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ARTICLE INFO ABSTRACT

Keywords: Numerical modeling of localizations is a challenging task due to the evolving rough solution in
Ne‘fral network which the localization paths are not predefined. Despite decades of efforts, there is a need for
enrichment rernel innovative discretization-independent computational methods to predict the evolution of locali-
reproducing kerne zations. In this work, an improved version of the neural network-enhanced Reproducing Kernel
fracture . . . .

damage Particle Method (NN-RKPM) is proposed for modeling brittle fracture. In the proposed method, a

background reproducing kernel (RK) approximation defined on a coarse and uniform dis-
cretization is enriched by a neural network (NN) approximation under a Partition of Unity
framework. In the NN approximation, the deep neural network automatically locates and inserts
regularized discontinuities in the function space. The NN-based enrichment functions are then
patched together with RK approximation functions using RK as a Partition of Unity patching
function. The optimum NN parameters defining the location, orientation, and displacement dis-
tribution across location together with RK approximation coefficients are obtained via the energy-
based loss function minimization. To regularize the NN-RK approximation, a constraint on the
spatial gradient of the parametric coordinates is imposed in the loss function. Analysis of the
convergence properties shows that the solution convergence of the proposed method is guaran-
teed. The NN enrichment allows the modeling of evolving cracks by a fixed coarse RK dis-
cretization without adaptive refinement for enhanced computational efficiency. The effectiveness
of the proposed method is demonstrated by a series of numerical examples involving damage
propagation and branching.

1. Introduction

Neural networks (NNs) have been shown to have powerful approximation ability [1,2]. The strong adaptivity and hidden infor-
mation extraction capability have made deep neural networks a core element of machine learning in various applications. This feature
also makes NNs appealing for solving challenging problems in computational mechanics. For example, data-driven computations for
path-dependent material modeling [3-8], reduced order modeling [9,10], and parameter identification [11-13]. Additionally, the
flexible adaptivity in NN allows an approximation space to be goal-specifically optimized. Utilizing this flexibility in the approximation
space, NNs can be considered an alternative to traditional mesh-based methods in solving challenging problems involving localiza-
tions, such as fracture, for which special treatment is needed near the localizations.

Traditional approaches for fracture modeling can be divided into two broad categories: discrete crack approaches and diffuse crack
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approaches. The former category includes extended or generalized FEMs [14-16], partition of unity-based enrichment [17,18], and
meshfree method with near-tip enrichment [19,20]. In these methods, strong discontinuities are directly inserted into the approxi-
mation, necessitating the detection and tracking of crack surfaces, significantly increasing the complexity of the computation for
multidimensional problems. Nonlocal averaging [21], high order gradient models [22-24], and phase field methods [25-28] have
been employed in the diffuse crack approaches. In this family of methods, nonlocal effects are typically introduced in the approxi-
mation or in the energy function, yielding diffused, regularized representation of cracks. This property enables traditional mesh-based
or meshfree methods to approximate localizations without enrichment and the need for localization tracking. However, for sufficient
accuracy, intense mesh refinement is required in the regions of localizations. For example, Geelen et al. [28] used an element size as
small as one-tenth the width of the diffuse crack.

With their adaptive nature as an approximation, NNs provide a new paradigm in searching for solutions of mathematical models.
Recently, NNs have been successfully applied as a solver of partial differential equations [11,12,29-33]. In physics-informed neural
network (PINN) by Raissi et al. [11], the solution of a PDE is approximated by densely-connected deep neural networks with the
residual-based loss function minimization. Haghighat and Juanes [34] developed the Python package SciANN for scientific computing
using PINN and demonstrated its ability to capture strain and stress localization in a perfectly plastic material. More recently, PINNs
have been extended to multi-physics problems [35,36]. However, one drawback of utilizing a deep neural network combined with a
residual-based and collocated loss function is its computational cost, e.g., in [34], where 100 million unknown weights and biases were
used. Samaniego et al. [29] demonstrated that potential-based loss functions produced superior results with significantly fewer un-
knowns than the residual-based loss function commonly used in PINN. Zhang et al. [30] proposed a deep neural network that re-
produces standard approximations along with automatic refinement enabled by treating nodal positions as unknown network
parameters, which, however, introduces sparsity into the neural network. Lu et al. [31], based on the universal approximation theorem
[37], designed a new deep neural network architecture, in which the output of one deep neural network is multiplied by the output of
another deep neural network, resulting effective approximations of nonlinear operators in partial differential equations.

Despite the growing interest in PINNs, there has been limited research on developing effective and computationally efficient NN-
based approximation for modeling localizations. Baek et al. [33] proposed a neural network-enhanced reproducing kernel particle
method (NN-RKPM) for modeling localizations. In this work, the approximation is constructed as the superposition of the NN
approximation and the reproducing kernel (RK) approximation. For computational efficiency, NNs are limited to approximating lo-
calizations, while the RK approximation on a coarse and uniform discretization is employed to approximate the smooth solutions. In
this approach, the NN approximation control parameters play the role in automatically capturing the location, orientation, and the
localization profile at the localizations. These NN parameters are determined by the optimization of an energy-based loss function. In
this work, we propose an improved version of NN-RKPM in which the NN approximation and the background RK approximation are
patched together with Partition of Unity for ensured convergence. This approach is derived through an NN-based correction of
standard RK shape functions. In the modified NN-RK approximation, the deep neural network automatically locates and inserts
regularized discontinuities in the function space, and the NN enriched RK coefficient function provides varying magnitude of the
discontinuity along the localization path. Additionally, convergence properties of the proposed method are analyzed.

