
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 4, APRIL 2024 1307

Hardware Constructions for Error Detection in WG-29 Stream
Cipher Benchmarked on FPGA

Jasmin Kaur, Student Member, IEEE, Alvaro Cintas Canto , Member, IEEE,
Mehran Mozaffari Kermani , Senior Member, IEEE,

and Reza Azarderakhsh , Member, IEEE

Abstract—WG-29 is a Welch-Gong (WG) stream cipher, implemented
in GF(229) and an 11-stage LFSR, whose polynomial-basis (PB)-based
architecture is utilized in diverse applications. This work, for the first
time, presents low-cost normal signature, interleaved signature, and
Hamming code-based error detection mechanisms for the hardware
implementations of PB-based WG-29 stream cipher. The presented
schemes are benchmarked on field-programmable gate array (FPGA)
hardware platform using Kintex-7 and Spartan-7 FPGA families for
area (< 40%), power (< 12%), and delay (< 10%) overheads. Using a
faulty module to inject stuck-at single bit and multiple bit upsets, the
error coverage for these presented schemes is evaluated via simulations
performed in Xilinx Vivado for 80 000 faults and shown to be over
99.99%. The overhead and error simulation results for the presented
schemes show that they provide high-error coverage with acceptable
overheads to make hardware constructions of WG-29 more reliable.
Other WG ciphers that have similar underlying primitives can also benefit
from the presented work, with slight modifications, for secure hardware
implementations.

Index Terms—Error detection, field-programmable gate array
(FPGA), linear feedback shift register (LFSR), polynomial basis
(PB) multiplier, Welch-Gong (WG) cipher.

I. INTRODUCTION

Stream ciphers are symmetric key cryptosystems that perform bit-
by-bit encryption/decryption to provide confidentiality and integrity
in Internet of Things (IoTs) devices, RFID tags, Bluetooth devices,
network protocols, and long term evolution (LTE) security suite for
secure communication. Welch-Gong (WG) ciphers (Fig. 1) are stream
ciphers based on an l-stage linear feedback shift register (LFSR)
and a WG-transformation function, both defined in the same finite
field GF(2m), to generate a pseudo-random keystream [1], [2], [3],
[4], [5]. The WG-29 [6], [7], [8] is a hardware-oriented WG stream
cipher defined in the GF(229) with an 11-stage LFSR. Manufacturing
or transient faults in the hardware implementations of WG-29 can
be utilized for fault analysis [9], [10] that can compromise its
security and reliability. As studied in a number of previous works,
e.g., [11], [12], [13], [14], and [15], error detection is often used in
cryptographic applications to enhance their reliability and security

Manuscript received 15 May 2023; accepted 16 November 2023. Date of
publication 30 November 2023; date of current version 21 March 2024. This
work was supported by the U.S. Department of Commerce, National Institute
of Standards and Technology (NIST) through the U.S. Federal Agency under
award 60NANB20D013. This article was recommended by Associate Editor
J. L. Dworak. (Corresponding author: Mehran Mozaffari Kermani.)

Jasmin Kaur and Mehran Mozaffari Kermani are with the Department of
Computer Science and Engineering, University of South Florida, Tampa, FL
33620 USA (e-mail: jasmink1@usf.edu; mehran2@usf.edu).

Alvaro Cintas Canto is with the School of Technology and Innovation,
Marymount University, Arlington, VA 22207 USA (e-mail: acintas@
marymount.edu).

Reza Azarderakhsh is with the Department of Computer and Electrical
Engineering and Computer Science, Florida Atlantic University, Boca Raton,
FL 33431 USA (e-mail: razarderakhsh@fau.edu).

