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A B S T R A C T   

Numerical modeling of localizations is a challenging task due to the evolving rough solution in 
which the localization paths are not predefined. Despite decades of efforts, there is a need for 
innovative discretization-independent computational methods to predict the evolution of locali
zations. In this work, an improved version of the neural network-enhanced Reproducing Kernel 
Particle Method (NN-RKPM) is proposed for modeling brittle fracture. In the proposed method, a 
background reproducing kernel (RK) approximation defined on a coarse and uniform dis
cretization is enriched by a neural network (NN) approximation under a Partition of Unity 
framework. In the NN approximation, the deep neural network automatically locates and inserts 
regularized discontinuities in the function space. The NN-based enrichment functions are then 
patched together with RK approximation functions using RK as a Partition of Unity patching 
function. The optimum NN parameters defining the location, orientation, and displacement dis
tribution across location together with RK approximation coefficients are obtained via the energy- 
based loss function minimization. To regularize the NN-RK approximation, a constraint on the 
spatial gradient of the parametric coordinates is imposed in the loss function. Analysis of the 
convergence properties shows that the solution convergence of the proposed method is guaran
teed. The NN enrichment allows the modeling of evolving cracks by a fixed coarse RK dis
cretization without adaptive refinement for enhanced computational efficiency. The effectiveness 
of the proposed method is demonstrated by a series of numerical examples involving damage 
propagation and branching.   

1. Introduction 

Neural networks (NNs) have been shown to have powerful approximation ability [1,2]. The strong adaptivity and hidden infor
mation extraction capability have made deep neural networks a core element of machine learning in various applications. This feature 
also makes NNs appealing for solving challenging problems in computational mechanics. For example, data-driven computations for 
path-dependent material modeling [3–8], reduced order modeling [9,10], and parameter identification [11–13]. Additionally, the 
flexible adaptivity in NN allows an approximation space to be goal-specifically optimized. Utilizing this flexibility in the approximation 
space, NNs can be considered an alternative to traditional mesh-based methods in solving challenging problems involving localiza
tions, such as fracture, for which special treatment is needed near the localizations. 

Traditional approaches for fracture modeling can be divided into two broad categories: discrete crack approaches and diffuse crack 
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approaches. The former category includes extended or generalized FEMs [14–16], partition of unity-based enrichment [17,18], and 
meshfree method with near-tip enrichment [19,20]. In these methods, strong discontinuities are directly inserted into the approxi
mation, necessitating the detection and tracking of crack surfaces, significantly increasing the complexity of the computation for 
multidimensional problems. Nonlocal averaging [21], high order gradient models [22–24], and phase field methods [25–28] have 
been employed in the diffuse crack approaches. In this family of methods, nonlocal effects are typically introduced in the approxi
mation or in the energy function, yielding diffused, regularized representation of cracks. This property enables traditional mesh-based 
or meshfree methods to approximate localizations without enrichment and the need for localization tracking. However, for sufficient 
accuracy, intense mesh refinement is required in the regions of localizations. For example, Geelen et al. [28] used an element size as 
small as one-tenth the width of the diffuse crack. 

With their adaptive nature as an approximation, NNs provide a new paradigm in searching for solutions of mathematical models. 
Recently, NNs have been successfully applied as a solver of partial differential equations [11,12,29–33]. In physics-informed neural 
network (PINN) by Raissi et al. [11], the solution of a PDE is approximated by densely-connected deep neural networks with the 
residual-based loss function minimization. Haghighat and Juanes [34] developed the Python package SciANN for scientific computing 
using PINN and demonstrated its ability to capture strain and stress localization in a perfectly plastic material. More recently, PINNs 
have been extended to multi-physics problems [35,36]. However, one drawback of utilizing a deep neural network combined with a 
residual-based and collocated loss function is its computational cost, e.g., in [34], where 100 million unknown weights and biases were 
used. Samaniego et al. [29] demonstrated that potential-based loss functions produced superior results with significantly fewer un
knowns than the residual-based loss function commonly used in PINN. Zhang et al. [30] proposed a deep neural network that re
produces standard approximations along with automatic refinement enabled by treating nodal positions as unknown network 
parameters, which, however, introduces sparsity into the neural network. Lu et al. [31], based on the universal approximation theorem 
[37], designed a new deep neural network architecture, in which the output of one deep neural network is multiplied by the output of 
another deep neural network, resulting effective approximations of nonlinear operators in partial differential equations. 

Despite the growing interest in PINNs, there has been limited research on developing effective and computationally efficient NN- 
based approximation for modeling localizations. Baek et al. [33] proposed a neural network-enhanced reproducing kernel particle 
method (NN-RKPM) for modeling localizations. In this work, the approximation is constructed as the superposition of the NN 
approximation and the reproducing kernel (RK) approximation. For computational efficiency, NNs are limited to approximating lo
calizations, while the RK approximation on a coarse and uniform discretization is employed to approximate the smooth solutions. In 
this approach, the NN approximation control parameters play the role in automatically capturing the location, orientation, and the 
localization profile at the localizations. These NN parameters are determined by the optimization of an energy-based loss function. In 
this work, we propose an improved version of NN-RKPM in which the NN approximation and the background RK approximation are 
patched together with Partition of Unity for ensured convergence. This approach is derived through an NN-based correction of 
standard RK shape functions. In the modified NN-RK approximation, the deep neural network automatically locates and inserts 
regularized discontinuities in the function space, and the NN enriched RK coefficient function provides varying magnitude of the 
discontinuity along the localization path. Additionally, convergence properties of the proposed method are analyzed. 

The paper is organized as follows. In Section 2, the basic equations are provided, including the minimization problem for brittle 
fracture and the reproducing kernel particle method. In Section 3, a neural network-enriched Partition of Unity reproducing kernel 
approximation is proposed, along with convergence analysis and regularization technique. In Section 4, the implementation details 
including the neural network architecture and solution procedure are provided. This is followed by numerical examples in Section 5 
and concluding remarks in Section 6. 