The paper is organized as follows. In Section 2, the basic equations are provided, including the minimization problem for brittle
fracture and the reproducing kernel particle method. In Section 3, a neural network-enriched Partition of Unity reproducing kernel
approximation is proposed, along with convergence analysis and regularization technique. In Section 4, the implementation details
including the neural network architecture and solution procedure are provided. This is followed by numerical examples in Section 5
and concluding remarks in Section 6.

2. Background

2.1. Minimization problem for fracture

For a domain Q € R? with the space dimension d and its boundary dQ = 0Qg U 0, that consists of the Dirichlet boundary 0Q, and
the Neumann boundary 0Q, let us consider the following minimization problem: for u € H!, u = g on 0%,

minl'[(u):/l//(u)dﬂ—/wbdg—/u-hdlﬂ (€8
Q Q

o,

where u, y(u), b, and h are the displacement, energy density functional, body force, and traction, respectively. The energy density
functional y(u) has the following form:

w(u) = g(n(e()))yy (w) +y, (w) +w(n(e(n))). @)
Herein, € = %(Vu + (Vu)T), 1, and g are the strain tensor, the (strain-dependent) damage variable, and the degradation function,

respectively. Three energy density components y, y;, and ¥ denote non-degraded tensile strain energy, compressive strain energy,
and dissipation functional, respectively. The tensile and compressive strain energies are defined as
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A
Vo = /lE,'E,‘ + Elr(?)z,

(3)

4

S A
wo = u(E) . (&), + 5(”(8»37
Wo =Wo — ¥,

where the summation notation is adopted. In (3), &, 4, and y are principal strain, Lamé’s first and second parameters, respectively. (-),
= max(-,0) and (-)_ = min(-,0) are additionally used. The stress is defined as

o = gln(e)) 20+ 20

. 4
oOe oOe )
In this work, the damage variable, dissipation functional, and degradation function are defined as follows:
2]
— (5)
"
W =pr, (6)
g=(1-n, @

where p is a fracture energy-dependent material property. The adopted dissipation functional and degradation function in Egs. (6) and
(7) are the same as what is used in Miehe et al. [25] except the absence of the higher order term #(V#?) in the dissipation functional in
Eq. (6). Therefore, it is straightforward to show that the damage model in Eqs. (5)-(7) is variationally consistent, i.e., foru ¢ H',u=g
on 0Q,, for all u € H', 5u = 0 on 0Q,

6H:/.5£(u):6(£) dgf/éwbdﬂf /5u.hdr:o, ®

Q Q Q"

which leads to the following balance equation:

V-6+b=0inQ, (C)]

with the boundary conditions

u =g on 0Q,, a0
Vu-n =h on 09, an

where n denotes the surface normal vector.
To achieve the irreversibility of the damage, a history variable

Wzmax(rﬁ%{y/g(e)fwc}ﬁ) (12)

is employed to describe the damage variable:

Va

= 13
== r (13)
For Eq. (12), the critical fracture energy y, is defined as
fi
=< 1
Ve =5F a4
with the tensile strength of material f; and Young’s modulus E. The model parameter p takes the following form

Z.

p= (15)

with critical energy release rate 2, and length scale parameter /. To take mixed mode fracture into account, we adopt the .7 -criterion
[38], with the mode I critical energy release rate Z; and the mode II critical energy release rate < :

+

with
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Fig. 1. Illustration of RK discretization and shape function

vi =) a

W; :/"<Ei>+<gi>+' (18)
Eq. (16) leads to the following critical energy release rate:
) 123
Gem— (19)
7 Wi Ga+ i/ S
Note that Eq. (19) implies &, = 7 for pure mode I fracture when y{ = y; and &, = Z; for pure mode II fracture when y§ = ;.

Remark 1.1. With %, defined in Eq. (19) which is a function of strain, the functional IT defined in Eq. (1) is not a minimization
functional for the Euler-Lagrange Eq. (9). Therefore, in this work, we solve the minimization problem in Eq. (1) and the 7 calculation
in Eq. (19) in a staggered manner.

Remark 1.2. Different from the phase field fracture methods, the damage model described in this section is a local model in the
absence of the higher order term in the dissipation functional. Therefore, there is possibility of the loss of ellipticity and the
discretization-dependence of the numerical solution. This issue will be addressed in Section 3.6.

2.2. Reproducing kernel particle method for background approximation

Here we review the standard reproducing kernel particle method (RKPM) that is used to approximate smooth part of the solution in
the proposed approach (see Section 3).

2.2.1. Reproducing kernel approximation
Let Q be a domain discretized by NP nodes with nodal coordinate {x;},., with anodeset.”” = {1, ---, NP}. The reproducing kernel
(RK) approximation, uR¥(x), of a function u(x) is

Wt (x) = W (x)d), (20)

Ies

with an RK shape function ¥;(x) and a generalized nodal coefficient d;. The RK shape function is a correction of a kernel function,
®,(x — x), defined on the compact support of node I with a support size of a:

‘Pl(x) =C (X)(I’a (X - Xl)> (21)

where the kernel correction function C;(x) is defined as

C(x) = {Z<x —x»%(x)}, 22)

o<

where (x — x;)” is a basis function, a = (a1, s, ..., @4) is a multi-dimensional index, and |a| = Zleai. x? is defined as
x* =l x Xy (23)
The coefficients, by (x), are obtained by solving the following set of reproducing conditions:

Z‘I’,(X)X‘,’ =x% la| <n. 24

Ies

The results RK shape function takes the following explicit form:

¥, (x) = H (0)M " (x)H(x — x;)®,(x — X;), (25)
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Fig. 2. Conforming integration cell used in SCNI: Q;, I';, and x; denote the domain, the boundary, and the centroid of the integration cell L,
respectively.

where the moment matrix M(x) and the basis vector H(x —x;) are defined as

M(x) = Z’H(x—)(,)HT(X—x,)CI),,(x—x,)7 (26)
H(X—XI) = [1, (xl — X]l), (Xz 7X2[), ()C3 7)(531), ey (X3 7)C31)n}7-. (27)

The kernel function ®,(x —x;) determines the order of continuity, while the basis vector H(x —x;) determines the polynomial
completeness. Thus, it is straightforward to introduce high order continuity into the approximation space, independent of the basis
order, which makes the RK approximation more appealing for approximating the smooth part of solution than the C° interpolation-
type approximations used in finite element methods. Fig. 1 shows a smooth RK shape function constructed on the linear basis.

