
Prize-Collecting Steiner Tree: A 1.79 Approximation

Ali Ahmadi
University of Maryland

College Park, Maryland, USA
ahmadia@umd.edu

Iman Gholami
University of Maryland

College Park, Maryland, USA
igholami@umd.edu

MohammadTaghi Hajiaghayi
University of Maryland

College Park, Maryland, USA
hajiagha@umd.edu

Peyman Jabbarzade
University of Maryland

College Park, Maryland, USA
peymanj@umd.edu

Mohammad Mahdavi
University of Maryland

College Park, Maryland, USA
mahdavi@umd.edu

ABSTRACT

Prize-Collecting Steiner Tree (PCST) is a generalization of the

Steiner Tree problem, a fundamental problem in computer science.

In the classic Steiner Tree problem, we aim to connect a set of

vertices known as terminals using the minimum-weight tree in

a given weighted graph. In this generalized version, each vertex

has a penalty, and there is �exibility to decide whether to connect

each vertex or pay its associated penalty, making the problem more

realistic and practical.

Both the Steiner Tree problem and its Prize-Collecting version

had long-standing 2-approximation algorithms, matching the in-

tegrality gap of the natural LP formulations for both. This barrier

for both problems has been surpassed, with algorithms achieving

approximation factors below 2. While research on the Steiner Tree

problem has led to a series of reductions in the approximation ra-

tio below 2, culminating in a ln(4) + n approximation by Byrka,

Grandoni, Rothvoß, and Sanità [STOC’10], the Prize-Collecting

version has not seen improvements in the past 15 years since the

work of Archer, Bateni, Hajiaghayi, and Karlo� [FOCS’09, SIAM

J. Comput.’11], which reduced the approximation factor for this

problem from 2 to 1.9672. Interestingly, even the Prize-Collecting

TSP approximation, which was �rst improved below 2 in the same

paper, has seen several advancements since then (see, e.g., Blauth

and Nägele [STOC’23]).

In this paper, we reduce the approximation factor for the PCST

problem substantially to 1.7994 via a novel iterative approach.

CCS CONCEPTS

• Mathematics of computing → Graph algorithms; Approxi-

mation algorithms.

KEYWORDS

Steiner tree, prize-collecting, approximation algorithm

ACM Reference Format:

Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi, Peyman Jab-

barzade, and Mohammad Mahdavi. 2024. Prize-Collecting Steiner Tree: A

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0383-6/24/06
https://doi.org/10.1145/3618260.3649789

1.79 Approximation. In Proceedings of the 56th Annual ACM Symposium on

Theory of Computing (STOC ’24), June 24–28, 2024, Vancouver, BC, Canada.

ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3618260.3649789

1 INTRODUCTION

The Steiner Tree problem is a well-known problem in the �eld of

combinatorial optimization. It involves connecting a speci�c set of

vertices (referred to as terminals) in a weighted graph while aiming

tominimize the total cost of the edges used. The problem also allows

for the inclusion of additional vertices, known as Steiner points,

which can help reduce the overall cost. This problem has a long

history and was formally de�ned mathematically by Hakimi in 1971

[19]. It is recognized as one of the classic NP-hard problems [20].

The Steiner Tree problem �nds applications in various domains,

including network design [4] and phylogenetics [24], prompting

continuous research e�orts to develop more e�cient approximation

algorithms.

Initial algorithmic strategies for the Steiner Tree problem, while

heuristic in nature, set the stage for more precise approaches. Ze-

likovsky’s 1993 introduction of a polynomial-time approximation

algorithm achieved an 11/6-approximation ratio [25], which was

followed by further improvements including Karpinski and Ze-

likovsky’s 1.65-approximation in 1995 [21]. The approach was re-

�ned to a 1.55-approximation by Robins and Zelikovsky in 2005 [23],

and by 2010, Byrka, Grandoni, Rothvoß, and Sanità advanced this to

a 1.39-approximation [12]. An earlier MST-based 2-approximation

algorithm, introduced in the early 1980s, also played a crucial role

due to its simplicity [22].

The computational complexity of the Steiner Tree problem has

been �rmly established. Bern and Plassmann showed its MAX SNP-

hardness, indicating the absence of a polynomial-time approxi-

mation scheme (PTAS) for this problem unless P equals NP [8].

Building on this, Chlebík and Chlebíková in 2008 established a

lower bound, demonstrating that approximating the Steiner Tree

problem within a factor of 96/95 of the optimal solution is NP-hard.

This �nding marks a crucial step in understanding the inherent

complexity of the problem [13].

In combinatorial optimization, prize-collecting variants are dis-

tinct for their detailed decision-making approach. These variants

focus not only on building an optimal structure but also on inten-

tionally excluding certain components, which leads to a penalty.

This introduces more complexity and makes these problems more

applicable to real-world scenarios. The concept of prize-collecting

problems in optimization was �rst brought forward by Balas in

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1641

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5074-5014
https://orcid.org/0009-0007-4225-1608
https://orcid.org/0000-0003-4842-0533
https://orcid.org/0000-0002-5413-2231
https://orcid.org/0009-0008-4810-8893
https://doi.org/10.1145/3618260.3649789
https://doi.org/10.1145/3618260.3649789
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618260.3649789&domain=pdf&date_stamp=2024-06-11

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Mohammad Mahdavi

the late 1980s [7]. This pioneering work opened a new research

direction, particularly in scenarios where avoiding certain elements

results in penalties. Following this, the �rst approximation algo-

rithms for prize-collecting problems were introduced in the early

1990s by authors including Bienstock, Goemans, Simchi-Levi, and

Williamson [9]. Their initial contributions have signi�cantly shaped

the research direction in this area, focusing on developing solutions

that e�ectively balance costs against penalties.

The Prize-collecting Steiner Tree (PCST) problem is a key ex-

ample in this category, as it takes into account both the costs of

connectivity and penalties for excluding vertices. In this problem,

we consider an undirected graph � = (+ , �) where + represents

vertices and � represents edges. Each edge 4 ∈ � has an associated

cost 2 (4), and each vertex E ∈ + comes with a penalty c (E) that

needs to be paid if the vertex is not connected in the solution. The

objective is to �nd a tree) = (+) , �)) within� that minimizes the

sum of edge costs in) and penalties for vertices not in) . This is

mathematically expressed as:

Minimize
∑

4∈�)

2 (4) +
∑

E∈+ \+)

c (E).

This formulation captures the essence of the PCST problem: a

trade-o� between the infrastructure cost, represented by the sum

of the edge costs within the chosen tree, and the penalties assigned

to vertices excluded from this connecting structure. This detailed

view of the problem applies to various situations, such as network

design where not every node needs to be connected, and resource

allocation where some demands might not be met, resulting in a

cost.

Initial strides in developing approximation algorithms for PCST

were made by Bienstock, Goemans, Simchi-Levi, and Williamson

with a 3-approximation achieved through linear programming relax-

ation [9]. Subsequent advancements by Goemans and Williamson,

and later by Archer, Bateni, Hajiaghayi, and Karlo�, re�ned the

approximation ratio to 2 and 1.967, respectively [6, 15]. Our work

contributes to the ongoing research e�orts in the �eld by presenting

a 1.7994-approximation algorithm for the PCST problem, improving

upon the previous best-known ratio of 1.967 established in 2009 [6].

This achievement marks progress in enhancing the e�ciency of

solutions for this long-standing open problem.

Besides PCST, the Prize-collecting Steiner Forest (PCSF) problem

stands as another open area of research in combinatorial optimiza-

tion. In PCSF, the objective is to e�ciently connect pairs of vertices,

each of which has an associated penalty for remaining unconnected.

Work on this area began with the work of Agrawal, Klein, and Ravi

[1, 2]. Following this, 3-approximation algorithms were developed

using cost-sharing and iterative rounding, respectively [16, 17].

Progress continued with Hajiaghayi and Jain’s 2.54-approximation

algorithm [18], and more recently, the 2-approximation by Ahmadi,

Gholami, Hajiaghayi, Jabbarzade, and Mahdavi [3].

Another related problem, the Prize-collecting version of the clas-

sic Traveling Salesman Problem (PCTSP), focuses on optimizing the

length of the route taken while also accounting for penalties associ-

ated with unvisited cities. Although the natural LP formulations for

PCTSP and PCST share lots of similarities, PCTSP has experienced

considerably more progress. The �rst breakthrough in breaking the

barrier of 2 for PCST also introduced a 1.98-approximation algo-

rithm for PCTSP [6]. Subsequently, Goemans improved this to a 1.91

approximation factor [14]. The approximation factor was further

improved to 1.774 by Blauth and Nägele [11], and most recently, to

1.599 by Blauth, Klein, and Nägele [10]. These advances in PCSF and

PCTSP underline the signi�cance and continuous research interest

in prize-collecting problems.

