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Abstract 

A central goal of neuroscience is to understand how function-relevant brain activations are 

generated. Here we test the hypothesis that function-relevant brain activations are generated 

primarily by distributed network flows. We focused on visual processing in human cortex, given 

the long-standing literature supporting the functional relevance of brain activations in visual cortex 

regions exhibiting visual category selectivity. We began by using fMRI data from N=352 human 

participants to identify category-specific responses in visual cortex for images of faces, places, 

body parts, and tools. We then systematically tested the hypothesis that distributed network flows 

can generate these localized visual category selective responses. This was accomplished using 

a recently developed approach for simulating – in a highly empirically constrained manner – the 

generation of task-evoked brain activations by modeling activity flowing over intrinsic brain 

connections. We next tested refinements to our hypothesis, focusing on how stimulus-driven 

network interactions initialized in V1 generate downstream visual category selectivity. We found 

evidence that network flows directly from V1 were sufficient for generating visual category 

selectivity, but that additional, globally distributed (whole-cortex) network flows increased 

category selectivity further. Using null network architectures we also found that each region’s 

unique intrinsic “connectivity fingerprint” was key to the generation of category selectivity. These 

results generalized across regions associated with all four visual categories tested (bodies, faces, 

places, and tools), and provide evidence that the human brain's intrinsic network organization 

plays a prominent role in the generation of functionally relevant, localized responses. 

 

Author Summary 
A fundamental question in neuroscience has persisted for over a century: to what extent do 

distributed processes drive brain function? The existence of category-selective regions within 

visual cortex provides long-standing evidence supporting localized computations, wherein 
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specialized functions (e.g., selective responsiveness to face images) are thought to be primarily 

generated by within-region processes. This account was recently updated to include category 

selectivity dispersed across visual cortex, in the absence of category-selective regions. Here we 

provide groundwork evidence demonstrating that locally-exhibited visual-category-selective 

responses can be accurately generated via distributed activity flowing over globally connected 

systems. These processes were simulated via empirically-based computational models initialized 

by stimulus-evoked activity patterns and empirical connectivity matching each category-selective 

region’s unique intrinsic functional connectivity fingerprint. Results demonstrate that activity 

flowing over the human brain’s distributed network architecture can account for the generation of 

category selectivity in visual cortex regions. 

 
Introduction 
Fundamental progress in cognitive neuroscience will require understanding how functionally-

relevant, localized activations are established in the distributed and networked brain systems 

within which they are embedded. Most modern neuroscience assumes that both local (i.e., 

spatially restricted) and distributed (i.e., spatially dispersed across connected systems) processes 

coexist in the brain [1], but the extent to which (distributed) brain connectivity patterns shape 

localized activations remains unclear. There is extensive evidence for specific cortical regions 

exhibiting highly selective responses for visual categories such as bodies [2,3], faces [4], places 

[5], and tools [6]. For instance, selectivity for face images in the fusiform face area (FFA) has been 

validated with human neuroimaging [7], neural recordings in non-human primates [8], human 

lesion studies [9], and brain stimulation in humans [10]. In parallel, a landmark study provided 

evidence that visual categories could be decoded from dispersed and overlapping activity patterns 

in ventral temporal cortex [11]. Contemporaneous work proposed that a cortical region’s 

functioning is largely determined by its connectivity fingerprint (not to be confused with individual 

difference “connectome fingerprinting” [12]) – a region’s pattern of connections that specify what 
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information that region receives and conveys [13]. Additionally, prior work has shown that a brain 

region’s response can be predicted by a model of its connective field, given by spatially-modeled 

(Gaussian) activity patterns in other parts of the brain [14]. The key hypothesis that this collective 

history of research suggests is that connectivity fingerprints are not just a byproduct of a region’s 

function, but a key determinant [15].  

Over recent decades, the functional relevance of brain network interactions has been 

borne out by a growing body of network neuroscience [16] studies assessing structural, functional, 

and effective connections [17,18] during rest and task [19]. A core theoretical position across 

network neuroscience is that neurocognitive information is propagated across structurally and/or 

functionally organized brain systems. Building on this, we propose that whilst propagating, 

information is transformed not only by local computations, but by features of connectomic 

organization as well. In this framework, brain systems do not solely act as routes along which 

locally-computed information can be conveyed, but as additional means of shaping localized 

activations along the way [20]. Information processing is thus a complex operation that is at least 

partially specified by brain network interaction patterns. The critical gap in the literature is 

systematically quantifying the extent that network interactions specify or account for functionally-

relevant processes during tasks. Supporting a crucial role for connectivity fingerprints in visual 

processing, work by Osher et al. [21] found that structural connectivity fingerprints can predict 

visual category responses in select ventral temporal cortex regions. However, because statistical 

associations were used to make those predictions (rather than a generative and/or mechanistic 

model), it remains unknown why connectivity is predictive of visual category selectivity. Moreover, 

it is unclear whether the brain's intrinsic (i.e., resting-state [22-25]) functional network architecture 

specifies the interactions required to support such a mechanism. Thus, building on work by Osher 

et al. [21] (as well as [26]), quantifying the extent that intrinsic functional network interactions 

shape visual category selectivity is a crucial next step in understanding how function-relevant, 

localized activations are generated in the human brain.  
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Our recent work demonstrated the importance of activity flow processes – the movement 

of activity between neural populations – in generating neurocognitive processes [27,28]. The 

activity flow mapping approach can be conceptualized as generating computational models from 

empirical connectivity data that are then tested empirically using task-evoked activations [20]. 

This computational modeling approach is unique in its contact with empirical data, allowing 

especially rigorous conclusions regarding the empirical validity of hypothesized model features in 

generating cognitive processes (e.g., visual category selectivity). Specifically, activity flow 

mapping makes contact with empirical data in three ways: (1) empirical brain connectivity is used 

to build an activity flow model, (2) inputs to the model are empirical brain activations in "source" 

(e.g., sensory input) regions, and (3) model-generated cognitive activations are tested as 

predicted mappings of "target" empirical brain activations. The first two steps keep the proposed 

activity flow mechanisms close to empirical reality, while the last step empirically tests the validity 

and causal sufficiency of the proposed activity flow mechanisms for the generation of the cognitive 

processes of interest. 

In the present study, we hypothesized that visual category selectivity exhibited by visual 

cortex regions is generated by task-evoked activity flowing over each of these region’s unique 

connectivity fingerprints. By systematically testing several models of such activity flow 

processes  (Fig 1), we establish the extent that activity flowing over the brain’s distributed resting-

state network architecture can account for localized visual category selectivity. Comparing 

process models in this manner not only provides a quantitative estimate for how well distal activity 

flowing over connectivity patterns account for task-evoked activations (Fig 1A), but also the impact 

of known visual system features (Fig 1B-D) amidst the overall process. Importantly, this supports 

a framework for uncovering the functional importance of both localized and distributed processes, 

concurrently. We propose that distributed activity, selected by a given region’s connectivity 

fingerprint, converges on that region, conferring it with locally specialized functioning (e.g., 

category selectivity).  
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One likely purpose of this localized convergence (e.g., in the FFA) of network interactions 

is to represent related information (e.g., faces) distributed throughout the brain in a common 

space for efficient competition between alternative activity patterns. In this account, FFA may 

facilitate face recognition via implementing a winner-take-all computation (via lateral inhibition; 

[29]) between alternate faces represented in FFA, which is consistent with many computational 

models of local neural functions [30]. Importantly, we propose that the selective activity observed 

in functionally specialized regions is generated primarily by distributed activity flowing over each 

region’s connectivity fingerprint. Our hypotheses suggest that connectivity patterns play an active, 

generative role in localized region-level activity, and predict that estimating activity flow over a 

region’s unique connectivity fingerprint would account for the majority of that region’s localized 

task-evoked selectivity. Importantly, evidence that distributed activity flow processes provide the 

dominant influence on visual-category-selective responses does not discount the importance of 

local computations, but rather provides the groundwork for understanding how network 

interactions can sufficiently generate localized activations that may be mistaken for local 

computations.  

Activity flow mapping [27,28] is well-suited to test these hypotheses (relative to other 

approaches, such as standard encoding models and artificial neural networks) because all 

parameters are explicitly based on empirical quantities, rather than abstractions [31,20]. Brain 

connectivity parameters (i.e., a region’s unique connectivity fingerprint) are key to characterizing 

the network-based processes that converge to generate localized responses. Moreover, we 

explicitly test whether activity flow mapping based on intrinsic connectivity fingerprints can 

generate localized visual category selectivity, which provides novel evidence for the functional 

relevance of the brain’s resting-state network architecture within the context of well-established 

localized visual responses. 

We used resting-state functional connections within our models based on extensive 

evidence that they are highly similar to functional connections during a wide variety of task states 
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[32-34]. Estimating a single set of connection weights for our models, rather than a separate set 

of connection weights for each task condition, allowed us to use a parsimonious set of general 

(as opposed to stimulus-specific) visual processing models. The intrinsic (i.e., state-general) 

nature of resting-state functional connectivity partially reflects constraints from structural 

connectivity on resting-state functional connections [35]. Importantly, our use of multiple 

regression (rather than the more standard Pearson correlation) to estimate functional connectivity 

is known to make the relationship to underlying structural connectivity stronger [36,37]. This is 

due to multiple regression fitting all time-series simultaneously, substantially reducing confounded 

and indirect functional connections to more closely reflect structural connections [27,38]. 

Together, these prior studies suggest our use of resting-state functional connectivity estimated 

using multiple regression resulted in highly stable estimates of underlying connectivity that 

generalize well to a variety of brain states (e.g., all visual processing conditions included here). 

We tested our hypotheses (Fig 1) — an initial step toward understanding how localized 

activations emerge from distributed network interactions in the scope of visual category selectivity 

— utilizing human functional magnetic resonance imaging (fMRI) resting- and task-state data from 

the Human Connectome Project (HCP) [39] young adult release. We focused on category-specific 

representations of bodies, faces, places, and tools embedded in a working memory task. These 

visual categories correspond to functionally specialized visual cortex regions that are highly 

replicated in the literature, such as the fusiform face area (FFA) and the parahippocampal place 

area (PPA). In sets (or complexes) of functional ROIs in the visual cortex, we quantified actual 

and activity-flow-mapped visual category selectivity and estimated the degree to which fully 

distributed (i.e., whole-cortex) network interactions (Fig 1A) contributed to this selectivity. We 

probed the differential contributions of large-scale functional networks to activity flow processes 

and used substitution null models to corroborate that a given ROI’s connectivity fingerprint 

significantly shaped its visual category selectivity. Given that visual input from the retina is known 

to initially arrive (via the lateral geniculate nucleus) in cortex primarily via V1, along with evidence 
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that fMRI activity in V1 represents a retinotopic map of visual features [40,41], we also tested 

refined hypotheses (Fig 1B-1D) that specify stimulus-driven activity flow processes as initialized 

in V1. In adapting the activity flow mapping procedure to address stimulus-driven hypotheses, we 

were also able to reduce the potential impact of causal circularity by constraining empirical 

parameters to network interactions originating in V1 only. Systematically testing how well visual 

category selectivity can be generated via empirically-constrained activity flow mapping constitutes 

an important first step in developing a network-interaction-based framework for how localized 

functionality emerges within cortex. 

 

 

Fig 1. Network interaction models that could generate localized visual category selectivity. 
In all panels, a simplified model schematic of face selectivity in the fusiform face area and 
posterior superior temporal sulcus (FFA/pSTS, Methods) is depicted as a localized outcome of 
network interactions. We tested these models by applying activity flow mapping from Cole et al. 
[27,28] to select held-out “target” regions (including FFA/pSTS). Circles: regions in a network 
(color legend: bottom [25]). Gray arrows: activity flow processes (Methods), which are weighted 
(by each region's connectivity fingerprint) but shown as uniform for visualization purposes. (A) 
This model predicts that all cortical network interactions (“fully distributed”) converge to generate 
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localized face selectivity. (B) This model predicts that only stimulus-driven interactions with V1 
generate face selectivity. We tested this by restricting activity flow mapping initialization to vertex-
level data from V1. (C) Extending panel B: This model predicts that stimulus-driven interactions 
are further shaped by activity flow processes in visual networks. We tested this by simulating the 
flow of V1-initialized stimulus-evoked activity through the entire visual system. (D) This model 
predicts that fully distributed interactions (i.e., beyond just the visual system in panel C) are 
important for generating localized visual selectivity. We tested this by simulating the flow of V1-
initialized stimulus-evoked activity through the entire set of cortical brain regions, including 
recurrent/feedback activity flow. Using mappings initialized in V1 (as in B-C), we assessed how 
well selectivity was generated when the fully distributed set of network interactions was initialized 
by stimulus-driven activity flow processes. 
 
Materials and methods 
Data acquisition and participants 

Data used in the present study were collected by the Washington University-Minnesota 

Consortium of the Human Connectome Project (HCP) [39] as part of the young adult (S1200) 

release. Participants all provided written informed consent in accordance with protocols approved 

by the ethics review board of Washington University. This dataset included resting- and task-state 

functional neuroimaging data (see following Methods sections for more details on each). We 

obtained the minimally preprocessed [42] neuroimaging data for N=352 healthy young adults. 

Following the pipeline outlined Ito et al. [43], this N=352 subset of the HCP participants were 

selected to ensure high quality scan data and no familial relations. All study procedures were 

approved by the Institutional Review Board of Rutgers University-Newark. Further details on 

participant recruitment can be found in Van Essen et al. [39].  

 We used a split-sample validation approach to minimize false discovery rate [44]. The 

cohort of HCP participants in the present study (N=352) were quasi-randomly allocated to either 

a discovery (n=176) or replication (n=176) dataset. Participants were chosen randomly, but the 

sample size of both discovery and replication datasets were set at n=176 to ensure equal split-

halves. Each dataset was analyzed identically but independently. Participants in the discovery 

dataset (77 men, 99 women) had the following age ranges: 22-25 years (26.14%), 26-30 years 

(41.48%), 31-35 years (30.68%), and 36+ years (1.7%). Participants in the replication dataset (93 
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men, 83 women) had the following age ranges: 22-25 years (22.16%), 26-30 years (43.18%), 31-

35 years (34.09%), and 36+ years (0.57%). Results presented in figures refer to the discovery 

dataset, with replication dataset results reported in-text.  

 
Task paradigm 
In a subset of analyses (see “Network analyses: Response profile network contributions”), we 

used data corresponding to seven HCP tasks and 24 task conditions that sampled diverse 

cognitive domains: emotion, gambling reward, language, motor, relational reasoning, social 

cognition, and working memory. In all other analyses we focused on the working 

memory/category-specific representation n-back task (see [45] for more details on all tasks). Prior 

studies suggest that the n-back task can be used to test hypotheses regarding the function(s) of 

specific brain areas [46]. Further, manipulating how far back a participant must remember (0-back 

versus 2-back) allows for the assessment of working memory maintenance (along with other 

contrasts, such as stimulus type). While working memory is not the main interest of the present 

study, specifically manipulating working memory has the added benefit of promoting task 

engagement.  

The cognitive domain of interest in the present study was the processing of semantic 

categories [11,47,48]. Category-specific representations were embedded in the n-back task via 

blocks of trials that presented images of four reliably studied and distinct visual semantic 

categories [6,21]: (1) bodies [2,3]; (2) faces [4,49,50] ; (3) places [5,51]; and (4) tools [47,52,53]. 

The specifics of the n-back task are detailed in Barch et al. [45]. Briefly, the n-back task 

included 2 runs with blocks of visual category trials (8 blocks, 10 trials each, 2.5 seconds each) 

and fixation blocks (4 total, 15 seconds each). Half of the blocks were 0-back and half were 2-

back. During 0-back working memory tasks, participants determined via button-press whether 

presented stimuli (images of either bodies, faces, places, or tools) matched a constant target 

shown in the initial cue screen. During 2-back working memory tasks, participants were asked to 
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indicate if the present stimulus matched a target from two screens back. Given that working 

memory load was not the main interest of the present study, results presented here reflect an 

average across 0-back and 2-back conditions (i.e., fMRI data was averaged after all 

preprocessing steps), except for in analyses examining “response profiles” (i.e., responsiveness 

of regions-of-interest to 24 HCP conditions, assessed independently). Additionally, preliminary 

analyses found no evidence that visual category selectivity was variable across the two working 

memory load conditions.  