For a quasi-uniform RK points distribution, the following global error estimation of standard RK approximation ufX holds, for
ueH, [39]

| uf —u 0 < Ckay‘”|ﬁ+1=9’ e

where a, C, k, p, and y = min(p +1 —L, r—1) are the support size, a generic constant, the number of overlapping points, the order of RK
basis, and the convergence rate, respectively.

2.2.2. Stabilized conforming nodal integration

When the Gauss integration (GI) is used for RKPM, a significantly high-order rule is required to yield optimal solution convergence,
due to the rational shape function given in Eq. (25). This, in turn, leads to a significant increase in computational cost. To address this
issue, the stabilized conforming nodal integration (SCNI) was proposed in [40]. SCNI enables optimal solution convergence for RKPM
with a linear basis by satisfying the linear integration constraint. Compared to high-order GI, SCNI is computationally much more
efficient as it eliminates the need to evaluate direct derivatives of RK shape functions at a large number of integration points. Addi-
tionally, Wei and Chen [41] show that the strain smoothing employed in SCNI helps to suppress spurious stress oscillation that can
arise in localization problems. For this reason, SCNI is utilized to perform the domain integration required in Eq. (1).

In SCNI, the domain is partitioned into Njc conforming smoothing cells, such as Voronoi cells, as illustrated in Fig. 2 where Nj¢
denotes the number of smoothing cells. Note that, while Ny coincides with the number of particles for standard meshfree methods, the
smoothing cells can be further refined to improve accuracy.

The integration of the loss function by SCNI is performed as follows:

Nic -
/y/(uh, Vu}‘) dQ ~ Z w(u"(x,‘), Vuh(x[‘)) Vi, (29)
o L
where Vu" is the smoothed gradient of u defined as

Nl.
- 1 1o
V' (x,) = 7 /u"(x) @n(x) dl’ ~ A ;uh (x}) ®@nt, (30)

Iy
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Fig. 3. Schematic illustration of the NN-RK approximation: quasi-uniform background RK node distribution (blue dots) for smooth solution
approximation and NN enrichment of the solution space for capturing localizations (black solid curves).

where V;, x, n¥, and N, are the cell volume, the centroid of k-th boundary segment, the surface normal of k-th boundary segment, and

the number of boundary segments of the integration cell L, respectively.
3. Neural network-enhanced reproducing kernel approximation

Fig. 3 schematically illustrates a domain discretization by quasi-uniformly distributed background RK nodes, along with the
evolving localizations in the domain. It is expected that the true solution would be rough near localizations and smooth in the
remaining part of the domain. As discussed in Section 2.2.1, the RK approximation is intended to capture the smooth part of the
solution. With the enrichment function (to be constructed) near the evolving localizations, the total solution is constructed by su-
perposing a background RK approximation uf¥(x) and a neural network (NN) approximation u™¥(x) as follows: for x € Q,

u(x) = u®® (x) + ™ (x), (31)

where u"(x) is an NN-enhanced RK (NN-RK) approximation. With this construction, uniform RK discretization is considered as a
background discretization, and the localized solution will be represented by the NN approximation. The NN-RK approximation utilizes
the RK approximation’s flexibility in selecting the order of continuity and the order of monomial bases.

3.1. A neural network-based correction of RK approximation

In this section, we derive the NN-RK approximation through a neural network-based correction (NN-correction) of an RK
approximation. Let Q be a domain discretized by NP background RK nodes with nodal coordinate {x;},. , in a node set . = {1, -,
NP}. In addition, define a node subset .7 that contains the nodes with the associated RK shape functions to be corrected near
localization. In this work, .7 = {J | 3x € supp(¥,), g (X) > xy,} with k = 0.5 is applied. We start with the following NN-corrected RK
approximation:

u'(x) = ZW, (x)d;, (32)

Ie.s
where the NN-corrected RK shape function ¥;(x) is defined as follows:

T oy _ ) Ci(x)¥;(x), les
Fix) = { W(x), e s\7, (33)

where ¥;(x) and C;(x) denote the original RK shape function defined in Section 2.2.1 and an NN-correction function, respectively. The
NN-correction function takes the following form of a neural network with n neurons possessed by the last hidden layer:

Ci(x) = b + ZW1KCIK(X)> (€2
K=1

where by, Wik, and ¢ (x) denote bias, weight, and last hidden layer’s output. By substituting Eqs. (33) and (34) into (32) and defining d;
= byd; and w§ = Wixd;, we have a general expression of NN-RK approximation as follows:

ut(x) = uf® (x) + u™ (x), (35)
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Fig. 4. Modified neural network architecture of J-th NN block. The unknown parameters introduced in each part are denoted in red color.

Wt =W (x)dy, (36)
e

u™ = Z Z W (X)E i (X)W (37)
1e7 K=1

Remark 3.1. The background RK approximation u®¥(x) in Eq. (36) is a standard RK approximation based on a polynomial RK
basis. Meanwhile, the NN approximation ™ (x) in Eq. (37) contains nonstandard adaptive basis functions, which enables it to capture
localized material responses with a coarse background RK discretization.