1.1 Contribution Overview

In this paper, we focus on rooted PCST where a designated vertex,

denoted as root, must be included in the solution tree. The objective

is to connect other vertices to root or pay their penalty. The general

PCST and its rooted variant are equivalent. Solving the general

PCST involves iterating over all vertices as potential roots and

solving the rooted variant for each. Conversely, we can adapt the

general version to address rooted PCST by assigning an in�nite

penalty to the root vertex, ensuring its inclusion in the optimal

solution. This two-way equivalence is crucial for our approach,

allowing us to concentrate on rooted PCST and extend our �ndings

to the general case. In the rooted version, we de�ne an instance

of the PCST problem using a graph � = (+ , �, 2) with edge weight

function 2 : � → R≥0, root vertex root, and penalty function

c : + → R≥0. In the penalty function, while only non-root vertices

have actual penalties, we include root in the domain of c and assume

it has penalty c (root) = ∞. This does not a�ect the actual costs of

solutions, but simpli�es our statements by adding consistency.

In designing our algorithm, we utilize the recursive approach

introduced by [3]. The concept involves running a baseline algo-

rithm with a higher approximation factor on PCST to get an initial

solution. We then account for the penalties associated with any

vertices identi�ed by the baseline algorithm, paying these penal-

ties, and subsequently removing their penalties from consideration.

Next, we apply a Steiner tree algorithm to the remaining vertices

to obtain another solution. We then call our algorithm recursively

with the adjusted penalties. At each recursive step, two algorithms

are executed on the current input, each producing a tree as a solu-

tion. Our procedure aggregates all solutions generated during the

recursion process and selects the one with the lowest cost as the

�nal output.

We give a quick overview of the major components of our algo-

rithm here.

Goemans and Williamson Algorithm for PCST.. We use a slightly

modi�ed version of the algorithm introduced by Goemans and

Williamson in [15] as the baseline algorithm in the recursive process.

We brie�y present this algorithm for completeness. Throughout

the paper, we refer to this algorithm as PCSTGW and denote the

solution found by the algorithm as GW.

Let’s assume that each edge of the input graph� is a curve with

a length equal to its cost. We want to build a spanning tree � , which

starts as a forest during our algorithm and transforms into a tree by

the end of the algorithm. We then remove certain edges from this

tree to obtain our �nal tree) and pay penalties for every vertex

outside) .

To run our algorithm, we de�ne� as the connected components

of � , and active sets �2C(as subsets of� . Initially, both� and �2C(

consist of single-member sets, with each vertex belonging to exactly

1642

Prize-Collecting Steiner Tree: A 1.79 Approximation STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

one set. We assign a unique color to each vertex of the graph, with

the value c (E) representing the total duration that color E can be

used. As c (root) = ∞, the color of root can be used without any

limitation.

At any moment, each active set colors its adjacent edges (edges

with exactly one endpoint in that set) with the color of one of its

vertices that still has available color.

Every time an edge becomes fully colored, it will be added to � ,

and subsequently, the connected components of � and active sets

will be updated. Moreover, if all vertices in an active set run out

of color, the active set becomes deactivated and will be considered

a dead set, along with all the vertices inside it. We continue this

process until all vertices are connected to the root. Note that this is

ensured since the root has an in�nite amount of color.

After the completion of this process, we remove some edges

from � to obtain) . We will select every dead set (that cuts exactly

one edge of � and remove all vertices in (from � to obtain) . Every

live vertex, which refers to vertices not marked as dead, will be

connected to the root in) , along with some dead vertices. In fact,

the tree) is the smallest subtree of � that contains all live vertices,

including root, and every vertex whose color has been used in) .

Steiner Tree Algorithm for PCST.. Here we want to construct a

new solution ST based on the outcome of PCSTGW. During the

execution of the PCSTGW algorithm, certain active sets and their

vertices may reach a dead state, leaving them incapable of coloring

edges as their vertices have used all of their colors. In such cases, it

is reasonable to pay their penalties and subsequently remove them

from consideration. This decision makes sense, as connecting these

vertices to other vertices requires excessive costs compared to their

penalties.

In the GW solution, some of these dead vertices may eventually

connect to the root when other active sets link to them, and we

utilize these dead vertices to connect live vertices to root. However,

in ST, we pay the penalties of all dead vertices and seek a tree that

e�ciently connects other vertices to root. The problem of �nding a

minimum tree that connects a set of vertices to root is known as the

Steiner Tree problem, and we employ the best-known algorithm

for this, assuming it has a ? approximation factor, which currently

is ln(4) + n [12].

Improving the approximation factor of the Steiner Tree algorithm

would consequently enhance the approximation factor of our PCST

algorithm. It’s worth noting that onemight suggest paying penalties

only for vertices that the GW solution pays penalties for, rather

than all dead vertices. However, the GW solution may connect all

vertices to the root and in�uence the Steiner Tree algorithm to

establish connections for every vertex. This constraint restricts the

algorithm’s �exibility in exploring alternative tree structures.

Iterative algorithm. Now, let’s explore our iterative algorithm.

Our aim is to create an iterative procedure that results in a U-

approximation algorithm for PCST. We will discuss the value of U

in the future.

At the initiation of our algorithm, we divide the vertex penalties

by a constant factor V to obtain cV . The idea of altering penalties

has been used in [5], but they focus on increasing penalties, while

we decrease them. The speci�c value of V will be determined to-

wards the conclusion of our paper. This determination will be based

on the value of ? , representing the best-known approximation fac-

tor for the Steiner Tree problem, with the goal of minimizing the

approximation factor U .

Now, we execute PCSTGW using the modi�ed penalties cV . Run-

ning PCSTGW on cV provides us with a tree)GW, and paying the

penalty of vertices outside)GW yields one solution for the input.

Subsequently, we pay the penalty of every vertex that becomes dead

during the execution of PCSTGW, set their penalty to zero for the

remainder of our algorithm, and connect the remaining vertices us-

ing the best-known algorithm for the Steiner tree problem, denoted

as SteinerTree. The tree generated by SteinerTree, denoted as

)ST, presents another solution for the input.

Then, if no vertices with a non-zero penalty become inactive

in PCSTGW, indicating that we haven’t altered the penalties of

vertices at this step, we terminate our algorithm by returning the

minimum cost solution between)GW and)ST. Otherwise, we re-

cursively apply this algorithm to the new penalties, and refer the

tree of the best solution found by the recursive approach as)IT.

Finally, we select the best solution among)GW,)ST, and)IT.

It’s important to note that our algorithm essentially identi�es two

solutions at each iteration and, in the end, selects the solution with

the minimum cost among all these alternatives.

In analyzing our algorithm, we focus on its initial step, specif-

ically the �rst invocation of PCSTGW and SteinerTree. We cat-

egorize vertices based on their status in PCSTGW, distinguishing

between those marked as dead or live, and whether their penalties

have been paid in both PCSTGW and the optimal solution. Addi-

tionally, we classify active sets based on whether they color only

one edge or more than one edge of the optimal solution. Through

this partitioning, we derive lower bounds for the optimal solution

and upper bounds for the solutions)GW and)ST. Leveraging the

recursive nature of our algorithm, we establish an upper bound for

the solution)IT using induction. Following that, we evaluate how

much these solutions deviate from U · costOPT.

Next, we show that for V = 1.252 and U = 1.7994, a weighted

average of the cost of the three solutions is at most U · costOPT. This

shows that our algorithm when using this value of V is a 1.7994

approximation of the optimal solution since the minimum cost is

lower than any weighted average. We note that throughout our

analysis, we do not know the value of U . Instead, we obtain a system

of constraints involving U , V , ? , and the weights in the weighted

average which needs to be satis�ed in order for our proof steps

to be valid. Then, we �nd a solution to this system minimizing

U to �nd our approximation guarantee. In this solution, we use

? = ln(4) + n , using the current best approximation factor for the

Steiner tree [12]. Finally, we explain the intuition behind certain

parts of our algorithm, including why we need to consider all three

solutions that we obtain.

Outline. In Section 2, we explain Goemans and Williamson’s 2-

approximation algorithm for PCST [15], using the coloring schema

e�ectively utilized by [3] for PCSF. Then, in Section 3, we present

our iterative algorithm along with its analysis. Finally, in Section 4,

we highlight the importance of employing both algorithms in con-

junction with the iterative approach to improve the approximation

factor.

1643

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Mohammad Mahdavi

1.2 Preliminaries

Throughout our paper, we assume without loss of generality that

the given graph is connected.

Let) be a subgraph, then 2 ()) denotes the total cost of edges in

) , i.e., 2 ()) =
∑
4∈) 2 (4).

For a subgraph) , we use+ ()) to represent the set of vertices in

) , and + ()) denotes the set of vertices outside) .

