
Low Power Logic Obfuscation Through System
Level Clock Gating

Daniel Xing, Yuntao Liu, Ankur Srivastava
University of Maryland, College Park, MD, USA

{dxing97, ytliu, ankurs}@umd.edu

Abstract—Logic locking methods such as Stripped Function-
ality Logic Locking (SFLL) tend to yield high overheads. SFLL
only corrupts a small part of the input space by design in order
to maintain good SAT resilience and in doing so selects high
frequency inputs to corrupt (protect) and therefore increases
locking’s impact on system level error. This implies that much of
the time stripped modules are doing unnecessary work while the
restore units are correcting the computations. We propose taking
advantage of this fact to selectively clock gate the modules when
protected inputs are being processed. Under the highest possible
level of attack resilience, this alone can yield up to 24.5% dynamic
power savings when protected inputs are applied to synthesized
MediaBench benchmarks. We also propose a system-level design
approach that utilizes the data-flow graph to also gate operations
that fully depend on other gated operations. In conjunction with
modifying operation binding, this increases power savings to
32.9% under the same strict security constraints.

Index Terms—clock gating, logic locking

I. INTRODUCTION

As the cost of maintaining advanced technology IC
foundries continues to rise, many chip designers have chosen
to become fabless and rely on offshore foundries for fabrica-
tion. However, this outsourcing can jeopardize the security of
the IC supply chain since the foundries are not controlled by
the designer.

Logic locking has emerged as a protection of the intellectual
properties in chip designs against untrusted fabs [1]. Logic
locking involves a secret key input, known only to the designer,
that must be correctly applied to the circuit for it to function
properly. Various types of logic locking mechanisms have been
proposed, starting with inserting XOR/XNOR gates in the
design netlist [2] and progressing to more advanced techniques
based on VLSI testing principles that produce high corruption
at the output bits when an incorrect key is applied [3], [4].

The logic locking field was transformed by the Boolean
satisfiability-based attack, also known as the SAT attack [5].
SAT offers a robust mathematical approach for identifying
the correct locking key of a logic locked IC by progressively
eliminating incorrect keys. In response, point function (PF)-
based logic locking, such as SARLock [6] and Anti-SAT [7],
limits the number of wrong keys pruned out in each iteration,
resulting in an exponential increase in the number of SAT
iterations required relative to the key size. However, such logic
locking techniques were proven vulnerable to approximate
SAT attacks [8], [9] and removal attacks [10].

In a more recent development, stripped functionality logic
locking (SFLL) was proposed which empowers designers to

This work was supported by the NSF under Grant 1953285.

choose a group of protected input patterns (PIPs) that are
impacted by a significant proportion of incorrect keys, while
other input patterns are affected by only a small percentage
of incorrect keys [11]. Details of SFLL is introduced in Sec.
II-A. Robust Strong Anti-SAT (RSAS) achieves the same level
of security by also stripping the PIPs’ functionality from the
original circuit and using improved Anti-SAT infrastructure to
restore the functionality when the correct key is applied [12].

Our proposed method gives SFLL the ability to lower power
overhead. While this method can be applied to modules in
isolation, we show that a system-level approach can enable
even greater power savings for the same level of SAT attack
resilience. Other system-level logic locking methods have been
proposed in past works [13]–[17], including one work that
proposes a system-level sharing method for reducing locking-
related overhead [18]. However, our work is the first to propose
clock gating entire functional modules locked with SFLL
while incorporating a high level design perspective. Treating
the look-up tables (LUTs) in SFLL as a high-level power-
saving resource grants system designers greater design flexibil-
ity when considering power overheads while still maintaining
granular control over SAT attack resilience.

A. Contributions

In this work, we propose utilizing SFLL’s LUTs in a new
way: enabling clock gating of entire modules by performing
the lookup in an earlier clock cycle. While this technique can
be readily applied at the module level, we demonstrate that
a system-level design view enabled by high-level synthesis
(HLS) can enable even greater power savings, all while
keeping SAT attack resilience and LUT sizes in check. Our
contributions can be summarized as follows:

1) We formally define finding the power-optimal operation
binding and locking configuration as a 0-1 integer lin-
ear program (ILP). This formulation jointly determines
which operations to protect (and therefore clock gate)
with SFLL and operation-to-hardware binding so that
power savings are maximized without compromising
SAT resilience.