Remark 3.2. As the RK shape functions possess the property of partition of unity, the NN-RK approximation
uh(x) = uf® (x) + ™ (x) = Z‘I’,(x) (d, + Z ;,K(X)W,CK>, with wG =0V e 7\ .7 (38)
le.s K=1

can be viewed as patching the RK and NN approximations under the Partition of Unity framework.

Remark 3.3. In Eq. (37), {x(x) is the activated output of K-th neuron in the last hidden layer of a neural network associated with
node I. By having {x(x) = g(x) for all I € 7, {x(x) is detached from a specific background node and becomes a flexible foreground
quantity. Then, the NN approximation in Eq. (37) can be rewritten as follows:

WM =Y Ce (X (%), (39)
K=1
vg(x) = Z‘P[(X)W,‘:}(‘ (40)
e

Remark 3.4. The neural network to generate {j(x) can be either a traditional or a nonstandard neural network. In Section 3.2, we
present a modified deep neural network designed to effectively capture localizations.
3.2. Block-level neural network approximation

In this work, we introduce a modified deep neural network to increase the sparsity of the network architecture, improve the
interpretability, and capture localizations effectively. In this regard, the following block-level NN approximation is introduced.

W™ = Zﬂ uf(x)7 41)
=
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where ng is the number of NN blocks, and the block-level NN approximation u?(x) is defined as follows:

uj (x) = ’ng( Wik (X), (42)
K=1

Vi (x) = Z‘PI(X)WIC”« (43)
s

where $ sk (x) and nyg are K-th NN kernel function in J-th NN block and the number of NN kernel functions per NN block, respectively.
Note that Egs. (41)-(43) are shown to be equivalent to Egs. (39) and (40) by flattening the indices JK in Eqgs. (42) and (43) into K.
Fig. 4 illustrates the modified network architecture of J-th NN block, for which the construction is made so that the neural network
approximation can capture complicated localization topologies effectively. Also, the construction of the neural network at the block
level significantly increases the sparsity of the weight matrices, compared to the densely connected standard deep neural networks
utilized in many previous studies in literature [29,34]. As shown in Fig. 4, three sets of unknown parameters are involved in the NN

approximation: the location-control weight set W, the shape-control weight set WS as well as the NN-correction weight set W§ =

{{w, JK}I€7};::1 in Eq. (43). These parameters are to be automatically determined by solving the minimization problem (Eq. (1)).
Details on the sub-blocks described in Fig. 4 and their associated unknown parameters are explained in the following subsections.

3.3. Parametrization sub-block

As shown in Fig. 4, the parametric coordinate y; in Layer PC is the output of the parametrization sub-block, which is an inter-
mediate variable of a densely connected deep neural network ./ : x—y, that takes x € R? and y, = y(x; W) € R? as its input and
output, respectively. The parametrization projects complicated localization patterns onto a parametric space, so that complicated

localizations can be captured with NN kernel functions in a simple mathematical form. With ny;, hidden layers, the function y(x; W5) is
defined as

Y06 WE) = £(5 { Wl Bl ) B (s { W Bl ) o oo s {85, ) (44)
with

h(& {w. b5, }) = «(£(& { W}, b5 })) (45)

£(& { W5 bl }) = Wik + b (46)

In Eq. (44), wh, and b} denote weight and bias of layer [, respectively, and the location-control parameter set Wﬁ in Fig. 4 is defined

asWh = {wl, bl ;'”i“ In Eq. (45), «(-) denote an activation function. In this work, the hyperbolic tangent activation function is used.

3.4. NN kernel function

As shown in Fig. 4, the NN kernel functions ¢ sk (x) in Layer NNK is the outcome of the normalization of unnormalized NN kernel
functions ¢ (x). The normalization is defined as

bk (x)

¢ TR sy 47)
bax(x) = 2ot t b (x)
and the NN kernel function ¢ (x) is defined as
2
¢j[( HH i yJa { ai ) ﬁf a{'(})7 (48)

a=1 i=1

where ¢; and {‘a’f ,cX, X1 denote a regularized step function and shape-control parameters, respectively. The shape-control weight

2 NNk
set W5 in Fig. 4 is defined as W§ = {{{yX, ¢/, a’f }ae1}ii1 tgq- In this work, the regularized step function is constructed based on the

parametric softplus activation function S defined as follows:
_ 1 1
$iy; (i, ci. i}) =S (zf(y) +5 ﬂ,-) =S (zi(y) —3 ﬁ,) ; (49)

Zi(y) = (71)1'()]7?)/67 i=1,2 (50)
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Fig. 5. The influence of the control parameters on solution transition: (a) the influence of # on &, (b) the influence of  on d¢ /02, and (c) the
influence of ¢ on ¢ with g = 200

Fig. 6. Schematic illustration of an NN kernel function: (left) two-dimensional NN kernel function ¢ and (right) its cross-sectional value across y.
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Fig. 7. Arbitrary u with a sharp transition occurring in the transition zone Q and its approximation u" with a sharp transition occurring in Q,

S(z;8) :élog(l-&-eﬂ"). (51)

In Eqgs. (49)-(51), p; controls the sharpness in the transition of derivative as shown in Fig. 5 (a-b), and c; controls the sharpness of the
solution transition as shown in Fig. 5 (c). In addition, ¥; influences the support of ¢;. Note that ¢; is the output of Layer RSF in Fig. 4, and
(1 /¢;) and (—Yy; /c;) are respectively the weight and the bias of Layer RSF. Fig. 6 shows a schematic illustration of a two-dimensional NN
kernel which possesses a sharp transition in direction y. Interested readers refer to [33] for more details on the NN kernel functions.