2. Background 

2.1. Minimization problem for fracture 

For a domain Ω ∈ Rd with the space dimension d and its boundary ∂Ω = ∂Ωg ∪ ∂Ωh that consists of the Dirichlet boundary ∂Ωg and 
the Neumann boundary ∂Ωh, let us consider the following minimization problem: for u ∈ H1, u = g on ∂Ωg, 

min
u

Π(u) =

∫

Ω

ψ(u) dΩ −

∫

Ω

u ⋅ b dΩ −

∫

∂Ωh

u ⋅ h dΓ, (1)  

where u, ψ(u), b, and h are the displacement, energy density functional, body force, and traction, respectively. The energy density 
functional ψ(u) has the following form: 

ψ(u) = g(η(ε(u)))ψ+
0 (u) + ψ−

0 (u) + ψ(η(ε(u))). (2)  

Herein, ε = 1
2 (∇u + (∇u)

T
), η, and g are the strain tensor, the (strain-dependent) damage variable, and the degradation function, 

respectively. Three energy density components ψ+
0 , ψ−

0 , and ψ denote non-degraded tensile strain energy, compressive strain energy, 
and dissipation functional, respectively. The tensile and compressive strain energies are defined as 
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ψ0 = μεiεi +
λ
2

tr(ε)
2
,

ψ+
0 = μ〈εi〉+〈εi〉+ +

λ
2
〈tr(ε)〉

2
+,

ψ−
0 = ψ0 − ψ+

0 ,

(3)  

where the summation notation is adopted. In (3), ε, λ, and μ are principal strain, Lamé’s first and second parameters, respectively. 〈⋅〉+

= max(⋅, 0) and 〈⋅〉− = min(⋅, 0) are additionally used. The stress is defined as 

σ = g(η(ε))
∂ψ+

0

∂ε +
∂ψ−

0

∂ε . (4) 

In this work, the damage variable, dissipation functional, and degradation function are defined as follows: 

η =
ψ+

0

ψ+
0 + p

(5)  

ψ = pη2, (6)  

g = (1 − η)
2
, (7)  

where p is a fracture energy-dependent material property. The adopted dissipation functional and degradation function in Eqs. (6) and 
(7) are the same as what is used in Miehe et al. [25] except the absence of the higher order term O (∇η2) in the dissipation functional in 
Eq. (6). Therefore, it is straightforward to show that the damage model in Eqs. (5)-(7) is variationally consistent, i.e., for u ∈ H1, u = g 
on ∂Ωg, for all δu ∈ H1, δu = 0 on ∂Ωg, 

δΠ =

∫

Ω

δε(u) : σ(ε) dΩ −

∫

Ω

δu ⋅ b dΩ −

∫

∂Ωh

δu ⋅ h dΓ = 0, (8)  

which leads to the following balance equation: 

∇ ⋅ σ + b = 0 in Ω, (9)  

with the boundary conditions 

u = g on ∂Ωg, (10)  

∇u ⋅ n = h on ∂Ωh, (11)  

where n denotes the surface normal vector. 
To achieve the irreversibility of the damage, a history variable 

H = max
(

max
t∈[0,T ]

{
ψ+

0 (ε) − ψc
}

, 0
)

(12)  

is employed to describe the damage variable: 

η =
H

H + p
. (13) 

For Eq. (12), the critical fracture energy ψc is defined as 

ψc =
ft

2E
(14)  

with the tensile strength of material ft and Young’s modulus E. The model parameter p takes the following form 

p =
G c

l
, (15)  

with critical energy release rate G c and length scale parameter l . To take mixed mode fracture into account, we adopt the F -criterion 
[38], with the mode I critical energy release rate G cI and the mode II critical energy release rate G cII: 

F ≡
ψ+

0

G c
≈

ψ+
I

G cI
+

ψ+
II

G cII
, (16)  

with 
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ψ+
I =

λ
2

〈∑
εi

〉2

+
, (17)  

ψ+
II = μ〈εi〉+〈εi〉+. (18) 

Eq. (16) leads to the following critical energy release rate: 

G c =
ψ+

0

ψ+
I /G cI + ψ+

II /G cII
. (19) 

Note that Eq. (19) implies G c = G cI for pure mode I fracture when ψ+
0 = ψ+

I and G c = G cII for pure mode II fracture when ψ+
0 = ψ+

II . 

Remark 1.1. With G c defined in Eq. (19) which is a function of strain, the functional Π defined in Eq. (1) is not a minimization 
functional for the Euler-Lagrange Eq. (9). Therefore, in this work, we solve the minimization problem in Eq. (1) and the G c calculation 
in Eq. (19) in a staggered manner. 

Remark 1.2. Different from the phase field fracture methods, the damage model described in this section is a local model in the 
absence of the higher order term in the dissipation functional. Therefore, there is possibility of the loss of ellipticity and the 
discretization-dependence of the numerical solution. This issue will be addressed in Section 3.6. 

2.2. Reproducing kernel particle method for background approximation 

Here we review the standard reproducing kernel particle method (RKPM) that is used to approximate smooth part of the solution in 
the proposed approach (see Section 3). 

2.2.1. Reproducing kernel approximation 
Let Ω be a domain discretized by NP nodes with nodal coordinate {xI}I∈S with a node set S = {1, ⋯, NP}. The reproducing kernel 

(RK) approximation, uRK(x), of a function u(x) is 

uRK(x) =
∑

I∈S

ΨI(x)dI , (20)  

with an RK shape function ΨI(x) and a generalized nodal coefficient dI. The RK shape function is a correction of a kernel function, 
Φa(x − xI), defined on the compact support of node I with a support size of a: 

ΨI(x) = CI(x)Φa(x − xI), (21)  

where the kernel correction function CI(x) is defined as 

CI(x) ≡

{
∑

|α|≤n

(x − xI)
αbα(x)

}

, (22)  

where (x − xI)
α is a basis function, α = (α1, α2, …, αd) is a multi-dimensional index, and |α| ≡

∑d
i=1αi. xα is defined as 

xα ≡ xα1
1 ⋅ xα2

2 ⋅ … ⋅ xαd
d . (23) 

The coefficients, bα(x), are obtained by solving the following set of reproducing conditions: 
∑

I∈S

ΨI(x)xα
I = xα, |α| ≤ n. (24) 

The results RK shape function takes the following explicit form: 

ΨI(x) = HT (0)M−1(x)H(x − xI)Φa(x − xI), (25) 

Fig. 1. Illustration of RK discretization and shape function  
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where the moment matrix M(x) and the basis vector H(x −xI) are defined as 

M(x) =
∑

I∈S

H(x − xI)HT (x − xI)Φa(x − xI), (26)  

H(x − xI) = [1, (x1 − x1I), (x2 − x2I), (x3 − x3I), ⋯, (x3 − x3I)
n
]
T
. (27) 

The kernel function Φa(x −xI) determines the order of continuity, while the basis vector H(x −xI) determines the polynomial 
completeness. Thus, it is straightforward to introduce high order continuity into the approximation space, independent of the basis 
order, which makes the RK approximation more appealing for approximating the smooth part of solution than the C0 interpolation- 
type approximations used in finite element methods. Fig. 1 shows a smooth RK shape function constructed on the linear basis. 