Digital Object Identifier 10.1109/TCAD.2023.3338108

Fig. 1. General design of a WG-29 cipher [8].

in hardware implementations. This article, for the first time as
per authors’ knowledge, proposes error detection mechanisms for
the polynomial basis (PB)-based implementation of WG-29 stream
cipher [7], [8]. Such schemes have also benefited the lightweight
streamcipher WAGE, a successor of WG-29. We note that this article
does not focus on error correction codes; however, this work also
proposes Hamming codes scheme that can be utilized to correct errors
up to a two bits. The presented work, with slight modifications,
can also be used for secure hardware implementations of other WG
ciphers that have similar underlying primitives.

We present the formulations for the low-cost normal and inter-
leaved signatures schemes for the squaring matrices, the trace, and
the trace of multiplication of two PB elements of WG-29 in hardware
constructions of PB-based WG-29 to detect single/multiple bit faults.
We also present the (7, 4) Hamming codes for the complex PB
multiplier of WG-29 [14], [15]. For the sake of brevity, the error
coverage, through Vivado simulations, has been performed only for
the stuck-at faults, but we expect similar error coverage for transient
faults as well. The proposed architectures are benchmarked on field-
programmable gate array (FPGA) hardware platform using Xilinx
Kintex-7 and Spartan-7 FPGA families, for area, delay, and power
overheads using Xilinx Vivado.

This article is organized as follows: in Section II, the functionality
of WG-29 is described. In Section III, the proposed error detection
schemes for the S-module, the trace functions and the PB multiplier
are presented. In Section IV, the FPGA benchmarks followed by
the error coverage assessments are given. Section V concludes the
presented work.

II. PRELIMINARIES

Detailed specification of WG-29 (Fig. 1), its design parameters,
and proof of the equations given below are described in [8]. Briefly,
WG-29 is a bit-oriented sequence generator, where the m = 29 bits.
The WGT is applied to the leftmost cell of the primitive LFSR of
degree l = 11 over GF(229), which produces m-sequences of period
2m·l − 1, i.e., 2319 − 1 periods for m = 29 [1]. For WG-29, the field

1937-4151 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of South Florida. Downloaded on June 10,2024 at 16:55:03 UTC from IEEE Xplore.  Restrictions apply. 



1308 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 4, APRIL 2024

Fig. 2. S matrix for WG-29 [8].

polynomial f (x) = x29 +x2 +1 is used for lower-space complexity of
squaring and multiplication operations. The LFSR based on primitive
polynomial P11 ⊕ P6 ⊕ P2 ⊕ P ⊕ x is used for WG-29, where x is
the root of f (x) and x ∈ GF(229). The squaring matrix S (Fig. 2) is
a binary m × m matrix used to square a field element U ∈ GF(229)

with respect to PB. Here, and throughout this article, the symbol ⊕
corresponds to the XOR operation. All the formulations follow the
rules of modulo-2 arithmetic for finite fields.

From [8], the WG-29 permutation is given as WGP(29) =
1 ⊕ T ⊕ T210+1 + T220+210+1 ⊕ T220−210+1 ⊕ T220+210−1, where
T = 1 ⊕ Li+10 is the output of the LFSR with its least
significant bit inverted. The WGT is obtained as Tr(WGP(29)).
Thus, substituting T220−210+1 with (T220−210+1)220

in the equa-
tion above, WGT(29) in [8] becomes WGT(29) = Tr[1 ⊕ T ⊕
T(T22

)25
] + Tr[((T25

)22
)210

(T(T25
)25 ⊕ T210−1 ⊕ (T210−1)230

)],
where T210+1 = T(T25

)25
,T220 = ((T25

)25
)210

, and T =
[((T25+1)2+1)(Y25+1)24

][(T25+1)2+1]22
.

For PB = {1, x, . . . , x27, x28} of GF(229) over GF(2) defined by
f (x), for an element K = ∑28

i=0 xiki, the Tr(K) [8] is derived as
Tr(K) = k0τ0 + k27τ27.