3.5. Convergence properties
An error bound of the proposed NN-RK approximation is estimated. Let Q be the transition zone near the localization domain. Then,
we have
h h h
Iu" —ulloa <l u" —ulloge + Il 4" —ulloe- (52)

As shown in Fig. 7, we consider an arbitrary u with a sharp transition occurring in Q = [~/ /2, +¢ /2] and its approximation u"

with a transition occurring in Q,. For both u and u?, it is assumed that there are weak discontinuities on the boundaries of the transition
zones. For brevity, let us introduce the following function w:

w(y; €) = ﬂiﬂ

X+ (&), (53)

where [£] = &Y — & and ((&)) = (67 +£7)/2 are a difference operator and an average operator, respectively, with &t = &é(x= +//2)

and ¢~ = é(x = — / /2). Using Eq. (53), the true solution u in the transition domain Q can be written in a parametric coordinate y* as
u(x) = w(y"(x);u'), 54

where u! is the value of u on the boundary of Q, and, from Eqs. (53) and (54), y*(x) is obtained as

/
() = () = ((u"))). (55)
e 1
Similarly, the approximated solution u(x) in the transition domain Q is written in an approximated parametric coordinate Y as
u'(x) = w(Y(x); uhl')7 (56)
with
~/)2, xe€ Q,
Y(x) = ¢ y(x), x€Q,, (57)
702, xeQ;

where y(x) is the neural network-based parametrization defined in Eq. (44), and u" is the value of u” on the boundary of Q.InEq. (57),

10
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the subdomains are defined as @, = {x|y(— //2)<y(x)< — 7/2}, Qo= {x| — //2<y(x)<//2}, and Q3 =
{x|7/2<y(x) <y(s/2)}. Note that, with f— oo, the NN kernel function defined in Egs. (48)-(50) introduces weak discontinuities on
y(x) =x7/2.

With Egs. (54) and (56), the last term in Eq. (52) becomes

[ —ullpe = [Iw(¥@)u") —wi@):u") loa
= [ wG)su ) —w¥(x);u) +w¥();u") —wi();u") llog 58)
= [w(Y)u" —u") +w¥ (x);u") —w("(x);u") lloq
< w(Ysd" —u) flog + I (Y(x);") = w("(x);u") [log-
The first term on the right-hand side of Eq. (58) is bounded as follows:
Il W(Y(x)ﬂlhr - "‘r) loa = |l ([[“hr - ”r]]/f)y(x) + <<”hr - “r>> lloo
< P P )
SR e boa (59)
< " g+ —u g
([l — |+l )
The second term on the right-hand side of Eq. (58) is bounded as follows:
Y(xo): ub) — TV L [[MFH o .
[w@)su’) =wix)u)loa = I =5~ (Y(x) =y"@))log
I
u
= el v -yl (60)
-
u
< el 30 -y @log
Therefore, for ﬁ, the following error bound is obtained.
h_ R 2| i - VAR |[[u" ] o R (61)
[| " —u Ho,g <7 (|” u |+ ‘” u |) + 7 [ y(x) =y (X)H()‘sr
For multi-dimensions, we have
I
u
It log < 20 g+ L 3 (62)

where T = aﬁ\ag denotes the interface of weak discontinuity. Using the Sobolev trace inequality and Eq. (28), the first term on the
right-hand side of Eq. (62) is bounded as follows: with a generic constant Cand C,

1/2
0,2\Q

1/2

I —ullgq

Il —ullor < Il u"—ulloyae < C || u" —ul
(63)

IA

Chd’ "4|p+1.g\§z’
where 7 = max(p +0.5, 7) where 7 and p denotes the regularity of uin Q \ Q and the order of basis of the background RK discretization,

respectively. With Egs. (28), (62), and (63), the global error Eq. (52) has the following error bound:

= . ur
It o < (€6 + Ca il + U 50 = Ol (649

where y = max(p + 1, 7). For smooth uin Q \ Q, 7 =y — 0.5 holds, which means that 7 dominates the first term on the right-hand side
of Eq. (64), leading to

~ r
o < (€4 Chkllya + D 30— Ol (65)

In the last term of Eq. (65), || y(x) — ¥*(x)||,4 denotes the parametrization error. Eq. (65) implies that, when the parametrization
error is relatively large, the solution convergence will be governed by the convergence of the parametrization. Conversely, for
| y(x) — ¥*(x) ||, —0, the convergence will be governed by the background RK discretization with a rate of 7, e.g., 1.5 when a linear RK
basis is used. The error bound of || y(x) — y*(x)||, - follows the universal approximation theorem [1,37] when a neural network is used
for parametrization. For example, for a neural network with a single hidden layer, the error bound is estimated as follows [1]: with a
generic constant Cy < co,

[l y(x) = y(x) flox < Cyne”, (66)

which leads to the following error estimation of NN-RK approximation
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Fig. 8. Flowchart of the solution procedure

2\ {0
I u'—u ||o,sz <(C+ C)ark|“‘p+1.n\é +G 7 anli/z‘ (67)

3.6. Regularization

To avoid the potential loss of ellipticity of the problem and the resulting discretization sensitivity in the numerical solution of the
local problem defined in Section 2, a regularization treatment is needed. A straightforward remedy is to impose a proper constraint
such that the physical bandwidth of the damage does not become narrower than a certain limit. To analyze a localization width
possessed by the NN-RK approximation, we start with a Taylor expansion of the parametric coordinate as follows:

y(x) 2y + (x—X) - Vy(X), (68)

where ¥ = y(X), and y is defined in Section 3.4, for which the superscripts and subscripts are omitted for brevity. With Eq. (68), 2
defined in Eq. (50) is written as