 
MRI parameters 
All MRI data were collected at Washington University in St. Louis, Missouri, USA in a customized 

Siemens 3T “Connectome Skyra” scanner. Whole-brain, multiband, and echo-planar images 

(EPI) were acquired with a 32-channel head coil. The repetition time (TR) was 720 ms; the echo 

time (TE) was 33.1 ms; the flip angle was 52 degrees; the bandwidth (BW) was 2290 Hz/Px; in-

plane field-of-view (FoV) was 208 x 180 mm; 72 slices; 2.0 mm isotropic voxels; and the multiband 

acceleration factor was 8. Whole-brain and high-resolution T1-weighted and T2-weighted 

anatomical scans were also acquired, with an isotropic voxel resolution of 0.7 mm. All imaging 

data were collected over two days for each participant. Each day included two resting-state fMRI 

scans, each lasting 14.4 minutes (for a total of approximately 29 minutes of rest data per day). 

During rest, participants were instructed to keep their eyes open and fixated. Task fMRI (30 

minutes of task data per day) followed resting-state fMRI scans on each day. Each of the 7 tasks 

were performed over two consecutive runs. Further details on MRI protocols and parameters can 

be found in Van Essen et al. [39]. 

 
fMRI preprocessing 
We acquired minimally preprocessed data [42] from the HCP database 

(www.humanconnectome.org). The minimal preprocessing pipeline is extensively detailed in 
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Glasser et al. [42] and is openly available (https://github.com/Washington-

University/HCPpipelines). In-brief, minimal preprocessing included: anatomic reconstruction and 

segmentation, motion correction, intensity normalization, and EPI reconstruction to a standard 

(surface-based) template. We also implemented HCP MSM-All registration (multimodal surface 

matching registration based on areal features from multiple sources, including: cortical 

folding/sulcal depth, myelin maps, resting-state networks, and visuotopic maps; [54]). 

Preprocessing was performed equivalently but independently on all functional runs, including 

resting-states and the 24 task-state conditions. The resulting data were in CIFTI grayordinate (i.e., 

vertex) space. We performed additional preprocessing steps on cortical vertices (59,412 vertices 

across the two hemispheres). On both resting- and task-state data, we removed the first five 

frames of each fMRI run, demeaned and detrended the timeseries, and performed nuisance 

regression. We followed a variant [43] on methods suggested by Ciric et al. [55] to model and 

regress out nuisance parameters, including motion and physiological noise. We performed 

nuisance regression to remove six motion parameters, their derivatives, and quadratics (24 total). 

Anatomical CompCor (aCompCor; [56]) was used on white matter and ventricle timeseries to 

model physiological noise. The first five principal components from white matter and ventricles 

were independently extracted. These parameters, their derivatives, and the quadratics of all 

regressors were removed (40 total). Altogether, 64 nuisance parameters were modeled, and 

associated variance removed from the data.  

Global signal was not removed given evidence that it can artificially introduce negative 

relationships [57,58] and is non-standard for task activation analyses. However, the nuisance 

parameters modeled and removed with aCompCor contain components similar to the proposed 

global signal, with the added benefit of not removing gray matter signals [43,59].  

 
Task-state activity estimation 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2022.02.19.481103doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.19.481103


 13 

Cortical activations related to task-state fMRI conditions (n-back visual semantic categories) were 

estimated by a standard general linear model (GLM), which convolved task timing (per block-

design condition) with the SPM canonical hemodynamic response function [60]. This was 

performed per cortical vertex, each belonging to a parcel (or region) of the Glasser et al. [54] 

multimodal parcellation (MMP) atlas. Average coefficients of the GLMs were utilized for each 

region or functional complex (described further below in “Identification of functional complexes”) 

as estimates of visual category evoked brain activity. Note that the fully-distributed model (Fig. 

1A) was performed on the region-level data; the stimulus-driven (Fig. 1B) and stimulus-driven 

plus visual network interactions (Fig. 1C) models were performed on vertex-level data before 

averaging into functional complexes; and the stimulus-driven plus fully-distributed model (Fig. 1D) 

was performed on vertex-initialized data in the first step and region-level data in the second step. 

The steps and rationale of each of these models are extensively detailed below.  

 
Identification of functional complexes 
To address the question of whether distributed network interactions can map [19,27,28] localized, 

category-selective functional responses, we focused on the functional brain regions identified in 

Osher et al. [21] given the similarity of the four visual semantic categories in that study to the HCP 

n-back task studied herein. Additionally, as suggested by Poldrack et al. [61], variables that will 

be used in predictive analyses should not be chosen in an empirically-driven manner (e.g., from 

post hoc cross validation and/or optimization procedures) because this has the potential to 

artificially inflate accuracy due to circularity. Thus, selecting functional regions of interest a priori 

has the benefit of controlling false positives in accuracy, particularly with our focus on the well-

established visual category literature. Upon further review of the literature (at the time of originally 

conducting this study and compiling this manuscript: 2021-2022) as well as the regions belonging 

to the Glasser et al. [54] MMP atlas, we observed that these functional regions: (1) contained 

multiple MMP regions (e.g., the parahippocampal place area or PPA, which contained 6 MMP 
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regions as in [51]); (2) did not have an exact terminological match in the MMP atlas; and/or (3) 

included two discrete locations (e.g., the retrosplenial complex, or RSC, often studied in 

conjunction with the PPA). To address this we first performed a literature search of each of the 

Osher et al. [21] functional regions with Google scholar (https://scholar.google.com/) and 

Neurosynth (https://neurosynth.org/), filtering for relevance, year, and citation count (when 

possible) (see Table 1 references in right-most column). We focused further on publications that 

had corresponding volumetric coordinates (or MMP surface region labels when possible) and 

generated a list of Montreal Neurological Institute (MNI) x/y/z volumetric coordinates for each 

functional region (with a minimum of 10 entries per region). We then used the average x/y/z 

coordinate set as a reference to identify corresponding MMP regions (Table 2).  

To convert from volumetric space to region space, we employed the following steps (using 

Connectome workbench, FreeSurfer, and AFNI/SUMA commands, per hemisphere): (1) convert 

the MMP atlas to FreeSurfer’s fsaverage space; (2) convert fsaverage to the surface-mesh MNI-

152 template (which is also included in AFNI); (3) convert surface MNI-152 template to volumetric 

MNI-template and obtain coordinates. Additional commands were used to ensure that the 

templates aligned as best as possible, including zero-padding, thicker ribbons (that were later 

filled), and adding MMP sphere labels. To obtain x/y/z coordinates, we divided the template into 

equal portions perpendicular to the long axis of a given sphere label, identified the middle division, 

then calculated the centroid. We then found the MMP regions that were physically closest to the 

reference coordinate set for each functional region. We then referred to the Glasser et al. [54] 

supplemental results (as well as publications they based the MMP atlas upon; see references 

with asterisks in Table 1) to exclude regions that were physically close but functionally irrelevant 

(e.g., auditory regions near the pSTS, which was a potential ROI for face processing).  

The final set of regions, including their proposed category selectivity, network affiliations, 

and references are listed in Table 1. The term “functional complex” indicates firstly that more than 

one MMP region comprised each complex, and secondly serves to distinguish an MMP atlas 
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region from a category-selective (based on prior literature) complex in the present study. Further, 

in some cases there were two functionally relevant complexes in the literature (e.g., PPA and 

RSC, both relevant to place processing, as in [21]), therefore both were included. When 

appropriate, we applied the Cole-Anticevic brain-wide network partition (CAB-NP, [25], Fig 3C), 

which was based on HCP resting-state fMRI data and was generated from a Louvain community 

detection algorithm that assigned MMP regions to 12 functional networks (labeled via distinct 

colors in Fig 3C). Table 1 lists the network assignments of each region, which is further reflected 

in Results figures by color labeling matching Fig 3C. The reference sets of volumetric coordinates 

(x/y/z) are listed in Table 2.  

 
Table 1. Specifications of functional brain areas. 

Visual 
category 

Region (acronym, 
L/R indices) 

Network Functional 
complex 

References 

Bodies         

  MST, 2, 182 VIS2 EBA [2, 3, 45, 62-65*, 66-72] 

  PH, 138, 318 VIS2 EBA [2, 3, 45, 62-72, 73*, 74*] 

  V4t, 156, 336 VIS2 EBA [2, 3, 45, 62-63, 64*, 65*, 66-72, 
75*] 

  FST, 157, 337 VIS2 EBA [2, 3, 45, 62-63, 64*, 65*, 66-72] 

  TE2p, 136, 316 DAN FBA [3, 67, 70-72, 73*, 74*, 76-81] 

Faces         

  FFC, 18, 198 VIS2 FFA [4*, 45, 66, 67, 80, 82-84*, 85-92] 

  STSdp, 129, 309 LAN pSTS [69-71, 81, 87, 88, 90-96] 

  STSvp, 130, 310 DMN pSTS [69-71, 81, 87, 88, 90-96] 

Places         

  PHA1, 126, 306 DMN PPA [5, 45, 66, 67, 97-104] 

  PHA2, 155, 335 DMN PPA [5, 45, 66, 67, 97-104] 

  PHA3, 127, 307 DAN PPA [5, 45, 66, 67, 97-104] 
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  VMV1, 153, 333 VIS2 PPA [5, 45, 66, 67, 97-104, 105*, 106] 

  VMV2, 160, 340 VIS2 PPA [5, 45, 66, 67, 97-104, 105*, 106*] 

  VMV3, 154, 334 VIS2 PPA [5, 41*, 45, 66, 67, 97-104] 

  POS1, 31, 211 DMN RSC [5, 82*, 97, 98, 101, 102, 104, 107-
109] 

Tools         

  V4, 6, 186 VIS2 LOC [65*, 67, 72, 86, 99, 110, 111*, 112-
122] 

  V8, 7, 187 VIS2 LOC [65*, 67, 72, 86, 99, 110-122, 123*] 

  LO1, 20, 200 VIS2 LOC [65*, 67, 72, 75*, 86, 99, 110, 111*, 
112-122] 

  LO2, 21, 201 VIS2 LOC [65*, 67, 72, 75*, 86, 99, 110, 111*, 
112-122] 

  PIT, 22, 202 VIS2 LOC [8*, 11*, 64*, 65*, 67, 72, 86, 99, 
110-122] 

  V3CD, 158, 338 VIS2 LOC [65*, 67, 72, 86, 99, 110-122] 
(Column 1) Visual categories to group remaining rows into four categories: bodies, faces, places, 
and tools. (Column 2) The MMP [54] brain region acronym and corresponding indices (numbers 
in the MMP atlas) for the left and right (L/R) hemispheres. MST = medial superior temporal area; 
PH = basal parietal area (superior); V4t = visual area V4t; FST = fundus of the superior temporal 
area; TE2p = temporal area 2 (posterior); FFC = fusiform face complex (MMP terminology for this 
region); STSdp = posterior superior temporal sulcus (dorsal); STSvp = posterior superior temporal 
sulcus (ventral); PHA1-3 = parahippocampal areas 1-3; VMV1-3 = ventromedial visual areas 1-3; 
POS1 = parieto-occipital sulcus area 1; V4 = fourth visual area; V8 = eighth visual area; LO1 = 
lateral occipital area 1; LO2 = lateral occipital area 2; PIT = posterior inferotemporal; V3CD = area 
V3CD. (Column 3) CAB-NP [25] network each region belongs to (see Results Figs 3 and 4) 
(Column 4) The functional complex that each region belongs to, based upon prior literature. EBA 
= extrastriate body area; FBA = fusiform body area; FFA = fusiform face area (we used “FFA” 
versus “FFC” for consistency with the broader literature); pSTS = posterior superior temporal 
sulcus; PPA = parahippocampal place area; RSC = retrosplenial complex; LOC = lateral occipital 
complex. (Column 5) References used to identify volumetric coordinates (Table 2) corresponding 
to each functional complex and/or references to corroborate MMP regions (identified with 
asterisks) given their reference in Glasser et al. [54]. See Reference list for corresponding 
manuscript. 
  
Table 2. Average MNI coordinates for each functional complex from the literature. 

  Left hemisphere Right hemisphere 
Functional Complex x 

mean (SD) 
y 

mean (SD) 
z 

mean (SD) 
x 

mean (SD) 
y 

mean (SD) 
z 

mean (SD) 
EBA -48.9 (6.6) -73 (4.6) 2.7 (8.3) 45.7 (6.5) -69.5 (3.5) -0.7 (3.9) 
FBA -39.7 (4) -44.2 (8.2) -20.2 (1.6) 41.9 (3.5) -47 (6.2) -21.5 (3.7) 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2024. ; https://doi.org/10.1101/2022.02.19.481103doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.19.481103


 17 

FFA -41.2 (3.6) -53.6 (7.2) -18.6 (3.9) 40.6 (3.5) -51.7 (3.6) -18.6 (5.2) 
pSTS -51.8 (6.5) -49.9 (9.9) 8 (6) 51.3 (4.1) -49 (8.1) 8.6 (4.4) 
PPA -27.2 (4.9) -44.6 (6.2) -9 (4.7) 25.6 (4.4) -42.4 (5.5) -10.3 (5.1) 
RSC -13.3 (4.2) -56.5 (6) 10 (6.2) 14.3 (5) -54 (5.6) 9.3 (7.8) 
LOC -45.7 (7.1) -70.4 (8.5) -8.5 (6.3) 42.5 (6.4) -69.4 (11.1) -9 (7.2) 

(Column 1) The functional complexes assessed in the present study. Naming conventions are 
the same as in Table 1. (Columns 2-4) Stereotactic (x/y/z) MNI coordinates for the left 
hemisphere; mean and standard deviation (SD) of at least 10 publications per complex (see Table 
1 for full list of references). Publications that listed coordinates in Talairach space were converted 
to MNI space following Lacadie et al. [124]. Note that some publications reported multiple 
functional localizer experiments, which were treated as separate entries in obtaining average 
coordinates. (Columns 5-7) The same as in columns 2-4, but for the right hemisphere. These 
coordinate sets were used as references to locate corresponding MMP [54] regions, yielding 
surface based functional complexes. 
 

Resting-state functional connectivity estimation 
Functional connectivity (FC) was modeled as a series of target dependent variables (i.e., each 

brain region), each with multiple source independent variables (i.e., other brain regions) (see 

following section “Activity flow mapping: a generative model”). As in Cole et al. [27], source 

vertices excluded all vertices within a 10 mm dilated mask of the target region (as well as 

excluding vertices of the target region itself). This reduced potential circularity related to spatial 

autocorrelation by avoiding nearby vertices in predicting the activity of the target. Modified source 

sets of vertex-level timeseries were then averaged together based on their Glasser et al. [54] 

MMP region assignment. FC was then estimated with a method proposed by Sanchez-Romero 

and Cole [125] termed combinedFC. CombinedFC integrates the standard methods of bivariate 

correlation, partial correlation, and multiple regression together to account for causal confounds 

better than each method alone (as in Results Fig 3A). In Sanchez-Romero and Cole [125], 

combinedFC improved precision in a series of simulated networks, and retained robust network 

structure with empirical fMRI data (see [125] for a detailed report of this method). Briefly, each 

participant’s resting-state data (pre-processed) was firstly assessed with partial correlation 

(amongst each pair of regions, conditioning on all other regions) to find conditional associations, 

which were examined for statistical significance. This step addressed potential confounders and 
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causal chains [126] and built an initial connectivity architecture by adding in significantly correlated 

edges only. Then, bivariate correlation estimates (i.e., Pearson correlation) for each pair of 

connected regions (from the initial partial correlation step) were used to remove spurious edges 

resulting from conditioning on colliders (specifically, edges where r was statistically equal to zero). 

