N
Check for
Updates

Prize-Collecting Steiner Tree: A 1.79 Approximation

Ali Ahmadi
University of Maryland
College Park, Maryland, USA
ahmadia@umd.edu

Peyman Jabbarzade
University of Maryland
College Park, Maryland, USA
peymanj@umd.edu

ABSTRACT

Prize-Collecting Steiner Tree (PCST) is a generalization of the
Steiner Tree problem, a fundamental problem in computer science.
In the classic Steiner Tree problem, we aim to connect a set of
vertices known as terminals using the minimum-weight tree in
a given weighted graph. In this generalized version, each vertex
has a penalty, and there is flexibility to decide whether to connect
each vertex or pay its associated penalty, making the problem more
realistic and practical.

Both the Steiner Tree problem and its Prize-Collecting version
had long-standing 2-approximation algorithms, matching the in-
tegrality gap of the natural LP formulations for both. This barrier
for both problems has been surpassed, with algorithms achieving
approximation factors below 2. While research on the Steiner Tree
problem has led to a series of reductions in the approximation ra-
tio below 2, culminating in a In(4) + ¢ approximation by Byrka,
Grandoni, Rothvof3, and Sanita [STOC’10], the Prize-Collecting
version has not seen improvements in the past 15 years since the
work of Archer, Bateni, Hajiaghayi, and Karloff [FOCS’09, SIAM
J. Comput’11], which reduced the approximation factor for this
problem from 2 to 1.9672. Interestingly, even the Prize-Collecting
TSP approximation, which was first improved below 2 in the same
paper, has seen several advancements since then (see, e.g., Blauth
and Nagele [STOC’23]).

In this paper, we reduce the approximation factor for the PCST
problem substantially to 1.7994 via a novel iterative approach.

CCS CONCEPTS

« Mathematics of computing — Graph algorithms; Approxi-
mation algorithms.

KEYWORDS
Steiner tree, prize-collecting, approximation algorithm

ACM Reference Format:
Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi, Peyman Jab-
barzade, and Mohammad Mahdavi. 2024. Prize-Collecting Steiner Tree: A

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

STOC °24, June 24-28, 2024, Vancouver, BC, Canada

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0383-6/24/06
https://doi.org/10.1145/3618260.3649789

Iman Gholami
University of Maryland
College Park, Maryland, USA
igholami@umd.edu

1641

MohammadTaghi Hajiaghayi
University of Maryland
College Park, Maryland, USA
hajiagha@umd.edu

Mohammad Mahdavi
University of Maryland
College Park, Maryland, USA
mahdavi@umd.edu

1.79 Approximation. In Proceedings of the 56th Annual ACM Symposium on
Theory of Computing (STOC °24), June 24-28, 2024, Vancouver, BC, Canada.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3618260.3649789

1 INTRODUCTION

The Steiner Tree problem is a well-known problem in the field of
combinatorial optimization. It involves connecting a specific set of
vertices (referred to as terminals) in a weighted graph while aiming
to minimize the total cost of the edges used. The problem also allows
for the inclusion of additional vertices, known as Steiner points,
which can help reduce the overall cost. This problem has a long
history and was formally defined mathematically by Hakimi in 1971
[19]. It is recognized as one of the classic NP-hard problems [20].
The Steiner Tree problem finds applications in various domains,
including network design [4] and phylogenetics [24], prompting
continuous research efforts to develop more efficient approximation
algorithms.

Initial algorithmic strategies for the Steiner Tree problem, while
heuristic in nature, set the stage for more precise approaches. Ze-
likovsky’s 1993 introduction of a polynomial-time approximation
algorithm achieved an 11/6-approximation ratio [25], which was
followed by further improvements including Karpinski and Ze-
likovsky’s 1.65-approximation in 1995 [21]. The approach was re-
fined to a 1.55-approximation by Robins and Zelikovsky in 2005 [23],
and by 2010, Byrka, Grandoni, Rothvof3, and Sanita advanced this to
a 1.39-approximation [12]. An earlier MST-based 2-approximation
algorithm, introduced in the early 1980s, also played a crucial role
due to its simplicity [22].

The computational complexity of the Steiner Tree problem has
been firmly established. Bern and Plassmann showed its MAX SNP-
hardness, indicating the absence of a polynomial-time approxi-
mation scheme (PTAS) for this problem unless P equals NP [8].
Building on this, Chlebik and Chlebikova in 2008 established a
lower bound, demonstrating that approximating the Steiner Tree
problem within a factor of 96/95 of the optimal solution is NP-hard.
This finding marks a crucial step in understanding the inherent
complexity of the problem [13].

In combinatorial optimization, prize-collecting variants are dis-
tinct for their detailed decision-making approach. These variants
focus not only on building an optimal structure but also on inten-
tionally excluding certain components, which leads to a penalty.
This introduces more complexity and makes these problems more
applicable to real-world scenarios. The concept of prize-collecting
problems in optimization was first brought forward by Balas in

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5074-5014
https://orcid.org/0009-0007-4225-1608
https://orcid.org/0000-0003-4842-0533
https://orcid.org/0000-0002-5413-2231
https://orcid.org/0009-0008-4810-8893
https://doi.org/10.1145/3618260.3649789
https://doi.org/10.1145/3618260.3649789
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618260.3649789&domain=pdf&date_stamp=2024-06-11

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

the late 1980s [7]. This pioneering work opened a new research
direction, particularly in scenarios where avoiding certain elements
results in penalties. Following this, the first approximation algo-
rithms for prize-collecting problems were introduced in the early
1990s by authors including Bienstock, Goemans, Simchi-Levi, and
Williamson [9]. Their initial contributions have significantly shaped
the research direction in this area, focusing on developing solutions
that effectively balance costs against penalties.

The Prize-collecting Steiner Tree (PCST) problem is a key ex-
ample in this category, as it takes into account both the costs of
connectivity and penalties for excluding vertices. In this problem,
we consider an undirected graph G = (V, E) where V represents
vertices and E represents edges. Each edge e € E has an associated
cost c(e), and each vertex v € V comes with a penalty 7 (v) that
needs to be paid if the vertex is not connected in the solution. The
objective is to find a tree T = (V, ET) within G that minimizes the
sum of edge costs in T and penalties for vertices not in T. This is
mathematically expressed as:

Minimize Zc(e)+ Z 7(v).

ecET veV\Vr

This formulation captures the essence of the PCST problem: a
trade-off between the infrastructure cost, represented by the sum
of the edge costs within the chosen tree, and the penalties assigned
to vertices excluded from this connecting structure. This detailed
view of the problem applies to various situations, such as network
design where not every node needs to be connected, and resource
allocation where some demands might not be met, resulting in a
cost.

Initial strides in developing approximation algorithms for PCST
were made by Bienstock, Goemans, Simchi-Levi, and Williamson
with a 3-approximation achieved through linear programming relax-
ation [9]. Subsequent advancements by Goemans and Williamson,
and later by Archer, Bateni, Hajiaghayi, and Karloff, refined the
approximation ratio to 2 and 1.967, respectively [6, 15]. Our work
contributes to the ongoing research efforts in the field by presenting
a 1.7994-approximation algorithm for the PCST problem, improving
upon the previous best-known ratio of 1.967 established in 2009 [6].
This achievement marks progress in enhancing the efficiency of
solutions for this long-standing open problem.

Besides PCST, the Prize-collecting Steiner Forest (PCSF) problem
stands as another open area of research in combinatorial optimiza-
tion. In PCSF, the objective is to efficiently connect pairs of vertices,
each of which has an associated penalty for remaining unconnected.
Work on this area began with the work of Agrawal, Klein, and Ravi
[1, 2]. Following this, 3-approximation algorithms were developed
using cost-sharing and iterative rounding, respectively [16, 17].
Progress continued with Hajiaghayi and Jain’s 2.54-approximation
algorithm [18], and more recently, the 2-approximation by Ahmadi,
Gholami, Hajiaghayi, Jabbarzade, and Mahdavi [3].