For multiplication of two field elements K = ∑28
i=0 xiki and O =∑28

i=0 xioi, the Tr(KO) [8] is calculated as Tr(KO) = (k0 + k27)o0 +∑25
j=1(k27−j + k29−j)oj + (k1 + k26)o28 + ∑27

j=26(k27−j + k29−j +
k54−j)oj.

III. PROPOSED ERROR DETECTION ARCHITECTURES FOR WG-29

This section presents low-cost formulations for the parity-based
normal signature, interleaved signature, and (7, 4) Hamming codes
for error detection in hardware implementations of WG-29. The
(7, 4) Hamming code-based error detection scheme is utilized for
the complex GF(229) PB multiplier for higher-error coverage. To
determine if a bit fault has occurred in a module, the parity of
the output (actual parity) is compared with the parity of the input
(predicted parity) to trigger an error flag. For Hamming codes, the
parity-check bits of the input and output vectors are compared for
fault detection.

TABLE I
FORMULATIONS FOR THE NORMAL (ρ̂0) AND THE INTERLEAVED

SIGNATURE (ρ̂1, ρ̂2) FOR THE SQUARING MATRICES OF

PB-BASED WG-29 ARCHITECTURE (SECTION II)

A. Proposed Signature-Based Schemes for S

The S of WG-29 is a squaring matrix (Fig. 2) used to perform
the squaring operations of elements in GF(229) [8]. As described in
Section II, S is a binary m × m matrix whose elements are either
“0” or “1.” The PB-based implementation of WG-29 uses six chains
of S, namely, S, S2, S4, S5, S10, and S30. The square of an element
U2 ∈ GF(229) is computed as Z = US = ∑28

i=0
∑28

j=0 ujSj,i,
where Z = {z28, z27, . . . , z0} and U = {u28, u27, . . . , u0}, respec-
tively. Additionally, the square of exponentiation values W = U2e

is calculated as W = USe = ∑28
i=0

∑28
j=0 ujS

e
j,i, where W =

{w28, w27, . . . , w0}. Here, the matrix Se represents the chains of
squaring matrix S for e ∈ {1, 2, 4, 5, 10, 30}. The formulations for
the normal and interleaved signatures of all the six aforementioned
squaring matrices used are given in Table I. It is noted that S30 = S,
and hence their formulations are the same.

Remark 1: Only the nonzero terms of the product Z are considered
in the following equations.

1) Signature: The normal parity ρ̂0 of the S matrix for
the input vector {u28, u27, . . . , u0} is calculated as: ρ̂0 =∑28

i=0
∑28

j=0 ujSj,i.
2) Interleaved Signature: Similarly, the interleaved parity bits

(ρ̂1, ρ̂2) of the S matrix for the input {u28, u27, . . . , u0} are:
ρ̂1 = ∑14

i=0
∑28

j=0 ujSj,2i and ρ̂2 = ∑14
i=1

∑28
j=0 ujSj,2i−1.

B. Proposed Signature-Based Schemes for the Trace Functions

The trace function in WG is used to map the trace of an element
from GF(229) → GF(2). WG-29 uses two different trace vectors:

Authorized licensed use limited to: University of South Florida. Downloaded on June 10,2024 at 16:55:03 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 4, APRIL 2024 1309

1) to get the trace of a single PB element and 2) to get the trace of
the produce of two PB elements, respectively.

Remark 2: Since the output of both the trace functions is a single
bit value and depends upon only nonzero terms, the normal and
interleaved signatures of these functions can be directly computed
from the trace equations given in Section II, and then compared to
the respective trace function’s output for error detection.