For a quasi-uniform RK points distribution, the following global error estimation of standard RK approximation uRK holds, for 
u ∈ Hr, [39] 

‖ uRK − u ‖l,Ω ≤ Ckaγ |u|p+1,Ω, (28)  

where a, C, k, p, and γ = min(p +1 −l, r −l) are the support size, a generic constant, the number of overlapping points, the order of RK 
basis, and the convergence rate, respectively. 

2.2.2. Stabilized conforming nodal integration 
When the Gauss integration (GI) is used for RKPM, a significantly high-order rule is required to yield optimal solution convergence, 

due to the rational shape function given in Eq. (25). This, in turn, leads to a significant increase in computational cost. To address this 
issue, the stabilized conforming nodal integration (SCNI) was proposed in [40]. SCNI enables optimal solution convergence for RKPM 
with a linear basis by satisfying the linear integration constraint. Compared to high-order GI, SCNI is computationally much more 
efficient as it eliminates the need to evaluate direct derivatives of RK shape functions at a large number of integration points. Addi
tionally, Wei and Chen [41] show that the strain smoothing employed in SCNI helps to suppress spurious stress oscillation that can 
arise in localization problems. For this reason, SCNI is utilized to perform the domain integration required in Eq. (1). 

In SCNI, the domain is partitioned into NIC conforming smoothing cells, such as Voronoi cells, as illustrated in Fig. 2 where NIC 
denotes the number of smoothing cells. Note that, while NIC coincides with the number of particles for standard meshfree methods, the 
smoothing cells can be further refined to improve accuracy. 

The integration of the loss function by SCNI is performed as follows: 
∫

Ω

ψ
(
uh, ∇uh)

dΩ ≈
∑NIC

L
ψ

(
uh(xL), ∇̃uh(xL)

)
VL, (29)  

where ∇̃uh is the smoothed gradient of u defined as 

∇̃uh(xL) ≡
1

VL

∫

ΓL

uh(x) ⊗ n(x) dΓ ≈
1

VL

∑N
L
seg

k=1
uh(

xk
L

)
⊗ nk

L, (30) 

Fig. 2. Conforming integration cell used in SCNI: ΩL, ΓL, and xL denote the domain, the boundary, and the centroid of the integration cell L, 
respectively. 
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where VL, xk
L, nk

L, and NL
seg are the cell volume, the centroid of k-th boundary segment, the surface normal of k-th boundary segment, and 

the number of boundary segments of the integration cell L, respectively. 

3. Neural network-enhanced reproducing kernel approximation 

Fig. 3 schematically illustrates a domain discretization by quasi-uniformly distributed background RK nodes, along with the 
evolving localizations in the domain. It is expected that the true solution would be rough near localizations and smooth in the 
remaining part of the domain. As discussed in Section 2.2.1, the RK approximation is intended to capture the smooth part of the 
solution. With the enrichment function (to be constructed) near the evolving localizations, the total solution is constructed by su
perposing a background RK approximation uRK(x) and a neural network (NN) approximation uNN(x) as follows: for x ∈ Ω, 

uh(x) = uRK(x) + uNN(x), (31)  

where uh(x) is an NN-enhanced RK (NN-RK) approximation. With this construction, uniform RK discretization is considered as a 
background discretization, and the localized solution will be represented by the NN approximation. The NN-RK approximation utilizes 
the RK approximation’s flexibility in selecting the order of continuity and the order of monomial bases. 

3.1. A neural network-based correction of RK approximation 

In this section, we derive the NN-RK approximation through a neural network-based correction (NN-correction) of an RK 
approximation. Let Ω be a domain discretized by NP background RK nodes with nodal coordinate {xI}I∈S in a node set S = {1, ⋯,

NP}. In addition, define a node subset S that contains the nodes with the associated RK shape functions to be corrected near 
localization. In this work, S = {J | ∃x ∈ supp(ΨJ), ψ+

0 (x) ≥ κψc} with κ = 0.5 is applied. We start with the following NN-corrected RK 
approximation: 

uh(x) =
∑

I∈S

ΨI(x)dI , (32)  

where the NN-corrected RK shape function ΨI(x) is defined as follows: 

ΨI(x) =

{
CI(x)ΨI(x), I ∈ S

ΨI(x), I ∈ S \ S ,
(33)  

where ΨI(x) and CI(x) denote the original RK shape function defined in Section 2.2.1 and an NN-correction function, respectively. The 
NN-correction function takes the following form of a neural network with n neurons possessed by the last hidden layer: 

CI(x) ≡ bI +
∑n

K=1
wIKζIK(x), (34)  

where bI, wIK, and ζIK(x) denote bias, weight, and last hidden layer’s output. By substituting Eqs. (33) and (34) into (32) and defining dI 

= bIdI and wC
IK = wIKdI, we have a general expression of NN-RK approximation as follows: 

uh(x) = uRK(x) + uNN(x), (35) 

Fig. 3. Schematic illustration of the NN-RK approximation: quasi-uniform background RK node distribution (blue dots) for smooth solution 
approximation and NN enrichment of the solution space for capturing localizations (black solid curves). 
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uRK =
∑

I∈S

ΨI(x)dI , (36)  

uNN =
∑

I∈S

∑n

K=1
ΨI(x)ζIK(x)wC

IK . (37) 

Remark 3.1. The background RK approximation uRK(x) in Eq. (36) is a standard RK approximation based on a polynomial RK 
basis. Meanwhile, the NN approximation uNN(x) in Eq. (37) contains nonstandard adaptive basis functions, which enables it to capture 
localized material responses with a coarse background RK discretization. 

