating are not locked, multi-

threaded updates for the same key may cause the value in the index

to be inconsistent with the latest log. To solve this problem with-

out adding an ine�cient coarse-grained lock, we add a validation

mechanism in the write operation of Masstree. The writing process

of Masstree involves �rst searching the target node that needs to

be updated, then locking that node (line 7) and updating it (line 13),

and �nally unlocking it (line 14). When Masstree �nds the target

key in the �rst step, the proposed validation will read the value

of the target key to get its LSN and compare it with the LSN of

the record to be written. If the value is newer, the node will not be

updated and will be returned (lines 8~12). This validation works for

most concurrent indexes because of their similar update processes

and induces no overhead when the target key does not exist in

the index. Accordingly, FastStore ensures the consistency between

volatile index and persistent logs while guaranteeing linearizability

under high concurrency.

Algorithm 2 Get operation (KV-separation is enabled).

1: function Get(key)
2: ² Get from active and immutable FastStores ³

3: for all<4<_8=34G from �0BC(C>A4B do
4: E0;D4 ←<4<_8=34G .�4C (:4~)
5: if E0;D4 ≠ #*!! then
6: if E0;D4.8=E0;83 ( ) then
7: return NOT_FOUND
8: return '403!>6�>A+0;D4 (:4~, E0;D4.;>6_?CA ) ;
9: ² Get from trees in Bu�erStore ³

10: for all<4<_8=34G ∈ CA44B from �D5 5 4A(C>A4 do
11: !() _83 ←<4<_8=34G.B20= (:4~, 1) ² ’1’ is the scan size
12:  + ← (40A2ℎ +�A><!() (:4~, !() _83 )
13: if  + ≠ #*!! then
14: return '403!>6�>A+0;D4 (:4~, + .E0;D4 )
15: ² Get from StableStore ³

16: !() _83 ← (C01;4(C>A4.<4<_8=34G.B20= (:4~, 1)
17: if  + ≠ #*!! then
18: return '403!>6�>A+0;D4 (:4~, + .E0;D4 )
19: return NOT_FOUND

5.3 Read

Get operation. In a get operation (as shown in Algorithm 2), the

user threadmay access the active FastStore, the immutable FastStore

that is being �ushed, bu�er-trees in Bu�erStore (from newest to

oldest), and StableStore in order. In FastStore, the existence of the

target key can be determined only by the index. In bu�er-trees or

StableStore, FluidKV �rst scans the in-memory index for an LST

and then checks if the target key is in the LST. Only when the

target key is found at a certain stage can the search be �nished.

At this point, if the found key is valid, FluidKV reads the address

of its corresponding value to return the value data; if it is invalid,

FluidKV noti�es that the key does not exist.

Scan operation. The Scan operation of FluidKV is implemented

in a similar way to compaction, i.e., iterating the minimum element

on all stages in the target key-range with a priority queue. In the

current implementation, we use LSN and seq_no(introduced in

§5.5) as a timestamp to build a consistent snapshot for a scan. The

obsolete index deleting steps of �ush and compaction are postponed

to keep the snapshots that are being scanned.

5.4 Flush and Compaction

The work�ows of Flush and Compaction are shown in Algorithm 3

and performed with a dedicated background thread respectively.

Both of them only read the read-only structures (e.g., immutable

index and LSTs) from the previous stage and update the next stage,

thus ensuring consistency and correctness.

Flush. To avoid contention between �ush and front-end writes,

FluidKV allows two FastStores simultaneously during a �ush oper-

ation (immutable Flatstore for �ush and active Flatstore for writes).