Another related problem, the Prize-collecting version of the clas-
sic Traveling Salesman Problem (PCTSP), focuses on optimizing the
length of the route taken while also accounting for penalties associ-
ated with unvisited cities. Although the natural LP formulations for
PCTSP and PCST share lots of similarities, PCTSP has experienced
considerably more progress. The first breakthrough in breaking the

1642

Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Mohammad Mahdavi

barrier of 2 for PCST also introduced a 1.98-approximation algo-
rithm for PCTSP [6]. Subsequently, Goemans improved this to a 1.91
approximation factor [14]. The approximation factor was further
improved to 1.774 by Blauth and Négele [11], and most recently, to
1.599 by Blauth, Klein, and Négele [10]. These advances in PCSF and
PCTSP underline the significance and continuous research interest
in prize-collecting problems.

1.1 Contribution Overview

In this paper, we focus on rooted PCST where a designated vertex,
denoted as root, must be included in the solution tree. The objective
is to connect other vertices to root or pay their penalty. The general
PCST and its rooted variant are equivalent. Solving the general
PCST involves iterating over all vertices as potential roots and
solving the rooted variant for each. Conversely, we can adapt the
general version to address rooted PCST by assigning an infinite
penalty to the root vertex, ensuring its inclusion in the optimal
solution. This two-way equivalence is crucial for our approach,
allowing us to concentrate on rooted PCST and extend our findings
to the general case. In the rooted version, we define an instance
of the PCST problem using a graph G = (V, E, ¢) with edge weight
function ¢ : E — Ry, root vertex root, and penalty function
7 : V. — Rxo. In the penalty function, while only non-root vertices
have actual penalties, we include root in the domain of 7 and assume
it has penalty 7 (root) = oo. This does not affect the actual costs of
solutions, but simplifies our statements by adding consistency.

In designing our algorithm, we utilize the recursive approach
introduced by [3]. The concept involves running a baseline algo-
rithm with a higher approximation factor on PCST to get an initial
solution. We then account for the penalties associated with any
vertices identified by the baseline algorithm, paying these penal-
ties, and subsequently removing their penalties from consideration.
Next, we apply a Steiner tree algorithm to the remaining vertices
to obtain another solution. We then call our algorithm recursively
with the adjusted penalties. At each recursive step, two algorithms
are executed on the current input, each producing a tree as a solu-
tion. Our procedure aggregates all solutions generated during the
recursion process and selects the one with the lowest cost as the
final output.

We give a quick overview of the major components of our algo-
rithm here.

Goemans and Williamson Algorithm for PCST.. We use a slightly
modified version of the algorithm introduced by Goemans and
Williamson in [15] as the baseline algorithm in the recursive process.
We briefly present this algorithm for completeness. Throughout
the paper, we refer to this algorithm as PCSTGW and denote the
solution found by the algorithm as GW.

Let’s assume that each edge of the input graph G is a curve with
alength equal to its cost. We want to build a spanning tree F, which
starts as a forest during our algorithm and transforms into a tree by
the end of the algorithm. We then remove certain edges from this
tree to obtain our final tree T and pay penalties for every vertex
outside T.

To run our algorithm, we define C as the connected components
of F, and active sets ActS as subsets of C. Initially, both C and ActS
consist of single-member sets, with each vertex belonging to exactly

Prize-Collecting Steiner Tree: A 1.79 Approximation

one set. We assign a unique color to each vertex of the graph, with
the value 7 (v) representing the total duration that color v can be
used. As 7 (root) = oo, the color of root can be used without any
limitation.

At any moment, each active set colors its adjacent edges (edges
with exactly one endpoint in that set) with the color of one of its
vertices that still has available color.

Every time an edge becomes fully colored, it will be added to F,
and subsequently, the connected components of F and active sets
will be updated. Moreover, if all vertices in an active set run out
of color, the active set becomes deactivated and will be considered
a dead set, along with all the vertices inside it. We continue this
process until all vertices are connected to the root. Note that this is
ensured since the root has an infinite amount of color.

After the completion of this process, we remove some edges
from F to obtain T. We will select every dead set S that cuts exactly
one edge of F and remove all vertices in S from F to obtain T. Every
live vertex, which refers to vertices not marked as dead, will be
connected to the root in T, along with some dead vertices. In fact,
the tree T is the smallest subtree of F that contains all live vertices,
including root, and every vertex whose color has been used in T.

Steiner Tree Algorithm for PCST. Here we want to construct a
new solution ST based on the outcome of PCSTGW. During the
execution of the PCSTGW algorithm, certain active sets and their
vertices may reach a dead state, leaving them incapable of coloring
edges as their vertices have used all of their colors. In such cases, it
is reasonable to pay their penalties and subsequently remove them
from consideration. This decision makes sense, as connecting these
vertices to other vertices requires excessive costs compared to their
penalties.

In the GW solution, some of these dead vertices may eventually
connect to the root when other active sets link to them, and we
utilize these dead vertices to connect live vertices to root. However,
in ST, we pay the penalties of all dead vertices and seek a tree that
efficiently connects other vertices to root. The problem of finding a
minimum tree that connects a set of vertices to root is known as the
Steiner Tree problem, and we employ the best-known algorithm
for this, assuming it has a p approximation factor, which currently
isIn(4) + € [12].

Improving the approximation factor of the Steiner Tree algorithm
would consequently enhance the approximation factor of our PCST
algorithm. It’s worth noting that one might suggest paying penalties
only for vertices that the GW solution pays penalties for, rather
than all dead vertices. However, the GW solution may connect all
vertices to the root and influence the Steiner Tree algorithm to
establish connections for every vertex. This constraint restricts the
algorithm’s flexibility in exploring alternative tree structures.

Iterative algorithm. Now, let’s explore our iterative algorithm.
Our aim is to create an iterative procedure that results in a a-
approximation algorithm for PCST. We will discuss the value of «
in the future.

At the initiation of our algorithm, we divide the vertex penalties
by a constant factor f to obtain 7. The idea of altering penalties
has been used in [5], but they focus on increasing penalties, while
we decrease them. The specific value of § will be determined to-
wards the conclusion of our paper. This determination will be based

1643

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

on the value of p, representing the best-known approximation fac-
tor for the Steiner Tree problem, with the goal of minimizing the
approximation factor a.

Now, we execute PCSTGW using the modified penalties 75. Run-
ning PCSTGW on 75 provides us with a tree Tgw, and paying the
penalty of vertices outside Tgw yields one solution for the input.
Subsequently, we pay the penalty of every vertex that becomes dead
during the execution of PCSTGW, set their penalty to zero for the
remainder of our algorithm, and connect the remaining vertices us-
ing the best-known algorithm for the Steiner tree problem, denoted
as STEINERTREE. The tree generated by STEINERTREE, denoted as
TsT, presents another solution for the input.

Then, if no vertices with a non-zero penalty become inactive
in PCSTGW, indicating that we haven’t altered the penalties of
vertices at this step, we terminate our algorithm by returning the
minimum cost solution between Tgw and Tgt. Otherwise, we re-
cursively apply this algorithm to the new penalties, and refer the
tree of the best solution found by the recursive approach as Tjt.

Finally, we select the best solution among Tgw, TsT, and TiT.
It’s important to note that our algorithm essentially identifies two
solutions at each iteration and, in the end, selects the solution with
the minimum cost among all these alternatives.

In analyzing our algorithm, we focus on its initial step, specif-
ically the first invocation of PCSTGW and STEINERTREE. We cat-
egorize vertices based on their status in PCSTGW, distinguishing
between those marked as dead or live, and whether their penalties
have been paid in both PCSTGW and the optimal solution. Addi-
tionally, we classify active sets based on whether they color only
one edge or more than one edge of the optimal solution. Through
this partitioning, we derive lower bounds for the optimal solution
and upper bounds for the solutions Tgw and Tst. Leveraging the
recursive nature of our algorithm, we establish an upper bound for
the solution Tjt using induction. Following that, we evaluate how
much these solutions deviate from « - costopt.

Next, we show that for f = 1.252 and @ = 1.7994, a weighted
average of the cost of the three solutions is at most « - costopt. This
shows that our algorithm when using this value of f§ is a 1.7994
approximation of the optimal solution since the minimum cost is
lower than any weighted average. We note that throughout our
analysis, we do not know the value of . Instead, we obtain a system
of constraints involving a, f, p, and the weights in the weighted
average which needs to be satisfied in order for our proof steps
to be valid. Then, we find a solution to this system minimizing
a to find our approximation guarantee. In this solution, we use
p =1n(4) + €, using the current best approximation factor for the
Steiner tree [12]. Finally, we explain the intuition behind certain
parts of our algorithm, including why we need to consider all three
solutions that we obtain.