Remark 3.2. As the RK shape functions possess the property of partition of unity, the NN-RK approximation 

uh(x) = uRK(x) + uNN(x) =
∑

I∈S

ΨI(x)

(

dI +
∑n

K=1
ζIK(x)wC

IK

)

, with wC
IK = 0 ∀I ∈ S \ S (38)  

can be viewed as patching the RK and NN approximations under the Partition of Unity framework. 

Remark 3.3. In Eq. (37), ζIK(x) is the activated output of K-th neuron in the last hidden layer of a neural network associated with 
node I. By having ζIK(x) ≡ ζK(x) for all I ∈ S , ζK(x) is detached from a specific background node and becomes a flexible foreground 
quantity. Then, the NN approximation in Eq. (37) can be rewritten as follows: 

uNN =
∑n

K=1
ζK(x)vK(x), (39)  

vK(x) ≡
∑

I∈S

ΨI(x)wC
IK . (40)  

Remark 3.4. The neural network to generate ζIK(x) can be either a traditional or a nonstandard neural network. In Section 3.2, we 
present a modified deep neural network designed to effectively capture localizations. 

3.2. Block-level neural network approximation 

In this work, we introduce a modified deep neural network to increase the sparsity of the network architecture, improve the 
interpretability, and capture localizations effectively. In this regard, the following block-level NN approximation is introduced. 

uNN =
∑nB

J=1
uB

J (x), (41) 

Fig. 4. Modified neural network architecture of J-th NN block. The unknown parameters introduced in each part are denoted in red color.  
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where nB is the number of NN blocks, and the block-level NN approximation uB
J (x) is defined as follows: 

uB
J (x) =

∑nNK

K=1
ϕ̂JK(x)v̂JK(x), (42)  

v̂JK(x) =
∑

I∈S

ΨI(x)ŵC
IJK , (43)  

where ϕ̂JK(x) and nNK are K-th NN kernel function in J-th NN block and the number of NN kernel functions per NN block, respectively. 
Note that Eqs. (41)–(43) are shown to be equivalent to Eqs. (39) and (40) by flattening the indices JK in Eqs. (42) and (43) into K. 

Fig. 4 illustrates the modified network architecture of J-th NN block, for which the construction is made so that the neural network 
approximation can capture complicated localization topologies effectively. Also, the construction of the neural network at the block 
level significantly increases the sparsity of the weight matrices, compared to the densely connected standard deep neural networks 
utilized in many previous studies in literature [29,34]. As shown in Fig. 4, three sets of unknown parameters are involved in the NN 
approximation: the location-control weight set WL

J , the shape-control weight set WS
J as well as the NN-correction weight set WC

J =

{{ŵC
IJK}I∈S

}
nNK

K=1 in Eq. (43). These parameters are to be automatically determined by solving the minimization problem (Eq. (1)). 
Details on the sub-blocks described in Fig. 4 and their associated unknown parameters are explained in the following subsections. 

3.3. Parametrization sub-block 

As shown in Fig. 4, the parametric coordinate yJ in Layer PC is the output of the parametrization sub-block, which is an inter
mediate variable of a densely connected deep neural network N : x→yJ that takes x ∈ Rd and yJ ≡ y(x; WL

J) ∈ Rd as its input and 
output, respectively. The parametrization projects complicated localization patterns onto a parametric space, so that complicated 
localizations can be captured with NN kernel functions in a simple mathematical form. With nHL hidden layers, the function y(x; WL

J) is 
defined as 

y
(
x; WL

J

)
= f

(
⋅;

{
wL

J(nHL+1), bL
J(nHL+1)

})
∘ h

(
⋅;

{
wL

JnHL
, bL

JnHL

})
∘ ⋯ ∘ h

(
x;

{
wL

J1, bL
J1

})
(44)  

with 

h
(
ξ;

{
wL

Jl, bL
Jl

})
= a

(
f
(
ξ;

{
wL

Jl, bL
Jl

}))
, (45)  

f
(
ξ;

{
wL

Jl, bL
Jl

})
= wL

Jlξ + bL
Jl. (46) 

In Eq. (44), wL
Jl and bL

Jl denote weight and bias of layer l, respectively, and the location-control parameter set WL
J in Fig. 4 is defined 

as WL
J = {wL

Jl, bL
Jl}

nHL+1
l=1 . In Eq. (45), a(⋅) denote an activation function. In this work, the hyperbolic tangent activation function is used. 

3.4. NN kernel function 

As shown in Fig. 4, the NN kernel functions ϕ̂JK(x) in Layer NNK is the outcome of the normalization of unnormalized NN kernel 
functions ϕJK(x). The normalization is defined as 

ϕ̂JK(x) =
ϕJK(x)

∑nB
I=1

∑nNK
L=1ϕIL(x)

, (47)  

and the NN kernel function ϕJK(x) is defined as 

ϕJK(x) =
∏d

α=1

∏2

i=1
ϕi

(
yJα;

{
yJK

αi , cJK
αi , βJK

αi

})
, (48)  

where ϕi and {yJK
αi , cJK

αi , βJK
αi } denote a regularized step function and shape-control parameters, respectively. The shape-control weight 

set WS
J in Fig. 4 is defined as WS

J = {{{yJK
αi , cJK

αi , βJK
αi }

d
α=1}

2

i=1}
nNK

K=1. In this work, the regularized step function is constructed based on the 
parametric softplus activation function S defined as follows: 

ϕi(y; {yi, ci, βi}) = S
(

zi(y) +
1
2
; βi

)

− S
(

zi(y) −
1
2
; βi

)

, (49)  

zi(y) = (−1)
i
(y − y)

/
c, i = 1, 2, (50)  
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Fig. 5. The influence of the control parameters on solution transition: (a) the influence of β on ϕ, (b) the influence of β on ∂ϕ /∂z, and (c) the 
influence of c on ϕ with β = 200 

Fig. 6. Schematic illustration of an NN kernel function: (left) two-dimensional NN kernel function ϕ and (right) its cross-sectional value across y.  
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S(z; β) =
1
β

log
(
1 + eβz). (51) 

In Eqs. (49)–(51), βi controls the sharpness in the transition of derivative as shown in Fig. 5 (a-b), and ci controls the sharpness of the 
solution transition as shown in Fig. 5 (c). In addition, yi influences the support of ϕi. Note that ϕi is the output of Layer RSF in Fig. 4, and 
(1 /ci) and (−yi /ci) are respectively the weight and the bias of Layer RSF. Fig. 6 shows a schematic illustration of a two-dimensional NN 
kernel which possesses a sharp transition in direction y. Interested readers refer to [33] for more details on the NN kernel functions. 

