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1 Introduction

The increasing cost and complexity of semiconductor fabrication has driven integrated circuit
(IC) designers to rely on unaffiliated and untrusted third parties for manufacturing. Such reliance
raises security concerns due to the capability of untrusted foundries to reverse-engineer, pirate,
and overproduce intellectual property using the design files provided for fabrication [21]. Such an
approach exposes IC design houses to substantial financial and security risks.

Logic obfuscation (also known as logic locking) has been developed to mitigate these secu-
rity threats during fabrication. Techniques within this family integrate auxiliary logic into a
combinational circuit driven by both internal logic signals and a number of additional primary
inputs, which are referred to as key inputs. For a small subset of all possible key input values,
the auxiliary logic does not change the design functionality. However, for most key input values,
error is introduced to the circuit with the intention of making pirated chips unreliable. The IC
design house knows at least one value in the set that maintains functional correctness. After
manufacturing, the IC design house assigns a permanent value to the key inputs from the
functionally correct set. This value is stored in tamper-proof memory and is referred to as the
secret key or just the key. By withholding the secret key from an untrusted fabrication partner,
the correct functionality of a design is hidden. Such an approach mitigates security threats
during fabrication. See References [7, 10, 41] for a comprehensive survey of logic obfuscation
research.

In response to logic obfuscation, a number of techniques were developed to “unlock” the
obfuscated design by either reverse-engineering the circuit by removing the auxiliary logic
[2, 34, 38] or identifying a functionally correct key [18]. A family of Boolean satisfiability (SAT)
attacks, which take the latter approach, are particularly prevalent in the literature [3, 11, 30].
These attacks use SAT solvers to efficiently identify functionally correct key input values. At
the time of its introduction, the SAT attack could unlock any existing form of logic obfuscation,
such as References [5, 19, 22]. SAT-style attacks are so potent against logic obfuscation that
SAT-resilience has become a critical metric for any new logic obfuscation technique [43].

1.1 Contributions

In this work, we explore Full-Lock and InterLock [13, 14], which are logic obfuscation techniques
that resist SAT-style attacks by inserting instances of known SAT-hard structures into the circuit.
This increases the runtime of the underlying SAT problem solved in SAT-style attacks, making
them infeasible. However, we observe that the only information obfuscated by these techniques is
the correct routing of signals from the SAT-hard instance inputs to its outputs, with the rest of the
netlist topology remaining unchanged. Therefore, if the attacker learns the relationship between
the inputs and outputs of the SAT-hard instance, then the obfuscation process can be reversed and
an obfuscation-free circuit produced.

In our previous work [16], we have shown that for Full-Lock and InterLock, it is possible to
recover the obfuscation-free circuit from a polynomial number of queries of the input-output pairs
of the SAT-hard instance. We developed an input stepping attack that exploited the topological
rigidity of these types of obfuscation to infer the inputs and outputs of the SAT-hard instance
from the obfuscated netlist and black-box oracle, which are available to a SAT-capable attacker.
We showed empirically that our methodology allows an attacker to reverse-engineer netlists
obfuscated with Full-Lock, which was not possible with prior techniques.

In this work, we review this attack method and justify it with additional mathematical rigor. We
refine the attack to significantly reduce both the number of oracle queries and attack runtime. We
also prove our assertion that the input-stepping attack is also effective against InterLock.
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The contributions of this work can be summarized as follows:

— We review our sensitization attack, which queries the inputs and outputs of the SAT-hard
instance placed in a design during obfuscation with Full-Lock. This attack is empirically
shown to defeat Full-Lock obfuscation.

— We prove two theorems that, together, show that our sensitization attack defeats Full-Lock, a
SAT-proof obfuscation technique, with a linear number of queries of the SAT-hard instance.

— We introduce primary input reuse to the sensitization attack, which reduces runtime by
51.9% and oracle queries by nearly 50%.

— We provably reduce the more recent InterLock to Full-Lock in the context of our sensitization
attack. We identify the necessary conditions and how an attacker can achieve them. We
describe a method to unlock InterLock with a polynomial number of SAT-hard instance
queries.

— We describe the process by which an attacker can remove the SAT-hard instance from the
netlist and layout after executing our attack. We also guarantee the timing correctness of
the obfuscation-free design. This ensures that the attacker can produce functionally correct
counterfeits of the design.

— We discuss how designers can prevent the sensitization attack by embedding functions of
multiple obfuscated signals inside the SAT-hard instance.

2 Preliminaries
2.1 Attacker Model

In this work, we assume a SAT-capable adversary common in recent logic obfuscation research,
such as References [13, 14, 24-26, 33, 40, 43]. This adversary has access to (1) a locked netlist for
the obfuscated circuit, which can be obtained via reverse-engineering the GDSII files provided for
fabrication, and (2) a black-box oracle of the obfuscated circuit, which can be obtained from IC test
facilities or the open market. While the secret key cannot be read from this oracle circuit, it does
allow the adversary to query specific inputs and identify the correct corresponding output for the
obfuscated circuit.

We also make the assumption (3) that the attacker can locate the SAT-hard instance inside the
obfuscated netlist. This assumption is reasonable, because all key inputs connect to the SAT-hard
instance and because the SAT-hard instance contains many copies of the same structure.

2.2 The SAT Attack

The SAT attack was introduced in Reference [30] and defeated all previously developed logic
obfuscation techniques. This iterative attack makes the assumption that the attacker has access
to a black-box oracle that can be queried for primary output values corresponding to the applied
primary inputs. In one iteration, the attacker formulates a Boolean SAT problem that is satisfied
by two key values that are consistent with all previous oracle queries but produce a different
primary output for at least one primary input value. The attacker then applies that input for
that iteration’s oracle query. This ensures that at least one of the keys that satisfies the current
iteration cannot be used to satisfy the SAT problem in the next iteration, because at most one
of these can produce the correct primary outputs when the chosen input is applied. The original
SAT attack quickly prompted the creation of many new SAT-resistant obfuscation techniques
[20, 32, 33, 37] that were then targeted by new SAT-style attacks [3, 4, 11, 27, 29].

One common approach to achieve SAT resilience is to scale the number of SAT attack iterations
required to unlock the circuit by limiting the number of corrupted input-output pairs caused by
each wrong key, as derived in References [42, 43]. This family of approaches includes prominent
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Fig. 1. Diagram of obfuscation with Full-Lock, showing (a) the key-driven switch-box (SwB) circuit, which
exchanges the routing of two signals, (b) one possible switching network configuration, which forms the
SAT-hard instance, and (c) a visualization of the instance with its fanin and fanout within the obfuscated
netlist, with relevant signals labeled.

techniques such as References [15, 24-26, 33, 35, 39, 40]. While such approaches certainly achieve
SAT resilience, they are limited in the amount of error they can inject, prompting concerns regard-
ing their efficacy in securing an obfuscated system as a whole [43, 44].

To address these limitations, a second approach to SAT-resilient obfuscation techniques was
developed leveraging SAT-hard instances to rapidly scale the runtime of successive SAT attack
iterations, rather than increasing the number of iterations required to unlock the design [23, 28].
This family includes techniques such as Full-Lock [13] and Interlock [14]. The advantage of such
an approach is that sizable error rates can be injected while maintaining resilience to SAT-style
attacks [13, 14]. In this work, we narrow our scope to obfuscation techniques using this second
approach.