Outline. In Section 2, we explain Goemans and Williamson’s 2-
approximation algorithm for PCST [15], using the coloring schema
effectively utilized by [3] for PCSF. Then, in Section 3, we present
our iterative algorithm along with its analysis. Finally, in Section 4,
we highlight the importance of employing both algorithms in con-
junction with the iterative approach to improve the approximation
factor.

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

1.2 Preliminaries

Throughout our paper, we assume without loss of generality that
the given graph is connected.

Let T be a subgraph, then c(T) denotes the total cost of edges in
T,ie., c(T) = Yqercle).

For a subgraph T, we use V(T) to represent the set of vertices in
T, and m denotes the set of vertices outside T.

Given a subset of vertices S C V, we define 7(S) = 3 ,e5 7(v)
as the sum of penalties associated with vertices in S.

For a PCST solution X, we denote its corresponding tree as Tx.
Furthermore, we use costy to represent the total cost of X, defined
as c(Tx) + n(V(Ix)).

2 GOEMANS AND WILLIAMSON ALGORITHM

Here we define a slightly modified version of the algorithm initially
proposed by Goemans and Williamson in [15] (hereinafter the GW
algorithm) for the sake of completeness of our algorithm. Then we
use it as a building block in our algorithm in the next section. We
introduce several lemmas stating the properties of the algorithm
and its output. We defer the proofs of these lemmas to the full
version of our paper.

The algorithm consists of two phases. In the first phase, we sim-
ulate a continuous process of vertices growing components around
themselves and coloring the edges adjacent to these components at
a constant rate. In this process, we imagine each edge e with weight
c(e) as a curve of length c(e). Each vertex v has a potential coloring
duration equal to its penalty 7 (v). We assume that the root vertex
root has 7 (root) = oo, indicating infinite coloring potential. This
process of coloring will give us a spanning tree, which we will then
trim in the second phase to get a final tree.

During the algorithm, we keep a forest F of tentatively selected
edges, a set C of connected components of this forest, and a subset
ActS of active sets in C. For each component S in C, we will also
store its coloring duration ys. Initially, the forest F is empty, every
vertex is an active set in C, and all yg values are 0.

At any moment in the process, all active sets color their adjacent
edges using the coloring potential of their vertices at the same
rate. So, the amount of color on each edge is the total duration
its endpoints have been in active sets. We define an edge as fully
colored if the combined active time of its endpoints totals at least the
length of the edge while they belong to different components. When
such an edge between two sets becomes fully colored, it is added
to F, and the two sets containing its endpoints are merged, with
their coloring potentials summed together. An active set becomes
inactive if it runs out of coloring potential. This means that this set
and its subsets have used the coloring potential of all the vertices
in the set. It may be possible for multiple of these events to happen
at the same time, and we would handle them one by one in an
arbitrary order. The addition of one edge in the order may prevent
the addition of other fully colored edges. However, this can only
happen if the latter edge forms a cycle in F, and therefore, the
resulting components are independent of the order in which we
handle the events. As the component containing roof remains active
and edges are only added between different components, F will
eventually become a spanning tree of G. This marks the completion
of the coloring phase.

1644

Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Mohammad Mahdavi

Dead
Dead

Live

—/

Dead

Figure 1: Illustration of dead sets in the final tree of GW
algorithm. The dead sets colored in blue cut multiple edges
of F, and removing them would disconnect other vertices
so they are not removed. On the other hand, the dead sets
colored in red can be safely removed without affecting other
vertices.

In the second phase, we will select a subset of F as our Steiner
tree and pay the penalties for the remaining vertices. We refer to
any active set that becomes inactive as a dead set. Throughout
the first phase, we maintain dead sets in DS to utilize them in the
second phase. We categorize vertices into dead and live, where a
dead vertex is any vertex contained in at least one dead set, and
all other vertices are considered live. We store dead vertices in K
and return them at the end of PCSTGW since they are used in our
iterative algorithm in the next section. For any dead set S, if there
is exactly one edge of F cut by S (i.e., |6(S) N F| = 1), we remove
this edge and all the edges in F that have both endpoints in S. This
effectively removes S from the tree and disconnects its vertices
from the root. We repeat this process until no dead set with this
property can be found. Figure 1 illustrates how dead sets may be
removed.

As each operation in the second phase disconnects only the
selected dead set from the root, the final result will be a tree T that
contains all the live vertices, including root. We pay the penalties for
the vertices outside the tree, which are all dead vertices belonging
to the dead sets we removed in the second phase. Algorithm 1
provides a pseudocode that implements this process.

To facilitate our analysis throughout the paper, we assume that
each vertex is associated with a specific color. During the coloring
process of an active set S, we assign each moment of coloring to a
vertex v € S with non-zero remaining coloring potential and utilize
its color on the adjacent edges. For consistency, we choose vertex
v based on a fixed ordering of the vertices in V where root comes
first. So, a set S containing root will always assign its coloring to
root. We note that a set S can not use the color of a vertex that is
already dead. Based on this assignment, we define the following
values:

Definition 1. For each vertex v, we define its total coloring du-
ration y,, and the coloring duration assigned to it by a set S as
YSo:

® yg,= total coloring duration using color v in set S

* Yo = Xscvives YSo

Prize-Collecting Steiner Tree: A 1.79 Approximation
Note that for every vertex v € V, we have) cs ysy = ys.

We bound the cost of both the chosen tree and the penalty of
the dead vertices in the following lemmas. Proofs of these lemmas
are in the full version of our paper given their similarity to [15].

Lemma 2. Let T be the tree returned by Algorithm 1. We can
bound the total weight of this tree by

2.

ScV—{root};
SOV (T)#0

e(T)y<2- Yys=2- Yo-

0eV(T)—{root}

Lemma 3. For any vertex v € V, we have y, < 7(v). Furthermore,
if v € K which means it is a dead vertex, we have y, = 7(0).

Lemma 4. Any vertex v ¢ V(T) is a dead vertex.
Lemmas 2, 3, and 4 immediately conclude the following lemma.

Lemma 5. The total cost of the GW algorithm is bounded by

D et D b

veV(T)—{root} gV (T)

costgw = c(T) + n(V(T)) < 2-

We note that Lemma 5 can be used to prove that the GW al-
gorithm achieves a 2-approximation by showing that the optimal

solution has cost at least > Y. We prove a stronger version
veV —{root}
of this fact in Lemma 13.

In addition to the above lemmas on the cost of the solution and
its connection to the coloring, we also prove the following lemma.
This lemma will help in our analysis in Section 3.1, where we use
it to introduce an upper bound for the cost of the optimal Steiner
tree connecting all the live vertices in a call to the GW algorithm.
The proof of this lemma is also provided in the full version of our

paper.

Lemma 6. Let I = (G, root, r) and I’ = (G, root,) be instances
of PCST, where G’ is obtained from G by adding a set of edges
Ey with weight 0 from root to a set of vertices U. Let y, be the
coloring duration for vertex v in a run of the GW algorithm on I,
and let K be the set of dead vertices in this run. Let y;, and K’ be the
corresponding values when running the GW algorithm on instance
I’ using the same order to assign coloring duration to vertices. We
have

Yo < Yo
y, =0ifv € U,
and

K' CK.

1645

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Algorithm 1 PCSTGW(I = (G, root, 7)): GW Algorithm

Input: undirected graph G = (V, E, ¢) with edge costs
¢ : E — Ry, root root, and penalties 7 : V — Rxy.

Output: Subtree T of G containing root, alongside a set K of dead
vertices.

1: Initialize F as an empty forest
2: Initialize ActS and C as {{v} | v € V}
3: Setyg «— Oforall S € ActS
4@ K0
5: DS «— 0
6: while |C| > 1 do
7 Ay e mingeacrs(Xoes 7(0) — Lsrcs ys)
8 Ag < miNe=(y,p)eE; eUF is aforest(H;IQEﬁ%)
9: A — min(Al, Ag)
10: for S € ActS do
11: Ys <« ys + A
122 end for
13: if Ay < A then
14: Find a set S minimizing Ay
15: ActS «— ActS — {S}
16: K« KUS
17: DS « DS U {S}
18: else
19: Find an edge e = (4, v) minimizing Ay
20: F—FuUe
21 Update C and ActS accordingly
22: endif
23: end while
24: Extract T from F by repeatedly removing dead sets in DS that
cut a single edge in F
25: return (T,K)
3 THE ITERATIVE ALGORITHM

In this section, we present our iterative algorithm which is described
in Algorithm 2. In Section 3.1 we give an analysis for this algorithm.