Lastly, a multiple regression procedure was performed to scale the estimated edge weights. For 

each target region functioning as a response variable, all other connected source regions 

functioned as regressors to estimate the final combinedFC weight. 

 
Activity flow mapping: a generative model 
Activity flow mapping is a generative modeling approach that maps held-out brain activity based 

upon the inherent link between activation patterns and functional connectivity [20,32,127,128]] 

(i.e., an empirically-parameterized extension of generative network models outlined in Betzel and 

Bassett [129]). Activity flow was developed by Cole et al. [27] (see Cocuzza et al. [28] for further 

details), and is described by Formula 1 (Fig 2): 

𝑀𝑎𝑝𝑝𝑒𝑑	𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦! = ∑ .𝑎𝑐𝑡𝑢𝑎𝑙	𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦" ∗ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦"↔!4"$!                       (1) 

Where j is a held-out brain region, and i indexes all other regions in a given parcellation. Note that 

the standard application of activity flow mapping given by Formula 1 is consistent with the “fully 

distributed” mapping of Fig 1A (i.e., mapping that is used to generate visual category selectivity, 

see “Category selectivity” below) because source regions (i) refer to all other cortical regions. 

Variations on this are outlined in later Methods sections (see the following sections below titled 

“Stimulus-driven visual category selectivity” and “Category selectivity from stimulus-driven 

network interactions further shaped by fully distributed network interactions”). This method 

induces the bias that brain activations are propagated and shaped via distributed network 

interactions. Throughout the present study, the term “distributed” means globally connected brain 

systems that are specified by functional brain network organization (i.e., functional connectomes). 

Applied to research questions on functional processing, activity flow maps task-evoked 
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(functionally relevant) activity in held-out target regions as the sum of the task-evoked activity in 

all other source regions scaled by FC estimates between the target region and corresponding 

source regions (Formula 1). The activity flow mapping procedure explicitly tests the hypothesis 

that the sum of empirically-based source region activity, parameterized by empirical patterns of 

brain connectivity, is equal to target region activity. Using a simulated model of neural processing, 

Cole et al. [27] found that activity flow mapping was most accurate when a global coupling 

parameter was high and the strength of self-coupling (local) connections was low (Fig 2B). 

Critically, this suggests that the successful application of fully distributed activity flow mapping 

(Fig 1A) to empirical brain data reflects similar high global coupling properties being preserved in 

real (rather than simulated) data. Thus, the success of activity flow mapping can be taken as a 

proxy for how much signals over distributed network interactions contribute to a given activation 

(see “Category selectivity” below for more details). 
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Fig 2. Activity flow procedure to map task activity in held out brain regions. (A) Activity flow 
mapping toy diagram and formula. Task activity for held-out region j (purple) is mapped as the 
sum of task activity of all other cortical regions, i (coral) (n = total number of regions), weighted 
by their connectivity estimates with j (gray). (B) Activity flow simulation results (reproduced with 
permission from [27]) demonstrating that activity flow mapping is most successful when 
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distributed processing mechanisms are high and localized processing mechanisms are low. (C) 
Example of activity flow mapping with empirical data (steps 1-6) (reproduced with permission from 
[28]). For a given target region j, estimates of intrinsic (e.g., resting-state) connectivity between j 
and all other source regions (step 1) are multiplied by all other regions’ actual task activations 
(step 2). This yields an activity flows map quantifying the contribution of all other regions’ activity 
flow upon the held-out region, j, for the task of interest (step 3). These are summed to equal the 
mapped task activity of j (step 4). This procedure is iterated over all regions to generate activity-
flow-mapped task activations across the whole cortex (step 5). This is compared with the actual 
whole-cortex map of task activations via Pearson’s r, MAE, and R2 to estimate accuracy (step 6). 
Importantly, this approach is flexible to different estimates of connectivity. Source vertices not 
included in the analyses (10 mm from the target region j; see Methods) are depicted in green. 
 

To map category-selective responses to bodies, faces, places, and tools we applied the 

activity flow approach to each of these categories independently. Actual task activations used 

were beta estimates generated by task GLMs (described above in “Task-state activity 

estimation”), with a focus on the regions comprising functional complexes as the held-out target 

regions (described above in “Identification of functional complexes”). Functional connectivity 

estimates between targets (functional complex regions) and sources (all other connected regions) 

were based upon resting-state timeseries and estimated via combinedFC (described above in 

“Resting-state functional connectivity”). To assess accuracy, activity-flow-mapped category 

responses were compared to actual (i.e., empirical) category responses via Pearson r correlation 

coefficient (NumPy corrcoef function in Python), mean absolute error (MAE), and the coefficient 

of determination (R2) (sklearn r2_score function in Python). 

Each of these indices quantified a different aspect of accuracy, altogether providing a 

thorough evaluation of activity flow mapping. In brief, Pearson’s r estimated the linear correlation 

between actual and mapped brain activations, with a potential range from -1 to 1 and the property 

of scale invariance. MAE measured the arithmetic mean of absolute errors between actual and 

mapped brain activations, with a sensitivity to scale. The coefficient of determination (R2) 

estimated the percent of unscaled variance in the actual brain activations that was accounted for 

in the mapped activations. Note that R2 maintains a range of negative infinity to 1; from 0 to 1 R2 

can be interpreted as 0 to 100% variance, but negative values indicate incorrectly scaled 

predictions. Thus, each index had clear advantages and disadvantages, but altogether provided 
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a complementary, full characterization of mapping accuracy. In all cases, these comparison 

statistics were taken per participant, then averaged across participants to provide a random 

effects estimate.  

 
Category selectivity 
To assess how selective each functional complex of interest was for a given visual category, we 

measured the ratio of category activation amplitude divided by non-category activation amplitude, 

for both activity-flow-mapped data and actual data, per participant. For example, for the functional 

complex of the extrastriate body area (EBA) and fusiform body area (FBA) (see above: 

“Identification of functional complexes”), we quantified body responses divided by non-body 

responses. Importantly, non-category responses included only other n-back conditions, and not 

any other HCP task condition, such that the estimation of visual category selectivity only considers 

comparable task manipulations. Per participant and functional complex, we used Formula 2: 

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦	𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦%&'()*+ =
'*,-(%,/*0&12	1*4(&-4*4)

'*,-(-&-6%,/*0&12	1*4(&-4*4)
                           (2) 

We will henceforth refer to the ratio in Formula 2 as “category selectivity”, which can be 

interpreted as how many times larger category responses were than non-category responses. 

For example, if a given participant’s body-category selectivity score (for the EBA and FBA 

complex) was 1.5, then their activations to body images were 1.5 times larger than their 

activations to non-body images (i.e., face, place, and tool images in the n-back task). A category 

selectivity score of 1.0 reflected the hypothesized null mean given that it quantifies category 

activations as equal to non-category activations. The main advantage of utilizing a ratio versus a 

difference score is that it is less sensitive to beta value scale differences across brain regions.  

Prior to calculating the category selectivity score (Formula 2) it was necessary to 

normalize the range of activation values. This was necessary for two reasons: (1) avoiding 

negative numbers (which would limit interpretability of the selectivity values) and (2) rescaling 
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activation values such that every participant's data was in the same range (which allows for group 

level comparisons). We used a standard normalization procedure termed min-max normalization 

(also termed feature scaling). We used Formula 3:  

𝑥-&1',)"7*8 = 𝑎	 + (+	6	'"-(+))	(96,)
(',+(+)	6	'"-(+))

                                           (3)  

Where a and b are the lower and upper bounds of the rescaled data, respectively. We used a=0 

and b=1.0, which were selected to increase interpretability of the category selectivity ratio since 

all ratios were positive and included a possible minimum of 0. The minimum and maximum values 

in Formula 3 were calculated based on the actual activations of a given region set (e.g., EBA and 

FBA across-complex average for body selectivity) across all 24 task conditions (x) for each 

participant separately. Note that results were highly similar if minimum and maximum values were 

calculated separately for mapped and actual activations. Additionally, we report the cross-

complex average results herein given that no functional complex was substantially driven by a 

particular region (i.e., regions in a given functional complex had similar category selectivity 

scores). We additionally identified and removed outlier participants (in category selectivity) 

following the methods described by Leys et al. [130] (median absolute deviation), using a highly 

conservative threshold of -/+ 5 deviations relative to the median. Given this high threshold, outlier 

removal excluded a small number of participants (an average of n=5 of 176 were removed across 

analyses, or approximately 2.8% of participants) with category selectivity scores that were not 

representative of the group average, which is how category selectivity was reported (which had a 

large sample size of n=176 per discovery and replication datasets). Note that statistical 

significance (see “Experimental design and statistical analysis”) was not impacted by removal of 

outlier participants. 

In assessments of the fully distributed network interaction scheme (Fig 1A), we estimated 

the contribution of distributed network interactions to a given category-selective response by 

computing the percent of actual category selectivity (distributed plus localized processes) 
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captured by activity-flow-mapped category selectivity (i.e., a model based upon distributed 

processes only, Fig 2B). We propose that the percent leftover (i.e., not captured via activity flow 

mapping) is due to either local processes (not isolated in the model) or other sources of model 

error (e.g., noise in the data). We used Formula 4:  

%	𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	𝑜𝑓	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑	𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠	 = =',((*8	%,/*0&12	4*)*%/":"/2
,%/;,)	%,/*0&12	4*)*%/":"/2

> ∗ 100         (4) 

If the percentage given by Formula 4 was statistically greater than 50%, we inferred that 

category selectivity in that functional complex was generated primarily via distributed activity flow 

processes. Note that these estimates reflect a lower bound on the contribution of distributed 

processes, since they can be driven lower not only by local processes but by other sources of 

model error. 

 
Network analyses 
In assessments of the fully distributed network interaction scheme of Fig 1A, we tested the 

contributions of each large-scale CAB-NP functional network ([25] Fig 3B) to activity-flow-mapped 

responses. We did this at both the levels of: (1) mapped category-specific responses, and (2) 

mapped response profile. 

 
Category-specific network contributions 

The activity flow map (Fig 2C, step 3: “activity flow products”, or just “flows”) quantified how much 

activity of a given source region was weighted by functional connectivity with the held-out target 

region (i.e., before summing in Formula 1). We used the network-based averages of these flow 

values for each functional complex and its respective visual processing category to probe 

category-specific network contributions to the activity flow map. Source regions were averaged 

together based upon their CAB-NP assignments. These contributions were each statistically 

compared to one another (see “Experimental design and statistical analysis”) to discover the 

networks that contributed the most to a given activity flow map. 
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Response profile network contributions  

To measure network contributions to activity flow mapping at the response profile level (i.e., 

across all 24 HCP conditions), we conducted a dominance analysis [131]. We first re-computed 

activity flow mapping (across all conditions for a given functional complex) with source regions 

iteratively restricted by CAB-NP network assignment. Note that these values exactly summed to 

the whole-cortex, activity flow mapping, thus this approach simply parsed a given mapping into 

its network components. Then, we conducted multiple linear regression (per participant, across 

conditions), where network-level mapped activations were the predictor variables (12 in total), 

and actual activity was the response variable. Following dominance analysis, this yielded the “full 

model” explained variance (R2), which in the present study refers to the proportion of variance in 

the actual response profile explained by the network-based, mapped response profile. An iterative 

subset of multiple regression models were then performed, with all combinations of predictors 

tested. These can be thought of as subset models because they were iterated on choosing one 

through eleven predictors, and performing multiple regression on all combinations therein 

(procedural details are openly available, and can be found here: github.com/dominance-

analysis/dominance-analysis). This followed a standard combination calculation, nCr, where n 

was the full number of predictors, or 12, and r was iterated between one and eleven (note that r 

= 12 describes the full model). In the present study, there were a total of 4095 subsets of models 

for each functional complex assessed. The incremental contribution of each predictor to R2 was 

quantified for each of these subsets of models. Then, the cross-model average of these 

incremental contributions was taken as the partial R2 of each network, which added up to equal 

the full model R2. Given this property of dominance analysis (that the partial R2 values add up to 

the full R2), the percentage of relative importance of each network was calculated as the partial 

R2 divided by the full R2, times 100. The dominance analysis approach has the benefit of being 

robust to multicollinear predictor variables [132] (i.e., estimating unmixed partial R2). 
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Control analyses 
Assessing the impact of resting-state connectivity fingerprints 

To assess how critical each functional complex’s unique connectivity fingerprint (as in [13,15]) 

was to respective visual category selectivity results, we performed an FC substitution experiment. 

For each target functional complex (and per participant), we substituted each complex’s 

connectivity fingerprint with each other functional complex’s fingerprint, then recomputed category 

selectivity (see above, “Category selectivity”). This meant that for each of the four original, or true, 

mappings (bodies, faces, places, and tools), there were three null model comparisons. For 

example: original body complex rsFC substituted with (1) face complex rsFC, (2) place complex 

rsFC, and (3) tool complex rsFC (repeated likewise for each original model). To preserve an 

essential property of the connectivity graphs used in the present study, we set self-connections 

to zero (e.g., right EBA/FBA target to right EBA/FBA source) (for more on constraint 

considerations for network null models, see [133,134]). Additionally, to account for the zero FC 

weights that were in the null functional complex’s self-connection locations, we set connectivity 

estimates between the original target complex and the null model complex with the transposed 

estimate, per hemisphere (e.g., right EBA/FBA target to right FFA/pSTS source set with right 

FFA/pSTS target to right EBA/FBA source). We performed paired samples t-testing to test the 

alternative hypothesis that the true mapped category selectivity was greater than the null mapped 

category selectivity (for each of the four visual categories and in each of the three respective FC 

substitution null models). 

 
Assessing the impact of other category-responsive regions  

We aimed to assess the potentially circular influence of regions excluded from functional 

complexes (see “Identification of functional complexes” above) that still exhibit responsiveness to 

visual categories in the literature. Such regions could, in principle, become the source of category 
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selectivity for our target regions, rather than activity flows from non-category-selective regions. 

Note that the V1-initiated models (Fig. 1B-D; described in the next sections) were robust to this 

issue, given that all category selectivities had to originate (directly or indirectly) from activity flows 

originating in V1. The following regions were considered: (1) processing of body images: the 

dorsal visuomotor stream [135]; (2) processing of face images: the occipital face area [136-139], 

the inferior frontal gyrus [136,140,141], and the orbitofrontal cortex [142,143]; (3) place 

processing: the transverse occipital sulcus [144,145]; and (4) tool processing: the middle frontal 

gyrus [146,147] and the intraparietal sulcus [148,149]. In each case we converted MNI 

coordinates to surface space (as described in “Identification of functional complexes”) when 

available, or used topographic information provided by Glasser et al. [54] when regions were 

already identified within the MMP atlas (e.g., the orbitofrontal cortex). Note that an important 

exclusion criterion that removed these regions from the original definition of a functional complex 

was limited representation in the literature. Therefore, category selectivity in these regions is 

inherently less validated than the regions we did include. Regardless, category selectivity 

generated by the fully-distributed activity flow processes (Fig 1A) may still have been driven by 

these regions being part of the source region sets for corresponding functional complexes. For 

example: does the occipital face area drive activity-flow-mapped face selectivity in the FFA/pSTS? 

For each participant, functional complex, and hemisphere, we re-ran every step of the fully-

distributed model with these regions held out from respective source sets. Then, we conducted 

an individual differences regression on the original fully-distributed category selectivity results 

against these source-set-limited category selectivity results. The more correspondence between 

these (measured by coefficient of determination, R2), the less likely held-out source regions were 

impacting the fully-distributed category selectivity estimates.   