Given a subset of vertices (⊆ + , we de�ne c (() =
∑

E∈(c (E)

as the sum of penalties associated with vertices in (.

For a PCST solution - , we denote its corresponding tree as)- .

Furthermore, we use cost- to represent the total cost of - , de�ned

as 2 ()-) + c (+ ()-)).

2 GOEMANS AND WILLIAMSON ALGORITHM

Here we de�ne a slightly modi�ed version of the algorithm initially

proposed by Goemans and Williamson in [15] (hereinafter the GW

algorithm) for the sake of completeness of our algorithm. Then we

use it as a building block in our algorithm in the next section. We

introduce several lemmas stating the properties of the algorithm

and its output. We defer the proofs of these lemmas to the full

version of our paper.

The algorithm consists of two phases. In the �rst phase, we sim-

ulate a continuous process of vertices growing components around

themselves and coloring the edges adjacent to these components at

a constant rate. In this process, we imagine each edge 4 with weight

2 (4) as a curve of length 2 (4). Each vertex E has a potential coloring

duration equal to its penalty c (E). We assume that the root vertex

root has c (root) = ∞, indicating in�nite coloring potential. This

process of coloring will give us a spanning tree, which we will then

trim in the second phase to get a �nal tree.

During the algorithm, we keep a forest � of tentatively selected

edges, a set � of connected components of this forest, and a subset

�2C(of active sets in � . For each component (in � , we will also

store its coloring duration ~(. Initially, the forest � is empty, every

vertex is an active set in � , and all ~(values are 0.

At any moment in the process, all active sets color their adjacent

edges using the coloring potential of their vertices at the same

rate. So, the amount of color on each edge is the total duration

its endpoints have been in active sets. We de�ne an edge as fully

colored if the combined active time of its endpoints totals at least the

length of the edge while they belong to di�erent components. When

such an edge between two sets becomes fully colored, it is added

to � , and the two sets containing its endpoints are merged, with

their coloring potentials summed together. An active set becomes

inactive if it runs out of coloring potential. This means that this set

and its subsets have used the coloring potential of all the vertices

in the set. It may be possible for multiple of these events to happen

at the same time, and we would handle them one by one in an

arbitrary order. The addition of one edge in the order may prevent

the addition of other fully colored edges. However, this can only

happen if the latter edge forms a cycle in � , and therefore, the

resulting components are independent of the order in which we

handle the events. As the component containing root remains active

and edges are only added between di�erent components, � will

eventually become a spanning tree of� . This marks the completion

of the coloring phase.

Live

Dead
Dead

Dead
Dead

Figure 1: Illustration of dead sets in the �nal tree of GW

algorithm. The dead sets colored in blue cut multiple edges

of � , and removing them would disconnect other vertices

so they are not removed. On the other hand, the dead sets

colored in red can be safely removed without a�ecting other

vertices.

In the second phase, we will select a subset of � as our Steiner

tree and pay the penalties for the remaining vertices. We refer to

any active set that becomes inactive as a dead set. Throughout

the �rst phase, we maintain dead sets in �(to utilize them in the

second phase. We categorize vertices into dead and live, where a

dead vertex is any vertex contained in at least one dead set, and

all other vertices are considered live. We store dead vertices in

and return them at the end of PCSTGW since they are used in our

iterative algorithm in the next section. For any dead set (, if there

is exactly one edge of � cut by ((i.e., |X (() ∩ � | = 1), we remove

this edge and all the edges in � that have both endpoints in (. This

e�ectively removes (from the tree and disconnects its vertices

from the root. We repeat this process until no dead set with this

property can be found. Figure 1 illustrates how dead sets may be

removed.

As each operation in the second phase disconnects only the

selected dead set from the root, the �nal result will be a tree) that

contains all the live vertices, including root. We pay the penalties for

the vertices outside the tree, which are all dead vertices belonging

to the dead sets we removed in the second phase. Algorithm 1

provides a pseudocode that implements this process.

To facilitate our analysis throughout the paper, we assume that

each vertex is associated with a speci�c color. During the coloring

process of an active set (, we assign each moment of coloring to a

vertex E ∈ (with non-zero remaining coloring potential and utilize

its color on the adjacent edges. For consistency, we choose vertex

E based on a �xed ordering of the vertices in + where root comes

�rst. So, a set (containing root will always assign its coloring to

root. We note that a set (can not use the color of a vertex that is

already dead. Based on this assignment, we de�ne the following

values:

De�nition 1. For each vertex E , we de�ne its total coloring du-

ration ~E , and the coloring duration assigned to it by a set (as

~(E :

• ~(E= total coloring duration using color E in set (

• ~E =
∑
(⊆+ ;E∈(~(E

1644

Prize-Collecting Steiner Tree: A 1.79 Approximation STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Note that for every vertex E ∈ + , we have
∑

E∈(~(E = ~(.

We bound the cost of both the chosen tree and the penalty of

the dead vertices in the following lemmas. Proofs of these lemmas

are in the full version of our paper given their similarity to [15].

Lemma 2. Let) be the tree returned by Algorithm 1. We can

bound the total weight of this tree by

2 ()) ≤ 2 ·
∑

(⊆+ −{root};
(∩+ ())≠∅

~(= 2 ·
∑

E∈+ ())−{root}

~E .

Lemma 3. For any vertex E ∈ + , we have ~E ≤ c (E). Furthermore,

if E ∈ which means it is a dead vertex, we have ~E = c (E).

Lemma 4. Any vertex E ∉ + ()) is a dead vertex.

Lemmas 2, 3, and 4 immediately conclude the following lemma.

Lemma 5. The total cost of the GW algorithm is bounded by

costGW = 2 ()) + c (+ ())) ≤ 2 ·
∑

E∈+ ())−{root}

~E +
∑

E∉+ ())

~E .

We note that Lemma 5 can be used to prove that the GW al-

gorithm achieves a 2-approximation by showing that the optimal

solution has cost at least
∑

E∈+ −{root}
~E . We prove a stronger version

of this fact in Lemma 13.

In addition to the above lemmas on the cost of the solution and

its connection to the coloring, we also prove the following lemma.

This lemma will help in our analysis in Section 3.1, where we use

it to introduce an upper bound for the cost of the optimal Steiner

tree connecting all the live vertices in a call to the GW algorithm.

The proof of this lemma is also provided in the full version of our

paper.

Lemma 6. Let � = (�, root, c) and � ′ = (� ′, root, c) be instances

of PCST, where � ′ is obtained from � by adding a set of edges

�0 with weight 0 from root to a set of vertices * . Let ~E be the

coloring duration for vertex E in a run of the GW algorithm on � ,

and let be the set of dead vertices in this run. Let ~′E and
′ be the

corresponding values when running the GW algorithm on instance

� ′ using the same order to assign coloring duration to vertices. We

have

~′E ≤ ~E ,

~′E = 0 if E ∈ * ,

and

 ′ ⊆ .

Algorithm 1 PCSTGW(� = (�, root, c)): GW Algorithm

Input: undirected graph � = (+ , �, 2) with edge costs

2 : � → R≥0, root root, and penalties c : + → R≥0.

Output: Subtree) of � containing root, alongside a set of dead

vertices.

1: Initialize � as an empty forest

2: Initialize �2C(and � as {{E} | E ∈ + }

3: Set ~(← 0 for all (∈ �2C(

4: ← ∅

5: �(← ∅

6: while |� | > 1 do

7: Δ1 ← min(∈�2C((
∑

E∈(c (E) −
∑
(′⊆(~(′)

8: Δ2 ← min4=(D,E) ∈�; 4∪� is a forest (
24−

∑
(:4∈X (() ~(

| {(∈�2C(|D∈(∨E∈(} |
)

9: Δ ← min(Δ1,Δ2)

10: for (∈ �2C(do

11: ~(← ~(+ Δ

12: end for

13: if Δ1 ≤ Δ2 then

14: Find a set (minimizing Δ1

15: �2C(← �2C(− {(}

16: ← ∪ (

17: �(← �(∪ {(}

18: else

19: Find an edge 4 = (D, E) minimizing Δ2

20: � ← � ∪ 4

21: Update � and �2C(accordingly

22: end if

23: end while

24: Extract) from � by repeatedly removing dead sets in �(that

cut a single edge in �

25: return (),)

3 THE ITERATIVE ALGORITHM

In this section, we present our iterative algorithmwhich is described

in Algorithm 2. In Section 3.1 we give an analysis for this algorithm.