1) Trace Vector for Single PB Element: The trace Tr(K)

(Section II) of an element K of GF(229) with a row vector k is
calculated as Tr(K) = kτT = ∑m−1

i=0 ki·τi, where τ = {τ0, . . . , τm−1}
is a constant and unique vector such that τ i = Tr(xi). For the
irreducible polynomial f (x), the only two nonzero entries of τ are
{τ0, τ27}. Therefore, the only terms considered for the trace value are
k0 and k27.

a) Signature: For an input vector K = {k28, k27, . . . , k0}, the
normal parity ρ̂3 is calculated as: ρ̂3 = ∑28

i=0 kiτi = {k0τ0 ⊕k27τ27}.
b) Interleaved signature: For the input vector K =

{k0, k1, . . . , k28} and output kτT , the 2-bit parity (ρ̂4, ρ̂5) is
calculated as: ρ̂4 = ∑14

i=0 k2iτ2i = {k0τ0 ⊕ k2τ2 ⊕ · · · ⊕ k28τ28} =
k0τ0 and ρ̂5 = ∑14

i=0 k2i−1τ2i−1 = {k1τ1 ⊕ k3τ3 ⊕ · · · ⊕ k27τ27} =
k27τ27.

2) Trace of the Multiplication of Two PB Elements: Detailed
explanation of the calculation of the trace of multiplication of two PB
elements K, O ∈ GF(229) is shown in [8]. The normal and interleaved
signatures are derived directly from Tr(K · O).

a) Signature: The normal parity ρ̂6 is computed as the modulo-
2 addition of all the terms of the Tr(KO): ρ̂6 = (k0 ⊕ k27)o0 ⊕∑25

j=1(k27−j ⊕ k29−j)oj ⊕ (k1 ⊕ k26)o28 ⊕ ∑27
j=26(k27−j ⊕ k29−j ⊕

k54−j)oj.
b) Interleaved signature: The interleaved parity (ρ̂7, ρ̂8) of

Tr(KO): ρ̂7 = {(k0 ⊕ k27)o0 ⊕ (k25 ⊕ k27)o2 ⊕ · · · ⊕ (k3 ⊕ k5)o24 ⊕
(k1 ⊕k26)o28 ⊕(k1 ⊕k3 ⊕k28)o26} and ρ̂8 = {(k26 ⊕k28)o1 ⊕(k24 ⊕
k26)o3 ⊕ · · · ⊕ (k2 ⊕ k4)o25 ⊕ (k0 ⊕ k2 ⊕ k27)o27}.

Following Remark 2, the (ρ̂7 ⊕ ρ̂8) is compared with the output of
the Tr(K) function (Section II) for the interleaved signature scheme.

C. Proposed Hamming Code-Based Scheme for the PB Multiplier

For the hardware implementation of WG-29 in this article, the
PB multiplier from [14] is implemented, which uses sum, pass-thru,
and alpha modules to multiply two PB elements in GF(2m). The
multiplication C = (A·B) mod f (x) of GF(2m) two elements A and B
in PB is performed as C = ∑m−1

i=0 bi · ((Axi) mod f (x)) = ∑m−1
i=0 bi ·

Mi where, bi ∈ B, Mi = x · Mi−1 mod f (x) for 1 ≤ i ≤ m − 1,
and M0 = A [14]. The sum module performs the finite field addition
of two PB elements A, B ∈ GF(2m) as

∑m−1
i=0 (bi + ai)xi mod f (x);

the pass-thru module multiplies an element Mi ∈ GF(2m) element
with a GF(2) element bi ∈ GF(2) as bi · Mi mod f (x), where the
output is Mi if bi = 1, else 0 if bi = 0 for 0 ≤ i ≤ m − 1; the
alpha module multiplies a GF(2m) element A with the root x as
A(x) · x = am−1xm + · · · + a0x mod f (x), where xm = fm−1xm−1 +
fm−2xm−2 + · · ·+ f0 mod f (x) [14]. The formulated (7, 4) Hamming
codes for the 29-bit PB multiplier of WG-29 are given below.