3.5. Convergence properties 

An error bound of the proposed NN-RK approximation is estimated. Let Ω̂ be the transition zone near the localization domain. Then, 
we have 

‖ uh − u ‖0,Ω ≤ ‖ uh − u ‖0,Ω\Ω̂ + ‖ uh − u ‖0,Ω̂. (52) 

As shown in Fig. 7, we consider an arbitrary u with a sharp transition occurring in Ω̂ = [−l /2, +l /2] and its approximation uh 

with a transition occurring in Ω̂2. For both u and uh, it is assumed that there are weak discontinuities on the boundaries of the transition 
zones. For brevity, let us introduce the following function w: 

w(χ; ξ) ≡
⟦ξ⟧
l

χ + 〈〈ξ〉〉, (53)  

where ⟦ξ⟧ ≡ ξ+ − ξ− and 〈〈ξ〉〉 ≡ (ξ+ +ξ−)/2 are a difference operator and an average operator, respectively, with ξ+ ≡ ξ(x = +l /2)

and ξ− ≡ ξ(x = − l /2). Using Eq. (53), the true solution u in the transition domain Ω̂ can be written in a parametric coordinate yu as 

u(x) = w(yu(x); uΓ), (54)  

where uΓ is the value of u on the boundary of Ω̂, and, from Eqs. (53) and (54), yu(x) is obtained as 

yu(x) =
l

⟦uΓ⟧
(u(x) − 〈〈uΓ〉〉). (55) 

Similarly, the approximated solution uh(x) in the transition domain Ω̂ is written in an approximated parametric coordinate Y as 

uh(x) = w
(
Y(x); uhΓ )

, (56)  

with 

Y(x) =

⎧
⎨

⎩

−l /2, x ∈ Ω̂1

y(x), x ∈ Ω̂2

l /2, x ∈ Ω̂3

, (57)  

where y(x) is the neural network-based parametrization defined in Eq. (44), and uhΓ is the value of uh on the boundary of Ω̂. In Eq. (57), 

Fig. 7. Arbitrary u with a sharp transition occurring in the transition zone Ω̂ and its approximation uh with a sharp transition occurring in Ω̂2  
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the subdomains are defined as Ω̂1 = {x | y( − l /2) ≤ y(x) ≤ − l /2}, Ω̂2 = {x | − l /2 < y(x) ≤ l /2}, and Ω̂3 =

{x | l /2 < y(x) ≤ y(l /2)}. Note that, with β→∞, the NN kernel function defined in Eqs. (48)–(50) introduces weak discontinuities on 
y(x) = ±l /2. 

With Eqs. (54) and (56), the last term in Eq. (52) becomes 

‖ uh − u ‖0,Ω̂ = ‖ w
(
Y(x); uhΓ )

− w(yu(x); uΓ) ‖0,Ω̂

= ‖ w
(
Y(x); uhΓ )

− w(Y(x); uΓ) + w(Y(x); uΓ) − w(yu(x); uΓ) ‖0,Ω̂

= ‖ w
(
Y(x); uhΓ

− uΓ)
+ w(Y(x); uΓ) − w(yu(x); uΓ) ‖0,Ω̂

≤ ‖ w
(
Y(x); uhΓ

− uΓ)
‖0,Ω̂ + ‖ (Y(x); uΓ) − w(yu(x); uΓ) ‖0,Ω̂.

(58) 

The first term on the right-hand side of Eq. (58) is bounded as follows: 

‖ w
(
Y(x); uhΓ

− uΓ)
‖0,Ω̂ = ‖

([[
uhΓ

− uΓ]]/
ℓ

)
Y(x) +

〈〈
uhΓ

− uΓ〉〉
‖0,Ω̂

≤ ‖
⃒
⃒uhΓ−

− uΓ−
⃒
⃒ +

⃒
⃒uhΓ+

− uΓ+
⃒
⃒ ‖0,Ω̂

≤ ‖ uhΓ−

− uΓ− ‖0,Ω̂ + ‖ uhΓ+

− uΓ+ ‖0,Ω̂

= ℓ1/2(⃒
⃒uhΓ−

− uΓ−
⃒
⃒ +

⃒
⃒uhΓ+

− uΓ+
⃒
⃒
)

(59) 

The second term on the right-hand side of Eq. (58) is bounded as follows: 

‖ w(Y(x); uΓ) − w(y(x); uΓ)‖0,Ω̂ = ‖
[[uΓ]]

ℓ (Y(x) − yu(x))‖0,Ω̂

=
|[[uΓ]]|

ℓ ‖ Y(x) − yu(x)‖0,Ω̂

≤
|[[uΓ]]|

ℓ ‖ y(x) − yu(x)‖0,Ω̂.

(60) 

Therefore, for Ω̂, the following error bound is obtained. 