Our algorithm makes use of the PCSTGW procedure from Al-
gorithm 1 as a fundamental component. Additionally, we employ
an approximation algorithm for the Steiner tree problem to im-
prove the approximation factor. This can be any approximation
algorithm for the Steiner tree problem. We denote the approxi-
mation factor for this algorithm as p. Whenever we require this
p-approximation solution for the Steiner tree, we invoke the proce-
dure named STEINERTREE. As our final approximation factor will
depend on p, we will use the current best approximation algorithm
for Steiner Tree [12] with p = In(4) + € in our analysis. In addition,
our algorithm depends on a constant which we will fix later in
Section 3.2 to optimize the approximation ratio.

Our algorithm, as described in Algorithm 2, identifies three solu-
tions for the given PCST instance I = (G, root, rr). Subsequently, we
opt for the solution with the minimum cost as the final solution.

First, we construct the instance I/; = (G, root, zrﬁ) from I by
replacing 7, with Z2 for all vertices. One solution named “GW” for
instance I, with tree Tgy, can be obtained by invoking procedure
PCSTGW (Line 3) on instance Ig, buying edges of Tgw and paying

penalties for vertices in V(Tgw). From the definition of Ig, we can

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

conclude that 7(V(Tgw)) = frg(V(Igw)). As stated in Section
2, in addition to Tgw, procedure PCSTGW also returns a set of
vertices, K, which represents dead vertices during the coloring
process.

Another solution for instance I named “ST” is obtained by retriev-
ing a Steiner tree TgT in graph G for the set of terminals L := V \ K
which are the live vertices in the output of the GW algorithm. This
solution is found using the procedure STEINERTREE and is therefore
a p-approximation of the minimum Steiner tree on this terminal
set. We pay the penalties for the vertices outside TgT, which will be
a subset of K.

If K is empty, the algorithm immediately returns the solution
with the lower total cost between the two obtained solutions. Oth-
erwise, a third solution named “IT”, denoted as TjT, is obtained
through a recursive call on a simplified instance R. The simplified
instance is formed through a process of adjusting penalties. We set
the penalties for the vertices in K, which are the dead vertices in
the result of the PCSTGW procedure, to zero while maintaining the
penalty for the live vertices L, as indicated in Lines 11 through 12.

As a final step, the algorithm simply selects and returns the
solution with the lowest cost. To help with the comparison of
these three solutions, the algorithm calculates the values costgw =
c(Tow) + n(V(Tow)), costst = ¢(Tst) + 7(V(IsT)), and costit =
c(Tit) + n(V(TiT)), representing the costs of the solutions (as indi-
cated in Lines 4, 7, and 14).

Algorithm 2 IPCST(I = (G, root, 7)): Iterative PCST algorithm

Input: Undirected graph G = (V, E, ¢) with edge costs
¢ : E — Ry, root root, and penalties 7 : V — Rx.

Output: Subtree T of G containing root.

1: Construct 7g by dividing all penalties by .

2: Construct the PCST instance [5= (G, root, ﬂﬁ),

3 Tow, K — PCSTGW(I5)
. costgw < c¢(Tow) + 7(V(Tow))
L—{v:veV,u¢K}
Tst < STEINERTREE(G, L)
: costsT — ¢(Tst) + 7 (V(Ts1))
. if 7(K) = 0 then

return Tx where costy is minimum among X € {GW, ST}
end if
Construct 7’ by adjusting & through the assignment of penal-
ties for vertices in K to 0.
Construct the PCST instance R = (G, root, r’).
Tyt « IPCST(R)
costit « c(Trt) + 7 (V(T11))
return Tx where costy is minimum among X € {GW, ST, IT}

T T e

10:
11:

12:
13:
14:
15:

3.1 Analysis

For an arbitrary instance I = (G, root, 7) in PCST, our aim is to
analyze the approximation factor achieved by Algorithm 2. We
compare the output of IPCST on I with an optimal solution OPT for
the instance I. We denote the tree selected in OPT as Topt. Then,
the cost of OPT is given by costop = ¢(Topt) + 7(V(TopT))-

We use an inductive approach to analyze the algorithm, where
we focus on a single call of the algorithm and find upper bounds

1646

Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Mohammad Mahdavi

for each of our three solutions and a lower bound for the optimal
solution OPT. To find these lower and upper bounds, we make use
of the coloring done by the GW algorithm on instance Ig and the
values ys, ysy, and y, relating to this coloring process. In addition,
we establish an upper bound for the solution obtained from the
recursive call based on the induction hypothesis. In our inductive
analysis, we only consider one individual call to the procedure at
each time, to analyze either the induction base or the induction step.
So, all the variables used in the analysis will relate to the algorithm’s
variables in the specific call we are analyzing. This includes the
trees Tgw, IsT, and TiT, and the live and dead vertices L and K.

We note that in our induction, we do not initially know the value
of the approximation factor « which we want to prove the algorithm
achieves. Instead, we use « as a variable in our inequalities, and this
leads to a system of constraints involving « that need to be satisfied
for our induction to prove an « approximation guarantee. These
inequalities involve not only the approximation factor a which we
seek to find but also the parameter f which defines the behavior of
our algorithm. Throughout the analysis, we assume that § < 2. We
justify this assumption in Subsection 4.1 by showing that values of
B > 2 cannot lead to a better than 2 approximation. To determine
our approximation factor @, we consider the range p < a < 2.
This range is chosen because we cannot assume that our algorithm
performs better than the Steiner tree algorithm, which we use as a
component. Additionally, our solution is guaranteed to be at least
as good as the 2-approximation provided by the GW algorithm.

In the first step, we categorize non-root vertices based on the
output of PCSTGW(Ig) and OPT. This categorization helps us es-
tablish more precise bounds for the solutions by enabling a more
tailored analysis within each category.

Definition 7. For an instance I, OPT partition vertices into two
sets: V(Topr) and V(Topt). PCSTGW (Ig) also partitions vertices
into two sets: L and K. We define four sets to categorize the vertices,
excluding root, based on these two partitions:

A =V (Topr) N L — {root} B =V(Topr) NK
C= V(TOPT) NL D= V(TOPT) NK

Table 1: This table illustrates the categories of vertices ex-
cluding root.

PCSTGW(I)
Live vertices | Dead vertices
Optimal | Connected A B
Solution | Penalty paid C D

Using the coloring scheme of PCSTGW (Ig), we introduce the
following values to represent the total duration of coloring with
vertices in these sets:

rg = Z Yo

rﬂ:Zyu

veA veB
o= Y o= 2w
veC veD

Prize-Collecting Steiner Tree: A 1.79 Approximation

Definition 8 (Connected and unconnected dead vertices). For an
instance I, based on Definition 7, the sets 8 and D represent dead
vertices in the output of PCSTGW (I). We further divide set 8 into
B’ and B”, and set D into D’ and D", based on whether they are
connected to the root at the end of the PCSTGW (I ﬁ) procedure. Let
B’ and D’ be the subsets of B and D, respectively, representing the
vertices connected to the root. Similarly, B’/ and D’ are the subsets
of 8 and D, respectively, indicating the vertices not connected to
the root at the end of the procedure.

B’ =BnV(Igw) = V(Torr) N K N V(Tow)
8" =BnV(Tow) = V(Torr) NK NV (Tow)
D' =D nV(Tow) = V(Torr) NK NV (Tow)
D" =D NnV(Tew)) = V(Tor) N K NV (Tow)

Subsequently, we define rg/, rg, rgy-, and r gy as the total duration
of coloring with vertices in sets 8/, 8”7, D’, and D", respectively.

= 3w T

veB’ veB”
rz)/ = Z yu rz)r/ = Z yv
veD’ veD”

It is trivial to see that rp = royy + rpr as D' U D” = D and
D' ND” = 0. Similarly, rg =rg: +rg».