2.3 Obfuscation with Full-Lock

One class of SAT-resilient techniques exploits characteristics of the Davis—Putnam-Logemann-—
Loveland (DPLL) algorithm used to solve the SAT attack’s underlying SAT problem. These
techniques place instances in the design of modules known to be SAT-hard, greatly increasing
the runtime of successive SAT iterations and resulting in infeasibly long SAT attack runtimes to
recover a functionally correct key.

In Full-Lock [13], which we primarily focus on in this work, this module is a switching network
whose functionality is made key-dependent through the use of programmable logic and routing
(PLR) blocks. Each node in the network is a switch-box (SwB) that may exchange the input to
output routing and invert each of its two input signals according to three key inputs. As a result, the
outputs of the SAT-hard instance are a permutation and possible inversion of its inputs. Figure 1
displays the construction of the switch-boxes present in Full-Lock as well as a sample network
topology and the placement of the SAT-hard instance in the netlist.

Full-Lock is designed to take advantage of longer runtimes for the DPLL algorithm for problems
with a ratio of clauses to variables in a certain range [13]. Multiplexers, which are very numerous
in the SAT-hard instance, introduce clauses and variables to the SAT problem at this target ratio,
increasing the runtime of the DPLL algorithm. The advantage of such an approach to obfuscation
is that it is not fundamentally limited in the amount of error it can inject [42, 43]. Rather than
hindering the SAT attack by reducing the number of inputs that produce corrupted outputs, obfus-
cation methods such as Full-Lock use the structure of the SAT-hard instance to lengthen SAT solve
time. This makes the design SAT-resistant while still injecting sufficient error to prevent piracy.

2.4 InterLock

The authors of Full-Lock have since introduced InterLock [14], which improves Full-Lock by
increasing the complexity of the switch-boxes used in the SAT-hard instance. Recall that after
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Fig. 2. Diagram of the SAT-hard instance used in InterLock, showing the switch-box (SwB) circuit modified

from Full-Lock to include two extra inputs going to function blocks. These replace the inverters originally
present in Full-Lock.

possibly switching their two inputs, Full-Lock switch-boxes have a second stage of multiplexers
that give them the option to pass or invert each signal. InterLock replaces the inverters with
2-input gates, such as AND, OR, XOR, and so on. Each gate has logic function f; and two
inputs: I;, the output of the first multiplexer in the switch-box; and “extra input” exI;, a new
input to the SAT-hard instance added by InterLock. The extra inputs pass from the original
circuit to each individual switch-box. The new gate moves part of the design functionality to the
SAT-hard instance, which prevents an attacker from simply removing the instance to restore the
netlist to its state prior to obfuscation. Figure 2 shows the new switch-box structure introduced
by InterLock.

InterLock represents a more secure obfuscation technique than Full-Lock, because the incorpora-
tion of 2-input gates inside the switch-boxes means that circuit logic is “twisted” into the SAT-hard
instance. An attacker must not only learn the permutation order of the SAT-hard instance, but also
determine where the 2-input logic gates and extra inputs should be applied to the signals passing
through the SAT-hard instance. This makes InterLock more resistant to structural removal attacks
than Full-Lock, which can at most invert its inputs. InterLock retains the SAT-resilient nature of
its predecessor, so both SAT attack iteration time and output corruption for an incorrect key are
high.

3 Attacking Full-Lock by Querying the SAT-hard Instance

In a design obfuscated with Full-Lock, there is in the worst case a single permutation of Full-Lock
inputs that is logically equivalent to the intended module functionality implemented by the black-
box oracle [13]. With N! total permutations, a brute force attack is unfeasible, so another approach
is required. In this section, we show how an attacker can learn the permutation implemented
by an N-input SAT-hard instance with N + 1 queries of the exposed inputs and outputs of the
instance. While our attacker model does not allow the SAT-hard instance to be queried directly,
in subsequent sections, we will develop a method to analyze the obfuscated netlist and infer the
relevant information from queries of the black-box oracle available to a SAT-capable attacker.

This will require two steps: (1) sensitization of the SAT-hard instance, covered in Sections 4 and 5,
and (2) inference of instance outputs, covered in Section 6. The first is achieved through analysis
of the SAT-hard instance’s fanin cone in the obfuscated netlist, while the second is done through
analysis of its fanout cone. We then formalize an attack on Full-Lock in Section 7 that queries
the oracle and makes inferences about the instance functionality, producing a partial solution. We
complete the solution by integrating our partial results with a conventional SAT-style attack in
Section 7.
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Table 1. List of Symbols and Their Meanings

Symbol | Meaning

I Primary input vector

(0] Primary output vector

X Input vector of the SAT-hard instance

y Output vector of the SAT-hard instance

X; Biti of x

yj Bit j of y, the permutation destination of x;
x1 x"2 | A pair of x values that differ only at x;

y*1,y/2 | A pair of y values that differ only at y;, which is
the permutation destination of x;

I"1, 12 | The primary input values corresponding to x*?, x*2

0’1, 0/% | The primary input values corresponding to y/!, y/2

3.1 Vector Definitions

Our attacks depend on observations of the primary inputs and outputs of the circuit as well as
inferences about the inputs and outputs of the SAT-hard instance. We define vectors of the latter
as the SAT-hard instance input vector x and output vector y. These have the same length, which
we label N, since the function of the SAT-hard instance is to permute its inputs. We will refer to
the primary input vector as I and the primary output vector as O. The primary inputs and outputs
are part of the design topology before obfuscation, so the lengths of I and O can take any value.
Figure 1(c) shows a high-level diagram of the SAT-hard instance and its fanin and fanout cones,
with all four of these vectors labeled.

3.2 Revealing Permutation by Stepping Full-Lock Inputs

We can devise a method to learn the functionality of the SAT-hard instance by dividing the problem
into sub-problems that can be solved individually. Since the functionality of the instance is to
permute its inputs, to solve the problem all at once, as with the SAT attack, the attacker would
need to find the correct permutation of the inputs from N! possibilities. However, the attacker
can break this down by choosing one input and attempting to find which output it is permuted to,
which has N possible solutions.

THEOREM 3.1. Identifying the permutation destinations of input bits of the SAT-hard instance in
Full-Lock reduces the solution space exponentially.

Proor. The solution space of the functionality of the SAT-hard instance in Full-Lock is the
number of possible permutations of N inputs, N!. Learning the placement of one item in the per-
mutation, i.e., the permutation destination of 1 input bit, means that the number of remaining
valid solutions is equal to the number of permutations of the other N — 1 input bits, or (N — 1)!.
Therefore, identifying the permutation destination of 1 input bit prunes the solution space by a
factor of N.

Similarly, identifying the permutation destination of a second bit prunes the solution space by a
factor of N — 1, a third by N — 2, and so on. Therefore, the solution space is reduced exponentially
as more permutation destinations are found. ]

The exponential pruning of the solution space under Theorem 3.1 is sufficient cause for an
attacker to search for permutation destinations of the SAT-hard instance. However, we can
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deepen our intuition about why permutation destinations are so beneficial to solving the problem
by considering the amount of work needed by the attacker to solve the problem using permu-
tation destinations, as compared to solving the Full-Lock functionality without dividing it into
sub-problems.