 
Stimulus-driven visual category selectivity 
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We sought to test the possibility that stimulus-driven activity flow processes conferred by V1 are 

capable of generating visual category selectivity (Fig 1B). Note that analyses that examined 

stimulus-driven (described first below; Fig. 1B) and stimulus-driven plus visual network 

interactions (described second below; Fig. 1C) were performed with vertex-level data, then 

averaged into functional complexes after estimating category selectivity. The final model, 

stimulus-driven plus fully-distributed network interactions (Fig. 1D) were initialized with vertex-

level data in a first step, then assessed across region-level averaged data, as detailed in the next 

section titled “Category selectivity generated by stimulus-driven network interactions further 

shaped by fully distributed network interactions”. Firstly, we estimated rsFC between all visual 

system (i.e., VIS1 and VIS2 network vertices from Ji et al. [25], see “Network analyses” above) 

vertices, and refer to this visual sub-system as “VIS” throughout corresponding Results and 

Figures. Note that we included all functional complexes in this VIS sub-system. FC was estimated 

with combinedFC [125] as in prior analyses (see “Resting-state functional connectivity 

estimation”), except regularized regression was used instead of multiple regression to scale edge 

weights, given that there were more vertices than time points in vertex-level resting-state data. 

For each participant and target vertex (i.e., dependent variable or vertex timeseries that 

connections were to be estimated with), we used L1 regularized lasso regression with cross-

validation across resting-state runs. The penalty term was chosen from a wide sweep of 100 log-

spaced terms. We then conducted a multi-step activity flow mapping procedure. We report step 

1 as the V1, stimulus-driven model, and steps 2+ as the extended VIS model.  

In step 1, only activation patterns of source vertices from V1 (both hemispheres), shaped 

by their connectivity fingerprints with each VIS vertex (see “Activity flow generative model” and 

Formula 1), were used to map the task-evoked activation patterns of each VIS vertex (Fig 1B). 

Resulting maps for functional complex vertices were the focus of the step 1 analysis, but the entire 

VIS sub-system was mapped because it was later used in steps 2+. Note that cortical region V1 

was identified based on the V1 region identified by Glasser et al. [54] using multimodal methods. 
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Cortical V1 vertices were all those inside of the V1 border, with 10 mm dilated masking applied to 

activity flow mapping (with VIS) as described previously (see “Resting state functional connectivity 

estimation” and “Activity flow generative model”, Fig 2) to control for the effects of spatial 

autocorrelation. When mapping held-out target vertices of each functional complex, the cross-

vertex (i.e., across V1) mean activation value for the corresponding category-specific condition 

was subtracted from each V1 source vertex to account for the (unlikely but possible) potential 

confound that there may still be category-specific information fed back to V1 from the complex of 

interest (at the temporal resolution of fMRI). These mappings were then used to generate activity 

in each functional complex, which was then tested for visual category selectivity (see “Category 

selectivity” and Formula 2). Note that at this point in the analysis, category selectivity (actual and 

activity-flow-mapped) was estimated for each vertex in each functional complex, then averaged 

(i.e., average selectivity of vertices in each complex). Thus, actual category selectivity in 

corresponding Results slightly varied from the region-level estimates based on fully distributed 

mappings (Fig. 1A) (which was estimated for each region, then averaged). Additionally, we 

removed outliers (using a conservative threshold of 5 median deviations) as before (see 

“Category selectivity”). The degrees of freedom are indicated in corresponding Results that report 

hypothesis testing statistics.  

We also performed a control analysis testing whether each functional complex’s unique 

connectivity fingerprint with V1 determined its visual category selectivity better than a null rsFC 

network model. Here, we randomly permuted the connectivity architectures (per participant) 100 

times but maintained edge strength and degree [134,150,151]. Note that this was used instead of 

rsFC substitution (see “Control analyses” above) because there was a variable number of vertices 

in each functional complex, and thus they could not be used to substitute each other's connectivity 

fingerprints. Nonparametric estimates of statistical significance given by Max-T (see 

“Experimental design and statistical analyses”) were used to compare real mapped category 

selectivity to the null network mapped category selectivity.  
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Then, in steps 2+ (extended VIS) we used the mapped activation patterns from step 1 as 

the source activation patterns in activity flow mapping (Formula 1) and extended this to include 

all other VIS sub-system source vertices (Fig 1C). We repeated this until a “settling threshold” 

was reached. This was to simulate potential feedback and/or recurrent processes (initialized with 

stimulus-driven processes) that may occur over VIS network interactions. We defined a settling 

threshold as the step when the mapped activation patterns no longer changed within four decimal 

point precision, which can be thought of as the beginning of a horizontal asymptote in mapped 

activation values. We then performed all analyses as we did in step 1, to assess whether stimulus-

driven activity flow processes further shaped by VIS network interactions improve the generation 

of visual category selectivity.  

 
Category selectivity generated by stimulus-driven network interactions further 

shaped by fully distributed network interactions 
Expanding upon the analyses in the previous section (“Stimulus driven category selectivity”), we 

sought to test whether V1-initialized activity flow mappings (step 1) that are then processed over 

all cortical network interactions (step 2) (Fig 1D) – as opposed to a step 2 that incorporates only 

visual subsystems – would accurately generate visual category selectivity. We henceforth refer 

to this as the “stimulus-driven + fully distributed” mapping. Here, modulations conferred by all 

other functional networks (e.g., possible top-down effects from source regions in the dorsal 

attention network; DAN) were allowed to contribute to activity flow mapping in a second step. As 

before, we firstly initialized activity flow mapping with stimulus-driven interactions with V1 (as in 

“Stimulus-driven visual category selectivity” above). This first step of activity flow mapping was 

initialized with vertex-level data as in “Stimulus-driven visual category selectivity” above. Then we 

conducted an additional step that included all cortical source regions. Given the computational 

cost of vertex-level regularized regression (with cross-validation) across the whole cortex, this 

second step was performed at the region level. Following prior analyses, to control for multiple 
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comparisons we used max-T nonparametric permutation testing (see “Experimental design and 

statistical analysis”). We used 100,000 permutations (i.e., p of 0.00001) and report statistical 

significance in terms of p < 0.00001. 

 
Experimental design and statistical analysis 

Each functional complex that was proposed to be highly responsive to the visual 

categories of bodies, faces, places, and tools (see above: “Identification of functional complexes”) 

had estimates for actual activity and activity-flow-mapped activity. For each of these estimates 

and each visual category, we contrasted category responses to non-category responses (e.g., 

body vs non-body), hypothesizing that a functional complex would exhibit higher activity (in actual 

and mapped data) to the category vs the non-category. To test these hypotheses, we used one-

tailed, paired samples t-tests on cross-participant data. For each category of interest, non-

category activity was the average of the three remaining categories. For example, if body was the 

category of interest, responses to faces, places, and tools were averaged for non-body 

activations. This provided a consistent contrast across all four sets of analyses (i.e., always 

category vs non-category).  

In every set of analyses involving a comparison, we used the Max-T nonparametric 

permutation approach (shuffling conditions over 100,000 permutations – i.e., p-values of 0.00001 

– unless otherwise stated) to correct for multiple comparisons [152]. For example, the Max-T 

approach was used when testing whether category selectivity scores (Formula 2) revealed for 

each functional complex were greater than 1.0 (the null mean), as well as testing whether 

estimates of distributed processing contributions (Formula 4) were greater than 50% (see 

“Category selectivity” for more on these measures). We likewise used Max-T (here with 10,000 

permutations for computational tractability) to address multiple comparisons in the network-based 

analyses (i.e., comparing each network-level result to every other network-level result). When 

comparing estimates based on each network to every other network, the max-T threshold statistic 
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that was surpassed for significance is reported, instead of a lengthy list of observed t-statistics. 

The max-T procedure was used in any analysis where we could not assume a normal distribution 

a priori. Note that for category selectivity and percent distributed processing analyses, degrees of 

freedom were based on sample size with outlier participants removed (see “Category selectivity”). 

To assess accuracy of the activity-flow-mapped (Formula 1) results, we compared the actual and 

activity-flow-mapped activations in each of the four visual category analyses with Pearson’s r, 

MAE, and R2 (Fig 2). All findings are reported for cortical regions in the right hemisphere for the 

discovery dataset. Left hemisphere and replication dataset results are reported in Supporting 

information.  

 
Code, software, and data accessibility 
All MATLAB, Python, demonstration code, and software are publicly available on GitHub. The 

main repository for the present study can be found here: 

https://github.com/ColeLab/ActFlowCategories. The Activity Flow Toolbox and related software 

[27,28] can be found here: https://github.com/ColeLab/ActflowToolbox. Further, the HCP 

maintains open access imaging data at various levels of processing here: 

https://www.humanconnectome.org/. Data at other levels of processing or analysis pertinent to 

the present study are available upon request. 

 
Results 

 
Localized response profiles are captured by activity flow processes 
Our preliminary hypothesis was that activity flow processes could accurately map responses in 

extensively investigated category-selective visual cortex regions. Firstly, we extended prior work 

[20,27,28] by implementing a resting-state functional connectivity (rsFC) method [125] that 

estimates a more causally plausible network (Fig 3A and 3B), and by analyzing a large cohort 
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(N=352) split into discovery and replication datasets. These updates serve to improve the 

inferential validity of activity flow mapping results [18]. Secondly, we quantified response profiles 

(also termed population receptive fields) of functional complexes identified as integral to four 

visual categories (Tables 1 and 2). A response profile (rows of Fig 3D) was defined as the task-

evoked activity levels across all 24 HCP conditions. Establishing response profiles allowed us to 

verify that each complex was responsive to their respective visual categories (outlined in black: 

Fig 3D, right) and verify that activity flow mapping (Fig 3D, left) was reliable across a variety of 

cognitive domains. 

  

 

Fig 3. Mapped activations across all HCP conditions yielded response profiles for four 
functional complexes of interest. (A) Causally confounding graph patterns in standard FC 
estimation methods (adapted with permission from [125]). CombinedFC incorporates both 
bivariate and multiple regression measures such that confounders, chains, and colliders are 
accounted for. (B) The cross-participant (n=176) average resting-state connectivity matrix 
(estimated via combinedFC) of 360 MMP regions [54], ordered along each axis per the Cole 
Anticevic brain-wide network partition (CAB-NP [25]; color-coded on each axis to match panel C). 
This was the functional network organization utilized in the present study for activity flow 
mapping.  Note that our implementation of combinedFC used multiple regression as the final step, 
and therefore FC estimates were given by beta coefficients (see Methods).  (C) Cortical schematic 
of the CAB-NP and its 12 functional networks from Ji et al. [25], reproduced with permission. (D) 
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Response profiles (across all 24 HCP conditions) of four complexes of interest to the present 
study (indicated along the y-axis; note that “r” stands for right hemisphere); mapped versus actual 
(left and right respectively; mean across participants depicted in each panel). Black boxes 
highlight the n-back conditions that maintained visual semantic category embeddings germane to 
a given functional complex (e.g., 0-back bodies and 2-back bodies for the right EBA and right 
FBA). Activity-flow-mapped response profiles were highly accurate, suggesting that mapped 
activation patterns of the functional complexes of interest were reliable across multiple cognitive 
domains. 
  

Activity-flow-mapped response profiles maintained high accuracy in both hemispheres 

(right: r = 0.92, MAE = 3.93, R2 = 0.80; left: r = 0.92, MAE = 3.96, R2 = 0.79; replication dataset: 

S1 Table), which corroborates prior findings that activity flow processes (specified by connectivity 

patterns) can accurately map task-evoked activity in held out brain regions across diverse 

cognitive domains [27]. Moreover, this suggests that intrinsic (i.e., resting-state) functional 

network organization (Fig 3C) plays a prominent role in generating localized response profiles. 

Subsequent analyses examined the processes involved in category-selective responses (i.e., 

focusing on black-outlined conditions in Fig 3D), as generated by activity flow mapping. 

 
Localized visual category selective responses are generated via empirically-

derived models of fully distributed network interactions 
We next tested the hypothesis that the classically observed selectivity for visual categories in 

select visual cortex regions is shaped by their unique connectivity fingerprints distributed across 

cortex (Fig 1A). An emerging literature suggests that network interactions and/or distributed 

activation patterns are integral to visual category processing [11,14,91,127]. However, the nature 

of the network interactions underlying the generation of visual category selectivity remains 

unclear, as well as the extent to which those distributed interactions account for localized category 

selectivity (relative to local, within-region processes). Here, we sought to test the generative 

capacity of distributed network interactions by modeling activity flow processes over intrinsic 

functional connections [27]. The four visual category models are reported in separate sections 

below with similar formatting to aid cross-comparison. The functional complexes identified based 
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on prior literature (Fig 4, Tables 1 and 2) were anatomically positioned along occipital (anterior 

and lateral to V1) and temporal (tending posterior and ventral to A1) cortices, which reflects the 

associative processing demands of visual category computations [47,48]. Functional complex 

regions belonged primarily to the secondary visual (VIS2) network, with additional locations in 

dorsal attention (DAN), default mode (DMN), and language networks (LAN) (Fig 4) [25]. 

 

 
Fig 4. Visual categories and identified functional complexes. (A) [Please note, panel A has 
been excluded from the preprint due to privacy concerns.] Exemplar stimuli from each of the four 
visual semantic categories shown to participants across the n-back task (bodies, faces, places, 
and tools). Please note that the face example is a photograph of the author of this manuscript, 
meant to be representative (but not an exact match) of the original face stimuli while protecting 
privacy concerns of the original models. In each category, stimuli varied to sample a wide array 
of representations. Body images included whole bodies (no faces) and isolated body parts 
(excluding nudity); face images included diverse ages and facial expressions; place images 
included indoor and outdoor scenes (and combinations, e.g., a patio); and tool images included 
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distinct items (e.g., plier versus drill) as well as similar variants (e.g., two drills: one white, one 
blue). See Barch et al. [45] and www.humanconnectome.org for further details. (B) A schematic 
of the cortical surface in three gross orientations, with MMP regions [54]. outlined in silver and 
functional complexes relevant to processing body features (see Tables 1 and 2, Methods) colored 
in based on CAB-NP network affiliations ([25], Fig 1C) and identified with text labels and arrows. 
EBA = extrastriate body area; FBA = fusiform body area. VIS2 = secondary visual network; DAN 
= dorsal attention network. “r” denotes right hemisphere; “l” denotes left hemisphere. (C) 
Functional complexes related to face processing. FFA = fusiform body area; pSTS = posterior 
superior temporal sulcus; LAN = language network; DMN = default mode network. (D) Functional 
complexes related to places and scenes. RSC = retrosplenial complex; PPA = parahippocampal 
place area. (E) Functional complexes related to processing images of tools and objects. LOC = 
lateral occipital complex. 
  
         We tested the hypothesis that fully distributed activity flow processes (Fig 1A) – shaped 

by the intrinsic functional connectivity fingerprint of each functional complex (Fig 4) – are sufficient 

to generate category-selective responses without the need for additional within-region 

processing. Before this, we began with two confirmations essential for subsequent tests of this 

hypothesis. We first constrained prior activity flow mappings [27,28] to body, face, place, and tool 

conditions and compared actual versus activity-flow-mapped responses across the whole cortex 

(S1 Fig). We then focused on activations in each functional complex (Fig 4) and in each 

hemisphere and quantified “benchmark” contrasts to corroborate the literature by comparing the 

category of interest versus non-category responses (e.g., body versus non-body) in the actual 

and activity-flow-mapped data (note that category selectivity is reported subsequently). Whole-

cortex, activity-flow-mapped responses to visual categories were highly accurate (bodies: r = 

0.89, MAE = 5.27, R2 = 0.78; faces: r = 0.86, MAE = 5.83, R2 = 0.72; places: r = 0.88, MAE = 5.85, 

R2= 0.77; tools: r = 0.89, MAE = 5.62, R2 = 0.78; S1 Fig). Significant benchmark contrasts in each 

functional complex were also observed in both the actual (bodies: t(175) = 26.65, Cohen’s d = 

2.01, faces: t(175) = 20.37, Cohen’s d = 1.54; places: t(175) = 39.53, Cohen’s d = 2.89; tools: 

t(175) = 8.49, Cohen’s d = 0.64; all p < 0.0001) and activity-flow-mapped data (bodies: t(175) = 

17.91, Cohen’s d = 1.35; faces: t(175) = 10.06, Cohen’s d = 0.76; places: t(175) = 26.06, Cohen’s 

d = 1.88; tools: t(175) = 9.94, Cohen’s d = 0.75; all p < 0.0001) (S2 Fig) (left hemisphere and 

replication: S1 and S2 Tables). In each set of benchmark contrast analyses, multiple comparisons 
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correction was performed with nonparametric permutation testing (i.e., the “max-T” procedure 

described in the Methods; here, with 10,000 permutations for each set of analyses). 