Consider γ (x) as a 29-bit input/output vector of the sum, pass-thru,
or alpha modules detailed above. This vector is first padded with
zeros to make it 32 bits, following a split into 4-bit blocks (1). Each
of these 4-bit block is then multiplied with the last three columns of
generator matrix G (2) to get 8 · 3 = 24 encoded parity bits

γ ′
0 = γ0 + γ1x + γ2x2 + γ3x3 mod f (x)

γ ′
1 = γ4x4 + γ5x5 + γ6x6 + γ7x7 mod f (x)

...

γ ′
7 = γ24x24 + γ25x25 + γ26x26 + γ27x27 mod f (x)

γ ′
8 = γ28x28 + γ29x29 + γ30x30 + γ31x31 mod f (x) (1)

G =

⎧⎪⎪⎨
⎪⎪⎩

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

⎫⎪⎪⎬
⎪⎪⎭

(2)

γ ′
0 · G → ρ0 = γ3x3 ⊕ γ1x1 ⊕ γ0

ρ1 = γ3x3 ⊕ γ2x2 ⊕ γ0

ρ2 = γ3x3 ⊕ γ2x2 ⊕ γ1x

γ ′
1 · G → ρ3 = γ7x7 ⊕ γ5x5 ⊕ γ4x4

ρ4 = γ7x7 ⊕ γ6x6 ⊕ γ4x4

ρ5 = γ7x7 ⊕ γ6x6 ⊕ γ5x5

γ ′
2 · G → ρ6 = γ11x11 ⊕ γ9x9 ⊕ γ8x8

ρ7 = γ11x11 ⊕ γ10x10 ⊕ γ8x8

ρ8 = γ11x11 ⊕ γ10x10 ⊕ γ9x9

γ ′
3 · G → ρ9 = γ15x15 ⊕ γ13x13 ⊕ γ12x12

ρ10 = γ15x15 ⊕ γ14x14 ⊕ γ12x12

ρ11 = γ15x15 ⊕ γ14x14 ⊕ γ13x13

γ ′
4 · G → ρ12 = γ19x19 ⊕ γ17x17 ⊕ γ16x16

ρ13 = γ19x19 ⊕ γ18x18 ⊕ γ16x16

ρ14 = γ19x19 ⊕ γ18x18 ⊕ γ17x17

γ ′
5 · G → ρ15 = γ23x23 ⊕ γ21x21 ⊕ γ20x20

ρ16 = γ23x23 ⊕ γ22x22 ⊕ γ20x20

ρ17 = γ23x23 ⊕ γ22x22 ⊕ γ21x21

γ ′
6 · G → ρ18 = γ27x27 ⊕ γ25x25 ⊕ γ24x24

ρ19 = γ27x27 ⊕ γ26x26 ⊕ γ24x24

ρ20 = γ27x27 ⊕ γ26x26 ⊕ γ25x25

γ ′
7 · G → ρ21 = γ28x28

ρ22 = γ28x28

ρ23 = 0. (3)

The predicted and actual parities of sum, pass-thru, or alpha mod-
ules (defined above) using the (7, 4) Hamming codes are calculated
by inserting the coefficients of the input and output vectors these
modules into (3), respectively. The derivation of the all the Hamming
code equations has been omitted for the sake of brevity.

IV. ERROR COVERAGE AND FPGA BENCHMARK

This section presents the fault coverage and overhead results for
the presented error detection schemes. The normal parity/interleaved
parity schemes are adopted only for the squaring matrices and the
trace functions while the (7, 4) Hamming code is only adopted for
the PB multiplier. Thus, in the hardware implementation of WG-
29 presented here, the normal/interleaved signature schemes and the
(7, 4) Hamming code are combined for a higher-cumulative error
coverage.

A. FPGA Benchmark and Overheads

The architecture of WG-29 [8], the PB multiplier [14], and the
proposed error detection schemes are implemented using Verilog.
The performance and implementation metrics for the error detection
schemes for WG-29 are performed on devices xc7k160tfbg484-
2L of the Xilinx Kintex-7 FPGA family and xc7s100fgga484-2
of Xilinx Spartan-7 FPGA family. Table II tabulates the overhead
benchmarks for the combined the normal/interleaved signature and

Authorized licensed use limited to: University of South Florida. Downloaded on June 10,2024 at 16:55:03 UTC from IEEE Xplore.  Restrictions apply. 