When searching for the permutation destination of the first input bit of the SAT-hard instance,
the attacker must evaluate in the worst case N possible solutions, eventually determining the
correct answer. After solving the first sub-problem, finding the permutation destination of the
next input has only N — 1 possible solutions, then N — 2, and so on, until each input’s destination
has been found. By dividing the problem this way, the number of possible solutions the attacker
must consider over the course of the attack is Y, ¥, N — i, which is quite low for an obfuscation
problem. However, if the entire SAT-hard instance functionality is solved as a single problem, then
the attacker must consider N! = ﬁl N — i solutions, which is too many for a brute-force attack
to be feasible. Therefore, the ability to identify the permutation destination makes solving the
problem polynomial instead of exponential.

To determine the permutation destination of a SAT-hard instance input, it is helpful to express
the outputs as logical functions. For any SAT-hard instance output y;, there is some input x;
such that y; = f(x;). Since inversion is possible inside the routing network, f(x;) may be x;
or —x;.

THEOREM 3.2. Lety; = f(x;) with f(x;) = x; or f(x;) = —x;. Then, for two values of x, x"* and

i2 i1 _ iz i1 Q2 . . i1 2
x"%, such that x; " = —x;" and xot=x", k # i. Then, the corresponding y values, y>* and y"*, will

satisfyyj’1 = yjfz andyi’l = y{c’z,k # J.

Proor. First, we note that each output is a function of only one input, and each input only
propagates to one output, its permutation destination. Therefore, if the attacker makes one
query of the SAT-hard instance to learn any input-output pairing, then changes one input bit
x; € {x0, %1, ..., xN-1} and makes another query, the only output bit to change will be the changed
input’s permutation destination y; € {yo,y1, ..., yn-1}. Then, the outputs y/* and y’? correspond-
ing to Xi’I. and x?2 also have a Hamming distance of 1, and they satisfy yfc’z = y]’:l for k # jand
y]’.’z = —|y]’.’1 for the permutation destination y; of x;. Therefore, y; can be determined by inspection
from y/! and y/-2. O

Using Theorem 3.2, we describe how an attacker can efficiently unlock Full-Lock by querying
the SAT-hard instance N + 1 times. In the first step of the attack, the attacker makes an initial
query of the SAT-hard instance to obtain the input-output pair x*!,y/!. The attacker will make
a second query after changing one input bit, which we label x"2, y/*2. We represent the position
of the changed input bit as i, so xf’z = —|xii’1. For the attacker, the initial choice of i is arbitrary;
any bit in x*! could be flipped, and after querying the oracle, the attacker will find that y/-? differs
from y’! by one bit, and that y; is the permutation destination of the toggled input x;. As discussed
previously, knowledge of y; reduces the problem size by a factor of N, and it has been accomplished
with only two SAT-hard instance queries.

After the attacker has learned the destination of one input, the remaining undetermined func-
tionality of the instance can be represented as a permutation of the remaining N — 1 inputs, since
a permutation is a one-to-one mapping from the inputs to the outputs and one of each has just
been removed from the problem. Therefore, the attacker chooses a new value of i and makes two
more SAT-hard instance queries to learn a second permutation destination, this time reducing the
problem size by a factor of N — 1. After testing each bit of x, the attacker has made 2N SAT-hard

instance queries and learned the circuit’s total functionality. With this information, the attacker
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Fig. 3. An example of learning the functionality of an exposed SAT-hard instance. In (a), the attacker gen-
erates a reference 1/O pair, and in (b), the attacker is able to compare a second /O pair and learn that the
instance passes input Iy to output O;. (c) shows the correct permutation after observing the example data
from Table 1.

Table 2. Sample 1/O Relationships Showing How the
Functionality of a Fully Exposed SAT-hard Instance
Can Be Learned in Linear Time

i x! v/ j Learned
Mapping

ref 0000 1101
0 0001 1111 1 X0 — Y1
1 0010 0101 3 ax] — U3
2 0100 1100 0 X2 — Yo
3 1000 1001 2 X3 = U

If the instance has N permutation inputs, then the
functionality is learned after checking the oracle N + 1 times.

can remove the SAT-hard instance from the netlist and route the input signals to the appropriate
outputs, producing an obfuscation-free netlist.
To reduce the number of queries, the attacker can repeat the same first input x*! for each step,

so x%1 = xb1 = ... = xN~b1 which we represent as x"¢/ with corresponding output y"¢/. Then,
the other input/output pairs x%2/y/2, x"2/y/1:2, . xN=12/y/N-12 can be represented as simply
xo/yo, x! /yl, . XN_I/yN_l. Since one bit’s mapping is now learned with each choice of x, the

attacker can learn the functionality of the SAT-hard instance with N + 1 oracle queries.

As an example, we examine the SAT-hard instance queries in Figure 3, which produce an initial
input-output pair x"¢/ = 0000, y"¢/ = 1101. The attacker then toggles bit 0 of x and finds the I/O
pair x° = 0001, y° = 1111. From these two data points, the attacker infers that x,, the lowest bit
of x, is permuted to y;, the second lowest bit of y. Then, the attacker can use x"¢/ and add a new
query for x! = 0010. Finding y! = 0101 reveals x; is permuted to —ys.

After iterating through each bit of x, the attacker has learned the permutation of all four input
bits and therefore knows the logical function of the SAT-hard instance. This allows the attacker
to recreate the netlist of the circuit before obfuscation, defeating the IP protection. Table 2 shows
all of the I/O pairs the attacker finds and the information learned from each one, while Figure 3
graphically shows the first step of the process as well as the mapping from x to y that the attacker
constructs.
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3.3 Extension to InterLock

InterLock can be attacked in a similar manner to Full-Lock, but the increased complexity of the SAT-
hard instance requires additional consideration [14]. Recall that a switch-box in InterLock contains
2-input logic gates with input-symmetric logic function f; that may be applied to the signals being
permuted by the SAT-hard instance. This introduces two difficulties we must overcome to extend
the method we have developed in Section 3.2 to InterLock. First, the outputs of the SAT-hard
instance added by InterLock are not always a permutation with possible inversion of its inputs.
Second, since each stage of the network could cause a signal to pass through a gate, the attacker
must learn which functions f; with extra inputs exI; are applied to the intermediate signals.
To overcome the first difficulty, we make use of a theorem:

THEOREM 3.3. There exists a vector of exI values such that the output vector y of the SAT-hard
instance inserted by InterLock is a permutation with possible inversion of its input vector x.

Proor. The proof of the theorem is done by showing that each extra input has a value that
causes the corresponding switch-box output O; to be sensitized to I;, so any change in I; will be
reflected by O;. Then, if all extra inputs are set to sensitize their corresponding I;, we show that this
results in the SAT-hard instance producing an output that is a permutation with possible inversion
of its input.

First, examine the InterLock switch-box diagram in Figure 2. In this diagram, the input-
symmetric, non-constant 2-input logic functions f; and f, represent standard logic gates, such
as AND, OR, and so on. Since these gates are included in the obfuscated netlist, they are known
to the attacker, as are the values of the extra inputs, since these signals come from outside the
obfuscated portion of the circuit. To ensure that O; is sensitized to I;, the attacker must use knowl-
edge of the function f;j to set the extra input exI; to a value such that, while exI; remains constant,
filli,exI;) = I; or fi(I;, exI;) = ;.

LEMMA 3.4. For an input-symmetric, non-constant 2-input Boolean function f(x,y), there exists a

Boolean value p such that f(p,y) =y or f(p,y) = .