 
Distributed activity flowing over intrinsic connectivity generates localized body category selectivity 

Processing of human body images (Fig 4A) is associated with the fusiform body area (FBA) and 

the extrastriate body area (EBA) [2,3,71], which are located in the lateral occipito-temporal cortex 

(Tables 1 and 2, Fig 4B). EBA computations are thought to discriminate between bodily attributes 

and parts [153] and provide postural information to frontoparietal regions [72], indicating a pivotal 

role in action planning. The FBA is thought to process images of whole bodies [3] and pairs of 

body parts [154]. Extending the fully distributed hypothesis to the processing of body images, we 

hypothesized that activity flowing via the intrinsic connectivity fingerprint of the EBA and FBA 

(henceforth: EBA/FBA) (Figs 5A and 5B) — its unique pattern of distributed cortical connections 

— is likely the primary determinant of its body-selective responses. 
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Fig 5. Distributed activity flows account for the majority of localized selectivity to bodies. 
(A) The activity flow mapping procedure (steps match Fig 2C) generating body responses in 
EBA/FBA (black), projected onto cortical schematics (right hemisphere). Green: source vertices 
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excluded from analyses. Step 2 was not blacked out for visual comparison with step 4, however 
it was held out in-analysis. Step 4 color scale shows maximum of all regions’ mapped activations 
to body images for visual comparison with step 2. (B) The connectivity fingerprint [13,15] of the 
right EBA/FBA via rsFC (black lines). Radial lines: source regions connected to EBA/FBA, 
clustered by functional network assignments [25] (colored per legend; Fig 3C). 95% confidence 
interval: across participants. (C) Right EBA/FBA body selectivity: activity-flow-mapped (purple) 
and actual (coral). Gray dots: individual participants' scores. Dashed line: no selectivity (1.0); used 
for comparison in statistical tests. Significant t-statistics are indicated with an asterisk (p<0.00001; 
see Methods). (D) Estimated contribution of distributed network interactions to body selective 
responses in EBA/FBA. (E) The activity flows (as in A3) of each source region contributing to 
mapped EBA/FBA responses to body images (statistical significance asterisks at network-mean 
level). (F) Variance explained by each network-restricted activity flow model (unmixed partial R2 
in gray) of EBA/FBA’s response profile. Black lines: 95% confidence interval across participants. 
Asterisks: statistical significance versus each other network. E-F suggests that activity flowing 
over interactions with VIS2 and DAN represents a general network coding mechanism for 
EBA/FBA. See Methods for full details of each analysis. 
  

We assessed body selectivity in the EBA/FBA — quantified as the ratio of body to non-

body category activations — in both activity-flow-mapped (Fig 5C, purple) and actual (Fig 5C, 

coral) data. As expected, mapped and actual body selectivity were statistically significant relative 

to a selectivity ratio of 1.0 (i.e., greater than the null hypothesis of equivalent responses to bodies 

and non-bodies; p < 0.00001; see Methods): activity-flow-mapped mean body selectivity = 1.35, 

t(166) =16.59, Cohen’s d = 1.29; actual mean body selectivity = 1.67, t(166) = 20.01,Cohen’s d = 

1.55; Fig 5C). We next estimated the contribution of distributed activity flow processes to body 

selectivity via the percentage of actual body selectivity captured by mapped body selectivity (Fig 

5D). Given that the fully distributed activity flow approach maps task-evoked activity based on 

distributed features ([27]; Fig 2B), this ratio approximates the extent that distributed network 

interactions contribute to the generation of body selectivity in the EBA/FBA (relative to local, 

within-complex processes and/or error). As expected, the estimated contribution of distributed 

activity flow processes was 81%, which was statistically greater than 50% (p < 0.00001; see 

Methods) (Cohen’s d = 2.52, t(166) = 32.49, Fig 5D) (left hemisphere and replication: S3 Table). 

Next, we examined how each large-scale functional network (Fig 3C [25]) contributed to 

the observation that activity flowing over a fully distributed intrinsic network architecture 

(connectivity fingerprint: Fig 5B) shaped body selectivity in the EBA/FBA. The activity flows map 
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(Fig 5A, step 3)  — where source activity was weighted by rsFC with the (held out) target region 

— was an entry point to assess such network contributions. Firstly, we averaged the estimated 

activity flows based on network assignment (Fig 5E). Secondly, we used dominance analysis to 

identify each functional network’s unmixed contribution (partial R2, see Methods) to the activity-

flow-mapped response profile (i.e., activations across all 24 conditions, Fig 3D) of the EBA/FBA 

(Fig 5F). Secondary visual network (VIS2) activity flows exhibited the largest contribution (versus 

each other network) to EBA/FBA’s body-evoked activations (Fig 5E, all t-statistics above the max-

T threshold (175) = 3.39, p < 0.0001; left hemisphere and replication: S4 Table). DAN activity 

flows were also significantly higher (same max-T thresholds, see Methods) than the other 

networks, except VIS2 and posterior multimodal network (PMM). VIS2 also accounted for most 

of the explained variance in EBA/FBA’s response profile (partial R2 = 0.51, 61% of the full model 

R2, Fig 5F). DAN accounted for the next highest amount of explained variance (partial R2 = 0.09, 

10% of the full model R2, Fig 5F; left hemisphere and replication: S5-S7 Tables). Thus, for both 

body-specific conditions and across all conditions (i.e., response profile), activity flowing over 

VIS2 and DAN exhibited substantial contributions to EBA/FBA activation patterns. 

As hypothesized by the fully distributed network interaction model (Fig 1A), we found 

evidence that activity flowing over resting-state functional connections distributed throughout 

cortex shaped body selectivity in the EBA/FBA. Results also suggested that distributed processes 

chiefly specified localized body-selective responses in the EBA/FBA. The total explained variance 

in the EBA/FBA’s 24-condition response profile was significantly greater than 50% (total R2 = 

0.83, versus 0.5: t(175) = 66.07, p = 1.14 x 10-125; left hemisphere and replication: S5-S7 Tables), 

suggesting that distributed activity flow processes predominantly influence EBA/FBA responses 

across a variety of cognitive domains.  

 
Distributed activity flowing over resting-state connectivity generates localized face category 

selectivity 
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The fusiform face area (FFA) is a hallmark region exhibiting localized category selectivity given 

its well-replicated relationship with face processing [4, 49]. The posterior superior temporal sulcus 

(pSTS) is thought to be a multisensory processing region responsive to the changeable aspects 

of faces [21,155]. The FFA and pSTS are loci of specialization in a two-pathway model [87,91], 

representing facial identity (relatively invariant) and facial expression (dynamic), respectively 

[11,92]. While both the FFA and pSTS are part of the ventral temporal cortex, the pSTS is more 

dorsal and lies adjacent to the temporoparietal junction; the FFA is more posterior and typically 

identified on the ventral aspect of the cortex (i.e., the fusiform gyrus) (Tables 1 and 2, Fig 4C). 

Extending the fully distributed hypothesis (Fig 1A) to the processing of face images, we 

hypothesized that activity flow processes via the whole-cortex, resting-state connectivity 

fingerprint of the FFA and pSTS (Figs 6A and 6B) (henceforth: FFA/pSTS) is sufficient to 

determine its face selective responses. 
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Fig 6. Distributed activity flows account for the majority of localized selectivity to faces. All 
figure specifications follow Fig 5. (A) The activity flow procedure mapping activations to face 
categories, projected onto cortical schematics (right hemisphere). Right FFA/pSTS was the held-
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out target complex. (B) The connectivity fingerprint [13,15] of the right FFA/pSTS via whole-cortex 
rsFC (black lines). Radial lines: source regions connected to the FFA/pSTS, clustered by 
functional network assignments [25] (colored per legend and Fig 3C). (C) Face category 
selectivity exhibited by the right FFA/pSTS. Significant t-statistics are indicated with an asterisk 
(p<0.00001; see Methods). (D) Estimated contribution of distributed activity flow processes to 
face selectivity exhibited by the right FFA/pSTS. (E) Activity flows (as in A step 3) of each source 
region contributing to the mapping of FFA/pSTS responses to face images. VIS2 regions 
contributed most to the FFA/pSTS mapped activation magnitude to faces. (F) Variance explained 
by each network-restricted activity flow model (unmixed partial R2 via dominance analysis; 
Methods) of the right FFA/pSTS’ response profile. VIS2 accounted for the most variance, 
altogether suggesting that activity flowing over VIS2 regions represents a general network coding 
mechanism for FFA/pSTS processing. DAN and DMN regions also accounted for a nontrivial 
amount of variance at the response-profile level suggesting that, across diverse cognitive 
domains, FFA/pSTS processing is impacted by activity flowing over DAN and DMN regions, in 
addition to VIS2 (in the face-specific case). 
 

We followed the foregoing pipeline for body selectivity exactly, except analyzing face 

images and the FFA/pSTS (Fig 6A, black regions). Overall, as expected, the pattern of results 

observed for body processing (EBA/FBA) extended to face processing (FFA/pSTS). Significant 

face selectivity was observed in both the actual and activity-flow-mapped data (mapped mean 

face selectivity = 1.33, t(170) = 10.78, Cohen’s d = 0.83; actual mean face selectivity = 1.37, 

t(170) = 11.67, Cohen’s d = 0.89; p < 0.00001; Fig 6C), and the estimated contribution of 

distributed activity flow processes was 96% (t(170) = 29.61, Cohen’s d = 2.27, p < 0.00001; Fig 

6D) (left hemisphere and replication: S3 Table). We found that face activations in the FFA/pSTS 

were most influenced by activity flows over VIS2 connections (max-T threshold (175) = 3.39, p < 

0.0001; Fig 6E; left hemisphere and replication: S4 Table). VIS2 also accounted for the most 

variance in FFA/pSTS processing at the response profile level (40%; left hemisphere and 

replication: S5-S7 Tables). 

These results suggest that face selectivity in the FFA/pSTS was significantly shaped by 

activity flow processes over a fully distributed intrinsic network architecture. These processes 

were most prominently influenced by activity flowing over VIS2, similar to the EBA/FBA. Across 

all conditions, activity flowing over dorsal attention (DAN) and default mode (DMN) network 

connections were predictive as well (DAN: 11%, DMN: 9%). The total explained variance in this 

response profile model (Fig 6F) was R2 = 0.89 (versus 0.5: t(175) = 92.61, p = 1.32 x 10-150; left 
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hemisphere and replication: S5-S7 Tables), suggesting that distributed processes chiefly 

influenced FFA/pSTS responses across many cognitive domains. 

 
Distributed activity flowing over intrinsic connectivity generates localized place category selectivity 

We next focused on place images (Fig 4A), sometimes termed scenes, environment, or 

topography. Place-specific regions include the parahippocampal place area (PPA) and the 

retrosplenial cortex (RSC) (Tables 1 and 2, Fig 4D), which are thought to act cooperatively toward 

a cohesive percept [5,97,101]. The PPA is thought to compute viewpoint-specific discrimination 

[156], as well as mediating (or binding) contextual associations pertinent for episodic memory 

[157]. The RSC is thought to provide the medial temporal lobe with visuospatial information [158], 

and to integrate viewpoint-invariant information for navigation and learning [5]. The PPA consisted 

of previously identified regions [51], and the dorsal RSC corresponded to Brodmann areas 29 and 

30 [159] (Fig 4D). Extending the fully distributed hypothesis (Fig 1A) to the processing of place 

images, we hypothesized that activity flow via the whole-cortex, resting-state connectivity 

fingerprint of the PPA and RSC (Figs 7A and 7B) (henceforth: PPA/RSC) significantly determines 

its place-selective responses. 
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Fig 7. Distributed activity flows account for the majority of localized selectivity to places. 
All formatting and figure specifications follow Fig 5. (A) Activity flow mapping of activations to 
place categories, projected onto cortical schematics (right hemisphere only). Right PPA/RSC was 
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the held-out target complex. (B) The connectivity fingerprint of the right PPA/RSC, as in 
Passingham et al. [13] except with whole-cortex rsFC (black lines). Radial lines: source regions 
connected to the PPA/RSC, clustered by CAB-NP functional network assignments [25] (colored 
per legend and Fig 3C). (C) Place category selectivity exhibited by the PPA and RSC in the right 
hemisphere. Significant t-statistics are indicated with an asterisk (p<0.00001; see Methods). (D) 
Estimated contribution of distributed activity flow processes to the emergence of place selective 
responses in the right PPA/RSC. (E) Activity flows (as in A step 3) of each source region 
contributing to the mapping of PPA/RSC responses to place images. VIS1, VIS2 and DAN 
contributed most to the right PPA/RSC mapped activation magnitude to place categories. Note 
that VIS1, VIS2, and DAN were all statistically greater than each other network, except for each 
other. (F) Variance explained by each network-restricted activity flow model (partial R2 via 
dominance analysis; Methods) of the right PPA/RSC’s response profile. VIS2, DAN, and DMN 
accounted for the most variance, suggesting that activity flowing over regions in these networks 
represents a general network coding mechanism for PPA and RSC processing, while VIS1 
contributes to place-specific responses. 
  

Significant place selectivity was observed in the PPA/RSC (mapped mean place selectivity 

= 1.8, t(170) = 19.15, Cohen’s d = 1.49; actual mean place selectivity = 2.59, t(170) = 22.42, 

Cohen’s d = 1.74; p < 0.00001; Fig 7C), and the estimated contribution of distributed processes 

was 69% (versus 50%: t(170) = 14.87, Cohen’s d = 1.15, p < 0.00001; Fig 7D) (left hemisphere 

and replication: S3 Table). Activity flowing over VIS1, VIS2, and DAN provided the largest 

contributions to PPA/RSC’s place activations (all significant except when compared to each other: 

max-T threshold (175) = 3.4, p < 0.0001; Fig 7E) (left hemisphere and replication: S4 Table). A 

similar set of networks accounted for the most variance at the response profile level (Fig 7F), 

including VIS2 (44%), DAN (13%) and DMN contributions (21%) (left hemisphere and replication: 

S5-S7 Tables). 

As hypothesized by the fully distributed model of Fig 1A, the whole-cortex connectivity 

fingerprint of the PPA/RSC significantly shaped its place selectivity. PPA/RSC responses were 

influenced by activity flowing over VIS2 and DAN. Additionally, VIS1 was particularly important 

for place-specific activity; and DMN for cross-domain activity (Figs 7E and 7F), suggesting that 

PPA/RSC’s activity flow processes were more heterogeneous than prior models. The total 

variance in the PPA/RSC response profile explained by activity flow processes (Fig 7F) was 

greater than 50% (total R2 = 0.68; t(175) = 23.93, p = 4.51 x 10-57; left hemisphere and replication: 
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S5-S7 Tables), which provides evidence that distributed processes predominantly influenced 

PPA/RSC activations to a variety of cognitive domains. 

 
Distributed activity flowing over intrinsic connectivity generates localized tool category selectivity 

The final visual category included tool images (Fig 4A), sometimes termed inanimate objects. 