Definition 9 (Single-edge and multi-edge sets). For an instance
I, we call a set S C V a single-edge set if |5(S) N Topr| = 1 and
a multi-edge set if |5(S) N Topr| > 1 (llustrated in Figure 2). We
assign each moment of coloring with colors of vertices in 8 which
are inside a single-edge set to by, and those in a multi-edge set to
by. These definitions are as follows:

by

YSo
veEB |5(S)ﬂTopﬂ=1

by

YSo
veB|56(S)NTopr|>1

Note that rg = by + by, as every vertex in 8B is connected to root
in the optimal solution. Therefore, with each moment of coloring
involving vertices in 8, the corresponding active set cuts an edge
belonging to the path from that vertex to root in the optimal solution.

Lemma 10. For any vertex v € V, we have fy, < n(v). Fur-
thermore, if v € 8 U D, which means is a dead vertex, we have

Pyo = ().

Proor. Since we run PCSTGW on g in Line 3, we can use
Lemma 3 using penalties ng. That means, for any vertex v € V, we
have y, < ﬂﬁ(l)), and if v is a dead vertex, we have y, = 75 (v). Since

(v
Q, we can conclude the lemma. O

B

Now for a given instance I, we derive lower bounds on the opti-
mal solution using terms defined earlier. We use a similar approach
that is used in [3] to bound the optimal solution.

in Line 1, we set 7g(v) =

1647

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Multi-edge

@® Single-edge

Figure 2: Illustration of single-edge set vs. multi-edge set in
Topt- The red set is a single-edge set, but the blue one is a
multi-edge set.

Lemma 11. We can bound the cost of the optimal solution in terms
of the cost of its tree as follows:

costopt 2 ¢(Topt) + Bre + fro.

PRrRoOF. According to the definition of cost in PCST, we can de-
termine the cost of the optimal solution by separately calculating
the weight of its tree and the penalties it pays. Additionally, based

on Definition 7, we have V(TopT) = C U D. Utilizing these two ob-
servations, we can establish an upper bound for costopt as follows:

costopt = ¢(Topt) + 7(V(TopT))

=c(Topr) +). 7(v)

veV (Topr)

= c(Topt) + Z 7(v) + Z 7(v) CnD=0)
veC veD

> c(Topt) + Z By, + Z By (Lemma 10)
veC veD

(Definition 7)

[m]

= ¢(Topr) + frc + Bro

Based on Lemma 11, we can easily conclude the following corol-
lary which bounds the weight of the optimal solution tree using
the cost of the optimal solution.

Corollary 12. We can bound the cost of optimal solution’s tree as
follows:

¢(Topt) < costopt — fre — fro.

Now we use Lemma 11, to expand the bound of the optimal
solution.

Lemma 13. We can establish a lower bound for the optimal solu-
tion as follows:

costopT = ra + b1 +2by + fro + frop

Proor. First, we demonstrate that r ¢ + b1 +2b3 is a lower bound
for ¢(Topt). To achieve this, for any set S, we define dopr(S) as
the number of edges of Topt that are colored by S. Given that each
portion of an edge will be colored at most once, and each set S C V
colors dopt(S) - ys of the optimal solution, we can derive a lower

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

bound for ¢(Topt) based on the proportion of the colored edges in
Topr-

c(Topr) 2 Z dort(S) - ys
scv

= Z ZdOPT(S) “Yso

SCVveS

Z Z dopt($) - Ysu

veV SCV
veS

Z ZdOPT(S)’ySy (ANB=0,AUBCYV)

Ve AUB SCV
veS

Z Z dopt(S) - ysy + Z Z dopr1(S) * Yso-

VeEASCV veBSCV
veS veS

(Ys = Xves Ysv)

v

\%

Furthermore, for any vertex v in A or B, based on Definition 7,
there exists a path from v to root in Topt. Also, for every set S C V
where ys, > 0, we know root ¢ S otherwise all coloring of set §
would be assigned to root. Using these two observations, we can
infer that at least one edge of Topt is colored by S, resulting in
dopr(S) > 1.

Therefore, for vertices in A, we have:

Z Z doprt(S) " ysu 2 Z Z YSo
VEASCV vEA SCV
vES vES
= Z Yo (Definition 1)
veEA
=rq. (Definition 7)

Also, for vertices in 8, we have:
DD dorr(S) yso=), Y. dopr(S) - uso
veBSCV veB SCV
veS veS
dopr(S)=1

+>0 > dopr(S) - yso

veB SCV
veS
dopr(S)>1
LYY el Y e
veB SCV veB SCV
veS veS
dopr(S)=1 dopr (S)>1
= by + 2bs. (Definition 9)

Combining all together, we obtain:

¢(Topt) = rog + by + 2by.

By using this bound along with Lemma 11, we can bound costopr-.

costopt = ¢(Topt) + fre + fro (Lemma 11)
>2rq+ b1+ 2bs +ﬂrc +ﬂrD.
O

In the next lemma, we establish a bound for the GW solution.
The proof is included in the full version of our paper.

Lemma 14. The following bound holds for the cost of the solution
returned by the output of PCSTGW (I) for instance I:

costgw < 2rg +2rg +2rg +2rgp.

1648

Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Mohammad Mahdavi

We restate this upper bound in terms of the variable « and the
cost of the optimal solution costopT using Lemma 13.

Lemma 15. The following bound holds for the cost of the solution
returned by the output of PCSTGW (Ip) for instance I:

costgw < a - costopr + (2 —a)rg + (2 — a)by + (2 — 2a) by
+(2-af)yrc+ (2 -af)rp.
Proor. We can directly apply Lemma 13 to the previous bound
obtained in the preceding Lemma 14.
(Lemma 14)
<2rg+2(b1+by)+2rc+2rp (Lemma 13)
+ a - (costopT — rqg — b1 — 2by — Pre — Prop)
< a-costopr+ (2 —a)rag + (2 —a)by + (2 - 2a)by
+2-af)yrc+ (2 -aP)rp.

costgw < 2rq +2rg +2rc +2rp

[m]

Next, we bound the cost of the ST solution. For a set S, let TOPT’S
denote the minimum cost Steiner tree on this set. In the following
lemma, we relate the cost of the ST solution to the cost of TOPT’L-

Lemma 16. For instance I, we can bound the cost of the solution
returned by the output of ST as follows:

costsT < p - C(TOPT’L) + frg + fro.

ProoF. Since in TgT, we are connecting every vertex in L to root,
using an Steiner tree algorithm with an approximation factor of p,
the cost of the tree TsT can be bounded by

¢(Tst) < p - e(Topty)-

Moreover, as all vertices in L are connected to root, the vertices
for which we need to pay penalties for this solution form a subset
of K, i.e., V(TsT) C K. Furthermore, by Definition 7 we have:

BUD = (V(Topr) NK) U (V(TopT) N K)
=K

(Definition 7)

Now, we can bound the penalty paid by the ST solution.
n(V(Tst)) < n(K)
(B U D)

Z ()

veBUD

Z Byo

veBUD

Z By + Z Byo

veB veD
=prg+pro

Finally, we use these bounds to complete the proof

(Lemma 10)

IA

(Definition 7)

costst = ¢(Tst) + 7(V(Ts1)) < p - c(Topr;) + fra + fro.

[m]

We now provide an upper bound for the cost of Topr, based on
the cost of Topt to obtain our main upper bound for ST.

Prize-Collecting Steiner Tree: A 1.79 Approximation

Lemma 17. For the minimum cost Steiner tree TOPT’L on L, we
have

C(TOPTZ) < c(Topt) + 2r¢ + 2rg.

ProoF. We construct a new instance I é = (G, root, ng) where

G’ is obtained from G by adding a set Eg of edges of weight 0 from
root to every vertex in U = AU B = V(Topr) — {root}. Let Téw be
the resulting tree and y}, be the coloring duration for the vertices in
this process assuming we assign the colors in the same way as we
did when running the GW algorithm on I. By Lemma 6, y, < yo
for all vertices in C U D. In addition, we have y;, = 0 for all vertices
in U = AU B. Then, using Lemma 2 we can bound the cost of Ty,
as

c(Tsw) <2 Yo (Lemma 2)
veV(T(’;W)—{raot}
<2 4 V(Tw) € V)
veV—{root}
<2 Z Yy +2 Z v,
ve AUB veCUD
(AUBUCUD =V — {root})
<2 Z A (y, =0ifv € AU B by Lemma 6)
veCUD
<2 Z Yo (Y5 < yo by Lemma 6)
veCUD
=2rc +2rp. (Definition 7)

Let K’ be the set of dead vertices returned by the GW algorithm
on I,. Based on Lemma 6, we have K’ C K. Therefore, as vertices
in AU C U {root} = L are not part of K, they cannot be part of K’
either and must be live vertices in this run. Lemma 4 means that
these vertices are connected by T/,

If we remove any edges in Ey from TéW’ and instead add Topr,
which is a spanning tree on A U B U {root}, all the vertices in
V(TSy) will remain connected. So, we get a connected subgraph
of G that connects L. The cost of this subgraph is at most

¢((Tqw — Eo) U Topr) < c(Topt) + c(Tiy)
< c¢(Topt) + 2r¢ + 2rg.