FluidKV �rst creates a new active FastStore structure including

volatile index and thread-exclusive logs for the subsequent writes

(line 2~4). The background Flush thread switches FastStore by mod-

ifying a global atomic semaphore which indicates the active Fast-

Store. The user threads check the semaphore before each write to

get the index and PM logs to write. After waiting for a timeout (e.g.,

100ms), the Flush thread scans the index of the immutable FastStore

for all of its KV data to generate LSTs and builds a new correspond-

ing bu�er-tree. Finally, when the bu�er-tree is ready and can be

read by user threads, FluidKV deletes the index of the old FastStore



Algorithm 3 Flush and compaction operations

1: function Flush

2: =4F_8=34G ← new range index (e.g., Masstree)
3: >;3_8=34G ← �0BC(C>A4.<4<_8=34G
4: �0BC(C>A4.<4<_8=34G ← =4F_8=34G
5: ,08C ( ) ² Wait for user threads to �nish operations on the old index
6: ² Covert FastStore index into LSTs ³

7: )A44 ← new range index (e.g., Masstree)
8: for all :, E ∈ >;3_8=34G do ² Build volatile index
9: !()�D8;34A .�33�=CA~ (:, E)
10: if new LST is generated then
11: !()"4C0 ← !()�D8;34A .�4C!() ( )
12: persist !()"4C0 in"0=8 5 4BC
13: )A44.%DC (!() .<8=_:4~, !() _"4C0)
14: Add)A44 into Bu�erStore
15: Delete >;3_8=34G
16: return
17: function Compaction

18: ² Pick compaction ³

19: for all CA44Ĥ ∈ �D5 5 4A(C>A4 do
20: for all !()"4C0 ∈ CA44Ĥ do
21: 8=?DCB [=] .033 (!()"4C0)
22: 8=?DCB [CA44_=D< + 1] ← all !()"4C0 of overlapped LSTs in StableStore
23: ² Run compaction ³

24: Merge-sort the KVs from 8=?DCB to generate new LSTs in parallel.
25: >DC?DCB ← all !()"4C0 of new LSTs
26: ² Clean compaction ³

27: for all !()"4C0 ∈ >DC?DC do
28: Persist !()"4C0 in"0=85 4BC
29: (C01;4(C>A4.<4<_8=34G .?DC (!()"4C0.5 8ABC:4~, !()"4C0)
30: for all !()"4C0 ∈ 8=?DCB.102: ( ) do
31: Delete !()"4C0 from (C01;4(C>A4.<4<_8=34G
32: Free the PM space of index block and data blocks with !()"4C0
33: Delete obsolete index trees and LSTs from Bu�erStore
34: return

to free its occupied memory space. With the key-value separation

enabled, the PM-logs will remain to store variable-length values.

Compaction. A Compaction operation consists of three con-

secutive steps, i.e., pick compaction, run compaction, and clean

compaction.

In the pick compaction step (line 19~22), FluidKV �rst scans all

bu�er-trees to read the metadata of their associated LSTs and then

scans the StableStore index to determine LSTs that have overlapped

key ranges with Bu�erStore’s LSTs.

Then in the run compaction step (line 24~25), FluidKV merge-

sorts all input LSTs into new LSTs and builds the corresponding

metadata. Speci�cally, in our implementation, we use a priority

queue as a min-heap to perform this merge-sort. It is worth men-

tioning that when FluidKV �nds LSTs not overlapped with other

input LSTs in the merge-sorting step, the LSTs need not be changed

and are inserted into StableStore to reduce write ampli�cation [49].

Since the e�ciency of compaction will be lower than �ush when

StableStore becomes larger, we employ a parallel compaction mech-

anism to fully leverage PM bandwidth and CPU cores to accelerate

compactions. FluidKV partitions the input LSTs based on the key

range and assigns a thread to each partition to perform merge-sorts

in parallel. In our prototype, the default number of partitions is 8.

Finally, the clean compaction step (line 27~33) �rst inserts output

LSTs into the StableStore index after persisting them in Manifest,

then deletes the obsolete LST data and metadata from StabeStore,

and �nally deletes Bu�erStore and frees its DRAM/PM space. Be-

cause we use a concurrent B+-tree (e.g., Masstree) as the StableStore

index, the index update process also does not require locking.