Proor. There are six input-symmetric 2-input Boolean functions: AND, OR, XOR, NAND, NOR,
and XNOR. AND and NAND functions are inverted when the inputs both become 1, so forp = 1, an
AND gate has f(1,y) = y and NAND has f(1,y) =# y. Similarly, for p = 0, an OR gate has f(0,y) =
y and NOR has f(0,y) = —y. XOR and XNOR gates are always sensitized to both inputs; if exactly
one input changes, then the gate output will always change. We say that p is both 0 and 1. O

We refer to a vector p of exI values that satisfies Theorem 3.3 as a pass vector. Similarly, the
Boolean value p that satisfies Lemma 3.4 is the pass value of the logic function.

To ensure that O; is sensitized to I;, the attacker must use knowledge of the function f; to set the
extra input exI; to the correct pass value for the function f;. We will argue next that this collection
of individual pass values is also a pass vector of the SAT-hard instance.

The result of sensitization of O; to I; (and by extension, of y; to x;) is that the extra input
can be removed from the attacker’s model of the circuit, and f; and f; can be represented by
either a buffer or inverter. This makes the output of each switch-box a permutation with possible
inversion of its inputs, which is the same as the switch-boxes in Full-Lock. Since the switching
network structure is also the same as in Full-Lock, applying this condition to each switch-box in
the SAT-hard instance leads to the conclusion that the functionality of the SAT-hard instance is a
permutation with possible inversion, confirming the theorem. O

As described in the proof of the theorem, the attacker can learn each bit p; of p by simply
inspecting the obfuscated netlist to observe the corresponding gate function f;. As an example, if
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a switch-box has fi = AND(I;, exI;), then the attacker can set exI; = 1, and then for I; = 0,0; = 0,
while for I; = 1,0; = 1. Therefore, the pass value of ex]; is 1.

With a pass vector applied to its extra inputs, the SAT-hard instance of InterLock becomes func-
tionally equivalent to one in Full-Lock. The input stepping method described in Section 3.2 can be
used to learn the permutation implemented by the SAT-hard instance.

This is very helpful to the attacker, but unlike in Full-Lock, it does not represent the total
functionality of the SAT-hard instance. Since functions are applied to InterLock signals within
the SAT-hard instance, we must also match each signal to the 2-input function applied to it (or
bypassed) at each stage of the switching network. This can be done by manipulating the inputs
and observing changes in the output to determine which intermediate signal passes through each
gate and which gates are bypassed.

To most quickly learn which output signal has passed through each fj, the attacker uses
Lemma 3.4 to check whether either value of I; (which can be changed by changing the SAT-hard
instance input x;) causes an output y; to be sensitized to an extra input exI;. By the proof of the
lemma, if no y; is sensitized to exI; for either value of x;, then the signal has not passed through
a gate.

Assuming the input stepping attack has already been executed on a SAT-hard instance, the
attacker begins with the reference input and extra input pass value used for the input stepping
attack, then toggles each extra input one at a time. If an output bit y; changes in response to exI;,
then the attacker knows to apply f; to the corresponding input signal when reconstructing the
obfuscation-free netlist. After testing each extra input, the SAT-hard instance input vector x is
inverted and the process is repeated. Once all inputs have been applied to each gate, any gates
that did not produce an output response must be bypassed, since each bit of x would have been set
to its pass value in each 2-input function f; during one toggle of the corresponding exI;, yet we
did not observe responses in the output to the changing exI;. Therefore, by Lemma 3.4, f; could
not have been applied to any bit of x.

If output responses are observed, then the attacker knows to apply f; to the corresponding input
signal when reconstructing the obfuscation-free netlist. If no change is observed at the output, then
there are two explanations: (1) this exI; is unused and the corresponding f; is bypassed, or (2) f; is
not sensitized to exI; at the current value of I;. To distinguish between these, a second pass through
exI; is needed. The attacker first inverts the value of every instance input x; then again toggles
each exI; that did not affect any y; in the first pass. If some exI; produces no change to the outputs
this time, then the attacker knows that this exI; is not actually used, since every combination of
O] and exI; has been tried but the value of exI; has not affected the output.

Once this process is complete, the attacker knows every f; and exI; that must be applied
to each instance input, as well as which instance output the resulting signal is permuted to.
Therefore, the attacker is able to replace the SAT-hard instance in the obfuscated netlist with the
intended functionality, unlocking the circuit. This attack methodology requires in the worst case
four oracle queries per switch-box. Since each stage of the network has N /2 switch-boxes and
there are approximately log,(N) stages in the network (depending on the network topology), this
increases the number of queries required for the attack from N + 1 for Full-Lock to approximately
(N+1)+ % log(N) for InterLock. While we see that InterLock is higher complexity, it can still
be completed with a polynomial number of SAT-hard instance queries, unlocking InterLock
efficiently.

In subsequent sections, we will describe how a SAT-capable attacker can infer enough infor-
mation about the SAT-hard instance from a black-box oracle to use the methods described in this
section to mount an effective attack on Full-Lock even without direct access to the inputs and
outputs of the SAT-hard instance. Although the rest of this article is focused on attacking a design
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Fig. 4. Miter circuit for finding a sensitizing primary input pattern 1>1,1%2 for a SAT-hard instance input.
The inclusion of 1 XOR gate and N — 1 XNOR gates forces the condition that x»! has a Hamming distance
of 1 from x>2.

obfuscated with Full-Lock, the methods we describe in Sections 4-8 apply equally to InterLock
with the pass vector applied to the extra inputs.

4 Sensitization of the SAT-hard Instance

Using the method in the previous section, an attacker with input and output access to the SAT-hard
instance in Full-Lock can learn the permutation destination of one input with a constant number
of SAT-hard instance queries, and the instance’s total functionality with a linear number of
queries. However, our attacker model assumes a black-box oracle, so the only information directly
available to the attacker is the primary inputs and outputs of the authenticated circuit. Generally,
the SAT-hard instance is not placed at the input or output of the circuit being obfuscated, so
the SAT-hard instance inputs/outputs cannot be assumed to be the same as the primary inputs/
outputs.

Applying our technique to the SAT-capable attacker model requires analysis of the obfuscated
netlist to select inputs for an oracle query that will apply inputs x*! and x*2 to the SAT-hard
instance. To do this, we partly generalize the obfuscated circuit in the previous section by allowing
a non-empty fanin cone for the SAT-hard instance, so I # x, but still requiring the SAT-hard
instance outputs to be the primary outputs (O = y), meaning that the fanout cone is empty.

We define a sensitizing input as a pair of primary input values I*!,I1%? that produce the
SAT-hard instance inputs x"!,x"2. We say that x; is the sensitized input. The outputs of the
SAT-hard instance, and in this case primary outputs, for the same inputs are y’*!, y/2, where we
say that y; is the sensitized output. As in the case where the attacker is able to directly query the
SAT-hard instance, y; is the permutation destination of instance input x;. A successful attack in
this case must find a sensitizing input I*!,1"? for every SAT-hard instance input i € [0, N — 1]
and observe its permutation destination to determine the total functionality of the design.