Our algorithm makes use of the PCSTGW procedure from Al-

gorithm 1 as a fundamental component. Additionally, we employ

an approximation algorithm for the Steiner tree problem to im-

prove the approximation factor. This can be any approximation

algorithm for the Steiner tree problem. We denote the approxi-

mation factor for this algorithm as ? . Whenever we require this

?-approximation solution for the Steiner tree, we invoke the proce-

dure named SteinerTree. As our �nal approximation factor will

depend on ? , we will use the current best approximation algorithm

for Steiner Tree [12] with ? = ln(4) + n in our analysis. In addition,

our algorithm depends on a constant V which we will �x later in

Section 3.2 to optimize the approximation ratio.

Our algorithm, as described in Algorithm 2, identi�es three solu-

tions for the given PCST instance � = (�, root, c). Subsequently, we

opt for the solution with the minimum cost as the �nal solution.

First, we construct the instance �V = (�, root, cV) from � by

replacing cE with
cE

V
for all vertices. One solution named “GW” for

instance � , with tree)GW, can be obtained by invoking procedure

PCSTGW (Line 3) on instance �V , buying edges of)GW and paying

penalties for vertices in + ()GW). From the de�nition of �V , we can

1645

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Mohammad Mahdavi

conclude that c (+ ()GW)) = VcV (+ ()GW)). As stated in Section

2, in addition to)GW, procedure PCSTGW also returns a set of

vertices, , which represents dead vertices during the coloring

process.

Another solution for instance � named “ST” is obtained by retriev-

ing a Steiner tree)ST in graph� for the set of terminals ! ≔ + \

which are the live vertices in the output of the GW algorithm. This

solution is found using the procedure SteinerTree and is therefore

a ?-approximation of the minimum Steiner tree on this terminal

set. We pay the penalties for the vertices outside)ST, which will be

a subset of .

If is empty, the algorithm immediately returns the solution

with the lower total cost between the two obtained solutions. Oth-

erwise, a third solution named “IT”, denoted as)IT, is obtained

through a recursive call on a simpli�ed instance '. The simpli�ed

instance is formed through a process of adjusting penalties. We set

the penalties for the vertices in , which are the dead vertices in

the result of the PCSTGW procedure, to zero while maintaining the

penalty for the live vertices !, as indicated in Lines 11 through 12.

As a �nal step, the algorithm simply selects and returns the

solution with the lowest cost. To help with the comparison of

these three solutions, the algorithm calculates the values costGW =

2 ()GW) + c (+ ()GW)), costST = 2 ()ST) + c (+ ()ST)), and costIT =

2 ()IT) + c (+ ()IT)), representing the costs of the solutions (as indi-

cated in Lines 4, 7, and 14).

Algorithm 2 IPCST(� = (�, root, c)): Iterative PCST algorithm

Input: Undirected graph � = (+ , �, 2) with edge costs

2 : � → R≥0, root root, and penalties c : + → R≥0.

Output: Subtree) of � containing root.

1: Construct cV by dividing all penalties by V .

2: Construct the PCST instance �V = (�, root, cV).

3:)GW, ← PCSTGW(�V)

4: costGW ← 2 ()GW) + c (+ ()GW))

5: ! ← {E : E ∈ + , E ∉ }

6:)ST ← SteinerTree(�, !)

7: costST ← 2 ()ST) + c (+ ()ST))

8: if c () = 0 then

9: return)- where cost- is minimum among - ∈ {GW, ST}

10: end if

11: Construct c ′ by adjusting c through the assignment of penal-

ties for vertices in to 0.

12: Construct the PCST instance ' = (�, root, c ′).

13:)IT ← IPCST(')

14: costIT ← 2 ()IT) + c (+ ()IT))

15: return)- where cost- is minimum among - ∈ {GW, ST, IT}

3.1 Analysis

For an arbitrary instance � = (�, root, c) in PCST, our aim is to

analyze the approximation factor achieved by Algorithm 2. We

compare the output of IPCST on � with an optimal solution OPT for

the instance � . We denote the tree selected in OPT as)OPT. Then,

the cost of OPT is given by costOPT = 2 ()OPT) + c (+ ()OPT)).

We use an inductive approach to analyze the algorithm, where

we focus on a single call of the algorithm and �nd upper bounds

for each of our three solutions and a lower bound for the optimal

solution OPT. To �nd these lower and upper bounds, we make use

of the coloring done by the GW algorithm on instance �V and the

values ~(, ~(E , and ~E relating to this coloring process. In addition,

we establish an upper bound for the solution obtained from the

recursive call based on the induction hypothesis. In our inductive

analysis, we only consider one individual call to the procedure at

each time, to analyze either the induction base or the induction step.

So, all the variables used in the analysis will relate to the algorithm’s

variables in the speci�c call we are analyzing. This includes the

trees)GW,)ST, and)IT, and the live and dead vertices ! and .

We note that in our induction, we do not initially know the value

of the approximation factorU whichwewant to prove the algorithm

achieves. Instead, we use U as a variable in our inequalities, and this

leads to a system of constraints involving U that need to be satis�ed

for our induction to prove an U approximation guarantee. These

inequalities involve not only the approximation factor U which we

seek to �nd but also the parameter V which de�nes the behavior of

our algorithm. Throughout the analysis, we assume that V ≤ 2. We

justify this assumption in Subsection 4.1 by showing that values of

V > 2 cannot lead to a better than 2 approximation. To determine

our approximation factor U , we consider the range ? ≤ U ≤ 2.

This range is chosen because we cannot assume that our algorithm

performs better than the Steiner tree algorithm, which we use as a

component. Additionally, our solution is guaranteed to be at least

as good as the 2-approximation provided by the GW algorithm.

In the �rst step, we categorize non-root vertices based on the

output of PCSTGW(�V) and OPT. This categorization helps us es-

tablish more precise bounds for the solutions by enabling a more

tailored analysis within each category.

De�nition 7. For an instance � , OPT partition vertices into two

sets: + ()OPT) and + ()OPT). PCSTGW(�V) also partitions vertices

into two sets: ! and . We de�ne four sets to categorize the vertices,

excluding root, based on these two partitions:

A = + ()OPT) ∩ ! − {root} B = + ()OPT) ∩

C = + ()OPT) ∩ ! D = + ()OPT) ∩

Table 1: This table illustrates the categories of vertices ex-

cluding root.

PCSTGW(�V)

Live vertices Dead vertices

Optimal

Solution

Connected A B

Penalty paid C D

Using the coloring scheme of PCSTGW(�V), we introduce the

following values to represent the total duration of coloring with

vertices in these sets:

AA =

∑

E∈A

~E AB =

∑

E∈B

~E

AC =

∑

E∈C

~E AD =

∑

E∈D

~E

1646

Prize-Collecting Steiner Tree: A 1.79 Approximation STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

De�nition 8 (Connected and unconnected dead vertices). For an

instance � , based on De�nition 7, the sets B and D represent dead

vertices in the output of PCSTGW(�V). We further divide set B into

B′ and B′′, and set D into D′ and D′′, based on whether they are

connected to the root at the end of the PCSTGW(�V) procedure. Let

B′ andD′ be the subsets ofB andD, respectively, representing the

vertices connected to the root. Similarly,B′′ andD′′ are the subsets

of B and D, respectively, indicating the vertices not connected to

the root at the end of the procedure.

B′
= B ∩+ ()GW) = + ()OPT) ∩ ∩+ ()GW)

B′′
= B ∩+ ()GW) = + ()OPT) ∩ ∩+ ()GW)

D′
= D ∩+ ()GW) = + ()OPT) ∩ ∩+ ()GW)

D′′
= D ∩+ ()GW)) = + ()OPT) ∩ ∩+ ()GW)

Subsequently, we de�ne AB′ , AB′′ , AD′ , and AD′′ as the total duration

of coloring with vertices in sets B′, B′′, D′, and D′′, respectively.

AB′ =

∑

E∈B′

~E AB′′ =

∑

E∈B′′

~E

AD′ =

∑

E∈D′

~E AD′′ =

∑

E∈D′′

~E

It is trivial to see that AD = AD′ + AD′′ as D′ ∪ D′′
= D and

D′ ∩ D′′
= ∅. Similarly, AB = AB′ + AB′′ .

De�nition 9 (Single-edge and multi-edge sets). For an instance

� , we call a set (⊆ + a single-edge set if |X (() ∩)OPT | = 1 and

a multi-edge set if |X (() ∩)OPT | > 1 (Illustrated in Figure 2). We

assign each moment of coloring with colors of vertices in B which

are inside a single-edge set to 11, and those in a multi-edge set to

12. These de�nitions are as follows:

11 =
∑

E∈B

∑

|X (()∩)OPT |=1

~(E

12 =
∑

E∈B

∑

|X (()∩)OPT |>1

~(E

Note that AB = 11 + 12, as every vertex in B is connected to root

in the optimal solution. Therefore, with each moment of coloring

involving vertices in B, the corresponding active set cuts an edge

belonging to the path from that vertex to root in the optimal solution.