5.5 Crash Recovery and Consistency

As mentioned in §4.2 and 5.2, the volatile index of FastStore can be

recovered with thread-exclusive logs. Because each log record has

a globally unique LSN, FluidKV �rst merges all the logs in the LSN

order and then replays them during the recovery. For the crash re-

covery of volatile indexes in the last two stages, FluidKV stores the

metadata of LSTs in a separate PM space called Manifest (LST meta-

data of Bu�erStore and StableStore are stored separately). Therefore,

the corresponding volatile tree indexes are reconstructed according

to the metadata in Manifest. As shown in Figure 9, the metadata of

an LST contains the following main �elds: indexblock_ptr points

to the index block; min_key and max_key indicate the key range;

seq_no is a self-incrementing version number which is used to im-

plement a basic Multi-Version Concurrency Control (MVCC) for

crash consistency. Speci�cally, in Bu�erStore, LSTs of the same

bu�er-tree share the same seq_no. FluidKV persists the valid seq_no

ranges in the manifest (updated after each �ush and compaction).

During crash recovery, the outdated or overrun LSTs can be cleaned

up based on the seq_no.

During a �ush, all associated per-thread logs need to be deleted

atomically for otherwise it will cause inconsistencies during crashes

(only appear when KV separation is disabled). To solve this problem,

FluidKV records the addresses of associated log chunks on PM

before log recycling and clears them at the end of �ush. During

recovery, the PM chunks need to be recycled again based on the

persisted addresses.

Although �ush or compaction needs to change a lot of meta-

data of LSTs, any temporary intermediate state can only inroduce

redundant data in two stages without the risk of missing data,

because the operations always write new data before deleting obso-

lete data. Thus, read operations can be e�ciently concurrent with

background operations while ensuring consistency.

6 EVALUATION

6.1 Experiment Setup

Test platform. All experiments are conducted on a Linux 5.1.0

machine with an Intel Xeon Gold 5218 CPU (32 cores, 2.3GHz) and

64GB DDR4 memory. The experiments are performed on 6×128GB

Intel Optane DC PM 100s con�gured in AppDirect Mode. We use

our modi�ed version of PiBench [33] to test and statistically mea-

sure the performance of various KVSs. PiBench is a benchmarking

framework that targets PM-based indexes and has been widely used

in prior studies [17–19]. We extended it to support more KVSs.

Baselines.We compared FluidKV against state-of-the-art PM-

aware KVSs including Fast&Fair B+-tree (FFTree) [20], PacTree [31],

NBTree [63], LB+-Tree [35], DPTree [65] and ListDB [30]. Since the

baselines. with the exception of ListDB, are only indexes rather than

full-feature KVSs (only support 8+8 byte items), we integrate the

indexes with Flatstore[9] to support full KVS functionalities such

as variable-length values and recovery by storing variable-sized

values in PM-logs. Flatstore enhances the overall performance with

parallel PM-logs and I/O batching mechanisms so that it does not

become a bottleneck in the KVSs. For reference, we also evaluate

Flatstore withMasstree [38], serving as a performance upper bound

of PM-aware KVS by using a DRAM-only index instead of a per-

sistent index. FFTree, NBTree, and LB+-tree are persistent B+-Tree
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Figure 11: KVS performance with varying dataset sizes.

variants. PacTree is based on a persistent radix tree and B+-tree-like

linked leaf nodes. DPTree and ListDB are both based on multi-stage

indexes. DPTree uses volatile B+-trees as the index of the �rst two

stages and a volatile trie with persistent leaf nodes as the last stage

index. ListDB is composed of persistent skiplists in each stage.

Workloads and FluidKV con�gurations. To focus on the

indexingmechanism rather than logging, all workloads use 8+8 byte

KV size unless mentioned otherwise. To be fair with the baselines

that use Flatstore, FluidKV enables key-value separation so that all

requests also need to read/write the PM log. By default, the capacity

of FastStore is of 40M records and the threshold for the number of

bu�er-trees to trigger compaction is 4, but it can be adjusted to 1

dynamically under read-heavy workloads.