Sensitizing inputs can be found efficiently by constructing a Boolean satisfiability problem
around the SAT-hard instance fanin. To find a sensitizing input for instance input x;, we create
two copies of the logic between the instance and the primary inputs with input vectors I*! and
I'? and output vectors x*! and x"2. We will add logic to these to build a miter circuit. The values
of 11,152 are the solution to the problem, so these are not altered and remain the inputs of the
miter circuit. Logic added to the fanin cone outputs (i.e., SAT-hard instance inputs) x*!, x"? need
to force them to meet the sensitization conditions xlf”l = —|xl’."2 and x,i’l = x]i’z, k # i. This can be
done by adding N logic gates Gy = fk(xli’l,xlic’z),k € [0,N — 1], where f; is XOR and fi, k # i is
XNOR. An N-input AND gate, with each Gy as an input, requires all of the output conditions to
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be met to satisfy the single output of the miter circuit. Since the miter, shown in Figure 4, is only
satisfied when the instance is sensitized at input x;, any primary input values I"!, 12 that satisfy
the miter must be a sensitizing input. Once the attacker has found I! and I*2, they can be applied
to the black-box oracle to observe the outputs 0! = y/! and O"? = y/?, which reveal y; is the
permutation destination of x;.

In an arbitrary circuit design, it is also possible that the miter circuit we have defined is found
to be unsatisfiable. This means that there are no two possible output values that differ only at
the desired bit. When this happens, it is not possible to sensitize the SAT-hard instance for that
bit, and the permutation destination cannot be learned directly. When this occurs, this attack can
only partially recover the functionality of the instance, but the reduction in the search space is
exponential with the number of SAT miters, allowing a secondary attack using a conventional
method to recover the missing functionality. Since the secondary attack solves an exponentially
smaller problem than the attacker initially faced, the execution time of our attack combined with
a secondary attack is still much smaller than an attack using the same method as the secondary
attack from the beginning.

The efficiency of this part of the attack is determined by how quickly sensitizing inputs
can be found. Satisfying one miter allows the attacker to learn the correct destination of one
SAT-hard instance input, each time reducing the effective number of signals permuted by the
obfuscation by one and pruning the functionality search space exponentially. In the example from
the previous section, filling in each row of Table 1 would require the attacker to solve one SAT
problem. Recovering the oracle’s total functionality requires solving N problems, one for each
SAT-hard input. This means the amount of time spent on each SAT problem is the primary factor
in determining whether the attack is feasible.

Importantly, the miter circuit does not include the SAT-hard instance itself, which is
designed for attack resilience. In fact, the security provided by Full-Lock depends fundamentally
on an attacker using the SAT attack being forced to include the SAT-hard instance in a SAT
problem formulation, so our construction of a miter circuit that does not fall prey to this trap
bypasses the security guarantees of this logic obfuscation technique. Furthermore, the duration
of our novel sensitization attack depends only on the topology of the design before obfuscation,
which affects the attacker’s ability to find inputs to sensitize specific nodes in the circuit. Solving
the latter problem is an important step in IC testing, which has presumably been performed on
the target obfuscated design, since it is in production. The attacker is therefore confident that sen-
sitization problems using the netlist are feasible and may even have access to the same or similar
commercial Automatic Test Pattern Generation (ATPG) tools used to analyze the design for
legitimate purposes. Foundry-based attackers, one potential identity of a SAT-capable attacker, are
particularly likely to have ready access to these tools. These ATPG tools are very well developed
and are highly efficient for these problems [9, 17]. They have also seen use in other security
applications [8, 24, 25].

5 Reduction of Oracle Queries

The exclusion of the SAT-hard instance from SAT analysis and the attacker’s confidence in the
feasibility of the necessary SAT problems make our attack very efficient compared to conventional
attacks, such as the SAT attack, which are unaware of Full-Lock functionality, as these must
include the SAT-hard instance in their SAT formulations. However, the sensitization process
as previously described requires 2N oracle queries, though the input step process described in
Section 3.2 requires only N + 1 queries of the SAT-hard instance. Therefore, we seek to reduce the
number of oracle queries in our sensitization attack to match the number required to complete
the analysis of the SAT-hard instance without any surrounding circuitry.
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Fig. 5. Miter circuit for finding a sensitizing input for a SAT-hard instance input while reusing one previously
generated Pl vector I*, which would have been selected to sensitize a different bit of x.

Comparing the two processes, we see that this difference in query counts comes from the reuse
of an initial “reference” input x"¢/ and output y"¢/ during the input stepping process, which are
compared to each subsequent SAT-hard instance query x'/y’. However, when searching for sen-
sitizing inputs, the circuit-SAT solver returns two PI patterns I*! and I*? for each bit i of x. To
reduce the number of queries we make in our sensitization attack, we would like to similarly add
only a single oracle query for each bit i of x. However, for the sensitization attack, we cannot sim-
ply choose an arbitrary x"¢/ and toggle each bit one at a time, because the circuit topology may
make some values of x impossible to achieve for any primary input vector.

Instead, we begin the sensitization process as usual to find the first two primary input values,
1! and I%2, which sensitize a single bit of x, but for subsequent bits of x, we attempt to adapt the
circuit-SAT problem of Figure 4 to reuse primary input values already selected to sensitize other
bits of x. So, for the second bit of x, we seek to assign I = I%! or I%2 = 192,

The most direct way to implement this is shown in Figure 5, with an equality block enforcing
the condition that I"?2 = I*, where I* could be any of the previously generated PI vectors. In
practice, this equality block is implemented with an N-input AND gate between all bits of I*? or
their inversion, depending on the bit’s value in I*. This accounts for the value of I* while building
the miter circuit and eliminates the need for an explicit I* signal in the circuit-SAT problem.

While the first sensitization pair must still be generated in the original way, requiring two initial
PIs, this new circuit-SAT problem allows all subsequent sensitization patterns to be produced by
adding only one new PI vector. This method still nominally produces a pair of PI vectors to sensitize
each of the N bits of x, but accomplishes this with only N +1 unique vectors, matching the number
of oracle queries used in the original input stepping attack in Section 3.2.

For an arbitrary circuit, there is no guarantee that a previously generated PI vector I* can be
used to sensitize the chosen bit x;, even if x; is sensitizable. If the circuit-SAT solver returns UNSAT
using I, then the target bit x; cannot be toggled for any value of I. The attacker must attempt to
reuse another previously generated I' value, and if no I' is successfully reused, then the original
circuit-SAT problem must be attempted to see if x; is sensitizable at all. In this case, sensitizing x;
requires adding two new PI values, and the attack will require more than the theoretical minimum
of N + 1 oracle queries.

In our experiments, we did not observe any benchmark circuits that required more than N +
1 oracle queries. Additionally, although this version of the attack potentially requires multiple
problems to be solved, the solver effectively has fewer bits it needs to assign, making each problem
significantly faster. Our experiment shows that the overall attack time does not suffer and in fact
improves using this alternate sensitization method.
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Fig. 6. Miter circuit that tests an observed output pattern for sensitivity to a particular input bit. The inclusion
of 1 XOR gate and N — 1 XNOR gates forces the condition that y/»! has a Hamming distance of 1 from y/2.

6 Inferring SAT-hard Instance Outputs

Now that we have established that an attacker can sensitize the SAT-hard instance inside a black-
box oracle, we move to show how information about the outputs of the instance can be inferred
from the oracle. This problem is more difficult than finding sensitizing inputs, because in the latter,
the attacker applies known inputs and can precisely evaluate internal nodes in the fanin of the
SAT-hard instance. However, when attempting to determine which SAT-hard instance output has
inverted from the change in the primary outputs seen in an oracle query, there may be multiple
fanout inputs (i.e., instance outputs) that could produce the same observed results. This limits
the attacker to examining each fanout input and determining which ones could have been the
inverted signal, rather than solving one problem and producing a definite solution, as when finding
a sensitizing input.