Following an extensive literature on object recognition [52,160], we hypothesized that tool 

selectivity is exhibited by the lateral occipital complex (LOC) [21,161], which is posteriorly located 

and wraps around the cortex in the ventromedial direction (Fig 4E). The LOC is thought to 

represent higher-level information of objects, as opposed to low level visual features [162], 

suggesting a role at the category level of visual processing. However, reports vary on the degree 

of semantic content processed by the LOC [163]. Thus, the link between the LOC and tool 

selectivity was the least clear (of all four models) a priori. Extending the fully distributed hypothesis 

(Fig 1A) to the processing of tool images, we hypothesized that activity flow via the whole-cortex, 

resting-state connectivity fingerprint of the LOC (Figs 8A and 8B) significantly determines its tool 

selective responses. 
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Fig 8. Distributed activity flows account for the majority of localized selectivity to tools. All 
formatting and figure specifications as in Fig 5. (A) Activity flow mapping of activations to tool 
categories in the held-out target - the right LOC - projected onto cortical schematics (right 
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hemisphere). (B) The connectivity fingerprint of the right LOC, as in Passingham et al. [13] except 
with whole-cortex rsFC (black lines). Radial lines: source regions connected to the LOC, clustered 
by CAB-NP functional network assignments [25] (colored per legend and Fig 3C). (C) Tool 
category selectivity exhibited by the LOC in the right hemisphere. Significant t-statistics are 
indicated with an asterisk (p<0.00001; see Methods). (D) Estimated contribution of distributed 
activity flow processes to the emergence of tool selective responses in the right LOC. (E) Activity 
flows (as in A step 3) of each source region contributing to the mapping of LOC responses to tool 
images. VIS2 contributed most to the right LOC mapped activation magnitude to tool categories 
(F) Variance explained by each network-restricted activity flow model (partial R2 via dominance 
analysis; Methods) of the right LOC’s response profile. VIS2 accounted for the most variance, 
suggesting that activity flowing over regions in these networks represents a network coding 
mechanism for LOC processing. 
 

Tool selectivity in the LOC was statistically significant (mapped tool selectivity = 1.12, 

t(174) = 11.65, Cohen’s d = 0.88; actual tool selectivity = 1.15, t(174) = 12.52, Cohen’s d = 0.95; 

p < 0.00001; Fig 8C), and the estimated contribution of distributed activity flow processes to tool 

selectivity in the LOC was particularly high at 97% (t(174) =111.44 ,Cohen’s d = 8.45; Fig 8D) (left 

hemisphere and replication: S3 Table; given evidence in the literature that tool selectivity is left 

lateralized, future work building on activity-flow-mapped tool selectivity should pay special 

attention to the tool processing results reported in the Supplement). VIS2 activity flows 

demonstrated a strikingly high contribution to LOC’s tool-specific responses (max-T threshold 

(175) = 3.4, p < 0.0001; Fig 8E) (left hemisphere and replication: S4 Table) and accounted for the 

majority of the variance in LOC’s response profile (79%; Fig 8F) (left hemisphere and replication: 

S5-S7 Tables). 

As hypothesized, tool selectivity was strongly influenced by distributed activity flow 

processes (97-98%). As in all other models (bodies, faces, and places) the total explained 

variance that activity flow mapping captured for the LOC response profile was greater than 50% 

(total R2 = 0.90 vs 0.5: t(175) = 115.55, p = 3.71 x 10-167). Given that the standard application of 

activity flow mapping [27,28] (i.e., following the fully distributed network interaction scheme of Fig 

1A) is a distributed processing model (Fig 2B), this suggests that distributed processes may be 

the primary mechanism generating category-selective LOC activations. 
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Control analyses 
 
Null connectivity fingerprints reduce visual category selectivity 

To corroborate that each functional complex's unique whole-cortex resting-state connectivity 

fingerprint (Figs 5B-8B) — its placement in the brain’s intrinsic network architecture — determined 

its visual category selectivity (Figs 5C-8C), we built null models based on FC substitution. We 

hypothesized that a null connectivity fingerprint – here defined as a fingerprint based on the wrong 

functional complex – would confer significantly lower activity-flow-mapped category selectivity. 

 
Table 3. Empirical (true) resting-state connectivity fingerprints generate visual category 
selectivity significantly better than null model connectivity fingerprints. 

Comparison t(175) p-value Cohen’s d 
True model body selectivity > null model body selectivity when 
rEBA/rFBA rsFC was substituted with:       

face complex connectivity fingerprint: rFFA/rpSTS rsFC 6.36 1.7 x 10-9 0.61 
place complex connectivity fingerprint: rPPA/rRSC rsFC 3.53 0.0005 0.37 

tool complex connectivity fingerprint: rLOC rsFC 11.34 1.1 x 10-22 1.16 
True model face selectivity > null model face selectivity when 
rFFA/rpSTS rsFC was substituted with:       

body complex connectivity fingerprint: rEBA/rFBA rsFC 8.21 4.7 x 10-14 0.81 
place complex connectivity fingerprint: rPPA/rRSC rsFC 21.45 7.1 x 10-51 2.11 

tool complex connectivity fingerprint: rLOC rsFC 14.95 4.4 x 10-33 1.48 
True model place selectivity > null model place selectivity when 
rPPA/rRSC rsFC was substituted with:       

body complex connectivity fingerprint: rEBA/rFBA rsFC 14.02 2.1 x 10-30 1.50 
face complex connectivity fingerprint: rFFA/rpSTS rsFC 14.46 1.1 x 10-31 1.44 

tool complex connectivity fingerprint: rLOC rsFC 11.87 2.3 x 10-24 1.20 
True model tool selectivity > null model tool selectivity when rLOC 
rsFC was substituted with:       

body complex connectivity fingerprint: rEBA/rFBA rsFC 2.74 0.007 0.23 
face complex connectivity fingerprint: rFFA/rpSTS rsFC 9.97 7.8 x 10-19 0.91 
place complex connectivity fingerprint: rPPA/RSC rsFC 2.06 0.04 0.22 

 The prefix “r” indicates the right hemisphere. rsFC = resting-state functional connectivity 
 

As hypothesized, visual category selectivities were significantly greater when based upon 

the true (i.e., empirically-based) whole-cortex connectivity fingerprints (Table 3, reporting right 

hemisphere functional complexes and the discovery dataset). This assessment is more stringent 

than a null model that randomly scrambles FC because there is likely some similarity in visual 
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processing (and therefore activity flow patterns) across the four functional complex’s fully 

distributed network interactions. However, no substituted connectivity fingerprint was sufficiently 

similar to the true fingerprint to generate the original mapped category selectivity. Each of these 

results were corroborated in the left hemisphere and in the replication dataset (S8 and S9 Tables). 

These results corroborate that the fully distributed, resting-state connectivity fingerprint unique to 

each functional complex significantly shaped its visual category selective response. Given that 

connectivity fingerprints are the bases of activity flow processes (Fig 1A, Formula 1) that were 

used to generate mapped category selectivity, these results further support the proposition that 

fully distributed network interactions are sufficient to generate localized visual category selectivity 

in all four functional complexes tested. 

 
Activity-flow-mapped category selectivity was not driven by category responsiveness in other 

parts of the brain 

A potential confound in our analysis pipeline was that the criteria for identifying functional 

complexes (see Methods) excluded some brain regions that also exhibit a degree of visual 

category selectivity and/or responsiveness (Fig. 9A). Therefore, it is possible that the findings in 

the preceding sections – that fully distributed activity flow processes are capable of generating 

localized visual category selectivity – were driven by these other, excluded regions (which 

remained as sources of task-evoked activity). To address this, we held out select regions (Fig. 

9A) from the source sets of each visual category selectivity analysis and compared such source-

set-controlled findings to the fully-distributed model findings (Fig. 1A; Figs. 5-8). Individual 

differences in selectivity were preserved across all visual categories (Fig. 9B), suggesting that 

activity flow processes were capable of generating visual category selectivity in each functional 

complex without the influence of other visual category responsive regions. Note that the following 

sections on stimulus-driven network interactions more fully address this circularity concern, while 

also testing refined versions of our core hypothesis. 
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Fig 9. Other regions associated with visual category responses in the literature do not 
drive the fully-distributed model results. (A) While our procedure for identifying functional 
complexes from the literature was systematic (see Methods), it was possible that excluded, 
category-responsive regions were driving the results in Figs. 5-8. Such regions were excluded 
from functional complexes because they were either: (1) not supported by 10 or more peer-
reviewed studies at the time of preparing this manuscript, (2) studies used experimental stimuli 
too distinct from the n-back visual categories, or (3) studies did not provide spatial information 
systematically consistent with standard volumetric and/or surface-based topography. These 
regions, held-out from source sets in this control analysis, were as follows (from left to right in 
panel A): the dorsal visuomotor stream for body selectivity; the occipital face area (OFA), inferior 
frontal gyrus (IFG), and orbitofrontal cortex (OFC) for face selectivity; the transverse occipital 
sulcus (TOS) for place selectivity; the intraparietal sulcus (IPS) and medial frontal gyrus (mFG) 
for tool selectivity. Colors of regions are consistent with the functional network assignment used 
throughout all other figures. (B) For each body, face, place, and tool (left to right) selectivity 
analysis, individual participant’s (dots) visual selectivity scores were maintained between the 
results in Figs. 5-8 (x-axes) and the same analyses with the regions in panel A held-out from the 
source set. This suggests that other category responsive regions in the literature did not drive the 
fully-distributed model findings.  
 
Stimulus-driven activity flow processes directly from V1 are sufficient for 

generating category selectivity 
We next sought to test the refined hypothesis that stimulus-driven activity flowing over a functional 

complex’s connectivity fingerprint with V1 only is sufficient to generate localized visual category 
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selectivity (Figs 1B and 10A). This does not negate the “fully distributed” hypotheses tested above 

(Fig 1A), but instead specifies that processes instantiated in V1 are key to our prior observations 

that fully distributed activity flows are sufficient for generating localized visual category selectivity. 

Alternatively, it is possible that network interactions with V1 account for only a small proportion of 

variance in visual category selectivity generated by the fully distributed network interaction models 

(Figs 5-8). For example, it remains possible that the category selectivities observed in the fully 

distributed model were generated via (1) local (e.g., within-region) computations in regions 

outside the functional complexes, which (2) together flow into the functional complexes, 

concentrating selectivity within the complexes. Another possibility is that visual category 

selectivity is only minimally influenced by direct stimulus-driven inputs from V1, given evidence 

that visual information processing (which may not be strictly hierarchical; see [164, 165]) is 

modulated by attention [166-168], prior expectations [169], task goals/context [170-172], and 

synthesis-related processes (i.e., continuously maintaining a percept from a noisy or ambiguous 

visual scene) [173-175]. However, it is unclear if these top-down modulations (and other non-

visual contributions, such as emotional modulation; as in [176]) are indeed just modulations, or 

requirements for visual category selectivity. 
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Fig 10. Activity flows directly from V1 are sufficient to generate visual category selectivity. 
(A) Theoretical schematic of stimulus-driven activity flow processes generating visual category 
selectivity (as in Fig 1B). Given prior literature, mapped activity flow processes (gray arrow) have 
a refined inference: from V1 to later visual regions, we inferred that activity flow processes were 
primarily stimulus driven. This contrasts with the prior whole-cortex models, which also included 
top-down and likely recurrent influences.  (B) Activity flow mapping procedure for the stimulus-
driven model, conducted at the vertex level. V1 sources were used to map targets across VIS. 
Note that the usage of “step 1” serves as a prelude to later steps tested in an extended visual 
system model (Fig 11). (C) The null connectivity fingerprint (rsFC) model used for control 
analyses. The top depicts the true VIS network, and the bottom depicts pseudo-random (edge 
degree and strength preserved) network architectures over 100 permutations. For visualization 
purposes, networks are shown at the region level, but analyses were conducted at the vertex 
level. (D) Actual (coral) and mapped (purple) visual category selectivity exhibited by the right 
EBA/FBA, FFA/pSTS, PPA/RSC, and LOC (left to right). Category selectivity exhibited by V1 (for 
each respective image category) is shown to demonstrate that activation patterns in V1 alone do 
not account for mapped visual category selectivities (V1 selectivity scores were all nonsignificant; 
see main text for statistics). Most importantly, these results demonstrate that the activity flow 
mapping process increased the category selectivity of every functional complex relative to V1 
activity patterns, despite source activity originating solely from V1. Category selectivity generated 
by V1-initialized activity flow processes were significant in each functional complex (see main text 
for statistics). Significant t-statistics are indicated with an asterisk (p<0.00001; see Methods); see 
Figs. 5-8 for significance of actual category selectivity of functional complexes. 
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We additionally sought to address a theoretical limitation borne out of whole-cortex, 

undirected network estimation from fMRI data. Namely, a limited ability to isolate whether activity 

flow processes contributing to a given complex’s category-selective response also contain some 

information from that complex itself, or from other brain regions responsive to visual categories. 

For example, do fully distributed activity flows generating FFA/pSTS face selectivity (Fig 6) 

contain some information (potentially via feedback from areas downstream of FFA/pSTS) from 

the FFA/pSTS itself? This type of causal circularity is a theoretical concern for the ongoing goal 

of delineating the extent that network interactions contribute to the generation of localized 

processes with refined detail. However, given that regions within each functional complex (e.g., 

the FFA and pSTS for the FFA/pSTS complex) were excluded as activity flow sources, the most 

likely culprits of this sort of feedback circularity were already accounted for. Thus, it is likely that 

the fully distributed network models (Figs 5-8) accurately reflect the generation of category 

selectivity, just at a broad scale and with potential inferential limits. 

To these ends, we developed an intrinsic-connectivity-based, generative model of 

category-selective responses that reduces the impact of (potential) causal circularity by 

constraining activity flows to V1 (sources) and functional complexes (targets) (Figs 10A and 10B). 

Given robust evidence that activity in V1 represents retinotopic mapping and simple visual feature 

detection [40,41], this model better ensures that mapped activation patterns are primarily 

stimulus-driven. We first estimated rsFC between all vertices in the visual system (including both 

the VIS1 and VIS2 networks and all functional complexes) (Fig 10C, top). We will henceforth refer 

to this sub-system as “VIS”. In the following steps of this analysis, we focused on the interactions 

between V1 sources and functional complex targets, but it was important to include the entire 

visual system in the initial rsFC estimation step. This allowed us to infer – based on our use of 

multiple regression for rsFC estimation – the likely direct connectivity between each V1 vertex 

and each functional complex vertex [27, 125]. 
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We found that for each functional complex, stimulus-driven, activity-flow-mapped category 

selectivity was significantly above 1.0 (p < 0.00001 for all complexes; see Methods): right 

hemisphere EBA/FBA mean body selectivity = 1.12, t(174) = 5.64, Cohen’s d = 0.45); right 

FFA/pSTS mean face selectivity = 1.14, t(172) = 5.07, Cohen’s d = 0.41); right PPA/RSC mean 

place selectivity = 1.13, t(173) = 5.27, Cohen’s d = 0.42); right LOC mean tool selectivity = 1.07, 

t(172) = 5.41, Cohen’s d = 0.3) (Fig 10D; left hemisphere and replication dataset: S10 Table). In 

each of these four models, mapped category selectivity was statistically significant, suggesting 

direct activity flows from V1 (the primary visual input to cortex) are sufficient to produce selectivity 

for these four visual categories. Note, however, that selectivity in these four models was lower 

than when mapped via network interactions of the whole cortex. This suggests that additional 

selectivity is generated via distributed activity flow processes over the whole cortex (Figs 5C-8C). 

As in prior control analyses (Table 3), we tested whether each functional complex’s unique 

resting-state connectivity fingerprint (here, with V1) determined its visual category selectivity by 

using a null rsFC model. Note that V1 itself did not exhibit significant selectivity for any of the four 

visual categories (V1 body selectivity = 0.63, t(175) = -17.3, p = 1, Cohen’s d = -1.32; face 

selectivity = 0.87, t(175) = -12.9, p = 1, Cohen’s d = -0.99; place selectivity = 0.64, t(175) = -13.6, 

p = 1, Cohen’s d = -1.04; tool selectivity = 0.66, t(175) = -12.8, p = 1, Cohen’s d = -0.97) (Fig 10D; 

replication dataset: S11 Table), thus downstream selectivity could not be driven by activation 

patterns in V1 without additional connectivity-based transformation (also supported by [113,177-

179]). Given the varied number of vertices in each complex, we used randomly permuted 

connectivity architectures (Fig 10C) – maintaining edge strength and degree [134,150,151] – 

instead of rsFC substitution. Body, face, and place selectivity were significantly greater than the 

aggregate of 100 null rsFC models (body: t(175) = 6.4, p = 6.6 x 10-10, Cohen’s d = 0.49; face: 

t(175) = 11.6, p = 8.2 x 10-24, Cohen’s d = 0.89; place: t(175) = 3.5, p = 2.5 x 10-4, Cohen’s d = 

0.27), but not tool selectivity (t(175) = -1.15, p = 0.8, Cohen’s d = -0.09) (left hemisphere and 

replication dataset: S12 Table). This suggests that stimulus-driven category selectivity exhibited 
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by EBA/FBA, FFA/pSTS, and PPA/RSC were significantly shaped by their unique connectivity 

patterns with V1. 