6.2 Micro-Benchmarks

6.2.1 Data Volume Scalability. To verify that FluidKV achieves our

three performance goals as mentioned in § 3, we perform 10M read

and write operations with 24 parallel user threads after loading

di�erent sizes of datasets. We measure the request throughputs and

DRAM/PM consumptions to evaluate the performance of di�erent

KVSs in terms of write, read, and memory e�ciency.

Write. As shown in Figure 11a, FluidKV exhibits a consistently

high write performance under various data volumes, just slightly

lower than the ideal DRAM-only Masstree at small/middle-scale

datasets. For large-scale datasets, FluidKV outperforms all KVSs,

30% higher than the second highest, LBTree. This is because Fast-

Store can quickly persist KVs and the asynchronous compaction

and �ush operations do not a�ect front-end writes. Whereas, the

single-stage indexing KVSs su�er from signi�cant performance

degradation as the size of the index increases. The performance of

Masstree and NBTree drops sharply when the data volume exceeds

800M and 3200M respectively, because they use up all the DRAM

and start using swap space.

Read. Figure 11b shows that FluidKV’s read performance is still

competitive with other single-stage indexing KVSs. ListDB and

PacTree have particularly signi�cant performance degradation at

large data volumes. In multi-stage indexing KVSs, ListDB performs

worst due to read ampli�cation and low parallelism of skiplists,

1 4 8 16 24 32
Thread Count

0

5

10

15

20

25

Th
ro
ug
hp
ut
(M

O
PS

)

FluidKV FFTree ListDB PacTree

1
(a) Random write

1 4 8 16 24 32
Thread Count

0

5

10

15

20

Th
ro
ug
hp
ut
(M

O
PS

)

NBTree LBTree DPTree Masstree

1
(b) Random read

Figure 12: Write/read throughput scalability (200M dataset).

while DPTree performs slightly better than FluidKV by up to 20%.

This is because DPTree tends to bu�er KVs in the �rst few stages,

making full use of the DRAM-only indexes, rather than merging

data into the persistent last stage proactively as FluidKV. Therefore,

its read performance is close to that of Masstree under small-scale

datasets but its write performance is only 25% of FluidKV due to

the write stalls during migrations.

DRAM consumptions. Figure 11c illustrates that Masstree,

ListDB, NBTree, and DPTree have much larger memory footprints

than other baselines and �nally run out of DRAM when data vol-

ume increases. The reasons for their huge DRAM consumption

are di�erent. Masstree and DPTree use large DRAM to store the

KV-grained index. NBTree stores inner nodes and metadata of leaf

nodes on DRAM. ListDB uses a lazy memory recycling technique

that cannot release memory immediately after a �ush. The DRAM

consumptions of the remaining KVSs are acceptable, among which

FluidKV is the second lowest, less than 10% of the data volume.

LBTree and FFTree as hybrid indexes have a DRAM footprint of

about 15% of the data volume, while PacTree as a PM-only index

utilizes almost no memory.

PM consumptions. As shown in Figure 11d, FluidKV and most

baselines have similar PM consumptions, about 2-3× of the data

amount. This is because both the PM-logs and the persistent index

contain all the KV records (key-value in log and key-pointer in

index) and several additional �elds such as record lengths. Masstree

without persistent index cuts PM consumptions in half compared

to other KVSs. NBTree consumes 30% more PM space with large

data volumes possibly due to its ine�cient PM-space recycling.

6.2.2 Parallel Scalability. To compare the performance scalability

of FluidKV with the baselines with su�cient DRAM, we perform

200M random writes and reads on the KVSs respectively with a

varying number of user threads.

As shown in Figure 12a, FluidKV achieves the best write scalabil-

ity among the KVSs using persistent indexes. With 32 threads, the

write throughput of FluidKV is 1.2×~9× that of the baselines. This

manifests that FluidKV’s FastStore absorbs write-intensive work-

loads with highly parallelized index and thread-exclusive logging.