2) We also present a post-binding greedy heuristic for
selecting protected operations and PIPs using system-
level information, but implemented at a module level.
This simplifies the control circuitry needed to imple-
ment clock gating at the expense of sub-optimal power
reduction.

3) We evaluate our clock gating techniques on MediaBench
benchmarks. Our heuristic and optimal methods on
average reduce dynamic power by 24.5% and 32.9%,979-8-3503-1175-4/23/$31.00 ©2023 IEEE

20
23

 IE
EE

/A
CM

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Lo

w
 P

ow
er

 E
le

ct
ro

ni
cs

 a
nd

 D
es

ig
n

(IS
LP

ED
) |

 9
79

-8
-3

50
3-

11
75

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
OI

: 1
0.

11
09

/IS
LP

ED
58

42
3.

20
23

.1
02

44
56

1

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 22,2025 at 00:39:13 UTC from IEEE Xplore. Restrictions apply.

respectively, while maintaining maximal SAT attack
resilience. Further power reductions are possible under
relaxed attack resilience requirements.

II. PRELIMINARIES

A. SAT Attack and SFLL

The SAT attack provides a strong mathematical formulation
and was able to defeat all the logic locking techniques that pre-
dated it. The potential adversary could be either an untrusted
foundry or user with the capability to reverse engineer the
produced chip and acquire the locked gate-level netlist. The
SAT attack requires two resources: (1) the locked netlist and
(2) an activated chip (one that has the correct key loaded) from
which the adversary can query the correct output of selected
input vectors. Details of the mathematical formulation of the
SAT attack can be found in [5]. Simply put, in each iteration
of the SAT attack, a Boolean satisfiability problem is solved,
and a distinguishing input (DI) is found. The DI is capable
of eliminating the set of wrong keys that produce incorrect
output for the DI. When all the wrong keys are eliminated by
DIs, a correct key will be found.

The advanced technique of Stripped Functionality Logic
Locking (SFLL) comprises of two main components: a Func-
tionality Stripped Circuit (FSC) and a Restore Unit (RU). The
FSC is the original circuit, but with its functionality altered
for a selected set of PIPs, rendering SFLL resistant to removal
attack. Removing the RU renders the PIPs’ functionality
different from that of the original circuit, making the attack
futile. The RU is often implemented with an LUT that stores
the key, verifies the input of the circuit against the key, and
produces a restore vector that is XOR-ed with the FSC output.
If the key is correct, the restore vector will correct the FSC’s
output, resulting in a correct output for the circuit. SFLL
comes in two types: SFLL-HD and SFLL-flex. SFLL-HD
produces specific structural traces in the FSC, which can be
captured through functional analysis-based attacks [19]. On
the other hand, SFLL-flex leaves minimal structural traces in
the FSC, thanks to a fault-injection-based approach used for
stripping the functionality [20]. Of note is SFLL’s inherent
direct inverse relationship between the number of PIPs and
the expected time required by SAT attack [21], [22]. More
more PIPs lead to higher impact that SFLL has on the overall
functionality of a locked circuit, doing so comes at the cost
of decreased SAT attack resilience.

B. High-Level Synthesis

HLS, or high-level synthesis, is a process that involves
transforming a high-level description of functionality, such as a
behavioral description in a high-level language, e.g. C or Sys-
temC, into a register-transfer level (RTL) design. During HLS,
there are generally three main design optimizations: resource
allocation, scheduling, and resource binding. Resource alloca-
tion involves determining the quantity and type of hardware
resources, such as functional units (FUs), that are necessary
for the design. Scheduling imposes clock-cycle boundaries
on the target behavioral code to resolve data dependencies.
This produces a scheduled data flow graph (DFG), a directed
acyclic graph whose nodes and edges represent operations
and dependencies between them, respectively. Resource bind-
ing maps operations in the scheduled DFG to the allocated

FUs from resource allocation. The binding must meet the
minimal timing and performance requirements of the design
while trying to optimize for area or power. Common binding
schemes aim to minimize area [23] or switching power [24],
[25]. During binding, the expected input space for a circuit is
generally known. This enables switching power estimation to
inform power-aware binding decisions. Power-aware binding
techniques aim to minimize the switching activity of FUs by
selecting those that have a lower expected switching activity,
thus reducing the overall power consumption of the design.