1310 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 4, APRIL 2024

TABLE II
BENCHMARK OF THE PROPOSED ERROR DETECTION SCHEMES ON KINTEX-7 AND SPARTAN-7 FPGA FAMILIES, (a) FPGA IMPLEMENTATION RESULTS

FOR KINTEX-7 FPGA DEVICE XC7K160TFBG484-2L, (b) FPGA IMPLEMENTATION RESULTS FOR SPARTAN-7 FPGA DEVICE XC7S100FGGA484-2

(a)

(b)

TABLE III
PERFORMANCE EVALUATION OF THE PROTECTED WG-29 WITH

OTHER WG AND CRYPTOGRAPHIC CIPHERS

the (7, 4) Hamming code for hardware implementation of WG-
29. From Table II, it is noted that the area, power, and delay
overheads for the combined error detection schemes are low for
both the FPGA families. The throughput (output bits/delay) and the
efficiency (throughput/area) of the proposed architectures are also
listed in Table II. For the Kintex-7 FPGA family [Table II(a)], the
overheads for the normal signature with the (7, 4) Hamming code
are 35.83% for area, 11.04% for power increases, and 4.22% for the
delay. For the same FPGA family, the area, power and delay over-
heads for the interleaved signature scheme with the (7, 4) Hamming
code are 36.12%, 12.34%, and 6.58%, respectively. Similar overheads
are observed for using Spartan-7 FPGA family [Table II(b)], showing
that our presented error detection schemes have acceptable overheads
across different FPGA families.

The performance of the error detection schemes, presented for
the first time for the hardware implementations of WG-29, can
be further evaluated by comparing to the implementations of other
WG and cryptographic ciphers tabulated in Table III. Additionally,
the presented combined implementation of the schemes performed
equally better when compared with the 23.09% for area, 31.78%
for delay, and overall negligible for power overheads of the (7, 4)

Hamming code scheme implemented for PB multiplier in [15]. Thus,
our presented error detection schemes, with slight modifications, can
be adopted for other WG and stream ciphers while having acceptable
overheads.

B. Fault Model and Error Coverage

In hardware implementations of stream ciphers, manufacturing
faults could occur as stuck-at faults, such as single-bit upsets (SBUs),
single-byte double-bit upsets (SBDBUs), single-byte triple-bit upsets
(SBTBUs), single-byte quadruple-bit upsets (SBQBUs), multiple-bit

upsets (MBUs), and multiple byte upsets (MB). Malicious adversaries
could leverage these manufacturing faults or inject similar transient
faults to acquire the secret key. In [16], differential fault analysis
strategy is applied to WG-29, where six randomly placed faults are
injected into the internal state of the ciphers to recover secret key via
analyzing fault distribution in faulty ciphertexts.

The presented normal signature scheme is able to fully detect
SBUs. Interleaved signature and Hamming code are able to detect
the practical SBTBUs, SBQBUs, and MBs. Hamming codes are also
able to detect random MBUs, adjacent MBUs, double-bit upsets,
and odd bit errors with high probability, and can also perform error
correction up to two bits (omitted in this article). The normal and
interleaved signature schemes are applied to the squaring matrices as
well as the two trace functions of WG-29 for error detection at the
output of these components, while the (7, 4) Hamming code scheme
is adopted for the complex PB multiplier for higher-error coverage.
Using the error coverage formula 100·(1−(0.5)p̂)%, where p̂ is equal
to the total number of error flags generated per scheme, the error
coverage for each of the proposed scheme applied to WG-29 is equal
to 99.80% for normal signature, 99.99% for interleaved signature,
and close to 100% for the (7, 4) Hamming codes as there are 12
protected components in total.