Figure 12b shows that the read throughput of FluidKV is similar

to most single-stage KVSs and up to 3.9× higher than multi-stage

ListDB. Although the multi-stage design causes more overhead

querying multiple stages, FluidKV can dynamically reduce the num-

ber of stages in FastStore and Bu�erStore by performing aggressive

�ush and compaction under read-intensive workloads. Overall, Flu-

idKV’s read performance, while 10% lower thanNBTree andDPTree,
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Figure 13: Performance under YCSB workloads. The proportion and distribution of the workloads are shown in parentheses.

The skewness factor of the Zip�an distribution is 0.99.
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Figure 14: Performance under Twitter cluster workloads.

is 1.9× and 3.8× higher than their write performance, respectively,

demonstrating a good trade-o� between read and write.

6.3 Macro-Benchmarks

We evaluate the performance of each KVS under synthetic work-

loads generated by YCSB as shown in Figure 13. In each group of

experiments, we load 200M KVs and perform 10M operations.

Underwrite-intensive workloads (Load and A), as illustrated

in Figure 13a and 13b, FluidKV outperforms all baselines in through-

put signi�cantly, 1.3x~9.5x under Load and 1.1x~6.6x under A with

32 threads. This shows that highly concurrent indexing and paral-

lelized logging in FluidKV’s FastStore are highly capable of handling

write requests.

Under read-intensive workloads (B and C), as shown in Fig-

ure 13c and 13d, FluidKV, as a multi-stage indexing KVS, demon-

strates comparable performance (0.8~2.2×) to the single-stage base-

lines and superior performance (up to 8×) over the multi-stage

ListDB, because of the read-optimized design of StableStore and the

dynamic load balancing mechanism to reduce the indexes across

its stages under read workloads.

Under hot-data search workload D, as shown in Figure 13e,

multi-stage FluidKV, DPTree, and ListDB can keep the latest-written

hot data in the top-most stage with KV-grained index, thus obtain-

ing performance as good as the single-stage designs. Among the

multi-stage KVSs, the performance of FluidKV, using the faster

Masstree index in FastStore, is signi�cantly higher than that of

ListDB with limited parallelism. By caching more latest data in

DRAM at the expense of write performance, DPTree achieves

12% higher read performance than FluidKV and even outperforms

Masstree which indexes all data with a DRAM-only index.

Under scanworkload E., Figure 13f shows the scan performance

of FluidKV and the baselines except for ListDB and NBTree without

support for scan operation. Note that Masstree does not represent

the ideal performance under workload E since its scan implemen-

tation is suboptimal. Because of the multi-stage designs, FluidKV

needs to search on all stages to perform a scan operation, so its
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Figure 15: Compaction e�ciency with di�erent FastStore and

Bu�erStore con�gurations.

performance is lower than that of single-stage FFTree. However,

FluidKV’s scan performance is still acceptable and scalable.

We also measure the throughput on two realisticTwitter cluster

workloads[58] with di�erent read-write ratios. As Figure 14 shows,

with 32 threads, FluidKV outperforms the baselines by 1.1×~7× and

1.05×~12× for the read-heavy and write-heavy workloads, respec-

tively. These results are largely consistent with the YCSB results.

6.4 Recovery

We evaluate the recovery time of FluidKV after loading 20M and

200M KVs with a single thread respectively. It takes 1.5 and 1.8

seconds, respectively, to scan the persistent logs and Manifest data,

and rebuild the volatile indexes in the three stages. More than 80%

of the recovery time comes from FastStore due to the KV-grained

volatile index. Because FastStore has a typically low capacity limit,

the recovery time of FluidKV is less a�ected by the amount of data.

For reference, ListDB takes 1.8 seconds to recover 200M KVs, while

PacTree’s recovery time is less than 0.5 seconds because it is a

PM-only index.