HLS-based technques have been exploited to strengthen
SFLL. For example, the intermediate representation during the
compilation of the high-level design code can be analyzed
to identify suitable combinational logic cones to insert SFLL
[26]. Furthermore, security-aware binding was proposed in
[13] where the operations are selected to be bound to locked
FUs in order to maximize the occurrence of PIPs in the locked
FUs. In our work, we show that the binding step, i.e. assigning
operations to SFLL-locked FUs, provides an opportunity to
reduce the switching power for the entire design, and the
security of logic locking and power savings can be achieved
simultaneously without compromise.

III. GATING, GRAPHS, AND YOU: SAVING DYNAMIC

POWER, SECURELY

Conventional logic locking methods always require some
amount of additional circuitry to implement. SFLL-based
methods in particular require a RU (typically implemented as
a LUT) to correct stripped functionality when the correct key
is applied. However, only a small number of protected inputs
are chosen in order to strengthen SFLL against SAT attacks
and to keep LUT sizes small. By moving LUT lookup into
an earlier clock cycle (i.e. after module inputs are known but
before inputs are applied), we can store precomputed output
values and save them in the LUT, allowing the system to
opportunistically clock gate entire locked modules.

A. Module-Constrained Gating

To illustrate this idea, consider the locked single-module
datapath shown in Fig. 1a. A subset of the locked module’s
input is compared against a stored key value that characterizes
the PIP. If they match, then the output of the FSC will
be inverted according to the stored flip vector. Since the
functionality of SAT-secure stripped modules only differs from
the original design for a few inputs, it is feasible to implement
correction functionality using a small LUT, and indeed this
practice is adopted by PIP-based locking schemes such as
SFLL and RSAS. Note that during this operation, when the
PIP are being processed by the LUT, the module itself is doing
useless work and can therefore be gated.

Our proposed modification to the RU is illustrated in Fig.
1b. Instead of storing a flip vector, we store the module’s
output value corresponding to the protected input. Note that
the RU is moved one clock step earlier and connected to the
output of the module feeding the input FFs of the stripped
module. Whenever the input to the RU matches the key, instead
of correcting the corrupted output of the FSC, we clock gate
the entire FSC and supply a precomputed output value to any
modules or registers dependent on the FSC’s output. Since
the FSC’s correct output value is completely known at lookup

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 22,2025 at 00:39:13 UTC from IEEE Xplore. Restrictions apply.

conventional.pdf

re
gi

st
er

s

FSC

flip vector

=
<0>

key

re
gi

st
er

s

Restore Unit

FSC

key

re
gi

st
er

s

Restore Unit

precomputed
output

=

clock

clock

(a) Conventional restore unit architecture

gating.pdf

re
gi

st
er

s

FSC

flip vector

=
<0>

key

re
gi

st
er

s

Restore Unit

FSC

key

re
gi

st
er

s

Restore Unit

precomputed
output

=

clock

clock

(b) A clock-gating enabled restore unit

Fig. 1: Two single-module datapaths locked with SFLL. 1a
places the RU in the conventional way, while 1b configures the
RU to clock gate the FSC when protected inputs are applied.

OP1

FU 1

Clk 1

OP4Clk 2 OP5

OP2

FU 2

OP3

FU 3

OP6Clk 3

(a)

OP1

FU 2

Clk 1

OP4Clk 2 OP5

OP2

FU 1

OP3

FU 3

OP6Clk 3

(b)

Fig. 2: Two different resource bindings for the same scheduled
DFG.

time, the overall functionality of the system is not affected.
We therefore perform the LUT lookup operation before the
locked circuit is scheduled to operate, but after its input value
is available. Since a SAT-secure locked circuit will protect
only a few inputs, the LUT only needs to contain a few
entries, minimally impacting timing. Provided the correct key
values are loaded into the LUT, the locked module will operate
correctly. Also, if the PIP are chosen such that they have high
frequency of occurrence, the clock gating will be active often
leading to large power savings.