Lemma 10. For any vertex E ∈ + , we have V~E ≤ c (E). Fur-

thermore, if E ∈ B ∪ D, which means is a dead vertex, we have

V~E = c (E).

Proof. Since we run PCSTGW on cV in Line 3, we can use

Lemma 3 using penalties cV . That means, for any vertex E ∈ + , we

have~E ≤ cV (E), and if E is a dead vertex, we have~E = cV (E). Since

in Line 1, we set cV (E) =
c (E)

V
, we can conclude the lemma. □

Now for a given instance � , we derive lower bounds on the opti-

mal solution using terms de�ned earlier. We use a similar approach

that is used in [3] to bound the optimal solution.

r

Multi-edge

Single-edge

Figure 2: Illustration of single-edge set vs. multi-edge set in

)OPT. The red set is a single-edge set, but the blue one is a

multi-edge set.

Lemma 11. We can bound the cost of the optimal solution in terms

of the cost of its tree as follows:

costOPT ≥ 2 ()OPT) + VAC + VAD .

Proof. According to the de�nition of cost in PCST, we can de-

termine the cost of the optimal solution by separately calculating

the weight of its tree and the penalties it pays. Additionally, based

on De�nition 7, we have + ()OPT) = C ∪D. Utilizing these two ob-

servations, we can establish an upper bound for costOPT as follows:

costOPT = 2 ()OPT) + c (+ ()OPT))

= 2 ()OPT) +
∑

E∈+ ()OPT)

c (E)

= 2 ()OPT) +
∑

E∈C

c (E) +
∑

E∈D

c (E) (C ∩ D = ∅)

≥ 2 ()OPT) +
∑

E∈C

V~E +
∑

E∈D

V~E (Lemma 10)

= 2 ()OPT) + VAC + VAD (De�nition 7)

□

Based on Lemma 11, we can easily conclude the following corol-

lary which bounds the weight of the optimal solution tree using

the cost of the optimal solution.

Corollary 12. We can bound the cost of optimal solution’s tree as

follows:

2 ()OPT) ≤ costOPT − VAC − VAD .

Now we use Lemma 11, to expand the bound of the optimal

solution.

Lemma 13. We can establish a lower bound for the optimal solu-

tion as follows:

costOPT ≥ AA + 11 + 212 + VAC + VAD

Proof. First, we demonstrate that AA +11+212 is a lower bound

for 2 ()OPT). To achieve this, for any set (, we de�ne 3OPT (() as

the number of edges of)OPT that are colored by (. Given that each

portion of an edge will be colored at most once, and each set (⊆ +

colors 3OPT (() · ~(of the optimal solution, we can derive a lower

1647

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Mohammad Mahdavi

bound for 2 ()OPT) based on the proportion of the colored edges in

)OPT.

2 ()OPT) ≥
∑

(⊆+

3OPT (() · ~(

=

∑

(⊆+

∑

E∈(

3OPT (() · ~(E (~(=
∑

E∈(~(E)

=

∑

E∈+

∑

(⊆+
E∈(

3OPT (() · ~(E

≥
∑

E∈A∪B

∑

(⊆+
E∈(

3OPT (() · ~(E (A ∩ B = ∅, A ∪ B ⊆ +)

≥
∑

E∈A

∑

(⊆+
E∈(

3OPT (() · ~(E +
∑

E∈B

∑

(⊆+
E∈(

3OPT (() · ~(E .

Furthermore, for any vertex E in A or B, based on De�nition 7,

there exists a path from E to root in)OPT. Also, for every set (⊆ +

where ~(E > 0, we know root ∉ (otherwise all coloring of set (

would be assigned to root. Using these two observations, we can

infer that at least one edge of)OPT is colored by (, resulting in

3OPT (() ≥ 1.

Therefore, for vertices in A, we have:∑

E∈A

∑

(⊆+
E∈(

3OPT (() · ~(E ≥
∑

E∈A

∑

(⊆+
E∈(

~(E

=

∑

E∈A

~E (De�nition 1)

= AA . (De�nition 7)

Also, for vertices in B, we have:∑

E∈B

∑

(⊆+
E∈(

3OPT (() · ~(E =
∑

E∈B

∑

(⊆+
E∈(

3OPT (()=1

3OPT (() · ~(E

+
∑

E∈B

∑

(⊆+
E∈(

3OPT (()>1

3OPT (() · ~(E

≥
∑

E∈B

∑

(⊆+
E∈(

3OPT (()=1

~(E +
∑

E∈B

∑

(⊆+
E∈(

3OPT (()>1

2~(E

= 11 + 212. (De�nition 9)

Combining all together, we obtain:

2 ()OPT) ≥ AA + 11 + 212.

By using this bound along with Lemma 11, we can bound costOPT.

costOPT ≥ 2 ()OPT) + VAC + VAD (Lemma 11)

≥ AA + 11 + 212 + VAC + VAD .

□

In the next lemma, we establish a bound for the GW solution.

The proof is included in the full version of our paper.

Lemma 14. The following bound holds for the cost of the solution

returned by the output of PCSTGW(�V) for instance � :

costGW ≤ 2AA + 2AB + 2AC + 2AD .

We restate this upper bound in terms of the variable U and the

cost of the optimal solution costOPT using Lemma 13.

Lemma 15. The following bound holds for the cost of the solution

returned by the output of PCSTGW(�V) for instance � :

costGW ≤ U · costOPT + (2 − U)AA + (2 − U)11 + (2 − 2U)12

+ (2 − UV)AC + (2 − UV)AD .

Proof. We can directly apply Lemma 13 to the previous bound

obtained in the preceding Lemma 14.

costGW ≤ 2AA + 2AB + 2AC + 2AD (Lemma 14)

≤ 2AA + 2(11 + 12) + 2AC + 2AD (Lemma 13)

+ U · (costOPT − AA − 11 − 212 − VAC − VAD)

≤ U · costOPT + (2 − U)AA + (2 − U)11 + (2 − 2U)12

+ (2 − UV)AC + (2 − UV)AD .

□

Next, we bound the cost of the ST solution. For a set (, let)OPT′
(

denote the minimum cost Steiner tree on this set. In the following

lemma, we relate the cost of the ST solution to the cost of)OPT′
!
.

Lemma 16. For instance � , we can bound the cost of the solution

returned by the output of ST as follows:

costST ≤ ? · 2 ()OPT′
!
) + VAB + VAD .

Proof. Since in)ST, we are connecting every vertex in ! to root,

using an Steiner tree algorithm with an approximation factor of ? ,

the cost of the tree)ST can be bounded by

2 ()ST) ≤ ? · 2 ()OPT′
!
).

Moreover, as all vertices in ! are connected to root, the vertices

for which we need to pay penalties for this solution form a subset

of , i.e., + ()ST) ⊆ . Furthermore, by De�nition 7 we have:

B ∪ D = (+ ()OPT) ∩) ∪ (+ ()OPT) ∩) (De�nition 7)

=

Now, we can bound the penalty paid by the ST solution.

c (+ ()ST)) ≤ c ()

= c (B ∪ D)

=

∑

E∈B∪D

c (E)

=

∑

E∈B∪D

V~E (Lemma 10)

≤
∑

E∈B

V~E +
∑

E∈D

V~E

= VAB + VAD (De�nition 7)

Finally, we use these bounds to complete the proof

costST = 2 ()ST) + c (+ ()ST)) ≤ ? · 2 ()OPT′
!
) + VAB + VAD .

□

We now provide an upper bound for the cost of)OPT′
!
based on

the cost of)OPT to obtain our main upper bound for ST.

1648

Prize-Collecting Steiner Tree: A 1.79 Approximation STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Lemma 17. For the minimum cost Steiner tree)OPT′
!
on !, we

have

2 ()OPT′
!
) ≤ 2 ()OPT) + 2AC + 2AD .

Proof. We construct a new instance � ′
V
= (� ′, root, cV) where

� ′ is obtained from � by adding a set �0 of edges of weight 0 from

root to every vertex in* = A ∪B = + ()OPT) − {root}. Let) ′
GW be

the resulting tree and ~′E be the coloring duration for the vertices in

this process assuming we assign the colors in the same way as we

did when running the GW algorithm on �V . By Lemma 6, ~′E ≤ ~E
for all vertices in C ∪D. In addition, we have ~′E = 0 for all vertices

in* = A∪B. Then, using Lemma 2 we can bound the cost of) ′
GW

as

2 () ′
GW) ≤ 2

∑

E∈+ () ′
GW)−{root}

~′E (Lemma 2)

≤ 2
∑

E∈+ −{root}

~′E (+ () ′
GW) ⊆ +)

≤ 2
∑

E∈A∪B

~′E + 2
∑

E∈C∪D

~′E

(A ∪ B ∪ C ∪ D = + − {root})

≤ 2
∑

E∈C∪D

~′E (~′E = 0 if E ∈ A ∪ B by Lemma 6)

≤ 2
∑

E∈C∪D

~E (~′E ≤ ~E by Lemma 6)

= 2AC + 2AD . (De�nition 7)

Let ′ be the set of dead vertices returned by the GW algorithm

on � ′
V
. Based on Lemma 6, we have ′ ⊆ . Therefore, as vertices

in A ∪ C ∪ {root} = ! are not part of , they cannot be part of ′

either and must be live vertices in this run. Lemma 4 means that

these vertices are connected by) ′
GW.