00 =3) (=) Vy® _Ex%) ©9)

c c c

2y(x); {¥,c}) =
with £(x;X) = (x — X) - V*y(X). When || V}*y(X)|| = 1, &(x;X) in Eq. (69) is a projection of the physical coordinate onto the direction
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normal to the localization. Therefore, by satisfying conditions

V&) <1,

c>t, (70)

the transition width of ¢ in Eq. (49) has a lower bound of #, and thus the localization width in the NN-RK approximation has the same
lower bound. In this work, a constraint || V*y||< 1 is imposed in the loss function (Eq. (1)), and the lower bound of the sharpness
control parameter c in Eq. (50) is set to an NN length scale parameter /. The modified loss function with regularization reads:

mini(u,y) = T1(w) + 1% (9), 1195 () =25 [ 99,000 | 17 71)

where I1 is the potential function defined in Eq. (1), and « is the normalized penalty parameter. In this work, « = 10* is used. Note that
this approach is different from the H -regularization introduced by Baek et al. (2022) [33] in which the parametric coordinates are
directly scaled by H as follows:

—YH N
z= u, where H =1 /max( || V¥y |, 1). (72)
c

An advantage of the regularization designed in this work over the H-regularization is that the necessity to compute the second order
gradient of y for the evaluation of the strain energy in the loss function is avoided.

4. Numerical implementation

The minimization problem is rewritten as follows:

i 11(u(d, W) + T y (s W), 73)

where u(d, W) = u®¥(d) 4 u™V(W) is the NN-RK approximation with the RK coefficient set, d, and the neural network weight set, W
= {WE, WS WC} with Wt = {WE}? WS = (W5}?  and WC = (WS}, In Eq. (73), y and F denote the energy density and the
external work defined in Eq. (1), respectively.

Fig. 8 shows the flowchart of the solution procedure. In the flowchart n and np, denotes the loading step and the maximum loading
step, respectively. At loading step n+ 1, the solution procedure mainly consists of two parts: RK precomputation stage and NN-RKPM
optimization stage.

A RK precomputation stage

— —__C(n+1)
To obtain the initial guesses d<"+l) and WCL to be used in the NN-RKPM optimization stage, the minimization problem (Eq. (73))

is first solved only for d®*) and WE""":
ah s wer = argmin [1'[ <uh <d, {WL(") s ws” s WC}>) + IIRee (y (X; wH” >)]
d, W€
subjected to u(x) = g"* on 0Q,.

74)

In this stage, the weight sets {W*, W5} and the damage 7 from the previous loading step are used. Also, the damage is not updated.
This is equivalent to the standard Galerkin-based RKPM problem and can be solved by a standard matrix solver.

B NN-RKPM optimization stage

In the second stage, the minimization problem (Eq. (73)) is solved for the entire unknown parameters d and W.

a"™ wen — argmin[T1(u"(d, W)) + I1° (y (x; W") )]
dw (75)

subjected to u(x) = g"*" on 0Q,.

In this stage, the damage is updated as well. The minimization problem can be solved iteratively by a suitable optimizer. In this
work, Adam [42], a first-order optimizer with adaptive learning rate, is used for the first several epochs. Then, the optimizer is switched
to limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) [43], a second-order optimizer, for the remaining
optimization.

For domain integration involved in Eq. (73), SCNI introduced in Section 2.2.2 is used with refined smoothing cells near localization.
As discussed in Section 2.2.2, the advantage of using SCNI for the proposed method is twofold: 1) it eliminates the requirement of
computing the computationally expensive direct derivative of u™N with the automatic differentiation to evaluate strain and stress, and
2) it suppresses stress oscillations.
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Fig. 10. Background RK discretizations used for the elasticity with pre-damaged material: (a) 21 x 6 RK nodes with h = H /5, (b) 41 x 11 RK
nodes with h = H/10, and (c) 81 x 21 RK nodes with h = H/20

For computationally efficient implementation of the strain smoothing operation in SCNI, precomputed sparse smoothing matrices
P, with @ = 1---d can be considered to perform the following global smoothing:

uY =P, U, (76)

by which the strain smoothing in all the smoothing cells as discussed in section 2 are conducted simultaneously. In Eq. (76), Uj =

—~ ~ ~ T

[ut,(x1), -, ut (x1), -, ul (xw,)] is @ column vector containing the smoothed gradients of u" with respect to x, for all the smoothing
T

cells in the domain, i.e., L = 1--Njc. U = [uh(xsll"f)7 e U (Y, --wllh(xil;i::)] is a column vector containing u" evaluated at a

smoothing cell surface evaluation point xi’”f fore = 1---Ng,s, where Ny, denotes the total number of smoothing cell surface evaluation
points in the domain. The (L, e) component of the smoothing operator P, is

1
—Anf, ifT.cQ
L

Pore = Vi 5 (77)

0, otherwise

where T, Q;, nX, and A, denote e-th smoothing cell surface segment, L-th smoothing cell domain, a-th component of the surface

normal, and the area of e-th smoothing cell surface segment, respectively. The same procedure can be used to compute Vy; for Eq. (71).
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Fig. 11. Predicted displacement (Case I)
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Fig. 12. Numerical solution along y = 0 (Case I): (a) uy, (b) €11, and (c) €11 (zoom-in)

5. Numerical examples

Several numerical examples are presented to demonstrate the proposed method’s accuracy, regularization ability, and capability to
capture complicated localization patterns. Unless otherwise specified, for the RK approximation, the linear basis with cubic B-spline
kernel function of normalized support size 2.0 is used, and, for the NN approximation, a single 4-kernel NN block is used along with a
densely connected neural network with the hyperbolic tangent activation function for the parametrization sub-block. For the domain
integration, SCNI is used with refined smoothing cells in the zone along the expected damage path.
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(b)