B. System-Level Gating with DFGs

While this LUT look-ahead method can be readily applied
within the confines of a single module on any synthesized
design, we show that system-level modifications can enable
more gating opportunities and provide the same guarantees
against the SAT attack by considering data dependencies in
the DFG and resource binding respectively.

Consider the scheduled DFG in Fig. 2a. We assume that a
particular DFG input has been chosen for protection, so each
operation in the DFG will already have a candidate protected
input. Suppose the designer is limited to placing just two LUTs
(e.g. due to area limitations). If PIPs for operations 2 and 4 are

chosen to be placed in LUTs, then the system can clock gate
up to three operations: operations 2, 4, and 6. The protected
inputs of operations 2 and 4 are both stored by LUTs, and can
be directly gated. Operation 6 can be gated if both operations
2 and 4 are also gated because the input of operation 6 is fully
determined by the outputs of operations 2 and 4, which are
also stored in our modified LUTs. Therefore, the output value
for operation 6 when both operation 2 and 4 receive protected
inputs is fully known at design time, and can be saved on-chip.
On the other hand, if inputs of operations 1 and 2 are chosen
for protection, then the number of gated operations drops from
three to two when the protected DFG input is applied, since
no operations in the DFG depend on only operations 1 and 2.
Hence judicious allocation of limited restore LUT resources
to operations impacts how many operations can be gated.

Binding of operations to hardware modules also affects the
SAT-secureness of each locked module because each locked
module’s PIPs are chosen based on which operations are bound
to each module. For example, consider the binding shown in
Fig. 2a. Again assuming operations 2 and 4 are protected,
modules FU1 and FU2 will only need to strip one input each,
and therefore are maximally secure against SAT attack. If the
binding is instead what’s shown in Fig. 2b, then FU1 will
need to strip the protected inputs of both operation 2 and 4,
worsening its resilience against SAT attack (since we will need
to protect two PIPs instead of one), while FU2 will not be
locked at all. Therefore, binding should be carefully done to
ensure that each module does not have too many protected
inputs and remains sufficiently secure against SAT attacks.

This HLS-driven system-level approach is the one we take
when clock gating modules. We select operations to protect
and map protected operations to locked functional modules
such we maximize the number of gated operations under
protected inputs and ensure locked modules remain sufficiently
secure against SAT attack.

IV. FINDING POWER-OPTIMAL LUT AND BINDING

CONFIGURATIONS WITH ILP

Finding locking configurations that maximize power saved
in this way can be expressed as a 0-1 integer linear program
(ILP). To help make our formulation easier to follow, Table
I lists constants, variables, and some notation used in our
formulation.

First, the constraints. Besides operations with LUT-
protected inputs, we also want to gate operations that depend
only on other gated operations. To start, we first describe
operations that only depend on other operations and not
DFG inputs (NI(V)). The two constraints calculates whether
a node’s predecessors are all gated and are not all gated
respectively:

∏

i∈pre(k)

gi ≤ pv ∀v ∈ NI(V) (1)

1− pv ≤ nv ∀v ∈ NI(V) (2)

Note that while constraint 1 is not linear, since all variables
are constrainted to be binary, it can be rewritten as a set of
linear constraints.

If every operation that v depends on is gated, then the inputs
of v can be fully determined from stored LUT entries, and

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 22,2025 at 00:39:13 UTC from IEEE Xplore. Restrictions apply.

TABLE I: ILP variables, constants, and definitions

Notation Definition

G(V,E) a DAG representing the scheduled DFG, where nodes represent
operations and edges represent data dependencies

pre(v) predecessors/data dependencies of a node/operation v ∈ V
NI(V) Operations in G that depend only on other operations (i.e.

don’t depend on DFG inputs)
start(v) The first clock cycle that operation v is active for
end(v) The last clock cycle that operation v is active for
w(v) Expected dynamic power used by operation v

M set of functional modules
K set of clock cycles in the schedule
l User-defined limit on the total number of instantiated LUTs

Cm User-defined limit on the number of LUTs allowed for each
module m, this represents the number of PIPs stripped from m
which is decided by the level of SAT attack resilience desired

gv Variable that encodes if an operation v is gated. gv is 1 if
operation v is gated, 0 otherwise.