These results suggest that direct stimulus-driven activity flows from V1 are a key step in 

the generation of visual category selectivity in visual cortex (Fig 1B). For some functional 

complexes, such as the LOC, early information patterns across V1 can select category-selectivity-

generating activity flow processes in a manner less dependent on its connectivity fingerprint (but 

note that LOC’s connectivity fingerprint with V1 appears more critical in the whole-cortex model; 

Table 3). For other complexes such as the FFA/pSTS, the stimulus-driven account of category 

selectivity appears to be influenced to a large extent by its connectivity fingerprint with V1, given 

its strong statistical significance over the null rsFC model. 

 
Multi-step activity flows across the visual system improves response profile 

accuracies, but not category selectivity 
Given evidence that higher-level visual representations (such as category selectivity) involve 

information processing along the ventral visual stream (Fig 11A) [86,180,181], we sought to 

extend our stimulus-driven model and test the hypothesis that category selectivity mappings 

(which were significant but below empirically-observed levels in the V1 model) improve when 

accounting for all VIS network interactions (Fig 1C). We conducted this analysis using the mapped 

activation patterns from the stimulus-driven V1 model (Figs 10B and 11B) – weighted by rsFC 

across VIS – to model later visual cortex activity flow processes (Fig 11B, Step 2). This step was 

repeated to model potential bidirectional (i.e., reciprocal) and/or recurrent processes within the 

visual system [165,181] (Fig 11B, Steps 3+), until a settling threshold was reached (i.e., where 

mapped activation patterns no longer changed, Fig 11C; also see Methods). 
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Fig 11. Visual category selectivity generated by activity flow processes over the extended 
visual system. (A) Stimulus driven activity flow processes, further shaped by later visual 
interactions, generate localized visual category selectivity (Fig 1C). From V1 to later visual 
regions, we inferred that activity flow processes are stimulus driven (Figs 1B and 10). Within the 
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visual system, we inferred that activity flow processes are bidirectional and/or recurrent. (B) 
Activity flow mapping procedure for the extended visual system model. All steps were conducted 
at the vertex level. Step 1: V1 sources were used to map targets across the visual cortex (VIS) 
(Fig 10). Step 2: mapped VIS activation patterns from Step 1 (weighted by connectivity estimates 
as in all activity flow models; see Methods) were used as sources to map held-out targets across 
visual cortex. Steps 3+: step 2 was repeated until a settling threshold was reached – or the point 
at which mapped values stopped changing (see Methods). (C) The settling threshold was reached 
at step 3. All further analyses only included steps 1-3 from panel B. (D) Accuracy of mapped 
activation patterns across all conditions (left: an average of all visual regions; right: functional 
complexes studied herein). Across visual cortex, explained variance tended to increase with each 
step, indicating that the extended visual system model was improving mapped response profiles 
across the cortex. This pattern was also observed across functional complexes, with some 
exceptions, such as the PPA/RSC (which appears most accurate at step 2). (E-H) Actual (coral) 
and visual-system-mapped (purple) category selectivity (see Methods) exhibited by the right 
EBA/FBA (E), FFA/pSTS (F), PPA/RSC (G), and LOC (H). Mapped category selectivity is shown 
for each step in panel B. Activity-flow-mapped category selectivity estimates were not consistently 
significant (see main text for statistics), suggesting that extending V1-initialized activity flow 
processes across the visual system alone does not stably generate localized visual category 
selectivity. In panels E-F: significant t-statistics are indicated with an asterisk (p<0.00001; see 
Methods); see Figs. 5-8 for significance of actual category selectivity of functional complexes. 
  

Cross-condition (i.e., response profile) mapping accuracy (of all VIS vertices) increased 

with each step (Fig 11D), suggesting that this extended model improved the specification of visual 

system responses. However, category selectivity was not improved consistently across functional 

complexes of interest. Mapped body selectivity in the right EBA/FBA was improved in step two 

(body selectivity = 1.18, t(170) = 9.49, p < 0.00001, Cohen’s d = 0.75) but became nonsignificant 

in step three (body selectivity = 1.01, t(174) = 0.58, Cohen’s d = 0.03) (Fig 11E). Face selectivity 

diminished in step 2 (face selectivity = 1.03, t(174) = 1.82, not significant, Cohen’s d = 0.14) and 

step 3 (face selectivity = 0.9, t(167) = -9.23, not significant, Cohen’s d = -0.71) (Fig 11F), 

suggesting that within the confines of the visual system, stimulus-driven activity flows from V1 

(step 1) were the best predictors of right FFA/pSTS face selectivity. Place selectivity in the right 

PPA/RSC improved in step 2 (place selectivity = 1.28, t(172) = 16.9, p < 0.00001, Cohen’s d = 

1.43), but decreased to the original level in step 3 (place selectivity = 1.15, t(171) = 11.5, p < 

0.00001, Cohen’s d = 0.88) (Fig 11G). Tool selectivity in the right LOC improved in step 2 (tool 

selectivity = 1.28, t(170) = 15.85, p < 0.00001, Cohen’s d = 1.5), but decreased in step 3, albeit 

to a level higher than the initial V1 step (tool selectivity = 1.16, t(171) = 12.5, p < 0.00001, Cohen’s 
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d = 1.23) (Fig 11H; left hemisphere and replication dataset: S13 and S14 Tables). Interestingly, 

tool selectivity generated by step 2 was greater than the actual tool selectivity exhibited by the 

LOC (Fig 11H, coral), suggesting that extended visual system modulations to activity flow 

processes initially over-specified tool selectivity, and that step 3 modeled the best-performing 

network interactions for mapping LOC tool selectivity. Thus, for two complexes (EBA/FBA and 

PPA/RSC), one additional step of extended visual system network interactions best specified 

category selectivity. For one complex (FFA/pSTS), the V1 stimulus-driven (step 1) model was 

best, and for another complex (LOC) three steps were best. 

Therefore, even though mapped response profiles tended to improve when modeling 

bidirectional and/or recurrent processes across the visual system, visual-system-mapped 

category selectivities did not consistently improve beyond what was specified by stimulus-driven 

activity flows from V1. Additionally, given that all observations were most robust in the fully 

distributed model (Fig 1A) (including response profile accuracies, which explained a maximum of 

45% variance in the extended visual model, Fig 11D, and up to 92% in the whole-cortex model, 

Fig 3D), the visual system is likely further modulated by other systems (e.g., DAN interactions; 

also supported by Keane et al. [182]) to provide the full set of distributed activity flow processes 

that stably generate localized category selective responses (as in Figs 5-8). 

 
Adding fully distributed network interactions to stimulus-driven activity flows 

further enhances category selectivity 
Given evidence that stimulus-driven network interactions with V1 generated visual category 

selectivity (Fig 10), but to a lesser extent than the fully distributed mappings (Figs 5-8), and that 

this inconsistently improved when extended to later visual system interactions (Fig 11), we next 

sought to extend the stimulus-driven model to fully distributed network interactions (i.e., a 

“stimulus-driven + fully distributed” mapping) (Figs 1D and 12A). As in prior analyses, fully 

distributed network interactions refer to activity flow processes over all cortical source regions 
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(Formula 1). Note that the stimulus-driven + fully distributed model differs from the initial cortex-

wide model (Fig 1A) by constraining inputs to V1 – reducing the chance for causal circularity (e.g., 

from recurrent feedback to each functional complex) and excluding possible temporally extended 

activity (in non-V1 regions) originating prior to stimulus onset (e.g., attentional or task set top-

down biases). First, using the extended mapping approach as in Fig 11B, we initialized activity 

flow mapping with V1 network interactions, then incorporated all other network interactions in a 

second step (i.e., with regions beyond just VIS, see Methods for full details). Across all functional 

complexes, we found that activity-flow-mapped category selectivity was not only statistically 

significant but was also remarkably close to selectivity generated by fully distributed network 

interactions (Figs 5-8), and in some cases exhibited an improvement. Further, selectivity was 

significantly improved for all functional complexes relative to the stimulus-driven V1-initiated 

model, demonstrating the importance of additional brain-wide activity flows in increasing category 

selectivity beyond direct-from-V1 activity flows. 
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Fig 12. Adding fully distributed network interactions to stimulus-driven activity flows 
further enhances category selectivity. (A) A schematic of V1-initialized activity flow processes 
that are further propagated across all cortical network interactions (as in Fig 1D). Here, fully 
distributed network interactions are initially established by activity flowing over the connectivity 
fingerprints of each functional complex with V1. We used the multistep mapping procedure of Fig 
11B (but with only two steps), except for at the region level (Methods). (B) Mapped (purple) and 
actual (coral) body selectivity exhibited by the right hemisphere EBA/FBA (gray dots: individual 
participants; boxplot line: median). Statistical significance is reported in the main text. (C-E) Same 
as B, but: (C) face selectivity in FFA/pSTS, (D) place selectivity in PPA/RSC, and (E) tool 
selectivity in LOC. Across all functional complexes, stimulus-driven + fully distributed mappings 
generated visual category selectivity that was greater than the stimulus-driven alone model of Fig 
10 and closely matched (and in some cases improved upon) the fully distributed alone model of 
Figs 5-8. This suggests that activity flow processes initialized in V1, that are further processed 
over all cortical network interactions, are capable of generating highly accurate visual category 
selectivity, with reduced causal confounds (see main text for full rationale). Panels B-D: significant 
t-statistics are indicated with an asterisk (p<0.00001; see Methods); see Figs. 5-8 for significance 
of actual category selectivity of functional complexes. 
 

Body selectivity in the EBA/FBA was statistically significant (mapped body selectivity = 

1.41, t(166) = 10.65, Cohen’s d = 0.83, p < 0.00001; Fig 12B). Here, activity-flow-mapped body 
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selectivity generated by stimulus-driven + fully distributed network interactions was an 

improvement upon selectivity generated from V1 only (Fig. 10) (related samples t-tests across 

participants’ activity-flow-mapped body category selectivity scores: t(175) = 4.75, p = 4.18 x 10-

6). Category selectivity in the FFA/pSTS (mean mapped mean face selectivity = 1.26, t(165) = 

8.44, Cohen’s d = 0.57, p < 0.0000; Fig. 12C), the PPA/RSC (mapped place selectivity = 1.94, 

t(166) = 14.54, Cohen’s d = 1.0, p < 0.00001; Fig 12D), and the LOC (mapped tool selectivity = 

1.09, t(168) = 6.5, Cohen’s d = 0.58, p < 0.00001; Fig 12E) were all also significantly improved 

from the stimulus-driven (V1 only) mappings (faces: t(175) = 3.41, p = 8.04 x 10-4; places: t(175) 

= 8.41, p = 7.05 x 10-15; tools: t(175) = 2.16, p = 0.03). 

 
Discussion 
The foregoing results suggest that visual category selectivity in visual cortex is primarily generated 

by distributed activity flowing over intrinsic functional connections (Figs 5A-8A), even when activity 

flows were restricted to stimulus-driven network interactions (i.e., excluding top-down task set 

influences and/or influences from other category-responsive regions) (Fig 12). We observed 

significant visual category selectivity in four functional complexes for both actual responses and 

responses mapped via fully distributed activity flow processes (Figs 1A and 5C-8C). Further, 

distributed network interactions accounted for the majority of variance in visual category selectivity 

(Figs 5D-8D). VIS2 interactions most prominently contributed to both category-specific and 

response profile activations across complexes, with additional contributions by other networks for 

select models: body-EBA/FBA activity from DAN; face-FFA/pSTS from DAN and DMN; and place-

PPA/RSC from DAN, VIS1, and DMN (Figs 5E-F-8E-F). Null network architectures revealed that 

each region's unique intrinsic connectivity fingerprint was a key component in enabling activity 

flow mapping to generate category selectivity. Likewise, when source sets excluded regions 

otherwise known to be responsive to visual categories, the fully-distributed activity flow processes 

remained capable of generating category selectivity. Lastly, we found  that V1-initialized network 
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interactions (Figs 1B-D) were sufficient to generate category selectivity (Fig 10), with additional 

increases in category selectivity from fully distributed network interactions (Figs 1D and 12) . 

Altogether, these findings support the hypothesis that distributed activity flow processes, specified 

by intrinsic connectivity fingerprints of visual cortex regions, chiefly shape their category selective 

responses. 

These findings build upon prior observations of distributed and overlapping 

representations in the visual cortex [11], as well as the general hypothesis that connectivity 

fingerprints determine a region’s functional repertoire [13,15]. Results here also extend 

observations that structural connectivity fingerprints (of the same regions studied here) can be 

used to predict visual category responses [21], as well as observations that responses to visual 

stimuli can be predicted by the spatial topography of activity in other visual cortex regions [14]. 

Here we go beyond these predictive results by modeling mechanistic processes – localized 

convergence of activity flows over intrinsic connectivity fingerprints [27,28] – contributing to the 

generation of localized activations [20]. We focused on visual regions here so we could leverage 

the long-standing observations of category selectivity in visual cortex regions to test various 

network interaction models, revealing how localized activations are (at least for the regions tested) 

predominantly generated by distributed activity flow processes shaped by intrinsic functional 

connectivity fingerprints. 

Importantly, fully distributed activity flow mappings (Figs 5-8) did not account for all task-

evoked activity variance, leaving room for within-region mechanisms to carry out critical 

computations. Here we adopted a definition of local computation consistent with fMRI and 

electroencephalography research: local activity reflects local field potentials, which are thought to 

reflect inputs and within-region processing [183]. Therefore, it was not a guarantee that distributed 

processes would exhibit the predominant influence in this fMRI dataset. However, the present 

study provides two major lines of evidence in support of this claim. Firstly, fully distributed activity 

flow processes mapped visual category responses with high accuracy in all functional complexes. 
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If within-region mechanisms strictly accounted for these responses we would expect lower 

accuracy, given prior simulation-based findings demonstrating that successful activity flow 

mapping requires high distributed processing (global coupling) and low local processing (self-

coupling) (Fig 2B [27,28]). Mapped category selectivity within the fully distributed model (Fig 1A) 

is thus a proxy for the degree of distributed processes underlying category selectivity. Secondly, 

the estimated contribution of distributed processes to category selectivity was significantly greater 

than 50% for all functional complexes assessed. We additionally observed that activity flow 

processes explained the majority of variance in response profiles (across 24 diverse task 

conditions) exhibited by each complex (Figs 5F-8F), suggesting that activity flowing over global, 

intrinsic connectivity patterns is a general mechanism in the emergence of fMRI responses. 

However, large-scale functional networks had differential influence depending on the cognitive 

domain and target complex. For example, LOC responses exhibited a strong general influence 

from VIS2 interactions (Figs 8E-F); in contrast to FFA/pSTS, which exhibited strong VIS2 

influence in the face-specific model (Fig 6E) with additional influence from DAN and DMN in the 

general response profile model (Fig 6F). 