Fig. 13. Body-fitted Q8-FEM discretization used to compute reference solution of Case II: (a) entire domain discretized by 1,070,298 finite elements
with h = w/12 near the localization and (b) a zoom-in plot
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Fig. 14. Displacement field (Case II): reference solution and NNRK solution (41 x 11)
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Fig. 15. L, convergence rates: (a) for varying background RK nodal spacing with a fixed width of hidden layer (nyg = 160) and (b) for varying nyg
with a fixed RK discretization (h = H/40). The values enclosed by the parentheses in the legend denote the average convergence rates.
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Fig. 16. A pre-notched specimen for simple shear problem

5.1. Elasticity with pre-existing damaged zone

Consider a domain (L /2, L /2] x [-H /2, H /2] with a degraded zone with width w. We consider two different cases of pre-
existing damaged zone geometry, as show in Fig. 9 (a) and (b). For both cases, L = 2 mm and H = 0.5 mm are used. For Case I, the
degraded zone is vertically aligned at the center of the domain. For Case II, the anti-symmetric degraded zone is centered at the origin
withxg =(—0.1, —0.5),R; =0.35,x,2 =(— 0.1, 0), and R, = 0.1 in unit of mm. For both cases, Dirichlet boundary conditions are
applied to the left and right surfaces with g = 1 x 102 mm, and zero traction boundary conditions are applied to the top and bottom
surfaces. For Case I, w = H/100, E = 210 GPa, and v = 0 are used, and for Case II, w = H/1000, E = 210 GPa, and v = 0.3 are used. The
Young’s modulus within the degraded zones is kE with k = 1072 for Case I and k = 10~ for Case IL

For Case I, the exact solution is as follows:
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Fig. 17. Background RK discretizations employed for simple shear problem. (a) M1: h = L/4, (b) M2: h =L/8, (c) M3: h =L /16
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Fig. 18. Damage evolution in simple shear problem (M2) for (a)g =9 x 1073, (b)g =10 x 1073, (c)g = 11.5 x 1073, and (d) comparison of the
predicted damage paths and the reference solution
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Fig. 19. Load-displacement curve in simple shear problem
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Fig. 20. A pre-notched specimen for static branching problem: (a) geometry and boundary conditions and (b) background RK discretization

b(xi +L)—g, x < —w/2

u (x) = (b/k)xy, —w/2<x <w/2 79)
bxy —L)+g, x; > w/2
u(x) =0

where b = 2g/((1 /k — 1)w + 2L). For the numerical solution, the domain is uniformly discretized by 21 x 6 RK nodes (see Fig. 10
(a)), and a single 10-neuron hidden layer is used for the parametrization sub-block. Fig. 11 shows the displacement predicted by the
proposed method. The numerical solution captures the sharp transition in the horizontal displacement very well along with the zero
vertical displacement due to zero Poisson’s ratio. As shown in the figures in the 2nd row in Fig. 11, the NN approximation appears near
the localization capturing the sharp transition of u;, and the RK approximation captures the solution in the other area, with smooth
transition between two approximations. Fig. 12 shows the horizontal displacement and normal strain along y = 0 in which the nu-
merical solution is shown to be highly accurate compared to the exact solution. The computed L, norm and H' semi-norm of the
solution error are 2.921 x 10~* and 2.437 x 1079, respectively.

For Case 11, the background RK discretizations employed in this section are plotted in Fig. 10 (a-c), and a 1,070,298-node, body-
fitted Q8-FEM solution with a minimum nodal spacing of H/2000 near the localization (see Fig. 13 for discretization) is used as a
reference solution. Fig. 14 shows the numerical solution for Case II, using 41 x 11 uniformly distributed background RK nodes
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Fig. 21. Predicted damage propagation and branching: gp of (a) 0.02 mm, (b) 0.036 mm, (c) 0.04 mm, and (d) 0.08 mm with a reference solution
[47] superimposed in orange color

(Fig. 10 (b)) and a single 40-neuron hidden layer. Although the background RK discretizations shown in Fig. 8 are relatively coarse
compared to the width of degraded zone, the displacements predicted by the proposed method match the reference solution very well.
The convergence curve for varying background RK nodal spacing (h) and the convergence curve for the varying number of neurons
(nnr) are plotted in Fig. 15 (a) and (b), respectively. For the convergence study shown in Fig. 15 (a), a fixed value of nyg = 160 is used,
and for the study shown in Fig. 15 (b), a fixed value of h = H/40 is used. Both results show convergence behaviors consistent with the
error analysis result presented in Section 3.2.

5.2. Pre-notched specimen subjected to simple shear

A benchmark problem of pre-notched specimen under simple shear is considered. As shown in Fig. 16, a specimen with domain Q
= [-L, L] x [-L, L] with a pre-existing crack of length L is subjected to Dirichlet boundary conditions on the top and bottom surfaces.
Specimen dimension L = 0.5 mm is used in this problem. The horizontal boundary value g applied to the top surface is increased up to
15 x 102 mm with an increment of 1 x 10~* mm. The material properties of E = 210 GPa, v = 0.3, &, = 2.7 N/mm are used. As
shown in Fig. 17, three levels of RK discretizations are used to study the regularization capability of the proposed method. For NN
approximation, the parametrization subblock consists of a neural network with two 40-neuron hidden layers along with the hyperbolic
tangent activation function, which involves 1,842 unknown weights and biases for all three models. For verification, a reference
solution based on the reproducing kernel strain regularization (RKSR) [44] method is employed using 160,801 uniformly distributed
RK nodes with nodal spacing of h = L/200.