6.5 Sensitivity Study

6.5.1 FluidKV trade-o�s. FluidKV ensures read/write/DRAM ef-

�ciency simultaneously with multi-stage indexing and fast data

migration. While trade-o�s among these three dimensions remain,

they have shifted from user requests to background �ush and com-

paction operations. When the background merging (write) is slower

than the user writes, theDRAM footprint continuously increases be-

cause of the increase in FastStore size and the number of bu�er-trees

in Bu�erStore, thus leading to high read ampli�cation. Therefore,

the size of FastStore and Bu�erStore is the key to trading o� read

and memory e�ciency for write performance.

Figure 15 shows how FluidKV adjusts this trade-o�. Note that

since the throughput of �ush is higher than user writes (stable

at 20 MOPS), we only show the impact of compaction. First, the

e�ciency of compaction decreases with the increase in data volume

because the write ampli�cation heightens as StableStore enlarges.
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Figure 16: FluidKV write capability with limited FastStore

capacities (1M, 2M, 5M, and 10M KVs, respectively).

When the compaction throughput falls below the throughput of

user writes (e.g., when data volume reaches 700M), it is hard to

maintain the long-term stability of an ideal write performance

under intensive workloads. Second, with the same FastStore size,

doubling the Bu�erStore size can approximately double the com-

paction throughput, keeping the ideal write performance under

write-intensive workloads for a longer time, but leading to higher

read ampli�cation due to more bu�er-trees in Bu�erStore. Fortu-

nately, the read ampli�cation can be compensated by increasing

the capacity limit of FastStore at the expense of a corresponding

memory consumption. Similar results in all three �gures show that

the FastStore size barely a�ects the compaction e�ciency. There-

fore, we recommend con�guring a larger FastStore to trade o�

between read and write performances when DRAM is su�cient,

or dynamically increase the capacity of FastStore and Bu�erStore

with the increasing data volume.

In addition, we evaluate the e�ciency of compacting data di-

rectly from FastStore to StableStore without Bu�erStore. The results

show that the con�guration without Bu�erStore is the worst in all

con�gurations due to its hight write ampli�cation.

DRAM/write trade-o�: FastStore size. We evaluate the write

throughput of FluidKV under write workloads with a limited capac-

ity of FastStore. The number of bu�er-trees is �xed at 4 to ensure

an almost constant read performance. As shown in Figure 16, Flu-

idKV maintains stable high write throughputs for 16, 18, and 32

seconds (under 8 threads), 7, 14, and 24 seconds (under 16 threads)

at FastStore capacities of 1M, 2M, and 5MKVs, respectively. The per-

formance is more stable when FastStore size is larger. In the �gure,

the slight performance �uctuations come from the �ush operations

while the larger dips are due to Bu�erStore being full. Because the

capacity of Bu�erStore also depends on the capacity of FastStore

(i.e., the size of bu�er-tree), a larger FastStore provides better bu�er-

ing for stable performance. Note that under high-intensity writes,

even though the throughput �uctuates sometimes, it still returns

to a normal performance level after the �ush and compaction oper-

ations are completed. These results indicate that under workloads

with �xed intensity or limited burst time, suitable FastStore size

can achieve a sensible balance between stable write performance

and reasonable memory footprint.

Write/read trade-o�: dynamic stage-merging. Figure 17

demonstrates FluidKV’s ability to be aware of and thus able to

dynamically adjust according to the workload (8 user threads are

used). As shown in Figure 17a, we executed 200M write requests

and immediately converted the workload to read-only. When Flu-

idKV detects the workload change, it accelerates stage merging

by aggressively triggering �ush and compaction to improve read
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Figure 17: FluidKV performance through workload changes.

Table 2: Random read latency (us) of StableStore.