Given this, along with the well-known observation that visual inputs from the retina arrive 

in cortex (by way of the lateral geniculate nucleus) in V1 [40,41], we adapted activity flow mapping 

to test refined hypotheses about the possible stimulus-driven network interactions that generate 

visual category selectivity (Figs 1B-D). We found evidence that when solely initialized by V1 

source regions, activity flow mappings generated significant (though less than the fully distributed 

model) category selectivity (Figs 1B and 10). This demonstrated that category selectivity is 

generated initially by activity flows directly from V1. Category selectivity inconsistently improved 

when mappings were further shaped by visual system interactions (Figs 1C and 11), but markedly 

(and consistently) improved when further shaped by fully distributed cortical network interactions 

(Figs 1D and 12). These results suggest that fully distributed network interactions that were 

initially established in V1 are sufficient to generate visual category selectivity (without, e.g., local 
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computations). This approach allowed for improved inferential validity by largely ruling out a 

potential causal confound wherein the non-V1-initiated fully distributed model (Fig 1A) interactions 

might receive information from the functional complex itself through feedback. It is possible that 

an extended step of fully distributed interactions outperformed extended steps of visual system 

interactions because of the influence of top-down modulations thought to be critical for visual 

processing [166-168,170,171]. We encourage future work that systematically tests which non-

visual-network interactions are most critical to further shaping stimulus-driven activity flow 

processes. 

The present results support a framework of neurocognitive processing that emphasizes 

the mechanistic influence of distributed network interactions, even in the extreme case of localized 

visual category selectivity. This follows from our demonstrations that category selectivity in 

functional complexes can be generated via an empirically-estimated distributed processing 

model: task-evoked activity flowing over connectivity fingerprints. However, while our resting-state 

connectivity estimates address causal confounds better than standard FC measures (Fig 3A), 

they lack directional information. For instance, if ongoing within-region process variance strongly 

influenced downstream regions, then this distributed output activity would contribute (in the 

incorrect causal direction) to the mapping of the localized processes. This possibility is unlikely, 

however, since such strongly category selective output would likely drive downstream regions to 

also exhibit robust category selectivity, and the best-established category selective regions were 

included in each functional complex in our analyses, removing them from prediction sources. We 

also conducted a control analysis that specifically excluded other known visual-category-

responsive regions from source sets, and results were remarkably consistent. In addition, we 

more systematically ruled out this possibility for circularity in the stimulus-driven network 

interaction models (Figs 1B-D, see Methods) by restricting all activity flows to those originating 

(directly or indirectly) from visual input region V1. Altogether, our results largely rule out the 

alternative hypothesis that localized visual category selectivity is solely driven by within-region 
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computations. For instance, our results rule out the hypothesis that elevated face-image-evoked 

activity in FFA solely reflects within-FFA computations to detect or identify faces. Instead, the 

present results suggest elevated activity in FFA primarily reflects connectivity-specified activity 

flows summing together weakly category-selective distributed responses to generate highly 

category-selective localized responses. It will be important for future research to disentangle input 

and output processes to and from visual category selective brain regions in order to further specify 

the time course and directionality of network interactions that support visual category selectivity. 

One compelling approach that aligns with the broad inferences made in the present study is 

connective field modeling [14], which predicts responses in visual cortex regions from activity 

patterns in other brain regions. This approach does not implement functional and/or structural 

connectivity estimation standard to neuroimaging, but instead a spatially-linked Gaussian model-

fit procedure that future researchers may integrate as part of the activity flow mapping to develop 

estimates of direction of information flow. Additionally, following suggestions by Poldrack et al. 

[61] and the accessibility of functional regions assessed in Osher et al. [21], we selected functional 

complexes of interest a priori and uniformly across participants. However, we encourage future 

work to probe individual differences in category-selective topography (as in face localizer tasks 

[184], or with individualized network parcellations [185]). More broadly, in order to formalize a 

rigorous testbed for our hypotheses, we treated the end point of activity-flow-mapped visual 

category selectivity as a localized response. However, future work that builds upon the present 

study will likely make greater contact with neurobiological reality if dispersed representation of 

visual categories across the cortex are probed.  

         In summary, we observed that distributed network interactions, specified by intrinsic 

connectivity fingerprints, are likely the primary contributor to the emergence of category selectivity 

in visual cortex regions. This finding builds upon and integrates a history of theories in vision 

neuroscience and network neuroscience emphasizing the importance of distributed and 

overlapping activation patterns [11], connectivity fingerprints specifying regional functioning 
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[13,15], and models predicting visual responsiveness [14]. We leveraged activity flow mapping’s 

inherent sensitivity to global processing features [27] to estimate the contribution of distributed 

processes upon visual category selectivity. Looking forward, the present findings can facilitate 

examinations of the generative capacity of distributed neural processing mechanisms by 

constraining and contextualizing hypotheses. 
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Supporting Information Legends 
S1 Fig. Whole-cortex activity-flow-mapped activations for four semantic visual categories. 
This assessment demonstrates that activity flow mapping of cross-cortex activations to each 
visual semantic category exhibits high accuracy. (A) Left: Cross-participant average actual 
(empirical) task activations to body categories projected onto the MMP cortical atlas [54]. Right: 
Cross-participant average activity-flow-mapped task activations to body categories projected onto 
the MMP cortical atlas. The mapped and actual activations exhibited a high degree of overlap: r 
= 0.89. (B-D) The same as in A, but for face (B), place (C), and tool categories (D) respectively. 
In all cases, accuracy was high, demonstrating that activity flow processes mapped predicted 
cross-cortex responses to each visual category of interest well. 
 
S2 Fig. Benchmarking activity in four functional complexes. To corroborate findings in the 
literature that each of the four functional complexes assessed in the present study exhibit 
significantly higher activations to images in their respective visual categories, we conducted 
standard t-test contrasts (discovery dataset, right hemisphere results depicted here; left 
hemisphere statistics reported in S1 Table). (A) Box and swarm plots depicting activations to 
images of bodies and body parts exhibited by the EBA/FBA (dots = individual participant’s data). 
The actual activity is shown in coral and the activity-flow-mapped activity is shown in purple. Body 
versus non-body activations were contrasted with a one-tailed, paired samples t-test 
(hypothesizing that body activity was larger than non-body activity in the EBA/FBA), with an 
asterisk indicating a statistically significant difference (p < 0.0001 with nonparametric permutation 
tests, as reported in the main text Results). The EBA/FBA exhibited statistically greater activations 
to body versus non-body images, benchmarking the prior work in the literature. (B) Same as in A, 
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but for face versus non-face images and the FFA/pSTS functional complex. (C) Same as in A, 
but for place versus non-place images and the PPA/RSC functional complex. (D) Same as in A, 
but for tool versus non-tool images and the LOC functional complex. All results were corroborated 
by the replication dataset (N=176 in each; statistics given in main Results text). 
 
S1 Table. Whole-cortex activity-flow-mapped responses to visual category conditions. 
Across select portions of cortex (whole cortex = all 360 MMP cortical regions [54]) and all n=176 
participants, the accuracy of activity flow mapping was estimated by comparing of mapped and 
actual responses to select HCP conditions (response profile = across all 24 HCP conditions) via 
Pearson’s r, mean absolute error (MAE), and the coefficient of determination (R2).  
 
S2 Table. Benchmark contrasts in four functional complexes. Number of permutations in 
max-T nonparametric permutation testing: 10,000. Disc. = discovery; repl. = replication; hemi. = 
hemisphere. 
 
S3 Table. Category selectivity scores and estimated percent distributed processing 
contribution to category selectivity in four functional complexes. Number of permutations in 
max-T nonparametric permutation testing: 100,000. d.f. = degrees of freedom (see Methods for 
details on outlier removal procedure). Disc. = discovery; repl. = replication; thresh. = threshold; 
hemi. = hemisphere. 
  
S4 Table. Large-scale functional network activity flows contributing to category-specific 
responses in four functional complexes. Number of permutations in max-T nonparametric 
permutation testing: 10,000. sig. = significant. VIS1 = primary visual network; VIS2 = secondary 
visual network; DAN = dorsal attention network. These results corroborate results presented in 
Figs 4E-7E (right hemisphere discovery data; statistics reported in main text). Disc. = discovery; 
repl. = replication; thresh. = threshold; hemi. = hemisphere. 
  
S5 Table. Discovery dataset: variance explained per network in predicting cross-condition 
response profiles in left hemisphere complexes. Source network = network-based source of 
explained variance in activity-flow-mapped activations across 24 conditions (i.e., the response 
profile). VIS1 = primary visual network; VIS2 = secondary visual network; SMN = somatomotor 
network; CON = cingulo-opercular network; DAN = dorsal attention network; LAN = language 
network; FPN = frontoparietal network; AUD = auditory network; DMN = default mode network; 
PMM = posterior multimodal network; VMM = ventral multimodal network; OAN = orbito-affective 
network. rel. % = percent of relative importance to the full model. Asterisks = statistically significant 
network contributions (p < 0.0001, number of permutations = 10,000). EBA/FBA max-T(175) = 
3.41; FFA/pSTS max-T(175) = 3.42; PPA/RSC max-T(175) = 3.42; LOC max-T(175) = 3.39. 
Statistical results listed in the bottom two rows refer to 1 sample t-testing of the total R2 value for 
each model versus 0.5, which assesses whether the mapped response profile for a given 
functional complex explains more than 50% of the variance in the actual response profile. This 
provides evidence that distributed processes (as captured by activity flow mapping) are the 
dominant influence in generating a given functional complexes activations to a diverse set of 
cognitive domains. n/a = not applicable. These results corroborate results presented in Figs 4F-
7F (right hemisphere discovery data; statistics reported in main text).  
  
S6 Table. Replication dataset: variance explained per network in predicting cross-
condition response profiles in left hemisphere complexes. Source network = network-based 
source of explained variance in activity-flow-mapped activations across 24 conditions (i.e., the 
response profile). VIS1 = primary visual network; VIS2 = secondary visual network; SMN = 
somatomotor network; CON = cingulo-opercular network; DAN = dorsal attention network; LAN = 
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language network; FPN = frontoparietal network; AUD = auditory network; DMN = default mode 
network; PMM = posterior multimodal network; VMM = ventral multimodal network; OAN = orbito-
affective network. rel. % = percent of relative importance to the full model. Asterisks = statistically 
significant network contributions (p < 0.0001, number of permutations = 10,000). EBA/FBA max-
T(175) = 3.34; FFA/pSTS max-T(175) = 3.4; PPA/RSC max-T(175) = 3.35; LOC max-T(175) = 
3.38. Statistical results listed in the bottom two rows refer to 1 sample t-testing of the total R2 
value for each model versus 0.5, which assesses whether the mapped response profile for a given 
functional complex explains more than 50% of the variance in the actual response profile. This 
provides evidence that distributed processes (as captured by activity flow mapping) are the 
dominant influence in generating a given functional complexes activations to a diverse set of 
cognitive domains. n/a = not applicable. These results corroborate results presented in Figs 4F-
7F (right hemisphere discovery data; statistics reported in main text). 
 
S7 Table. Replication dataset: variance explained per network in predicting cross-
condition response profiles in right hemisphere complexes. Source network = network-
based source of explained variance in activity-flow-mapped activations across 24 conditions (i.e., 
the response profile). VIS1 = primary visual network; VIS2 = secondary visual network; SMN = 
somatomotor network; CON = cingulo-opercular network; DAN = dorsal attention network; LAN = 
language network; FPN = frontoparietal network; AUD = auditory network; DMN = default mode 
network; PMM = posterior multimodal network; VMM = ventral multimodal network; OAN = orbito-
affective network. rel. % = percent of relative importance to the full model. Asterisks = statistically 
significant network contributions (p < 0.0001, number of permutations = 10,000). EBA/FBA max-
T(175) = 3.41; FFA/pSTS max-T(175) = 3.39; PPA/RSC max-T(175) = 3.42; LOC max-T(175) = 
3.38. Statistical results listed in the bottom two rows refer to 1 sample t-testing of the total R2 
value for each model versus 0.5, which assesses whether the mapped response profile for a given 
functional complex explains more than 50% of the variance in the actual response profile. This 
provides evidence that distributed processes (as captured by activity flow mapping) are the 
dominant influence in generating a given functional complexes activations to a diverse set of 
cognitive domains. n/a = not applicable. These results corroborate results presented in Figs 4F-
7F (right hemisphere discovery data; statistics reported in main text). 
 
S8 Table. Null connectivity fingerprint models, right hemisphere functional complexes and 
replication dataset. In each analysis, the true model category selectivity scores (i.e., activity-
flow-mapped with true connectivity fingerprint) were compared to the null model category 
selectivity scores (i.e., activity-flow-mapped with substituted connectivity fingerprints) across 
participants (paired samples t-test). Repl. = replication. 
 
S9 Table. Null connectivity fingerprint models, left hemisphere functional complexes. In 
each analysis, the true model category selectivity scores (i.e., activity-flow-mapped with true 
connectivity fingerprint) were compared to the null model body selectivity scores (i.e., activity-
flow-mapped with substituted connectivity fingerprints) across participants (paired samples t-test). 
Disc. = discovery; repl. = replication. 
 
S10 Table. Category selectivity generated from stimulus-driven activity flow processes for 
left hemisphere functional complexes and the replication dataset. Number of permutations 
in max-T nonparametric permutation testing: 100,000. d.f. = degrees of freedom (see Methods for 
details on outlier removal procedure). This analysis corresponds to category selectivity generated 
from V1-initialized, stimulus-driven activity flow processes (Figs 1B and 9; Step 1 of Fig 11B). 
Disc. = discovery; repl. = replication; hemi. = hemisphere; thresh. = threshold; n.s. = not 
significant.  
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S11 Table. Actual category selectivity exhibited by V1 for the replication dataset. As in the 
main text (reporting the discovery dataset results), bilateral V1 (vertex-level data, see Methods) 
itself did not exhibit significant category selectivity for any of the four visual categories. Given this 
observation, it is likely that intrinsic connectivity patterns (between V1 and functional complexes 
of interest), and not source activation patterns in V1, were key to stimulus-driven activity flow 
processes being able to generate visual category selectivity.  
 
S12 Table. Stimulus-driven category selectivity generated via activity flow mapping is 
significantly greater than with a null network architecture. In each analysis, the true model 
category selectivity scores (i.e., via stimulus-driven activity flow mapping with true connectivity 
fingerprint with V1) were compared to the null model (Fig 10C) category selectivity scores (i.e., 
activity flow mapping with randomly shuffled connectivity fingerprints, see Methods) across 
participants (paired samples t-test). N.s. = not significant. 
 
S13 Table. Category selectivity via stimulus-driven processes further shaped by VIS 
subsystem network interactions (step 2), left hemisphere functional complexes and the 
replication dataset. Number of permutations in max-T nonparametric permutation testing: 
100,000. d.f. = degrees of freedom (see Methods for details on outlier removal procedure). This 
analysis corresponds to category selectivity generated from V1-initialized, stimulus-driven activity 
flow processes that are further shaped by one step of VIS subsystem network interactions (Figs 
1C and 11). Disc. = discovery; repl. = replication; hemi. = hemisphere; thresh. = threshold; n.s. = 
not significant. 
 
S14 Table. Category selectivity via stimulus-driven processes further shaped by VIS 
subsystem network interactions (step 3), left hemisphere functional complexes and the 
replication dataset. Number of permutations in max-T nonparametric permutation testing: 
100,000. d.f. = degrees of freedom (see Methods for details on outlier removal procedure). This 
analysis corresponds to category selectivity generated from V1-initialized, stimulus-driven activity 
flow processes that are further shaped by two steps of VIS subsystem network interactions (Figs 
1C and 11). Disc. = discovery; repl. = replication; hemi. = hemisphere; thresh. = threshold; n.s. = 
not significant. 
 
S15 Table. Category selectivity via stimulus-driven activity flow processes further shaped 
by whole-cortex, fully distributed network interactions. Number of permutations in max-T 
nonparametric permutation testing: 100,000. d.f. = degrees of freedom (see Methods for details 
on outlier removal procedure). This analysis corresponds to category selectivity generated from 
V1-initialized, stimulus-driven activity flow processes that are further shaped by fully distributed 
network interactions (Figs 1D and 12). Disc. = discovery; repl. = replication; hemi. = hemisphere; 
thresh. = threshold.  
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