pv Variable that encodes whether or not predecessors of v are
gated. pv is 1 if all predecessors are gated, 0 otherwise.

nv Logical inverse of pv
Lv Variable for keeping track of what operation a LUT is pro-

tecting. Lv is 1 if operation v’s input is protected by a LUT,
0 otherwise.

bv,m Variable associated operation binding. bv,m is 1 if operation
v is bound to functional module m, 0 otherwise.

busyv,m,k Variable for keeping track of the schedule during binding.
busyv,m,k is 1 if operation v is scheduled during clock k
and is bound to module m.

therefore v itself can also be gated. This can be expressed as
the following constraint:

pv ≤ gv ∀v ∈ NI(V) (3)

If not every parent operation of v is gated, then the output
of v cannot be determined from LUTs assigned to parent
operations alone. However, it can still be gated if a LUT is
assigned to protect it. We can express this as the following
constraint, again noting that it can be rewritten as a set of
linear constraints:

gvnv ≤ Lv ∀v ∈ NI(V) (4)

For operations v that do depend on DFG inputs (i.e.
V \ NI(V)) then the inputs of v cannot be fully known
by examining inputs and outputs of other operations alone.
Therefore, v can only be gated if a LUT is assigned to it:

gv ≤ Lv ∀v ∈ V \NI(V) (5)

For area-limited designs, we can constrain the total number
of LUTs to some user-defined limit l with the following
inequality: ∑

v∈V Lv ≤ l (6)

We use the following constraints to ensure that operations
are properly bound to functional modules. Constraint 7 de-
termines which which operations at what clock cycles each
module is bound to:

bv,m ≤ busyv,m,k ∀v ∈ V,m ∈ M,k ∈ [start(v), end(v)]
(7)

Constraint 8 ensures that there can only be at most one
operation bound to a module in any clock cycle:∑

v∈V busyv,m,k ≤ 1 ∀m ∈ M,k ∈ K (8)

Constraint 9 ensures that every operation is bound to exactly
one module: ∑

m∈M bv,m = 1 ∀v ∈ V (9)

To ensure each locked functional module is still secure
against SAT attack, we limit the number of LUTs (and

therefore the number of PIPs per module) in each locked
module. Since each LUT resource only protects a single input
value, limiting the number of LUTs per module will also limit
the number of PIPs, and therefore ensures locked modules will
be sufficiently resilient against expected SAT attacks:

sumv∈V bv,mLv ≤ Cm ∀m ∈ M (10)

The overall optimization objective is to maximize expected
dynamic power savings due to gated operations

max
g,p,n,L,b,busy

∑

i∈V

wigi (11)

subject to the constraints given.

A. ILP Usage

A system designer seeking to secure a design using looka-
head LUT-based RUs will first need to perform the scheduling
and resource allocation steps of HLS so that the scheduled
DFG G(V,E) and available functional modules M are known.
One or more DFG inputs will need to be selected for protec-
tion, and should be propagated through the DFG so that each
operation has one or more candidate protected inputs. The
designer will also need to determine the maximum number
of protected inputs that each module can protect (Cm) before
SAT attack resilience degrades excessively. If the design is
overhead constrained, then the maximum number of LUTs that
can be instantiated l without exceeding area or static power
limits will need to be determined.

Once these system parameters have been found, they can
be encoded into the ILP described previously, and solved
using one of the many available academic or commercial ILP
solvers. Optimal solutions of gv , Lv , and bv,m indicates which
operations should be gated, which operations should have its
input protected by an LUT, and which operations should be
bound to which modules respectively.

V. POST-BINDING MODULE-LEVEL HEURISTIC

While in practice ILP solvers can efficiently solve some
kinds of large ILP instances, the worst-case runtime is still
NP-hard. To avoid this worst-case time complexity and to
simplify the control circuitry needed to implement optimal
gating of downstream operations, we present a greedy PIP
selection heuristic that can be implemented after operation
binding has occurred.