Data block
Index block

256B 512B 1024B

256B 1.254 1.246 1.352
512B 1.217 1.227 1.294
1024B 1.327 1.346 1.302

16 32 64 128 256 512
KV size (bytes)

0.0
0.5
1.0
1.5
2.0

La
te
nc
y
(u
s)

FluidKV FlatStore-NBTree

1
(a) Write latency (lower is better)

16 32 64 128 256 512
KV size (bytes)

0.0
0.5
1.0
1.5
2.0

La
te
nc
y
(u
s)

FluidKV FlatStore-NBTree

1
(b) Read latency (lower is better)

16 32 64 128 256 512
KV size (bytes)

0
5

10
15

Th
ro
ug
hp
ut

(M
O
PS

)
FluidKV FlatStore-NBTree

1
(c) Write throughput (higher is better)

16 32 64 128 256 512
KV size (bytes)

0
5

10
15

Th
ro
ug
hp
ut

(M
O
PS

)

FluidKV FlatStore-NBTree

1
(d) Read throughput (higher is better)

Figure 18: Write/read performance with di�erent KV sizes.

performance. Under a mixed workload (80% write, 20% read) in

Figure 17b, the initial bu�er-tree threshold to trigger compaction is

4 to accommodate the major write requests. When the proportion

of read requests becomes higher (20% write, 80% read), FluidKV

adjusts the threshold to 1, reducing read ampli�cation to better

serve the read requests. These dynamic threshold adjustments �ex-

ibly trade o� between read and write performances according to

workload characteristics.

Read/DRAM trade-o�: LST block size. To validate the e�-

ciency of the 512-byte PM block size, we load 100M 8+8 byte KVs

into StableStores with di�erent sizes of index and data block re-

spectively, and evaluate the random read latency of StableStore

as shown in Table 2. For reference, the read latency of Masstree

is 1.1us. The results show that the LST with 512-byte index block

and 512-byte data block, which are the default con�gurations of

FluidKV, achieves a good trade-o�, trading an 11% read latency

penalty for a 1024× (mentioned in §4.3) DRAM footprint reduction.

6.5.2 Di�erent KV size. Although variable-sized KV is not our

focus, we also evaluate the single-thread latencies and 16-thread

throughputs of FluidKV and NBTree under workloads with di�erent

KV sizes (8-byte key with variable-sized value). The dataset size for

all workloads is 3 GB. Note that variable-sized KVs are supported

by the Flatstore implementation and irrelevant to the indexes, and

the indexes on Flatstore behave similarly to NBTree. We do not

evaluate ListDB that does not support variable-sized KVs.



As shown in Figure 18, due to the high bandwidth of PM, the

latencies of both KVSs are slightly impacted by the KV length.

FluidKV exhibits similar read latency to and 50%~60% less write

latency than Flatstore. The write throughputs of FluidKV and Flat-

store decrease with increasing KV size because of the larger PM

I/Os. FluidKV’s write throughput with 16-byte KVs is less than

that with 32-byte KVs. This is because 16-byte KV causes 32-byte

logging I/O, which is PM-unfriendly due to the misalignment with

cacheline. Flatstore as a single-stage indexing KVS has a stable

read throughput. In contrast, since there are fewer KVs under the

same size dataset when KV size increases, more reads hit FluidKV

FastStore thus improving the read throughput. In summary. the

results indicate that FluidKV’s optimizations remain e�ective for

large-sized KVs.

7 DISCUSSION AND FUTUREWORK

Transaction support is also an important feature required for

KVSs [47]. Although FluidKV implements a basic MVCC to ensure

concurrency and crash consistency of read/write/�ush/compaction

operations, it needs more modi�cations to support transactions. For

example, we need to use a globally consistent timestamp as the LSN

of the log record and give the same LSN to log records from the same

transaction. Also, the uncommitted records should not be �ushed to

Bu�erStore to avoid losing the LSN. Note that transaction support

does not a�ect the fairness of evaluation because the baselines also

do not support transactions.

CXL-based SSD. Compared to Intel Optane PM which was dis-

continued in 2022, the latest CXL-based memory-semantic SSDs

[25, 60] have higher bandwidth and capacity at a lower cost. As

the storage capacity increases, DRAM-only indexes incur a larger

DRAM footprint for larger datasets. In contrast, the hybrid-index

architecture of FluidKV e�ectively constrains the DRAM footprint

without signi�cant performance degradation. Because the CXL pro-

tocol is based on PCIe with a longer I/O path than Optane, our

optimizations aimed at reducing PM accesses will become poten-

tially more important for and bene�cial to the CXL-based SSDs.