‖ uh−u ‖0,Ω̂ ≤ ℓ1/2(⃒
⃒uhΓ−

− uΓ−
⃒
⃒ +

⃒
⃒uhΓ+

− uΓ+
⃒
⃒
)

+
|[[uΓ]]|

ℓ ‖ y(x) − yu(x)‖0,Ω̂. (61) 

For multi-dimensions, we have 

‖ uh−u ‖0,Ω̂ ≤ ℓ1/2
‖ uh−u ‖0,Γ̂ +

|[[uΓ]]|

ℓ ‖ y(x) − yu(x)‖0,Ω̂, (62)  

where Γ̂ ≡ ∂Ω̂\∂Ω denotes the interface of weak discontinuity. Using the Sobolev trace inequality and Eq. (28), the first term on the 

right-hand side of Eq. (62) is bounded as follows: with a generic constant Ĉ and ̂̂C , 

‖ uh−u ‖0,Γ̂ ≤ ‖ uh−u ‖0,∂(Ω\Ω̂) ≤ Ĉ ‖ uh − u‖
1/2
0,Ω\Ω̂ ‖ uh − u‖

1/2
1,Ω\Ω̂

≤
̂̂Ckaγ̂ |u|p+1,Ω\Ω̂,

(63)  

where ̂γ = max(p +0.5, r̃) where ̃r and p denotes the regularity of u in Ω \ Ω̂ and the order of basis of the background RK discretization, 
respectively. With Eqs. (28), (62), and (63), the global error Eq. (52) has the following error bound: 

‖ uh−u ‖0,Ω ≤ (Caγ +
̂̂Caγ̂)k|u|p+1,Ω\Ω̂ +

|[[uΓ]]|

ℓ ‖ y(x) − yu(x)‖0,Ω̂, (64)  

where γ = max(p + 1, r̃). For smooth u in Ω \ Ω̂, ̂γ = γ − 0.5 holds, which means that ̂γ dominates the first term on the right-hand side 
of Eq. (64), leading to 

‖ uh−u ‖0,Ω ≤ (C +
̂̂C )aγ̂k|u|p+1,Ω\Ω̂ +

|[[uΓ]]|

ℓ ‖ y(x) − yu(x)‖0,Ω̂, (65) 

In the last term of Eq. (65), ‖ y(x) − yu(x)‖0,Ω̂ denotes the parametrization error. Eq. (65) implies that, when the parametrization 
error is relatively large, the solution convergence will be governed by the convergence of the parametrization. Conversely, for 
‖ y(x) − yu(x)‖0,Γ→0, the convergence will be governed by the background RK discretization with a rate of ̂γ, e.g., 1.5 when a linear RK 
basis is used. The error bound of ‖ y(x) − yu(x)‖0,Γ follows the universal approximation theorem [1,37] when a neural network is used 
for parametrization. For example, for a neural network with a single hidden layer, the error bound is estimated as follows [1]: with a 
generic constant Cy < ∞, 

‖ y(x) − yu(x) ‖0,Γ ≤ Cyn−1/2
NR , (66)  

which leads to the following error estimation of NN-RK approximation 
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‖ uh−u ‖0,Ω ≤ (C +
̂̂C )aγ̂k|u|p+1,Ω\Ω̂ + Cy

|[[uΓ]]|

ℓ n−1/2
NR . (67)  

3.6. Regularization 

To avoid the potential loss of ellipticity of the problem and the resulting discretization sensitivity in the numerical solution of the 
local problem defined in Section 2, a regularization treatment is needed. A straightforward remedy is to impose a proper constraint 
such that the physical bandwidth of the damage does not become narrower than a certain limit. To analyze a localization width 
possessed by the NN-RK approximation, we start with a Taylor expansion of the parametric coordinate as follows: 

y(x) ≈ y + (x − x) ⋅ ∇xy(x), (68)  

where y = y(x), and y is defined in Section 3.4, for which the superscripts and subscripts are omitted for brevity. With Eq. (68), z 
defined in Eq. (50) is written as 

z(y(x); {y, c}) =
(y(x) − y)

c
≈

(x − x) ⋅ ∇xy(x)

c
≡

ξ(x; x)

c
, (69)  

with ξ(x; x) ≡ (x − x) ⋅ ∇xy(x). When ‖ ∇xy(x)‖ = 1, ξ(x; x) in Eq. (69) is a projection of the physical coordinate onto the direction 

Fig. 8. Flowchart of the solution procedure  
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normal to the localization. Therefore, by satisfying conditions 

‖ ∇xy(x) ‖≤ 1,

c ≥ ℓ,
(70)  

the transition width of ϕ in Eq. (49) has a lower bound of l , and thus the localization width in the NN-RK approximation has the same 
lower bound. In this work, a constraint ‖ ∇xy‖≤ 1 is imposed in the loss function (Eq. (1)), and the lower bound of the sharpness 
control parameter c in Eq. (50) is set to an NN length scale parameter l . The modified loss function with regularization reads: 

min
u

Π(u, y) = Π(u) + ΠReg(y), ΠReg(y) =
κμ
2

∑

α,J

∫

Ω

〈 ‖ ∇xyJα(x) ‖ −1〉
2
+ dΩ, (71)  

where Π is the potential function defined in Eq. (1), and κ is the normalized penalty parameter. In this work, κ = 104 is used. Note that 
this approach is different from the Ĥ-regularization introduced by Baek et al. (2022) [33] in which the parametric coordinates are 
directly scaled by Ĥ as follows: 

z =
(y − y)Ĥ

c
, where Ĥ ≡ 1 /max( ‖ ∇xy ‖, 1). (72) 

An advantage of the regularization designed in this work over the Ĥ-regularization is that the necessity to compute the second order 
gradient of y for the evaluation of the strain energy in the loss function is avoided. 

4. Numerical implementation 

The minimization problem is rewritten as follows: 

min
d, W

[
Π

(
uh(d, W)

)
+ ΠReg(

y
(
x; WL))]

, (73)  

where uh(d, W) = uRK(d) + uNN(W) is the NN-RK approximation with the RK coefficient set, d, and the neural network weight set, W 
= {WL, WS, WC} with WL = {WL

J}
nB
J=1, WS = {WS

J}
nB
J=1, and WC = {WC

J }
nB
J=1. In Eq. (73), ψ and F denote the energy density and the 

external work defined in Eq. (1), respectively. 
Fig. 8 shows the flowchart of the solution procedure. In the flowchart n and nMax denotes the loading step and the maximum loading 

step, respectively. At loading step n + 1, the solution procedure mainly consists of two parts: RK precomputation stage and NN-RKPM 
optimization stage.  

A RK precomputation stage 

To obtain the initial guesses d(n+1) and WC(n+1)

to be used in the NN-RKPM optimization stage, the minimization problem (Eq. (73)) 
is first solved only for d(n+1) and WC(n+1) : 

d(n+1)
, WC(n+1)

= argmin
d, WC

[
Π

(
uh

(
d,

{
WL(n)

, WS(n)

, WC
}))

+ ΠReg
(

y
(

x; WL(n)
))]

subjected to u(x) = g(n+1) on ∂Ωg.