The attacker knows that after applying a sensitizing input to the oracle, one instance output
y; has inverted while all other outputs remain the same. While the value of y; is unknown, the
attacker can build a list of candidate outputs by testing each instance output y; € {yo, y1, ..., yn-1}
to determine whether its sensitization could have produced the primary output O’"!, 0/"? seen in
the black-box oracle. Testing whether y; could be the sensitized output y; requires the construction
and solving of a miter circuit similar to the one used to find sensitizing inputs.

When finding a sensitizing input, the miter circuit is formed around two copies of the SAT-hard
instance fanin. To test whether y; could be the sensitized bit, the miter is constructed around
copies of the SAT-hard instance fanout, with y»! and y»? as their inputs and 0! and 02 as their
outputs. Since the attacker is interested in whether any values of y*!, y"? are consistent with
the oracle query output 0’1, 0’2, these are also the input to the overall miter circuit. To enforce
the condition that output y; is sensitized, i.e., yf’l = —|y§’2 and y]lc’1 = y,lc’z, k # I, we append to the

miter the logic gates G = fk(y]lc’l, y,lc’z), k € [0, N — 1], where f; is XOR and fi, k # [ is XNOR. In

addition, the attacker requires the satisfying values of y»!, y*? to produce the observed primary
output 0!, 02 This is done by adding a 2N-input AND gate that takes as input every bit of
0’1, 0’2 or its inversion, depending on that bit’s value in the oracle query. Finally, the output of
this AND gate is passed into an N + 1-input AND along with the outputs of each gate G, which
gives the miter output. The structure of this miter is shown in Figure 6. If the miter is satisfiable,
then the SAT-hard instance output y; must be added to the list of candidates for y;.

We use this analysis repeatedly to prune the search space of the functionality of the SAT-hard
instance. N oracle queries, one that sensitizes each instance input, are needed, and each oracle
query requires N SAT problems to be solved, one for each instance output. This results in N?
problems in total. The degree of pruning of the search space depends on the number of permutation
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destinations the attacker can rule out for each sensitized input. For a single sensitized input x;,
i.e,, for each oracle query, if the attacker determines that m; of the N outputs could not be the
permutation destination y; for x;, then the functionality search space is reduced by a factor of
N]_Vmi . In the best case, the destination is determined exactly when all but one output is ruled out,
so m; = N —1 and the search space is reduced by a factor of N from N! to N — 1!. This is the same
reduction as was seen in previous sections when an input’s destination was determined.

A secondary attack is necessary when multiple instance outputs could produce the oracle’s
outputs when sensitized. As in the previous section, the functionality of the SAT-hard instance
has already been extensively pruned, so executing both our sensitization attack and a secondary
attack using the traditional SAT attack obtains a total solution more quickly than an attack using
only the SAT attack. Like the method for finding sensitizing inputs described in Section 4, the
efficiency of the output analysis is determined by the efficiency of the available SAT solver. Our
attack continues to exclude the SAT-hard instance from the SAT problem, giving it an advantage
over existing attacks such as the SAT attack.

7 Full-Lock Functionality Recovery by a SAT-capable Attacker

Finally, let us consider our total attack surface.
Threat Model: A SAT-capable attacker has access to

(1) The primary inputs I and outputs O of a black-box oracle.

(2) An obfuscated netlist, including knowledge of which inputs are key inputs. Items 1 and 2
are standard in the literature.

(3) The number and location of SAT-hard instance inputs x and outputs y. This is revealed to
the attacker by the concentration of the key inputs in the SAT-hard instance and the regular
structure of the switch-boxes.

Knowledge of x and y is necessary for the attacker to construct miter circuits for sensitivity
analysis. In general, there is logic between these vectors and the primary input and output vectors
I and O of the SAT-hard instance, so x # I and y # O.

With only access to the primary inputs and outputs of the black-box oracle, the attacker must
be able to sensitize the inputs of the SAT-hard instance and then infer its possible outputs. This
can be done by combining the prior two algorithms, discussed in Sections 4-6. First, the attacker
analyzes the instance fanin with the miter in Figure 4 or Figure 5 to find sensitizing primary inputs
I"1, 152 for each instance input x; € {xo, X1, ..., xn_1}. This can be performed exactly as described
in Section 4, since the nonempty fanout cone of the SAT-hard instance does not affect the topology
or function of the fanin. The alternate method in Section 5 could also be used to reduce the number
of oracle queries made. In either case, the attacker queries the oracle for each sensitizing input, but
unlike in Section 4, this does not immediately reveal the permutation that the SAT-hard instance
performs.

Instead, though the attacker knows the inputs x to the SAT-hard instance, its output y must be
extrapolated from the primary outputs O. This is identical to the scenario described in Section 6,
so the same process can be applied here. The attacker compares the oracle outputs 0!, 0/ to
the instance fanout and prunes the functionality search space by using the miter in Figure 6 to
evaluate which instance outputs [ € {1, ... N} may have been the stimulated output j.

This attack generally leaves the attacker with only a partial solution to the functionality of the
SAT-hard instance, so a secondary attack using an existing methodology is used to identify the
exact functionality from the greatly reduced search space. We repeat our earlier argument, that
even with the secondary attack, our attack is more efficient than using the existing methodology
from the beginning, because our sensitization attack has greatly reduced the size of the remaining
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problem. Our attack reduces the problem complexity more efficiently than existing methodologies,
because it does not include the SAT-hard instance in a SAT formulation. This is demonstrated in
Section 11, where we show the results of our experiment attacking benchmark circuits.

8 Recovery of Complete Functionality through a Secondary Attack

Our sensitization attack can be completed much faster than a traditional SAT attack, but generally
produces only a partial solution. This occurs for two reasons:

(1) Our attack sensitizes SAT-hard instance inputs by learning two primary input vectors I*1, I"+?
that produce two instance inputs x"!, x" that differ by a Hamming distance of 1, placing
the single differing bit in a precise location. This is a heavily constrained problem, and there
may be no solution to sensitize some inputs. When this occurs, our attack will not be able to
infer the destination of this input, since it cannot observe its effects on the primary outputs
without other inputs also changing.

(2) After observing two primary output vectors from the oracle, our algorithm must determine
which of the SAT-hard instance output bits could have produced the query results. However,
multiple outputs could be capable of this, so the attack is only able to determine a group of
candidate outputs, any one of which could be the permutation destination of the sensitized
input.

As has been discussed in Sections 6 and 7, the partial solution produced by our methodology
reduces the search space by pruning the number of possible permutation destinations of each
SAT-hard instance input. While this does not fully unlock the circuit, these results represent an
exponential reduction in the functionality search space. To fully unlock the obfuscated circuit, we
launch a second attack to recover the remaining functionality. This secondary attack builds on the
results of our functional attack and is able to solve the greatly reduced problem.

To set up the secondary attack, we take as output from our novel sensitization attack a matrix
S of Boolean values, with rows representing SAT-hard instance inputs and columns representing
instance outputs. Matrix element s;; is False if our attack concluded that y; could not be the
permutation destination of x; and True otherwise. We have developed a tool that uses this
information to replace the SAT-hard instance in the obfuscated netlist with N multiplexers,
each with an output that replaces an output of the removed SAT-hard instance. A newly added
key-driven select signal allows the multiplexer to pass one of the N signals that were previously
the SAT-hard instance inputs that our attack did not eliminate as possible sources of that output.
The SAT-hard instance was also capable of inverting its inputs, so a 2-input multiplexer is added
after each N-input multiplexer that uses another key-driven select signal to choose between the
selected instance input and its inversion. Since the SAT-hard instance has been removed, the
key-driven select signals are the only key bits remaining in the netlist. The multiplexers are
capable of reproducing any functionality in the search space that the original obfuscated netlist
was capable of, so this operation preserves the functionality of the design as a whole. The edited
netlist is similar to the relaxed models of the SAT-hard instance described in Reference [31], but
in our secondary attack, all inputs cannot reach all outputs.