The schemes are combined in hardware implementation for
better-coverage across WG-29 components. For the combined nor-
mal/interleaved signature with (7, 4) Hamming code implementation,
the error coverage for 80 000 injected faults is determined via
simulations in Vivado version 2020.2. A stuck-at fault model (stuck-at
1 or stuck-at 0) is considered to simulate manufacturing faults where
the SBUs/MBUs are inserted randomly at the outputs of squaring
matrices, trace functions, sum, pass-thru, and alpha modules using a
faulty Verilog module. Then the predicted and actual parities of the
modules are compared and an error flag is triggered if the parities
do not match to indicate the presence of faults. The simulation
results showed that the cumulative error coverage for SBUs/MBUs
using the combined schemes in the hardware implementation of WG-
29 is over 99.99% (~100%). Thus, our presented error detection
schemes achieve high-error coverage in the hardware implementation
of WG-29.

V. CONCLUSION

This article proposes normal signature, interleaved signature, and
the (7, 4) Hamming code-based error detection schemes for the
squaring matrices, trace functions, and the PB multiplier of the
stream cipher WG-29 for the first time. The derived normal signature,

Authorized licensed use limited to: University of South Florida. Downloaded on June 10,2024 at 16:55:03 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 4, APRIL 2024 1311

interleaved signature, and (7, 4) Hamming codes are capable of
detecting both SBUs and MBUs with high-error coverage, hence pro-
viding measures against both manufacturing and maliciously injected
faults. The performance benchmarks of the proposed schemes on
the Xilinx Kintex-7 and Xilinx Spartan-7 FPGA families along
with error coverage simulations are conducted using Xilinx Vivado
2020.2. The FPGA overheads of the proposed protected WG-29
are between 28.87% to 36.12% for area, 11.04% to 12.34% for
power, and between 4.22% to 7.04% for the delay across two
Xilinx FPGA families: 1) Kintex-7 and 2) Spartan-7, with an error
coverage close to 100%. The results of the performed benchmarks
are further evaluated by comparing them to other state of the
art WG and cryptographic ciphers, consequently exhibiting that
the presented schemes achieve high-error coverage with sufficient
overheads. Additionally, the presented schemes can be modified for
hardware implementations of other cryptographic ciphers with similar
underlying primitives, such as other WG-based ciphers. Thus, the
hardware constructions of WG-29 are made more reliable against
manufacturing and transient faults with the presented error detection
schemes.

REFERENCES

[1] Y. Nawaz and G. Gong, “WG: A family of stream ciphers with designed
randomness properties,” J. Inf. Sci., vol. 178, no. 7, pp. 1903–1916,
2008.

[2] H. El-Razouk, A. Reyhani-Masoleh, and G. Gong, “New implementa-
tions of the WG stream cipher,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 22, no. 9, pp. 1865–1878, Sep. 2014.

[3] C. H. Lam, M. Aagaard, and G. Gong, “Hardware implementations of
multi-output Welch-Gong ciphers,” Dept. Elecr. Comput. Eng., Univ.
Waterloo, Waterloo, ON, Canada, Rep. CACR2011-01, 2009.

[4] X. Fan, N. Zidaric, M. Aagaard, and G. Gong, “Efficient hardware imple-
mentation of the stream cipher WG-16 with composite field arithmetic,”
in Proc. Inter. Workshop Trust. Embedded Devices (TrustED), 2013,
pp. 21–34.

[5] G. Yang, X. Fan, M. Aagaard, and G. Gong, “Design space exploration
of the lightweight stream cipher WG-8 for FPGAs and ASICs,” in Proc.
Workshop Embed. Syst. Sec. (WESS), vol. 8, 2013, pp. 1–10.