(74) 

In this stage, the weight sets {WL, WS} and the damage η from the previous loading step are used. Also, the damage is not updated. 
This is equivalent to the standard Galerkin-based RKPM problem and can be solved by a standard matrix solver.  

B NN-RKPM optimization stage 

In the second stage, the minimization problem (Eq. (73)) is solved for the entire unknown parameters d and W. 

d(n+1)
, W(n+1) = argmin

d, W

[
Π

(
uh(d, W)

)
+ ΠReg(

y
(
x; WL))]

subjected to u(x) = g(n+1) on ∂Ωg.

(75) 

In this stage, the damage is updated as well. The minimization problem can be solved iteratively by a suitable optimizer. In this 
work, Adam [42], a first-order optimizer with adaptive learning rate, is used for the first several epochs. Then, the optimizer is switched 
to limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) [43], a second-order optimizer, for the remaining 
optimization. 

For domain integration involved in Eq. (73), SCNI introduced in Section 2.2.2 is used with refined smoothing cells near localization. 
As discussed in Section 2.2.2, the advantage of using SCNI for the proposed method is twofold: 1) it eliminates the requirement of 
computing the computationally expensive direct derivative of uNN with the automatic differentiation to evaluate strain and stress, and 
2) it suppresses stress oscillations. 
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For computationally efficient implementation of the strain smoothing operation in SCNI, precomputed sparse smoothing matrices 
Pα with α = 1⋯d can be considered to perform the following global smoothing: 

U∇̃
α = PαUsurf , (76)  

by which the strain smoothing in all the smoothing cells as discussed in section 2 are conducted simultaneously. In Eq. (76), U∇̃
α =

[ũh
,α(x1), ⋯, ũh

,α(xL), ⋯, ũh
,α(xNIC )]

T 
is a column vector containing the smoothed gradients of uh with respect to xα for all the smoothing 

cells in the domain, i.e., L = 1⋯NIC. Usurf = [uh(xsurf
1 ), ⋯, uh(xsurf

e ), ⋯, uh(xsurf
Nseg

)]
T 

is a column vector containing uh evaluated at a 

smoothing cell surface evaluation point xsurf
e for e = 1⋯Nsurf , where Nsurf denotes the total number of smoothing cell surface evaluation 

points in the domain. The (L, e) component of the smoothing operator Pα is 

PαLe =

⎧
⎪⎨

⎪⎩

1
VL

AenK
α , if Γe⊂ΩL

0, otherwise
, (77)  

where Γe, ΩL, nK
α , and Ae denote e-th smoothing cell surface segment, L-th smoothing cell domain, α-th component of the surface 

normal, and the area of e-th smoothing cell surface segment, respectively. The same procedure can be used to compute ∇̃yi for Eq. (71). 

Fig. 9. Geometry and boundary conditions for problem of elasticity with pre-existing damaged zone: (a) Case I and (b) Case II  

Fig. 10. Background RK discretizations used for the elasticity with pre-damaged material: (a) 21 × 6 RK nodes with h = H /5, (b) 41 × 11 RK 
nodes with h = H/10, and (c) 81 × 21 RK nodes with h = H/20 
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5. Numerical examples 

Several numerical examples are presented to demonstrate the proposed method’s accuracy, regularization ability, and capability to 
capture complicated localization patterns. Unless otherwise specified, for the RK approximation, the linear basis with cubic B-spline 
kernel function of normalized support size 2.0 is used, and, for the NN approximation, a single 4-kernel NN block is used along with a 
densely connected neural network with the hyperbolic tangent activation function for the parametrization sub-block. For the domain 
integration, SCNI is used with refined smoothing cells in the zone along the expected damage path. 

Fig. 11. Predicted displacement (Case I)  

Fig. 12. Numerical solution along y = 0 (Case I): (a) u1, (b) ε11, and (c) ε11 (zoom-in)  
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Fig. 13. Body-fitted Q8-FEM discretization used to compute reference solution of Case II: (a) entire domain discretized by 1,070,298 finite elements 
with h = w/12 near the localization and (b) a zoom-in plot 

Fig. 14. Displacement field (Case II): reference solution and NNRK solution (41 × 11)  
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5.1. Elasticity with pre-existing damaged zone 

Consider a domain [−L /2, L /2] × [−H /2, H /2] with a degraded zone with width w. We consider two different cases of pre- 
existing damaged zone geometry, as show in Fig. 9 (a) and (b). For both cases, L = 2 mm and H = 0.5 mm are used. For Case I, the 
degraded zone is vertically aligned at the center of the domain. For Case II, the anti-symmetric degraded zone is centered at the origin 
with xc1 = ( − 0.1, − 0.5), R1 = 0.35, xc2 = ( − 0.1, 0), and R2 = 0.1 in unit of mm. For both cases, Dirichlet boundary conditions are 
applied to the left and right surfaces with g = 1 × 10−2 mm, and zero traction boundary conditions are applied to the top and bottom 
surfaces. For Case I, w = H/100, E = 210 GPa, and ν = 0 are used, and for Case II, w = H/1000, E = 210 GPa, and ν = 0.3 are used. The 
Young’s modulus within the degraded zones is kE with k = 10−2 for Case I and k = 10−3 for Case II. 

For Case I, the exact solution is as follows: 

Fig. 15. L2 convergence rates: (a) for varying background RK nodal spacing with a fixed width of hidden layer (nNR = 160) and (b) for varying nNR 

with a fixed RK discretization (h = H/40). The values enclosed by the parentheses in the legend denote the average convergence rates. 