If we remove any edges in �0 from) ′
GW, and instead add)OPT,

which is a spanning tree on A ∪ B ∪ {root}, all the vertices in

+ () ′
GW) will remain connected. So, we get a connected subgraph

of � that connects !. The cost of this subgraph is at most

2 (() ′
GW − �0) ∪)OPT) ≤ 2 ()OPT) + 2 ()

′
GW)

≤ 2 ()OPT) + 2AC + 2AD .

As this subgraph connects !, its cost gives us an upper bound on

the cost of the minimum Steiner tree on these vertices. So we have

2 ()OPT′
!
) ≤ 2 ()OPT) + 2AC + 2AD .

□

We combine the last two lemmas to introduce an upper bound

for the ST solution. We again state this upper bound in terms of

costOPT and U . Here, we rely on the fact that U ≥ ? to add a non-

negative value to an initial upper bound based on Lemmas 16 and

17.

Lemma 18. For instance � , we can bound the cost of the solution

returned by the output of ST as follows:

costST ≤ U · costOPT + (? − U)AA + (? + V − U)11

+ (2? + V − 2U)12 + (2? − UV)AC + (2? + V − UV)AD .

Proof. By combining Lemma 16 with Lemma 17, we can derive

a new bound for costST.

costST ≤ ? · 2 ()OPT′
!
) + VAB + VAD (Lemma 16)

≤ ? (2 ()OPT) + 2AC + 2AD) + VAB + VAD (Lemma 17)

≤ ? (costOPT − VAC − VAD + 2AC + 2AD) + VAB + VAD
(Corollary 12)

≤ ? (costOPT − VAC − VAD + 2AC + 2AD) + VAB + VAD

+ (U − ?) (costOPT − AA − 11 − 212 − VAC − VAD)

(Lemma 13, U − ? ≥ 0)

= U · costOPT + (? − U)AA + (? + V − U)11

+ (2? + V − 2U)12 + (2? − UV)AC + (2? + V − UV)AD

□

Now, assume that we want to show that the algorithm achieves

an approximation factor of U . Then, to prove this by induction,

we need to show two things. First, we need to show that in the

base case where the dead set returned by the GW algorithm has

penalty 0 and we do not make a recursive call, our solution is an

U approximation. Secondly, we have to demonstrate the induction

step. This means that we have to show that if our recursive call on

instance ' returns an U approximation for this instance, the �nal

returned solution will also be an U approximation. If these two steps

are accomplished, then by induction on the number of vertices with

non-zero penalties (which decreases with every recursive call), we

can prove that our algorithm achieves an U approximation.

So far, we do not know the value of U so we cannot prove the

induction steps directly. Instead, we will show that if U satis�es

certain constraints then both the base case and the step of induction

can be proven for that value of U and therefore our algorithm will

give us an U approximation. These constraints are obtained by

thinking of U as a variable and then trying to prove the induction

base and the induction step for U . Minimizing U in this system of

constraints will give us an upper bound on the approximation factor

of our algorithm.

In the following, we �rst assume that the recursive call on ' is

an U approximation, and bound the iterative solution using this

assumption. Then, in Section 3.2 we combine the bounds for the

di�erent solutions to �nd a system of constraints that restrict U .

We also consider the constraints that arise from the base case being

an U approximation, which turn out to form a subset of the former

constraints. Finally, we �nd the minimum value of U that can satisfy

these constraints to obtain our approximation guarantee.

We start with the next lemma, which bounds the cost of the

iterative solution’s output, assuming that the recursive call returns

an U approximate solution for instance '. Here, OPT' denotes the

optimal solution for the PCST instance '.

Lemma 19. For instance � , the cost of the iterative solution, de-

noted as costIT, can be bounded as follows:

costIT ≤ U · costOPT' + VAB + VAD ,

assuming that the recursive call on instance ' returns an U approx-

imate solution.

Proof. Based on our assumption, IPCST(') will return a solu-

tion that is an U-approximate of the optimal solution of instance '

1649

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Mohammad Mahdavi

which we indicate by OPT' . This gives us the following bound:

2 ()IT) + c ′ (+ ()IT)) ≤ U · costOPT' .

However, as costIT = 2 ()IT) + c (+ ()IT)), we need to establish the

relationship between c (+ ()IT)) and c ′ (+ ()IT)). The only di�er-

ence between these functions lies in setting the penalty for vertices

in = B ∪ D to zero in c ′, as indicated in Line 11. Thus, we can

conclude that

c (+ ()IT)) ≤ c ′ (+ ()IT)) + c (B ∪ D)

= c ′ (+ ()IT)) + V
∑

E∈ (B∪D)

~E (Lemma 10)

= c ′ (+ ()IT)) + VAB + VAD . (De�nition 7)

By combining these inequalities, we get

costIT = 2 ()IT) + c (+ ()IT))

≤ 2 ()IT) + c ′ (+ ()IT)) + VAB + VAD

≤ U · costOPT' + VAB + VAD .

□

Lemma 20. For an instance � , we can remove a set of edges with

a total length of 11 from)OPT in such a way that the vertices in A

remain connected to root.

Proof. Consider a moment of coloring with the color of a vertex

E ∈ B in a single-edge set (⊆ + . Given that we are coloring with E

at this moment, the vertex is still a live vertex. However, since E is

in B, it will become dead at some moment of the algorithm. Since

all the vertices in (will remain in the same component until the

end of the algorithm, the moment E becomes dead, all vertices in (

will also become dead. That means, every vertex in (is either in B

or D, i.e. (⊆ B ∪ D = .

Since (is a single-edge set, there is only one edge from)OPT that

cuts this set. Let assume that this edge is 4 , i.e. X (() ∩)OPT = {4}.

Removing edge 4 from)OPT, will only disconnect vertices in (from

root, since (is a single-edge set and paths in)OPT from root to

vertices outside of (will not pass through 4 .

If we remove all such edges from)OPT, the total cost of the

removed edges will be at least 11. This is due to the fact that the

coloring on these edges from single-cut sets assigned to the vertices

in B is equal to 11, and the coloring on each edge is at most its

weight. Note that, each single-edge set is coloring exactly one edge

of the optimal solution at each moment. So, we can remove edges

with a total length of at least 11 from)OPT without disconnecting

vertices in A from root. □

Lemma 21. For an instance � , we can bound the cost of the optimal

solution for instance ' by

costOPT' ≤ costOPT − VAD − 11,

where ' is created at Line 12 of IPCST(�).

Proof. To prove this lemma, we start by showing that there is a

solution for instance ' that costs at most costOPT − VAD −11. Since

OPT' is the optimal solution of instance', its cost would not exceed

the cost of the instance we are constructing. This will complete

the proof of the lemma. To construct the mentioned instance, we

take the optimal solution of instance � , which we indicate by OPT,

and remove extra edges from its tree)OPT. Additionally, we do not

need to pay penalties for pairs in OPT whose penalty is set to zero

in c ′ at Line 11 for instance '.

Let’s start with the tree)OPT. Using Lemma 20, we can remove

a set of edges from)OPT with a total length of at least 11 without

disconnecting vertices in set A from root.

Moreover, the optimal solution pays penalties for vertices in set

C ∪ D. However, instance ' has been constructed by assigning

zero to the penalty of vertices in set , which includes vertices in

set D. Therefore, the penalty that we pay for vertices in D in the

optimal solution is not required to be paid in OPT' . This deducts

c (D) from the cost of the optimal solution, which is equal to VAD
according to Lemma 10. This completes the proof of this lemma. □

Lemma 22. For instance � , the output of the iterative solution can

be bounded as follows:

costIT ≤ U · costOPT + (V − U)11 + V12 + (V − UV)AD

assuming that the recursive call on instance ' returns an U approx-

imate solution.

Proof. We utilize Lemma 21 to modify the terms of the bound

in Lemma 19.

costIT ≤ UcostOPT' + VAB + VAD (Lemma 19)

≤ U (costOPT − VAD − 11) + V (11 + 12) + VAD
(Lemma 21 and De�nition 9)

≤ U · costOPT + (V − U)11 + V12 + (V − UV)AD

□

3.2 Finding The Approximation Factor

Now that we have bounded costGW, costST, and costIT, we can de-

termine an appropriate value for U such that, during each call of

IPCST on instance � , the minimum of costGW, costST, and costIT is

at most U · costOPT.