While gating downstream operations increases the number
of clock gating events without adding additional LUTs, proper
implementation requires additional control circuitry to coordi-
nate LUTs across different modules. As an example, again
consider the scheduled and bound DFG shown in Fig. 2a.
Suppose a particular DFG input is selected for obfuscation.
While it may be the designer’s intention to protect particular
inputs of operation 2 and 4 (denoted as PIP2 and PIP4

respectively) calculated from the protected DFG input, in
practice other DFG inputs may result in PIPs occuring at other
clock cycles besides the ones operations 2 and 4 are scheduled
for. For example, there may be a DFG input where PIP2

occurs at FU2 in clock 1 but PIP4 does not occur at FU1 in
clock 2, or PIP4 occurs in clock 1 of FU1 instead of clock
2. We cannot assume PIPs will occur at only in their intended
scheduled operation, so some additional control logic is needed
to make sure downstream operations with unprotected inputs

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 22,2025 at 00:39:13 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Greedy heuristic algorithm

Input: G(V,E), w(·),M, l, b, C

Output: L(v,m)
Initialization:

1: candidates = V

2: L(v,m) is initialized to 0 for all v ∈ V and m ∈ M

3: lcount = 0
Loop:

4: while lcount < l do

5: vsel = highest weighted op in candidates

6: if
∑

w∈V L(w, b(vsel)) < Cb(vsel) then

7: L(vsel, b(vsel)) = 1
8: lcount = lcount+ 1
9: end if

10: end while

11: return L

are only gated when all upstream operations are gated. Not
gating downstream operations removes the need for control
circuitry beyond what is already required by a single module
at the expense of decreased power savings.

If operation binding is fixed and clock gating is confined
to just the protected operation, then only protected inputs for
each module need to be selected. This can be done efficiently
with the greedy algorithm shown in Alg. 1. The algorithm
first sets the pool of candidate gatable operations to V , (line
1) initializes the binding matrix L(v,m) to 0 (line 2), and sets
the total number of allocated LUTs to 0 (line 3). In each loop
iteration, the operation vsel with the highest dynamic power
consumption is chosen (line 5). If the module that vsel is bound
to b(vsel) ∈ M has not exceeded its SAT-attack resiliency
requirement Cb(vsel) (line 6), then vsel can be added to the set
of operations protected by b(vsel) (line 7). The loop terminates
when all LUTs have been assigned (line 4).

The initialization requires sorting all operations in V by
their dynamic power consumption, which takes O(|V | log |V |)
time. The algorithm loop runs at most |V | times (the highest
value l can be set to) and the summation in line 6 can be
implemented in O(1) time if the length of each row of L is
stored and updated separately from L. Therefore the heuristic’s
runtime is O(|V | log |V |).

VI. RESULTS

To evaluate our optimal and heuristic clock gating ap-
proaches, we locked designs synthesized from C functions
used in the MediaBench suite [27]. Each function’s DFG
was extracted using SUIF and scheduled using a path-based
scheduler [28]. Up to three adders and three multipliers were
allocated for each benchmark.

Locking was performed with SFLL-flex, although our
method can be applied to any locking method that uses
restore units. While SFLL PIPs can be of any bit width,
we set the width to be the same as the input vector size
of each functional module to maximize SAT attack resilience
and simplify LUT design. For similar security reasons, we
limited each locked module to strip at most one input (i.e.
Cm = 1∀m). To evaluate the heuristic method, we used a
security-aware binding method [13] to bind each operation to
functional modules.

We implemented the ILP using Gurobi [29]. All experiments
were performed on a desktop machine equipped with a 2.5
GHz Intel processor and 16 GB of system memory. Dynamic
power was calculated for designs built using FreePDK45 [30]
and synthesized with Cadence Genus tools.

To compare our techniques with the conventional no-gating
approach, Fig. 4 shows dynamic power consumed by a locked
datapath when a protected DFG input is applied to the system,
normalized to the conventional no-gating method. Our optimal
system-level approach reduces dynamic power consumed by
the locked datapath under protected DFG inputs on average
by 32.9% while ensuring that each locked module only strips
one input, maximizing SAT attack resilience. Performing clock
gating using our module-constrained heuristic at the same
security level yields 24.5% dynamic power savings, although
the advantage our heuristic holds over the ILP binding ap-
proach strongly depends on the structure of the DFG. For
example, all operations in jctrans2’s DFG depend directly
on a DFG input, so operations can only be gated via a
LUT lookup, and cannot depend exclusively on preceding
operations alone. However, both fir and dct have tree-like
DFGs with multiple operations that do not directly depend on
DFG inputs, so a system-level DFG-aware approach is able to
save more power than a module-level one.