The secondary attack can be launched using this modified netlist and the existing black-box
oracle. The key value the attack finds tells the attacker the correct routing of signals from the SAT-
hard instance input to its output. With this information, the attacker infers the correct functionality
of the obfuscated netlist, bypassing the security guarantees of Full-Lock.

9 Netlist Modification to Remove Obfuscation

After the completion of the secondary attack, the attacker has completely learned the correct func-
tionality of the obfuscated netlist. The simplest way to produce a functional obfuscation-free netlist
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from the attack results is to remove the logic for the SAT-hard instance from the design files and
add wires from each of its input nodes to the corresponding output node, possibly with an inverter.
This netlist modification introduces correct logic to the design with no key inputs but reduces the
delay of the signals passing through, which could result in timing violations in a tightly constrained
netlist. To mitigate this, the opened up space in the layout that previously hosted the SAT-hard
instance can be used to insert delay elements, causing the modified netlist’s timing to more closely
resemble that of the original obfuscated netlist. Both the netlist editing and timing evaluation can
be done with any tools compatible with the IC technology; no special knowledge of the tools used
in the original circuit design is required.

10 Countermeasures

As discussed in Section 3.3, InterLock does not provide additional security against our attack
compared to Full-Lock. Since each logic gate inside InterLock has only one input that is obfus-
cated, the attacker can assign the other input so the gate output is the same as the obfuscated
signal. Once the embedded gates are made “transparent,” the attacker can proceed as if attacking
Full-Lock.

Sweeney et al. [31] propose a defense that is very similar to InterLock, but in their version, the
logic gates embedded in the switch-boxes take both inputs from the MUXes. The SAT-hard instance
in LoPher [23] has the same functionality, but both the permutations and the logic functions are
implemented with a cryptographic block cipher. In both techniques, there are no extra inputs to
the switch-boxes. This has several implications:

— Without direct access to any gate inputs, the attacker cannot make the gates transparent.

— The attacker can no longer assume a one-to-one mapping from inputs to outputs, since each
gate sinks multiple switch-box inputs and produces only one output.

— The value of each SAT-hard instance output depends on more than one of its inputs.

— The sensitivity of the SAT-hard instance to its inputs is unknown. There is no guarantee that
toggling any one input will result in an output response.

The interaction between signals traveling through the routing block makes the sensitization
attack insufficient to determine the functionality, as the problem the attacker must solve changes
from a one-to-one mapping to a circuit with unknown number and type of gates. As a result, these
obfuscation methods are secure from our sensitization attack. All future switching-based obfus-
cation techniques will need to include functions of multiple obfuscated inputs to be considered
secure.

Further research into circuit sensitization could produce attacks able to break these techniques.
While basic input-stepping is insufficient to learn the functionality of a SAT-hard instance
with arbitrary logic, other input patterns may produce enough information for an attacker to
manufacture counterfeit chips.

Other types of attacks may also be able to target this kind of obfuscation. The routing network
in Full-Lock is designed to resist the SAT attack, but the repeated switch-box structure may make
Full-Lock vulnerable to ML-based attacks such as GNNUnlock+ [1, 2]. This attack uses neural
networks to classify nodes in an obfuscated netlist as being part of the original circuit or being
part of the locking logic.

11 Results

In this section, we discuss the implementation of our attack and present data gathered from testing
it against benchmark circuits locked using Full-Lock. We provide runtime data to demonstrate the
feasibility of the attack against benchmarks obfuscated with large SAT-hard instances.
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11.1 Experimental Setup

Our experiments begin with our benchmark circuits in gate-level Verilog files. We select arbitrary
internal signals for obfuscation with Full-Lock and generate the SAT-hard instance with a Python
script. The resulting obfuscated Verilog file is saved in the Berkeley logic interchange format
(BLIF) for maximum compatibility with ABC. The original benchmark file is also converted to
BLIF for use as a black-box oracle. During each step, we keep the benchmark circuits as close to the
original as possible, preserving their logical structure. This keeps our results consistent regardless
of which tools are used to prepare the netlists. Our attack is also technology-independent, since it
is purely logical.

Our sensitization attack code extends the ABC synthesis tool [6]. The tool extracts the SAT-hard
instance fanin cone from the obfuscated netlist, constructs the miter circuits in Figures 4 and 5,
and uses ABC’s SAT solver to find sensitizing inputs. Our tool is capable of finding sensitizing
inputs using either the method described in Section 4 or the alternate method of Section 5, the
latter using fewer oracle queries.

Once the sensitizing inputs are selected, the tool queries the black-box oracle to find the cor-
responding outputs. With these it forms the miter in Figure 6 and infers a partial solution of the
SAT-hard instance functionality.

A Python script modifies the obfuscated netlist to account for the reduced search space as de-
scribed in Section 8, and then the lazy-sat tool [30] was used to find the total solution.

Our control data was generated using the lazy-sat tool on the first set of obfuscated benchmarks.

We tested our attack on benchmarks from a variety of application areas, selecting five bench-
marks from the ISCAS ’85 suite [12], one benchmark from MCNC20 [36], and five benchmarks
from ITC-99. Each benchmark is obfuscated with Full-Lock using three or four differently sized
SAT-hard instances. All benchmarks included logic between the SAT-hard instance and both the
primary inputs and outputs, so a successful attack in our experiment required both input sensi-
tization and inference of SAT-hard instance outputs. This is the most general form of our attack,
which can be launched by any SAT-capable attacker.

We performed two experiments to demonstrate our attack: (1) We tested our sensitization attack
and secondary SAT attack as a compound attack on our benchmark circuits obfuscated with Full-
Lock and compared the compound attack duration to that of the traditional SAT attack; and (2) we
tested our primary attack using two different sensitization methods, described in Sections 4 and 5
and compared the time required in each case to complete the primary attack, which includes gen-
erating the sensitizing inputs and analyzing the primary outputs for input-output relationships.

11.2 Sensitization Attack

We tested our novel sensitization attack against 11 benchmark circuits, first measuring the run-
time of the sensitization attack, which produced a partial solution, and then the runtime of the
secondary attack, which extracts the remaining functionality. Each benchmark was obfuscated
with each of 3 SAT-hard instance sizes with key sizes of 48, 144, and 384 bits. For the 8 larger
benchmark circuits, we also tested with 960 bits. In this experiment, we used the sensitization
method described in Section 4.