To achieve this, we assign weights to each solution in a way that

the weighted average of these three bounds is at most U · costOPT.

This completes our proof and demonstrates that the minimum

among them is at most U · costOPT since any weighted average of a

set of values is greater than or equal to their minimum.

DenotingFGW,FST, andFIT as the weights of solutions GW, ST,

and IT respectively, let costWAG represent their weighted average

cost. As we are taking an average, we assumeFGW +FST +FIT = 1

to simplify the calculation. We also haveFGW,FST,FIT ≥ 0. The

bound for the weighted average is then given by

costWAG ≤ (U ·FGW + U ·FST + U ·FIT) · costOPT

+ ((2 − U) ·FGW + (? − U) ·FST) · AA

+ ((2 − U) ·FGW + (? + V − U) ·FST + (V − U) ·FIT) · 11

+ ((2 − 2U) ·FGW + (2? + V − 2U) ·FST + V ·FIT) · 12

+ ((2 − UV) ·FGW + (2? − UV) ·FST) · AC

+ ((2 − UV) ·FGW + (2? + V − UV) ·FST + (V − UV) ·FIT) · AD

Given thatFGW +FST +FIT = 1, we have (U ·FGW +U ·FST +U ·

FIT) · costOPT = U · costOPT. Thus, the �rst term in the expression

is U · costOPT.

1650

Prize-Collecting Steiner Tree: A 1.79 Approximation STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

To ensure costWAG ≤ U · costOPT, we aim to make the rest of

the expression non-positive. Since AA , 11, 12, AC , and AD are non-

negative values, it su�ces to make their coe�cients non-positive

by assigning suitable values to U , V , and the weightsFGW,FST, and

FIT. This leads to �nding values that satisfy the following inequali-

ties, with each inequality corresponding to one of the coe�cients.

(2 − U) ·FGW + (? − U) ·FST ≤ 0 (AA)

(2 − U) ·FGW + (? + V − U) ·FST + (V − U) ·FIT ≤ 0 (11)

(2 − 2U) ·FGW + (2? + V − 2U) ·FST + V ·FIT ≤ 0 (12)

(2 − UV) ·FGW + (2? − UV) ·FST ≤ 0 (AC)

(2 − UV) ·FGW + (2? + V − UV) ·FST + (V − UV) ·FIT ≤ 0 (AD)

We can also use a weighted average to ensure that our solution in

the induction base has cost ≤ U ·costOPT. In this case, the IT solution

cannot be employed as it represents the �nal step of recursion. So,

we must have FIT = 0. Additionally, it’s essential to note that in

this step, c () = c (B ∪ D) = 0, resulting in 11 = 12 = AD = 0.

Thus, only the inequalities for the coe�cients of AA and AC remain

relevant, which already do not containFIT:

(2 − U) ·FGW + (? − U) ·FST ≤ 0 (AA)

(2 − UV) ·FGW + (2? − UV) ·FST ≤ 0 (AC)

We can see that if a solution for the system of constraints used

for the induction step is found, setting FIT = 0 and scaling FGW

andFST by a factor of 1
1−FIT

gives us a solution for these two new

constraints withFGW +FST = 1 andFIT = 0. So, whatever values

of U and V we �nd by solving the initial system of inequalities will

give us a valid solution and an approximation guarantee of U .

Considering the best-known approximation factor for the Steiner

tree problem, which is ? = ln(4)+n [12], we determine that choosing

the values U = 1.7994, V = 1.252, FGW = 0.385, FST = 0.187, and

FIT = 0.428 satis�es all the inequalities for a small enough value

of n . This provides a valid proof for both the induction base and

induction step, leading to the conclusion of the following theorem.

Theorem 23. The minimum cost among GW, ST, and IT is a

1.7994-approximate solution for the Prize-Collecting Steiner Tree

instance � . Therefore, IPCST is an 1.7994 approximation for PCST.

Finally, we note that our algorithm runs in polynomial time.

Theorem 24. The procedure IPCST(�) runs in polynomial time.

Proof. The procedure IPCST(�) calls the PCSTGW(�V) which

runs in polynomial time and a polynomial time algorithm Stein-

erTree for the Steiner tree problem. Then it recursively calls itself

on a new instance such that the new instance has more vertices

with a penalty of 0. The construction of this instance involves a

simple loop on the vertices and is done in polynomial time. Since

the number of vertices is |+ |, and each time the number of vertices

with non-zero penalty decreases by one, the recursion depth is at

most |+ |. So, in IPCST we have a polynomial number of recursive

steps, and each step takes a polynomial amount of time. Therefore,

the total running time of the algorithm is polynomial in the size of

the input. □

4 NECESSITIES IN OUR ALGORITHM

In this section, we demonstrate the necessity of utilizing all three

solutions in IPCST and selecting the minimum among them. Table 2

is completed based on the constraints 1 < ? < U < 1.8, derived

from the NP-hardness of �nding an exact algorithm for Steiner tree,

the fact that Steiner tree is a special case of PCST, and the goal of

achieving an approximation factor better than 1.8. Additionally, we

select V such that 2/U ≤ V ≤ U because if 2/U > V , both coe�cients

in AC will be positive. Also, if V > U , all coe�cients of 11 become

positive.

Table 2: Sign of coe�cients for each solution. The sign "?"

indicates that its sign cannot be determined with the current

assumptions, and the sign "+?" means it is positive for the

current value of ? but could potentially turn negative with

future improvements in the approximation factor of the

Steiner tree problem.

AA 11 12 AC AD
GW + + - - -

ST - + +? ? +

IT 0 - + 0 -

Table 2 demonstrates the sign of the coe�cient for each variable

in every algorithm. We refer to this table to explain why all three

algorithms are essential. We need to �nd a combination of these

algorithms such that the weighted average of these coe�cients

adds up to zero. Since each row associated with an algorithm has at

least one positive value, achieving this balance is not possible if we

use only one of the algorithms. Moreover, omitting IT results in a

positive coe�cient for 11, making the iterative approach necessary.

Similarly, using GW and IT together leads to a positive coe�cient

for AA , emphasizing the need for ST to o�set it. Lastly, if we drop

GW, the coe�cient of 12 constrains our approximation factor, as its

coe�cient in the IT algorithm is positive, and in the ST algorithm,

it is 2?+V−2U . Given that the best-known approximation factor for

the Steiner tree is ln(4)+n [12], replacing ? with ln(4)+n results in a

positive value for the coe�cient of12 in the ST algorithm. Therefore,

the GW algorithm is necessary to decrease the coe�cient of 12.

4.1 Bad example for # > 2

Let V = 2(1 + n) for some n > 0. We consider a star graph � with

= + 1 vertices as shown in Figure 3, where one vertex is a central

vertex and all other vertices are connected to this vertex with edges

of length 1 for some value of = such that 1
=−1 < n . We construct

an instance of PCST on this graph where one of the non-central

vertices is the root, the central vertex has penalty 0, and any other

vertex has penalty 2(1 + 1
=−1).

When we run the GW algorithm on this instance, the center

vertex dies instantly as it has 0 coloring potential. Additionally, as
1

=−1 < n , each non-root leaf has coloring potential

2(1 + 1
=−1)

V
=

(1 + 1
=−1)

1 + n
< 1

and therefore dies before reaching the central vertex. So, the GW

solution will pay penalty (= − 1) (2(1 + 1
=−1)) = 2=. This is twice

1651

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Mohammad Mahdavi

r

c

v1

v2

vn−1

. ..

1

1

1

1

Figure 3: A star graph with =+1 vertices. We construct a PCST

instance on this graph with vertex A as the root, the central

vertex 2 having penalty 0, and all other vertices with having

penalty 2(1 + 1
=−1).

the cost of the optimal solution, which can be obtained by taking

all = edges of length 1. The other solutions we consider will also

have the same cost as the GW solution, as they will aim to connect

only the root and will pay the penalties for all the dead vertices. So,

using any V > 2 will lead to an approximation factor of at least 2.

ACKNOWLEDGMENTS

The work is partially supported by DARPAQuICC, ONRMURI’2024

award on Algorithms, Learning, and Game Theory, Army-Research

Laboratory (ARL): #W911NF2410052, NSF AF:Small #2218678, and

NSF AF:Small #2114269.