Fig. 18 (a-c) shows the damage propagation predicted by the proposed method. The damage is initiated with an orientation of
approximately 65° and gradually changes the direction to the lower right corner during the propagation. The predicted damage paths
plotted in Fig. 18 (d) are not sensitive to the background RK discretization and agree very well with the reference solution. In addition,

20



J. Baek and J.-S. Chen Computer Methods in Applied Mechanics and Engineering 419 (2024) 116590

» SHELHE

H 56055000006000

N i
oo
L

(2) (b) (©)

Fig. 22. A rock specimen with double preexisting cracks: (a) geometry and boundary conditions, (b) details of preexisting notch, and (c) back-
ground RK discretization
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Fig. 23. Progressive damage in rock-like specimen induced by uniaxial compression: g = (a) -0.4 mm, (b) -0.5 mm, (c) -0.6 mm, and (d) -0.65 mm

as shown in Fig. 19, the load-displacement curves also demonstrate the good regularization capability of the proposed method and
present reasonable agreement with the RKSR reference solution [44].

The computations were performed using Python with TensorFlow on a single NVIDIA A100 GPU. The runtimes taken by NN-RKPM
with M1, M2, and M3 are 144, 148, and 155 minutes, respectively. The small discrepancy among the models is expected, since the
optimization of the modified deep neural network is the primary contributor to the computational expense, particularly with such
coarse background discretizations. The RKSR reference simulation consumed 597 minutes, which is within the same order of
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Fig. 24. Comparison of (a) numerical results and (b) experimental observation [48]

magnitude as the reported runtime of 957 minutes for the adaptively refined FEM phase field simulation reported in [45]. While it is
hard to make direct comparisons due to variations in hardware and software platforms used for different simulations, these obser-
vations highlight the computational efficiency of the proposed method that leverages the flexibility of neural network function spaces
to significantly reduce the background RKPM degrees of freedom.

5.3. Quasi-static crack branching problem

In this section, the proposed method’s ability to capture branching is demonstrated through a numerical example inspired by the
problem proposed by Muixi et al [46,47]. Consider a square domain Q = [-L, L] x [-L, L] with a pre-existing notch with a length of L,
as shown in Fig. 20. The specimen is subjected to vertical displacement boundary conditions g(x) = gp(1 —x?)/8 on the top and bottom
surfaces while the right surface is fixed in both directions. Herein, L = 1 mm is considered, and gp is applied up to 0.08 mm with Agp
=4 x 1072 mm. The material properties E = 20 GPa, v = 0.3, and %, = 8.9 x 10~ kN/mm are used.

In Fig. 21, a progressive damage field is plotted in which the fracture initially propagates horizontally and branched near the fixed
boundary as the accumulated strain energy associated with the vertical strain decreases due to the displacement constraint, which
prevents further propagation of the fracture toward the fixed boundary. The branching is predicted to occur abruptly, then the
propagation rate slows down. At the late stage of simulation, two branches switch the direction to the left. The overall trend of the
damage propagation agrees with the reference PF-XFEM solution [47] superimposed in Fig. 21 (d).

5.4. Mixed-mode fracture of a doubly notched rock-like specimen subjected to uniaxial compression

A uniaxial compression of a rock-like specimen with double pre-existing cracks [48] is simulated. As shown in Fig. 22, a rectangular
specimen with H = 152.4 mm consists of two 1-mm thick pre-existing cracks with L = ¢ =w = 12.7 mm and a@ = 45°. The Dirichlet
boundary condition on the top surface is prescribed up to g = —0.65 mm with the increment Ag = —1 x 10~2 mm. Material pa-
rameters are Young’s modulus of E = 5.96 GPa, Poisson’s ratio of v = 0.24, the mode-I fracture energy of <7 =5 N/m, and the
mode-II fracture energy of £ = 20%}. The domain is uniformly discretized by 16 x 31 RK particles. For NN approximation, the
parametrization subblock consists of a neural network with two 40-neuron hidden layers along with the hyperbolic tangent activation
function, which involves 1,842 unknown weights and biases. The NN length scale of 1 mm is employed.

Fig. 23 shows the predicted damage propagation in the rock specimen. At the initial stage, four wing cracks are initiated from the
four corners of the pre-existing notches and propagates with curved paths. Then, secondary shear cracks start to develop approximately
at g = —0.65 mm. As shown in Fig. 24, the predicted fracture pattern agrees reasonably well with the experimental observation [48].

6. Conclusion

An improved neural network-enhanced reproducing kernel particle method has been proposed for modeling brittle fracture.
Derived through an NN-based correction of standard RK shape functions, the proposed method enriches a background reproducing
kernel (RK) approximation with a coarse and uniform discretization by a neural network (NN) approximation equipped with a
Partition of Unity property. The NN approximation is constructed by a deep neural network designed to capture localization, and the
NN based enrichment functions are then patched together with RK approximation functions using RK as a Partition of Unity patching
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function. In the NN approximation, the deep neural network locates and inserts regularized discontinuities in the approximation
function automatically, and the resulting NN enriched RK coefficient function provides varying magnitude of the discontinuities along
the localization path.

To automatically capture the location, orientation, and solution transition across and along the localization, the optimum values of
the control parameters contained in the deep neural network as well as the RK coefficients are obtained via minimization of the energy-
based loss function. A regularization by introducing a constraint on the spatial gradient of the parametric coordinates to the loss
function is employed to ensure a discretization-independent solution. Error analysis of the proposed NN-RK approximation is per-
formed, and its verification with the numerical results show good agreement on the convergence rates. The numerical examples
demonstrate the effectiveness of the proposed method in modeling damage evolution and branching with a fixed background dis-
cretization without conventional adaptive refinement, achieving an enhanced computational efficiency.
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