Even so, FluidKV still needs to be adjusted and optimized for the

new devices. For example, considering the characteristics of �ash

media, the sizes of the index and data block need to be increased

(e.g., 4 KB). Also, storing large KV pairs in the data blocks instead of

using KV separation also helps reduce random small reads, which

are ine�cient on the �ash devices.

8 RELATEDWORK

Single-stage indexing KVS for PM. As mentioned in §2.2.1,

single-stage indexing KVS with DRAM-only indexes such as Flat-

store [9] and KVell [32], aim for extreme performance at the ex-

pense of a huge memory footprint. Viper [3] and Halo [18] both

use volatile hash indexes to achieve higher performance, but sacri-

�ce range query functionality. Prism [46] builds KVS on PM with

PacTree and employs caches onDRAM to accelerate read operations.

While the performance and memory footprint can be statically bal-

anced by using PM-only [20, 31, 39] or hybrid indexes [35, 65],

FluidKV can achieve a dynamic balance to cope with increasing

data volumes.

Multi-stage indexing KVS for PM. SLM-DB [26], NoveLSM

[28], and MatrixKV [61] build additional indexes or bu�ers on

PM to accelerate SSD-based LSM-tree. ChameleonDB [64] builds

LSM-tree in PM with PM-friendly I/Os. Di�erent from FluidKV,

ChameleonDB uses hash-based sharding which deprives it of the

range query capability and builds in-memory auxiliary indexes

for data on PM to reduce I/O ampli�cation, which causes a high

memory footprint. ListDB [30] uses persistent skiplists to build

LSM-tree on PM and employs NUMA-aware optimizations to im-

prove scalability across multiple NUMA nodes, but is limited by

its complex indexing on PM. MioDB [13] also employs persistent

skiplists for good tail latency and does not achieve a good write

throughput scalability, limited by the LSM-tree structure. FluidKV

proposes a StableStore structure that is more suitable for PM and

a highly concurrent FastStore with optimizations for parallelism

to achieve higher scalability and �exibility, achieving signi�cant

performance improvement beyond traditional LSM-tree.

Dynamic index transition. Monkey [10] and Dostoevsky [11]

explore the dynamic tuning for read-write trade-o�s of traditional

LSM-tree, e.g., switching between tiering and leveling structures.

Idreos et al. [21] analyze the performance characteristics of B+-tree

and LSM-tree, and show the potential of transitions between the

indexes with a theoretical model. FluidKV is the �rst to design and

implement a practical system to combine the bene�ts of single-stage

and multi-stage indexes through fast stage-merging by utilizing

ultra-fast storage.

Key-value separation. WiscKey [37] �rst proposes key-value

separation to solve the high write-ampli�cation problem caused by

large values in the LSM-tree. HashKV [7] and NovKV [45] further

solve the garbage collection problem of key-value separation by

methods such as hot-cold separation. Pacman [48] optimizes the

e�ciency of garbage collection on PM through techniques such

as reverse indexing. FluidKV also uses the key-value separation to

store long KVs. Because garbage collection optimization is not our

focus, FluidKV leverages these existing techniques to implement

and optimize garbage collection.

9 CONCLUSION

FluidKV proposes a new multi-stage KVS architecture for ultra-

fast storage, which achieves high performance and low memory

footprint by exploiting the high processing capabilities and par-

allelism of modern computer hardware e�ciently. It dynamically

and seamlessly migrates data across three stages, including a par-

allelized FastStore for fast persistence, a transitional Bu�erStore

to control memory footprint in time, and a StableStore providing

memory-e�cient indexing. Our evaluation shows that FluidKV

achieves higher performance while maintaining a lower memory

footprint than the state-of-the-art PM-aware KVSs. We believe that

FluidKV’s design principles and key techniques can be applied to

other ultra-fast storage devices such as CXL-based SSDs.
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