Table 3 shows our results for each benchmark circuit and SAT-hard instance size, as well as
the SAT attack runtime data for comparison. For instances with 144 or fewer key bits, the SAT
attack is often faster than the proposed attack. This is especially true of the larger benchmarks.
However, at these sizes, the attack is still very quick. Except for the largest three benchmarks, our
attack completes within 1 minute for 144 or fewer key bits, which is very small compared to the
length of the 48-hour timeout window. Furthermore, our sensitization attack clearly accelerates
the secondary SAT attack compared to the standard SAT attack.
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Circuit Key Sensitization Secondary Total SAT
Size Attack Attack Runtime Attack

Runtime Runtime Runtime

c1908 48 0.55 0.21 0.77 0.84
144 3.37 0.53 3.90 22.71

384 14.01 12.91 26.93 timeout

c2670 48 1.58 0.18 1.76 0.48
144 7.87 0.71 8.59 431

384 68.83 8,458.36 8,527.19 8,708.47

3540 48 2.46 0.61 3.07 0.56
144 11.02 2.92 13.94 59.24

384 48.74 13.16 61.90 timeout

960 438.07 288.03 726.10 timeout

c5315 48 3.44 0.45 3.89 0.49
144 15.49 1.49 16.98 15.46

384 88.83 9.12 97.94 955.38

960 598.32 109.01 707.32 timeout

c7552 48 4.68 2.16 6.84 5.01
144 22.00 5.17 27.18 17.85

384 112.62 117.10 229.72 timeout

960 702.99 timeout timeout timeout

des 48 4.74 0.65 5.38 1.02
144 20.35 1.67 22.02 10.52

384 99.89 11.53 111.42 1,733.37

960 619.47 53.63 673.10 timeout

b14 48 7.10 2.39 9.49 2.14
144 30.12 6.53 36.65 16.77

384 141.99 42.01 184.00 768.14

960 817.04 291.54 1,108.58 timeout

b15 48 11.67 2.07 13.74 2.04
144 48.75 2.44 51.19 10.95

384 228.81 11.64 240.45 1,752.04

960 1,178.61 113.36 1,291.97 timeout

b17 48 55.52 5.47 60.99 5.70
144 207.54 18.00 225.54 33.19

384 848.97 35.90 884.87 965.29

960 1,631.56 271.73 1,903.29 timeout

b18 48 129.43 80.65 210.08 37.92
144 508.98 68.95 577.93 73.51

384 1,987.38 221.13 2,208.51 1,071.78

960 8,236.74 1,018.86 24,517.75 timeout

b19 43 342.45 1,883.71 2,226.16 1,600.44
144 1,356.16 1,006.17 2,362.33 1,473.56

384 5,181.09 1,679.80 6,860.89 5,222.07

960 23,498.89 3,221.14 26,720.03 timeout

Both attacks resulted in a timeout if the circuit was not unlocked after 48 hrs
(~170,000 s). All times are in seconds.
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Table 4. Our Method to Reduce the Number of Oracle Queries Drops the Query Count
from 2N to as Low as N + 1

Circuit | Key | N | Independent | Query Time Query
Size Sensitization | Reuse | Reduction | Reduction
Time Time (%) (%)
c1908 48 8 0.55 0.37 33.9 43.8
144 16 3.37 1.89 43.8 46.4
384 | 32 14.01 9.10 35.1 46.4
c2670 48 8 1.58 0.80 49.4 43.8
144 | 16 7.87 4.23 45.9 46.9
384 | 32 68.83 30.91 55.1 48.4
c3540 48 8 2.46 0.63 74.6 43.8
144 | 16 11.02 3.39 69.2 46.9
384 | 32 48.72 24.78 49.2 48.4
960 | 64 438.07 | 281.24 35.8 49.2
c5315 48 8 3.44 1.23 64.1 43.8
144 16 15.49 6.26 59.6 46.9
384 | 32 88.83 38.50 56.7 48.4
960 | 64 598.32 | 352.72 41.0 49.2
c7552 48 8 4.68 1.72 63.3 43.8
144 16 22.00 8.36 62.0 46.9
384 | 32 112.62 51.66 54.1 48.4
960 | 64 702.99 | 382.78 45.6 49.2
des 48 8 4.74 1.84 61.1 43.8
144 | 16 20.35 8.42 58.6 46.9
384 | 32 99.89 50.45 49.5 48.4
960 | 64 619.47 | 410.63 33.7 49.2
Average 51.9

In our benchmark trials, this minimum bound of queries was achieved for all circuits, with the
percentage reduction in oracle queries approaching 50% as the SAT-hard instance size increases.
This method also completes the primary attack faster than the original sensitization algorithm.

At larger sizes of the SAT-hard instance, the sensitization attack becomes much more efficient
than the SAT attack. Our sensitization attack unlocked every benchmark with 384 key bits and
8 of the 9 benchmark circuits with 960 key bits, the largest size tested. In contrast, 3 of the 11
benchmark circuits with 384 key bits could not be unlocked by the SAT attack within the test
window of 48 hours. The SAT attack did not unlock any benchmarks with 960 key bits.

These experimental results show that our novel sensitization attack is able to quickly unlock
designs obfuscated with Full-Lock even with sizable SAT-hard instances, which are not efficiently
unlockable with traditional attack methods. Our results remain consistent across several circuit
topologies with only one outlier benchmark.

11.3 Reduction of Oracle Query Count

We also tested our alternate sensitization method described in Section 5, which reuses oracle
queries and so makes fewer of them than the method described in Section 4. To compare these
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methods, we executed the primary sensitization attack using the method described in Section 5 on
the ISCAS’89 and MCNC20 benchmarks used in the previous experiment: six benchmarks with 48,
144, and 384 key bits and four benchmarks with 960 key bits. We compare the sensitization attack
data from the previous experiment to the duration of these new tests.

Table 4 shows our sensitization attack time with and without PI reuse. We see that reusing
oracle queries reduces both the number of oracle queries and the time required to execute our
attack. Our tool was able to sensitize the SAT-hard instance using the theoretical minimum
number of oracle queries for each benchmark circuit, so in key sizes, we see that the percent
reduction in oracle queries approaches 50% as 2N oracle queries are cut to only N + 1. For
benchmarks where oracle query reduction is not equal to % this is the result of some bits
of x not being sensitizable. No oracle queries are made for these bits in either version of the attack,
so the percent reduction in oracle queries appears lower than the value of N would suggest.

The attack using fewer oracle queries is also 51.9% faster, on average, and executes as much as
74.6% faster than the other method. This speedup occurs because large sections of the circuit-SAT
problem in Figure 5 are simplified out when the value of I»? is fixed to an externally assigned value
I*. Since I"? cannot change, the copy of the SAT-hard instance fanin that has I"? as its input has
fixed output, and the solver does not need to evaluate this logic for every solution it considers. As
a result, the problem size is cut nearly in half compared to the baseline problem in Figure 4, since
the solver only needs to consider parts of the problem that are reachable by by I, such as the
copy of the fanin cone with I*! as its input.

12 Conclusion

In this article, we introduced a novel sensitization attack to recover the intended functionality of
designs obfuscated with Full-Lock and InterLock, which are resilient against attacks by existing
methodologies such as the SAT attack. Our novel attack infers the input-output relationship of the
SAT-hard instance that Full-Lock and InterLock introduce to the circuit and efficiently unlocks
the design.

The result is an increase in time efficiency compared to the traditional SAT attack, because the
attacker avoids including the SAT-hard instance in the formulation of its Boolean satisfiability
problems. The SAT problems the attacker solves are also similar to those used in IC testing,
enabling the use of highly optimized algorithms available to design houses and foundry-based
attackers. Our experimental data demonstrates the viability of the attack, which breaks nearly
every circuit even at our largest key size. Most circuits were unlocked in 20 minutes or less by
our novel sensitization attack, even though none were unlocked by the traditional SAT attack.
This speedup is achieved with a number of oracle queries one larger than the input size of the
SAT-hard instance added by Full-Lock obfuscation.
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