We can also explore the security-power tradeoff by varying
Cm of each allocated module, shown in Fig. 3. Here, we
assume that the system design allows enough area overhead to
add any additional LUTs needed to implement restore units.
When a small number of PIPs protects each module, the
opportunities for clock gating decrease and so the dynamic
power savings are less. Conversely, increasing the number
of protected inputs per locked module increases the number
of protected operations, and therefore the number of gated
operations. At very high LUT allocation limits, every operation
that depends on DFG inputs can be protected, and therefore
gated, which in conjunction with gating downstream opera-
tions, brings dynamic power down to near-zero for protected
inputs. Naturally, this is an extreme case since for such a
scenario, much of the power will be dissipated in the LUTs
themselves. For the heuristic module-limited gating method,
this will happen when every operation in the DFG has a
LUT protecting it. However, since there is a direct inverse
relationship between the number of locked inputs and expected
SAT iterations required, these additional power savings comes
at the cost of decreased SAT attack resilience and increased
LUT power dissipation.

VII. CONCLUSION

In this work we propose using SFLL restore unit lookup
tables to store locked module outputs and therefore clock gate
entire locked modules to reduce dynamic power consumption.
We show that a system-level design approach guided by
operation data dependencies can yield power savings beyond
what a module-level approach can save. We demonstrate both a
module-constrained and a system-level clock gating approach
on synthesized designs from the MediaBench [27] suite.
Our proposed module-constrained and system-level approach
reduces dynamic power for protected inputs by 24.5% and
32.9% respectively compared to the non-gated locking method.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 22,2025 at 00:39:13 UTC from IEEE Xplore. Restrictions apply.

2.5 5.0 7.5 10.0
0.0

0.5

N
or

m
. D

yn
am

ic
 P

ow
. dct

2.5 5.0 7.5 10.0

ecb_enc4

2.5 5.0 7.5 10.0

fir

2.5 5.0 7.5 10.0

jctrans2

2.5 5.0 7.5 10.0

jdmerge1

2.5 5.0 7.5 10.0
Cm

0.0

0.5

N
or

m
. D

yn
am

ic
 P

ow
. jdmerge3

2.5 5.0 7.5 10.0
Cm

jdmerge4

2.5 5.0 7.5 10.0
Cm

motion2

2.5 5.0 7.5 10.0
Cm

motion3

2.5 5.0 7.5 10.0
Cm

noisest2

Breakdown of Varying LUT PIP Capacity Allocations on Locked Datapath Power Normalized to Conventional Locking

ILP optimal system-level gating Heuristic module-level gating

Fig. 3: Breakdown of how system dynamic power decreases as limits on the number of PIPs per locked module (Cm) are
raised for both module-level heuristic and system-level ILP methods. The same Cm value is set for all allocated functional
modules. Power is normalized to a system locked with a conventional no-gating appraoch.

dct

ecb_enc4 fir
jctrans2

jdmerge1
jdmerge3

jdmerge4
motion2

motion3
noisest2

Average
0.00

0.25

0.50

0.75

1.00

N
or

m
. s

ys
te

m
 d

yn
am

ic
 p

ow
er Dynamic Power Normalized to Conventional Locking with Cm=1

Heuristic module-level gating ILP optimal system-level gating

Fig. 4: Locked datapath dynamic power for benchmarks tested,
normalized to a conventionally locked datapath. Data is shown
for locking solutions found with Cm = 1 for all modules.

REFERENCES

[1] A. Chakraborty et al., “Keynote: A disquisition on logic locking,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2019.

[2] J. A. Roy et al., “Epic: Ending piracy of integrated circuits,” in
Conference on Design, automation and test in Europe, 2008.

[3] J. Rajendran et al., “Security analysis of logic obfuscation,” in Proceed-
ings of Design Automation Conference, 2012.

[4] ——, “Fault analysis-based logic encryption,” IEEE Transactions on
computers, vol. 64, no. 2, pp. 410–424, 2015.