As this subgraph connects L, its cost gives us an upper bound on
the cost of the minimum Steiner tree on these vertices. So we have

C(TOPT}_) < c(Topt) + 2r¢ + 2rg.

]

We combine the last two lemmas to introduce an upper bound
for the ST solution. We again state this upper bound in terms of
costopt and a. Here, we rely on the fact that « > p to add a non-
negative value to an initial upper bound based on Lemmas 16 and
17.

Lemma 18. For instance I, we can bound the cost of the solution
returned by the output of ST as follows:

costsT < a - costopr+ (p—a)rag + (p+ f —)by
+(2p+p-20)ba+ (2p—aPf)rc+ (2p+p—aP)rop.

1649

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

ProoF. By combining Lemma 16 with Lemma 17, we can derive
a new bound for costgt.

costsT < p - c(TOpT/L) +frg + fro (Lemma 16)
< p(c(Topt) +2rc +2rp) + frg + fro (Lemma 17)
< p(costopt — fre — Prp +2rc +2rp) + fre + fro

(Corollary 12)
< p(costopt — Pre — Prp +2rc +2rp) + fre + fro
+ (& — p)(costopt — reg — by — 2by — fre — Pro)
(Lemma 13, @ — p > 0)
=a - costopT + (p —)ra + (p + f— a)b1
+@2p+p-2a)ba+ (2p—aPf)yrc+ (2p+p—af)rp
[m}

Now, assume that we want to show that the algorithm achieves
an approximation factor of a. Then, to prove this by induction,
we need to show two things. First, we need to show that in the
base case where the dead set K returned by the GW algorithm has
penalty 0 and we do not make a recursive call, our solution is an
a approximation. Secondly, we have to demonstrate the induction
step. This means that we have to show that if our recursive call on
instance R returns an « approximation for this instance, the final
returned solution will also be an « approximation. If these two steps
are accomplished, then by induction on the number of vertices with
non-zero penalties (which decreases with every recursive call), we
can prove that our algorithm achieves an a approximation.

So far, we do not know the value of « so we cannot prove the
induction steps directly. Instead, we will show that if « satisfies
certain constraints then both the base case and the step of induction
can be proven for that value of « and therefore our algorithm will
give us an « approximation. These constraints are obtained by
thinking of « as a variable and then trying to prove the induction
base and the induction step for a. Minimizing « in this system of
constraints will give us an upper bound on the approximation factor
of our algorithm.

In the following, we first assume that the recursive call on R is
an o approximation, and bound the iterative solution using this
assumption. Then, in Section 3.2 we combine the bounds for the
different solutions to find a system of constraints that restrict a.
We also consider the constraints that arise from the base case being
an a approximation, which turn out to form a subset of the former
constraints. Finally, we find the minimum value of « that can satisfy
these constraints to obtain our approximation guarantee.

We start with the next lemma, which bounds the cost of the
iterative solution’s output, assuming that the recursive call returns
an a approximate solution for instance R. Here, OPTg denotes the
optimal solution for the PCST instance R.

Lemma 19. For instance I, the cost of the iterative solution, de-
noted as costyT, can be bounded as follows:

costit < a - costopty, + fra + fro,
assuming that the recursive call on instance R returns an & approx-

imate solution.

Proor. Based on our assumption, IPCST(R) will return a solu-
tion that is an @-approximate of the optimal solution of instance R

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

which we indicate by OPTg. This gives us the following bound:
¢(Tir) + 7' (V(Tir)) < @ - costopTy-

However, as costiT = ¢(Tit) + 7(V(TiT)), we need to establish the
relationship between 7(V(Tit)) and 7’ (V(Ti)). The only differ-
ence between these functions lies in setting the penalty for vertices
in K =8UD to zero in 7/, as indicated in Line 11. Thus, we can
conclude that

#(V(Tir) < 7 (V(Tin) + 7(8 U D)
=7 (V) +B D v

ve(BUD)
= ' (V(Tit)) + frg + pro.

By combining these inequalities, we get

(Lemma 10)

(Definition 7)

costit = ¢(Tit) + 7 (V(Ti1))

¢(Tir) + 7' (V(Tir)) + fra + fro
a - costopTy + fre + fro.

IA

IN

]

Lemma 20. For an instance I, we can remove a set of edges with
a total length of b; from Topr in such a way that the vertices in A
remain connected to root.

Proor. Consider a moment of coloring with the color of a vertex
v € B in a single-edge set S C V. Given that we are coloring with v
at this moment, the vertex is still a live vertex. However, since v is
in B, it will become dead at some moment of the algorithm. Since
all the vertices in S will remain in the same component until the
end of the algorithm, the moment v becomes dead, all vertices in S
will also become dead. That means, every vertex in S is either in 8
orD,ie.SCBUD =K.

Since S is a single-edge set, there is only one edge from TopT that
cuts this set. Let assume that this edge is e, i.e. §(S) N TopT = {e}.
Removing edge e from Topr, will only disconnect vertices in S from
root, since S is a single-edge set and paths in Topt from root to
vertices outside of S will not pass through e.

If we remove all such edges from Topt, the total cost of the
removed edges will be at least b;. This is due to the fact that the
coloring on these edges from single-cut sets assigned to the vertices
in B is equal to by, and the coloring on each edge is at most its
weight. Note that, each single-edge set is coloring exactly one edge
of the optimal solution at each moment. So, we can remove edges
with a total length of at least b; from Topt without disconnecting
vertices in A from root. ml

Lemma 21. For an instance I, we can bound the cost of the optimal
solution for instance R by

costopT, < costopT — fro — b1,
where R is created at Line 12 of IPCST(I).

Proor. To prove this lemma, we start by showing that there is a
solution for instance R that costs at most costopt — frp — by. Since
OPTRp is the optimal solution of instance R, its cost would not exceed
the cost of the instance we are constructing. This will complete
the proof of the lemma. To construct the mentioned instance, we

1650

Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Mohammad Mahdavi

take the optimal solution of instance I, which we indicate by OPT,
and remove extra edges from its tree Top. Additionally, we do not
need to pay penalties for pairs in OPT whose penalty is set to zero
in 7" at Line 11 for instance R.

Let’s start with the tree Topt. Using Lemma 20, we can remove
a set of edges from TopT with a total length of at least b1 without
disconnecting vertices in set A from root.

Moreover, the optimal solution pays penalties for vertices in set
C U D. However, instance R has been constructed by assigning
zero to the penalty of vertices in set K, which includes vertices in
set D. Therefore, the penalty that we pay for vertices in D in the
optimal solution is not required to be paid in OPTg. This deducts
(D) from the cost of the optimal solution, which is equal to fry
according to Lemma 10. This completes the proof of thislemma. O

Lemma 22. For instance I, the output of the iterative solution can
be bounded as follows:

costiT < a - costopT + (B —)by + fba + (f — af)rp
assuming that the recursive call on instance R returns an & approx-
imate solution.
Proor. We utilize Lemma 21 to modify the terms of the bound
in Lemma 19.
costiT < acostopt, + fra + fro (Lemma 19)

< a(costopr — fro — b1) + f(by +b2) + fro
(Lemma 21 and Definition 9)

a - costopT + (f —)b + fba + (B — af)rp

IA

3.2 Finding The Approximation Factor

Now that we have bounded costgy, costsT, and costyT, we can de-
termine an appropriate value for « such that, during each call of
IPCST on instance I, the minimum of costgw, costsT, and costi is
at most « - costopT.

To achieve this, we assign weights to each solution in a way that
the weighted average of these three bounds is at most « - costopr.
This completes our proof and demonstrates that the minimum
among them is at most « - costopT since any weighted average of a
set of values is greater than or equal to their minimum.