REFERENCES
[1] Ajit Agrawal, Philip Klein, and R. Ravi. 1991. When Trees Collide: An Approxima-

tion Algorithm for the Generalized Steiner Problem on Networks. In Proceedings
of the Twenty-Third Annual ACM Symposium on Theory of Computing (New Or-
leans, Louisiana, USA) (STOC ’91). Association for Computing Machinery, New
York, NY, USA, 134–144. https://doi.org/10.1145/103418.103437

[2] Ajit Agrawal, Philip N. Klein, and R. Ravi. 1995. When Trees Collide: An Approx-
imation Algorithm for the Generalized Steiner Problem on Networks. SIAM J.
Comput. 24, 3 (1995), 440–456. https://doi.org/10.1137/S0097539792236237

[3] Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi, Peyman Jabbarzade,
and Mohammad Mahdavi. 2024. 2-Approximation for Prize-Collecting Steiner
Forest. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 669–693. https://doi.org/10.1137/1.9781611977912.25

[4] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. 1993. Network �ows
- theory, algorithms and applications. Prentice Hall.

[5] Aaron Archer, MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and
Howard J. Karlo�. 2011. Improved Approximation Algorithms for Prize-
Collecting Steiner Tree and TSP. SIAM J. Comput. 40, 2 (2011), 309–332.
https://doi.org/10.1137/090771429

[6] Aaron Archer, MohammadHossein Bateni, Mohammad Taghi Hajiaghayi, and
Howard J. Karlo�. 2009. Improved Approximation Algorithms for PRIZE-
COLLECTING STEINER TREE and TSP. In 50th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia,
USA. IEEE Computer Society, 427–436. https://doi.org/10.1109/FOCS.2009.39

[7] Egon Balas. 1989. The prize collecting traveling salesman problem. Networks 19,
6 (1989), 621–636. https://doi.org/10.1002/net.3230190602

[8] Marshall W. Bern and Paul E. Plassmann. 1989. The Steiner Problem with Edge
Lengths 1 and 2. Inf. Process. Lett. 32, 4 (1989), 171–176. https://doi.org/10.1016/
0020-0190(89)90039-2

[9] Daniel Bienstock, Michel X. Goemans, David Simchi-Levi, and David P.
Williamson. 1993. A note on the prize collecting traveling salesman problem.
Math. Program. 59 (1993), 413–420. https://doi.org/10.1007/BF01581256

[10] Jannis Blauth, Nathan Klein, and Martin Nägele. 2023. A Better-Than-1.6-
Approximation for Prize-Collecting TSP. CoRR abs/2308.06254 (2023). https:
//doi.org/10.48550/ARXIV.2308.06254 arXiv:2308.06254

[11] Jannis Blauth and Martin Nägele. 2023. An Improved Approximation Guarantee
for Prize-Collecting TSP. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, Barna Saha
and Rocco A. Servedio (Eds.). ACM, 1848–1861. https://doi.org/10.1145/3564246.
3585159

[12] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. 2010.
An improved LP-based approximation for steiner tree. In Proceedings of the 42nd
ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010, Leonard J. Schulman (Ed.). ACM, 583–592. https://doi.org/
10.1145/1806689.1806769

[13] Miroslav Chlebík and Janka Chlebíková. 2008. The Steiner tree problem on
graphs: Inapproximability results. Theor. Comput. Sci. 406, 3 (2008), 207–214.
https://doi.org/10.1016/j.tcs.2008.06.046

[14] Michel X. Goemans. 2009. Combining Approximation Algorithms for the Prize-
Collecting TSP. CoRR abs/0910.0553 (2009). arXiv:0910.0553 http://arxiv.org/abs/
0910.0553

[15] Michel X. Goemans and David P. Williamson. 1995. A General Approximation
Technique for Constrained Forest Problems. SIAM J. Comput. 24, 2 (1995), 296–317.
https://doi.org/10.1137/S0097539793242618

[16] Anupam Gupta, Jochen Könemann, Stefano Leonardi, R. Ravi, and Guido Schäfer.
2007. An e�cient cost-sharing mechanism for the prize-collecting Steiner forest
problem. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007,
Nikhil Bansal, Kirk Pruhs, and Cli�ord Stein (Eds.). SIAM, 1153–1162. http:
//dl.acm.org/citation.cfm?id=1283383.1283507

[17] MohammadTaghi Hajiaghayi and Arefeh A. Nasri. 2010. Prize-Collecting Steiner
Networks via Iterative Rounding. In LATIN 2010: Theoretical Informatics, 9th Latin
American Symposium, Oaxaca, Mexico, April 19-23, 2010. Proceedings (Lecture Notes
in Computer Science, Vol. 6034), Alejandro López-Ortiz (Ed.). Springer, 515–526.
https://doi.org/10.1007/978-3-642-12200-2_45

[18] Mohammad Taghi Hajiaghayi and Kamal Jain. 2006. The prize-collecting gen-
eralized steiner tree problem via a new approach of primal-dual schema. In
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006. ACM Press, 631–640.
http://dl.acm.org/citation.cfm?id=1109557.1109626

[19] S. Louis Hakimi. 1971. Steiner’s problem in graphs and its implications. Networks
1, 2 (1971), 113–133. https://doi.org/10.1002/NET.3230010203

[20] Richard M. Karp. 1972. Reducibility Among Combinatorial Problems. In Proceed-
ings of a symposium on the Complexity of Computer Computations, held March
20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New
York, USA (The IBM Research Symposia Series), Raymond E. Miller and James W.
Thatcher (Eds.). Plenum Press, New York, 85–103. https://doi.org/10.1007/978-1-
4684-2001-2_9

[21] Marek Karpinski and Alexander Zelikovsky. 1995. New Approximation Algo-
rithms for the Steiner Tree Problems. Electron. Colloquium Comput. Complex.
TR95-030 (1995). ECCC:TR95-030 https://eccc.weizmann.ac.il/eccc-reports/1995/
TR95-030/index.html

[22] Lawrence T. Kou, George Markowsky, and Leonard Berman. 1981. A Fast
Algorithm for Steiner Trees. Acta Informatica 15 (1981), 141–145. https:
//doi.org/10.1007/BF00288961

[23] Gabriel Robins and Alexander Zelikovsky. 2005. Tighter Bounds for Graph
Steiner Tree Approximation. SIAM J. Discret. Math. 19, 1 (2005), 122–134. https:
//doi.org/10.1137/S0895480101393155

[24] F. James Rohlf. 2005. J. Felsenstein, Inferring Phylogenies, Sinauer Assoc., 2004,
pp. xx + 664. J. Classif. 22, 1 (2005), 139–142. https://doi.org/10.1007/S00357-005-
0009-4

[25] Alexander Zelikovsky. 1993. An 11/6-Approximation Algorithm for the Network
Steiner Problem. Algorithmica 9, 5 (1993), 463–470. https://doi.org/10.1007/
BF01187035

Received 13 November 2023; accepted 8 February 2024

1652

https://doi.org/10.1145/103418.103437
https://doi.org/10.1137/S0097539792236237
https://doi.org/10.1137/1.9781611977912.25
https://doi.org/10.1137/090771429
https://doi.org/10.1109/FOCS.2009.39
https://doi.org/10.1002/net.3230190602
https://doi.org/10.1016/0020-0190(89)90039-2
https://doi.org/10.1016/0020-0190(89)90039-2
https://doi.org/10.1007/BF01581256
https://doi.org/10.48550/ARXIV.2308.06254
https://doi.org/10.48550/ARXIV.2308.06254
https://arxiv.org/abs/2308.06254
https://doi.org/10.1145/3564246.3585159
https://doi.org/10.1145/3564246.3585159
https://doi.org/10.1145/1806689.1806769
https://doi.org/10.1145/1806689.1806769
https://doi.org/10.1016/j.tcs.2008.06.046
https://arxiv.org/abs/0910.0553
http://arxiv.org/abs/0910.0553
http://arxiv.org/abs/0910.0553
https://doi.org/10.1137/S0097539793242618
http://dl.acm.org/citation.cfm?id=1283383.1283507
http://dl.acm.org/citation.cfm?id=1283383.1283507
https://doi.org/10.1007/978-3-642-12200-2_45
http://dl.acm.org/citation.cfm?id=1109557.1109626
https://doi.org/10.1002/NET.3230010203
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://eccc.weizmann.ac.il/eccc-reports/1995/TR95-030/index.html
https://eccc.weizmann.ac.il/eccc-reports/1995/TR95-030/index.html
https://doi.org/10.1007/BF00288961
https://doi.org/10.1007/BF00288961
https://doi.org/10.1137/S0895480101393155
https://doi.org/10.1137/S0895480101393155
https://doi.org/10.1007/S00357-005-0009-4
https://doi.org/10.1007/S00357-005-0009-4
https://doi.org/10.1007/BF01187035
https://doi.org/10.1007/BF01187035

	Abstract
	1 Introduction
	1.1 Contribution Overview
	1.2 Preliminaries

	2 Goemans and Williamson Algorithm
	3 The Iterative Algorithm
	3.1 Analysis
	3.2 Finding The Approximation Factor

	4 Necessities in Our Algorithm
	4.1 Bad example for normalnormal> 2

	Acknowledgments
	References