[6] G. Gong and Y. Nawaz. “The WG stream cipher.” eSTREAM,
ECRYPT Stream Cipher Project. 2005. [Online]. Available:
http://www.ecrypt.eu.org/stream/wgp2.html

[7] M. Sattarov, “Hardware implementations of the lightweight Welch-Gong
stream cipher family using polynomial bases,” M.S. thesis, Dept. Electr.
Comput. Eng., Univ. Waterloo, Waterloo, ON, Canada, 2019.

[8] H. El-Razouk, A. Reyhani-Masoleh, and G. Gong, “New hardware
implementations of WG(29,11) and WG-16 stream ciphers using poly-
nomial basis,” IEEE Trans. Comput., vol. 64, no. 7, pp. 2020–2035,
Jul. 2015.

[9] S. Saha, A. Bag, D. B. Roy, S. Patranabis, and D. Mukhopadhyay, “Fault
template attacks on block ciphers exploiting fault propagation,” in Proc.
Int. Conf. Theory App. Crypto. Techn., 2020, pp. 612–643.

[10] S. Saha and D. Mukhopadhyay, “Transform without encode is not suffi-
cient for SIFA and FTA security: A case study,” in Proc. Int. Workshop
Construct. Side-Channel Anal. Secure Design, 2021, pp. 85–104.

[11] S. Patranabis, A. Chakraborty, D. Mukhopadhyay, and P. P. Chakrabarti,
“Fault space transformation: A generic approach to counter differential
fault analysis and differential fault intensity analysis on AES-like block
ciphers,” IEEE Trans. Inf. Forensics Security, vol. 12, pp. 1092–1102,
2017.

[12] S. Bauer, S. Rass, and P. Schartner, “Generic parity-based concurrent
error detection for lightweight ARX ciphers,” IEEE Access, vol. 8,
pp. 142016–142025, 2020.

[13] C. Y. Lee, P. K. Meher, and J. C. Patra, “Concurrent error detection in
bit-serial normal basis multiplication over GF(2m) using multiple parity
prediction schemes,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 18, no. 8, pp. 1234–1238, Aug. 2009.

[14] A. Reyhani-Masoleh and M. A. Hasan, “Error detection in polynomial
basis multipliers over binary extension fields,” in Proc. CHES, 2002,
pp. 515–528.

[15] A. C. Canto, M. Mozaffari-Kermani, and R. Azarderakhsh, “Reliable
CRC-based error detection constructions for finite field multipliers with
applications in cryptography,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 29, no. 1, pp. 232–236, Jan. 2021.

[16] M. A. Orumiehchiha, S. Rostami, E. Shakour, and J. Pieprzyk, “A
differential fault attack on the WG family of stream ciphers,” J. Cryptogr.
Eng., vol. 10, pp. 189–195, Mar. 2020.

[17] P. Kitsos, N. Sklavos, G. Provelengios, and A. N. Skodras, “FPGA-
based performance analysis of stream ciphers ZUC, Snow3g, Grain V1,
Mickey V2, Trivium and E0,” J. Microprocess. Microsyst., vol. 37, no. 2,
pp. 235–245, 2013.

[18] M. Aagaard, R. AlTawy, G. Gong, K. Mandal, R. Rohit, and N. Zidaric.
“WAGE: An authenticated encryption algorithm.” Sep. 2019. [Online].
Available: https://uwaterloo.ca/communications-security-lab/lwc/wage

[19] J. Kaur, A. Sarker, M. M. Kermani, and R. Azarderakhsh, “Hardware
constructions for error detection in lightweight Welch-Gong (WG)-
oriented streamcipher WAGE benchmarked on FPGA,” IEEE Trans.
Emerg. Topics Comput., vol. 10, no. 2, pp. 1208–1215, Apr.–Jun. 2022.

Authorized licensed use limited to: University of South Florida. Downloaded on June 10,2024 at 16:55:03 UTC from IEEE Xplore.  Restrictions apply. 