[5] P. Subramanyan et al., “Evaluating the security of logic encryption algo-
rithms,” in 2015 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). IEEE, 2015, pp. 137–143.

[6] M. Yasin et al., “Sarlock: Sat attack resistant logic locking,” in Intl.
Symposium on Hardware Oriented Security and Trust, 2016.

[7] Y. Xie and A. Srivastava, “Anti-sat: Mitigating sat attack on logic
locking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 2, pp. 199–207, 2018.

[8] K. Shamsi et al., “Appsat: Approximately deobfuscating integrated
circuits,” in 2017 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). IEEE, 2017, pp. 95–100.

[9] Y. Shen and H. Zhou, “Double dip: Re-evaluating security of logic
encryption algorithms,” in Great Lakes Symposium on VLSI 2017, 2017.

[10] M. Yasin et al., “Removal attacks on logic locking and camouflaging
techniques,” Transactions on Emerging Topics in Computing, 2017.

[11] ——, “Provably-secure logic locking: From theory to practice,” in
Conference on Computer and Communications Security, 2017.

[12] Y. Liu et al., “Robust and attack resilient logic locking with a high
application-level impact,” ACM Journal on Emerging Technologies in
Computing Systems, 2021.

[13] M. Zuzak et al., “A resource binding approach to logic obfuscation,” in
2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE,
2021, pp. 235–240.

[14] C. Pilato et al., “On the optimization of behavioral logic locking for
high-level synthesis,” arXiv preprint arXiv:2105.09666, 2021.

[15] M. R. Muttaki et al., “Hlock: Locking ips at the high-level language,”
in 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE,
2021, pp. 79–84.

[16] C. Pilato et al., “Assure: Rtl locking against an untrusted foundry,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29,
no. 7, pp. 1306–1318, 2021.

[17] N. Limaye et al., “Fortifying rtl locking against oracle-less (untrusted
foundry) and oracle-guided attacks,” in 2021 58th ACM/IEEE Design
Automation Conference (DAC). IEEE, 2021, pp. 91–96.

[18] D. Xing et al., “Low overhead system-level obfuscation through hard-
ware resource sharing,” in 2023 24th International Symposium on
Quality Electronic Design (ISQED), 2023, pp. 1–8, ISSN: 1948-3295.

[19] D. Sirone and P. Subramanyan, “Functional analysis attacks on logic
locking,” IEEE Transactions on Information Forensics and Security,
vol. 15, pp. 2514–2527, 2020.

[20] A. Sengupta et al., “Truly stripping functionality for logic locking: A
fault-based perspective,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2020.

[21] M. Zuzak et al., “Trace logic locking: Improving the parametric space
of logic locking,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2020.

[22] H. Zhou et al., “Resolving the trilemma in logic encryption,” in
International Conference on Computer-Aided Design (ICCAD), 2019.

[23] C.-Y. Huang et al., “Data path allocation based on bipartite weighted
matching,” in Design Automation Conference, 1991.

[24] J.-M. Chang and M. Pedram, “Register allocation and binding for low
power,” in ACM/IEEE Design Automation Conference (DAC), 1995.

[25] A. Stammermann et al., “Binding allocation and floorplanning in low
power high-level synthesis,” in International Conference on Computer
Aided Design. IEEE, 2003.

[26] M. Yasin et al., “Sfll-hls: Stripped-functionality logic locking meets
high-level synthesis,” in Intl. Conf. on Computer-Aided Design, 2019.

[27] C. Lee et al., “Mediabench: A tool for evaluating and synthesizing
multimedia and communications systems,” in International Symposium
on Microarchitecture. IEEE, 1997.

[28] S. Ogrenci Memik et al., “A super-scheduler for embedded reconfig-
urable systems,” in IEEE/ACM International Conference on Computer
Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers
(Cat. No.01CH37281), Nov. 2001, pp. 391–394, iSSN: 1092-3152.

[29] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

[30] J. E. Stine et al., “FreePDK: An Open-Source Variation-Aware Design
Kit,” in 2007 IEEE International Conference on Microelectronic Systems
Education (MSE’07), Jun. 2007, pp. 173–174.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 22,2025 at 00:39:13 UTC from IEEE Xplore. Restrictions apply.