Denoting wgw, wsT, and wyT as the weights of solutions GW, ST,
and IT respectively, let costwag represent their weighted average
cost. As we are taking an average, we assume wgw + wsT +wiT = 1
to simplify the calculation. We also have wgw, wsT, wiT > 0. The
bound for the weighted average is then given by

costwag < (@ - wgw + @ - WsT + @ - WiT) * COStopPT
+((2-a) - wow+ (p—a)-wst) 1z

+(2-a) - wew+(p+f-a) -wst+(f—a) wr) b

+((2 - 2a) - wow + (2p + f — 2a) - wsT + B - wit) - b2
+((2-ap)-wow + (2p —af) - wst) - TC
+((2-ap)-wow + (2p+f—apf) - wst+(f—aP) - wir) -rp
Given that wgw +wsT +wiT = 1, we have (a-wgw + @ - wsT+a

wrT) - costopT = @ - costopt. Thus, the first term in the expression
is « - costopT-

Prize-Collecting Steiner Tree: A 1.79 Approximation

To ensure costwag < « - costopT, we aim to make the rest of
the expression non-positive. Since r 4, b1, bz, r¢, and rg are non-
negative values, it suffices to make their coefficients non-positive
by assigning suitable values to a, f, and the weights wgw, wsT, and
wrt. This leads to finding values that satisfy the following inequali-
ties, with each inequality corresponding to one of the coefficients.

(2-a) - wow+(p—a) wsT <0 (ra)
(2-a) - wow+(p+f—a) wstT+(f—a) wiT <0 (b1)
(2-2a) - wow+ (2p+f—2a) - wsT+f -wir <0 (b2)
(2—ap) - wow + (2p — af) - wsT < 0 (re)

2-ap) -wow+@2p+p—af) -wst+(B-aB) -wiT <0 (rp)

We can also use a weighted average to ensure that our solution in
the induction base has cost < a- costopr. In this case, the IT solution
cannot be employed as it represents the final step of recursion. So,
we must have wiT = 0. Additionally, it’s essential to note that in
this step, 7(K) = n(8 U D) = 0, resulting in by = by = rp = 0.
Thus, only the inequalities for the coefficients of r 4 and r¢ remain
relevant, which already do not contain wr:

(ra)
(re)

(2-a) - wogw+(p—a) - wsT <0
(2-ap) -wew+(2p—af) -wsy <0

We can see that if a solution for the system of constraints used
for the induction step is found, setting wit = 0 and scaling wgw
and wsT by a factor of 1—1WIT gives us a solution for these two new
constraints with wgw + wst = 1 and wiT = 0. So, whatever values
of a and f we find by solving the initial system of inequalities will
give us a valid solution and an approximation guarantee of a.

Considering the best-known approximation factor for the Steiner
tree problem, which is p = In(4)+¢ [12], we determine that choosing
the values a = 1.7994, f = 1.252, wgw = 0.385, wsT = 0.187, and
wyT = 0.428 satisfies all the inequalities for a small enough value
of e. This provides a valid proof for both the induction base and
induction step, leading to the conclusion of the following theorem.

Theorem 23. The minimum cost among GW, ST, and IT is a
1.7994-approximate solution for the Prize-Collecting Steiner Tree
instance I. Therefore, IPCST is an 1.7994 approximation for PCST.

Finally, we note that our algorithm runs in polynomial time.

Theorem 24. The procedure IPCST(!) runs in polynomial time.

Proor. The procedure IPCST(I) calls the PCSTGW (Ig) which
runs in polynomial time and a polynomial time algorithm STEIN-
ERTREE for the Steiner tree problem. Then it recursively calls itself
on a new instance such that the new instance has more vertices
with a penalty of 0. The construction of this instance involves a
simple loop on the vertices and is done in polynomial time. Since
the number of vertices is |V|, and each time the number of vertices
with non-zero penalty decreases by one, the recursion depth is at
most |V|. So, in IPCST we have a polynomial number of recursive
steps, and each step takes a polynomial amount of time. Therefore,
the total running time of the algorithm is polynomial in the size of
the input. O

1651

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

4 NECESSITIES IN OUR ALGORITHM

In this section, we demonstrate the necessity of utilizing all three
solutions in IPCST and selecting the minimum among them. Table 2
is completed based on the constraints 1 < p < a < 1.8, derived
from the NP-hardness of finding an exact algorithm for Steiner tree,
the fact that Steiner tree is a special case of PCST, and the goal of
achieving an approximation factor better than 1.8. Additionally, we
select f such that 2/a < f# < a because if 2/a > f, both coefficients
in r¢ will be positive. Also, if > a, all coefficients of b; become
positive.

Table 2: Sign of coefficients for each solution. The sign "?"
indicates that its sign cannot be determined with the current
assumptions, and the sign "+?" means it is positive for the
current value of p but could potentially turn negative with
future improvements in the approximation factor of the
Steiner tree problem.

ra | b1 b2 |rc|rp
GW | + - - -
ST - + | 2| ? +
IT 0 - + 0 -

Table 2 demonstrates the sign of the coefficient for each variable
in every algorithm. We refer to this table to explain why all three
algorithms are essential. We need to find a combination of these
algorithms such that the weighted average of these coefficients
adds up to zero. Since each row associated with an algorithm has at
least one positive value, achieving this balance is not possible if we
use only one of the algorithms. Moreover, omitting IT results in a
positive coeficient for b1, making the iterative approach necessary.
Similarly, using GW and IT together leads to a positive coefficient
for r 4, emphasizing the need for ST to offset it. Lastly, if we drop
GW, the coefficient of b, constrains our approximation factor, as its
coefficient in the IT algorithm is positive, and in the ST algorithm,
itis 2p+ f —2a. Given that the best-known approximation factor for
the Steiner tree is In(4) +€ [12], replacing p with In(4)+e€ resultsina
positive value for the coefficient of b in the ST algorithm. Therefore,
the GW algorithm is necessary to decrease the coefficient of b;.

4.1 Bad example for § > 2

Let f = 2(1 + €) for some € > 0. We consider a star graph G with
n + 1 vertices as shown in Figure 3, where one vertex is a central
vertex and all other vertices are connected to this vertex with edges
of length 1 for some value of n such that ﬁ < €. We construct
an instance of PCST on this graph where one of the non-central
vertices is the root, the central vertex has penalty 0, and any other
vertex has penalty 2(1 + ﬁ .

When we run the GW algorithm on this instance, the center
vertex dies instantly as it has 0 coloring potential. Additionally, as

L < ¢, each non-root leaf has coloring potential

n—-1
21+ 15 _ (1+:45
B 1+e

and therefore dies before reaching the central vertex. So, the GW
solution will pay penalty (n — 1)(2(1 + —)) = 2n. This is twice

n-1

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

r
o

V2

Figure 3: A star graph with n+1 vertices. We construct a PCST
instance on this graph with vertex r as the root, the central
vertex ¢ having penalty 0, and all other vertices with having
penalty 2(1 + ﬁ).

the cost of the optimal solution, which can be obtained by taking
all n edges of length 1. The other solutions we consider will also
have the same cost as the GW solution, as they will aim to connect
only the root and will pay the penalties for all the dead vertices. So,
using any f > 2 will lead to an approximation factor of at least 2.

ACKNOWLEDGMENTS

The work is partially supported by DARPA QuICC, ONR MURI’'2024
award on Algorithms, Learning, and Game Theory, Army-Research
Laboratory (ARL): #W911NF2410052, NSF AF:Small #2218678, and
NSF AF:Small #2114269.

REFERENCES

[1] Ajit Agrawal, Philip Klein, and R. Ravi. 1991. When Trees Collide: An Approxima-
tion Algorithm for the Generalized Steiner Problem on Networks. In Proceedings
of the Twenty-Third Annual ACM Symposium on Theory of Computing (New Or-
leans, Louisiana, USA) (STOC *91). Association for Computing Machinery, New
York, NY, USA, 134-144. https://doi.org/10.1145/103418.103437

Ajit Agrawal, Philip N. Klein, and R. Ravi. 1995. When Trees Collide: An Approx-
imation Algorithm for the Generalized Steiner Problem on Networks. SIAM 7.
Comput. 24, 3 (1995), 440-456. https://doi.org/10.1137/S0097539792236237

Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi, Peyman Jabbarzade,
and Mohammad Mahdavi. 2024. 2-Approximation for Prize-Collecting Steiner
Forest. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, 669-693. https://doi.org/10.1137/1.9781611977912.25
Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. 1993. Network flows
- theory, algorithms and applications. Prentice Hall.

Aaron Archer, MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and
Howard J. Karloff. 2011. Improved Approximation Algorithms for Prize-
Collecting Steiner Tree and TSP. SIAM j. Comput. 40, 2 (2011), 309-332.
https://doi.org/10.1137/090771429

&

3

=

[4

=

1652

Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Mohammad Mahdavi

[6] Aaron Archer, MohammadHossein Bateni, Mohammad Taghi Hajiaghayi, and
Howard J. Karloff. 2009. Improved Approximation Algorithms for PRIZE-
COLLECTING STEINER TREE and TSP. In 50th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia,
USA. IEEE Computer Society, 427-436. https://doi.org/10.1109/FOCS.2009.39
Egon Balas. 1989. The prize collecting traveling salesman problem. Networks 19,
6 (1989), 621-636. https://doi.org/10.1002/net.3230190602

Marshall W. Bern and Paul E. Plassmann. 1989. The Steiner Problem with Edge
Lengths 1 and 2. Inf. Process. Lett. 32, 4 (1989), 171-176. https://doi.org/10.1016/
0020-0190(89)90039-2

Daniel Bienstock, Michel X. Goemans, David Simchi-Levi, and David P.
Williamson. 1993. A note on the prize collecting traveling salesman problem.
Math. Program. 59 (1993), 413-420. https://doi.org/10.1007/BF01581256

Jannis Blauth, Nathan Klein, and Martin Négele. 2023. A Better-Than-1.6-
Approximation for Prize-Collecting TSP. CoRR abs/2308.06254 (2023). https:
//doi.org/10.48550/ARXIV.2308.06254 arXiv:2308.06254

Jannis Blauth and Martin Négele. 2023. An Improved Approximation Guarantee
for Prize-Collecting TSP. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, Barna Saha
and Rocco A. Servedio (Eds.). ACM, 1848-1861. https://doi.org/10.1145/3564246.
3585159

Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvof3, and Laura Sanita. 2010.
An improved LP-based approximation for steiner tree. In Proceedings of the 42nd
ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010, Leonard J. Schulman (Ed.). ACM, 583-592. https://doi.org/
10.1145/1806689.1806769

Miroslav Chlebik and Janka Chlebikova. 2008. The Steiner tree problem on
graphs: Inapproximability results. Theor. Comput. Sci. 406, 3 (2008), 207-214.
https://doi.org/10.1016/j.tcs.2008.06.046

Michel X. Goemans. 2009. Combining Approximation Algorithms for the Prize-
Collecting TSP. CoRR abs/0910.0553 (2009). arXiv:0910.0553 http://arxiv.org/abs/
0910.0553

Michel X. Goemans and David P. Williamson. 1995. A General Approximation
Technique for Constrained Forest Problems. SIAM J. Comput. 24, 2 (1995), 296-317.
https://doi.org/10.1137/S0097539793242618

Anupam Gupta, Jochen Kénemann, Stefano Leonardi, R. Ravi, and Guido Schéfer.
2007. An efficient cost-sharing mechanism for the prize-collecting Steiner forest
problem. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007,
Nikhil Bansal, Kirk Pruhs, and Clifford Stein (Eds.). SIAM, 1153-1162. http:
//dlacm.org/citation.cfm?id=1283383.1283507

MohammadTaghi Hajiaghayi and Arefeh A. Nasri. 2010. Prize-Collecting Steiner
Networks via Iterative Rounding. In LATIN 2010: Theoretical Informatics, 9th Latin
American Symposium, Oaxaca, Mexico, April 19-23, 2010. Proceedings (Lecture Notes
in Computer Science, Vol. 6034), Alejandro Lopez-Ortiz (Ed.). Springer, 515-526.
https://doi.org/10.1007/978-3-642-12200-2_45

Mohammad Taghi Hajiaghayi and Kamal Jain. 2006. The prize-collecting gen-
eralized steiner tree problem via a new approach of primal-dual schema. In
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006. ACM Press, 631-640.
http://dl.acm.org/citation.cfm?id=1109557.1109626

S. Louis Hakimi. 1971. Steiner’s problem in graphs and its implications. Networks
1,2 (1971), 113-133. https://doi.org/10.1002/NET.3230010203

Richard M. Karp. 1972. Reducibility Among Combinatorial Problems. In Proceed-
ings of a symposium on the Complexity of Computer Computations, held March
20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New
York, USA (The IBM Research Symposia Series), Raymond E. Miller and James W.
Thatcher (Eds.). Plenum Press, New York, 85-103. https://doi.org/10.1007/978-1-
4684-2001-2_9

Marek Karpinski and Alexander Zelikovsky. 1995. New Approximation Algo-
rithms for the Steiner Tree Problems. Electron. Colloquium Comput. Complex.
TR95-030 (1995). ECCC:TR95-030 https://eccc.weizmann.ac.il/eccc-reports/1995/
TR95-030/index.html

Lawrence T. Kou, George Markowsky, and Leonard Berman. 1981.
Algorithm for Steiner Trees. Acta Informatica 15 (1981), 141-145.
//doi.org/10.1007/BF00288961

Gabriel Robins and Alexander Zelikovsky. 2005. Tighter Bounds for Graph
Steiner Tree Approximation. SIAM J. Discret. Math. 19, 1 (2005), 122-134. https:
//doi.org/10.1137/S0895480101393155

F. James Rohlf. 2005. J. Felsenstein, Inferring Phylogenies, Sinauer Assoc., 2004,
pp. xx + 664. J. Classif. 22, 1 (2005), 139-142. https://doi.org/10.1007/S00357-005-
0009-4

Alexander Zelikovsky. 1993. An 11/6-Approximation Algorithm for the Network
Steiner Problem. Algorithmica 9, 5 (1993), 463-470. https://doi.org/10.1007/
BF01187035

[10

[11

[12

=
&

[14

[15

[16

=
]

(18]

[19

)
=

[21

A Fast
https:

[22

[23

™
=)

[25

Received 13 November 2023; accepted 8 February 2024

https://doi.org/10.1145/103418.103437
https://doi.org/10.1137/S0097539792236237
https://doi.org/10.1137/1.9781611977912.25
https://doi.org/10.1137/090771429
https://doi.org/10.1109/FOCS.2009.39
https://doi.org/10.1002/net.3230190602
https://doi.org/10.1016/0020-0190(89)90039-2
https://doi.org/10.1016/0020-0190(89)90039-2
https://doi.org/10.1007/BF01581256
https://doi.org/10.48550/ARXIV.2308.06254
https://doi.org/10.48550/ARXIV.2308.06254
https://arxiv.org/abs/2308.06254
https://doi.org/10.1145/3564246.3585159
https://doi.org/10.1145/3564246.3585159
https://doi.org/10.1145/1806689.1806769
https://doi.org/10.1145/1806689.1806769
https://doi.org/10.1016/j.tcs.2008.06.046
https://arxiv.org/abs/0910.0553
http://arxiv.org/abs/0910.0553
http://arxiv.org/abs/0910.0553
https://doi.org/10.1137/S0097539793242618
http://dl.acm.org/citation.cfm?id=1283383.1283507
http://dl.acm.org/citation.cfm?id=1283383.1283507
https://doi.org/10.1007/978-3-642-12200-2_45
http://dl.acm.org/citation.cfm?id=1109557.1109626
https://doi.org/10.1002/NET.3230010203
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://eccc.weizmann.ac.il/eccc-reports/1995/TR95-030/index.html
https://eccc.weizmann.ac.il/eccc-reports/1995/TR95-030/index.html
https://doi.org/10.1007/BF00288961
https://doi.org/10.1007/BF00288961
https://doi.org/10.1137/S0895480101393155
https://doi.org/10.1137/S0895480101393155
https://doi.org/10.1007/S00357-005-0009-4
https://doi.org/10.1007/S00357-005-0009-4
https://doi.org/10.1007/BF01187035
https://doi.org/10.1007/BF01187035

	Abstract
	1 Introduction
	1.1 Contribution Overview
	1.2 Preliminaries

	2 Goemans and Williamson Algorithm
	3 The Iterative Algorithm
	3.1 Analysis
	3.2 Finding The Approximation Factor

	4 Necessities in Our Algorithm
	4.1 Bad example for normalnormal> 2

	Acknowledgments
	References