Fig. 16. A pre-notched specimen for simple shear problem  
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Fig. 17. Background RK discretizations employed for simple shear problem. (a) M1: h = L/4, (b) M2: h = L/8, (c) M3: h = L /16  

Fig. 18. Damage evolution in simple shear problem (M2) for (a) g = 9 × 10−3, (b) g = 10 × 10−3, (c) g = 11.5 × 10−3, and (d) comparison of the 
predicted damage paths and the reference solution 
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u1(x) =

⎧
⎪⎪⎨

⎪⎪⎩

b(x1 + L) − g, x1 ≤ −w/2

(b/k)x1, −w/2 < x1 ≤ w/2

b(x1 − L) + g, x1 > w/2

u2(x) = 0

(78)   

where b = 2g/((1 /k − 1)w + 2L). For the numerical solution, the domain is uniformly discretized by 21 × 6 RK nodes (see Fig. 10 
(a)), and a single 10-neuron hidden layer is used for the parametrization sub-block. Fig. 11 shows the displacement predicted by the 
proposed method. The numerical solution captures the sharp transition in the horizontal displacement very well along with the zero 
vertical displacement due to zero Poisson’s ratio. As shown in the figures in the 2nd row in Fig. 11, the NN approximation appears near 
the localization capturing the sharp transition of u1, and the RK approximation captures the solution in the other area, with smooth 
transition between two approximations. Fig. 12 shows the horizontal displacement and normal strain along y = 0 in which the nu
merical solution is shown to be highly accurate compared to the exact solution. The computed L2 norm and H1 semi-norm of the 
solution error are 2.921 × 10−4 and 2.437 × 10−6, respectively. 

For Case II, the background RK discretizations employed in this section are plotted in Fig. 10 (a-c), and a 1,070,298-node, body- 
fitted Q8-FEM solution with a minimum nodal spacing of H/2000 near the localization (see Fig. 13 for discretization) is used as a 
reference solution. Fig. 14 shows the numerical solution for Case II, using 41 × 11 uniformly distributed background RK nodes 

Fig. 19. Load-displacement curve in simple shear problem  

Fig. 20. A pre-notched specimen for static branching problem: (a) geometry and boundary conditions and (b) background RK discretization  
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(Fig. 10 (b)) and a single 40-neuron hidden layer. Although the background RK discretizations shown in Fig. 8 are relatively coarse 
compared to the width of degraded zone, the displacements predicted by the proposed method match the reference solution very well. 
The convergence curve for varying background RK nodal spacing (h) and the convergence curve for the varying number of neurons 
(nNR) are plotted in Fig. 15 (a) and (b), respectively. For the convergence study shown in Fig. 15 (a), a fixed value of nNR = 160 is used, 
and for the study shown in Fig. 15 (b), a fixed value of h = H/40 is used. Both results show convergence behaviors consistent with the 
error analysis result presented in Section 3.2. 

5.2. Pre-notched specimen subjected to simple shear 

A benchmark problem of pre-notched specimen under simple shear is considered. As shown in Fig. 16, a specimen with domain Ω 
= [−L, L] × [−L, L] with a pre-existing crack of length L is subjected to Dirichlet boundary conditions on the top and bottom surfaces. 
Specimen dimension L = 0.5 mm is used in this problem. The horizontal boundary value g applied to the top surface is increased up to 
15 × 10−3 mm with an increment of 1 × 10−4 mm. The material properties of E = 210 GPa, ν = 0.3, G c = 2.7 N/mm are used. As 
shown in Fig. 17, three levels of RK discretizations are used to study the regularization capability of the proposed method. For NN 
approximation, the parametrization subblock consists of a neural network with two 40-neuron hidden layers along with the hyperbolic 
tangent activation function, which involves 1,842 unknown weights and biases for all three models. For verification, a reference 
solution based on the reproducing kernel strain regularization (RKSR) [44] method is employed using 160,801 uniformly distributed 
RK nodes with nodal spacing of h = L/200. 

Fig. 18 (a-c) shows the damage propagation predicted by the proposed method. The damage is initiated with an orientation of 
approximately 65∘ and gradually changes the direction to the lower right corner during the propagation. The predicted damage paths 
plotted in Fig. 18 (d) are not sensitive to the background RK discretization and agree very well with the reference solution. In addition, 

Fig. 21. Predicted damage propagation and branching: gD of (a) 0.02 mm, (b) 0.036 mm, (c) 0.04 mm, and (d) 0.08 mm with a reference solution 
[47] superimposed in orange color 
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as shown in Fig. 19, the load-displacement curves also demonstrate the good regularization capability of the proposed method and 
present reasonable agreement with the RKSR reference solution [44]. 

The computations were performed using Python with TensorFlow on a single NVIDIA A100 GPU. The runtimes taken by NN-RKPM 
with M1, M2, and M3 are 144, 148, and 155 minutes, respectively. The small discrepancy among the models is expected, since the 
optimization of the modified deep neural network is the primary contributor to the computational expense, particularly with such 
coarse background discretizations. The RKSR reference simulation consumed 597 minutes, which is within the same order of 

Fig. 22. A rock specimen with double preexisting cracks: (a) geometry and boundary conditions, (b) details of preexisting notch, and (c) back
ground RK discretization 

Fig. 23. Progressive damage in rock-like specimen induced by uniaxial compression: g = (a) -0.4 mm, (b) -0.5 mm, (c) -0.6 mm, and (d) -0.65 mm  
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magnitude as the reported runtime of 957 minutes for the adaptively refined FEM phase field simulation reported in [45]. While it is 
hard to make direct comparisons due to variations in hardware and software platforms used for different simulations, these obser
vations highlight the computational efficiency of the proposed method that leverages the flexibility of neural network function spaces 
to significantly reduce the background RKPM degrees of freedom. 

5.3. Quasi-static crack branching problem 

In this section, the proposed method’s ability to capture branching is demonstrated through a numerical example inspired by the 
problem proposed by Muixi et al [46,47]. Consider a square domain Ω = [−L, L] × [−L, L] with a pre-existing notch with a length of L, 
as shown in Fig. 20. The specimen is subjected to vertical displacement boundary conditions g(x) = gD(1 −x2)/8 on the top and bottom 
surfaces while the right surface is fixed in both directions. Herein, L = 1 mm is considered, and gD is applied up to 0.08 mm with ΔgD 

= 4 × 10−3 mm. The material properties E = 20 GPa, ν = 0.3, and G c = 8.9 × 10−5 kN/mm are used. 
In Fig. 21, a progressive damage field is plotted in which the fracture initially propagates horizontally and branched near the fixed 

boundary as the accumulated strain energy associated with the vertical strain decreases due to the displacement constraint, which 
prevents further propagation of the fracture toward the fixed boundary. The branching is predicted to occur abruptly, then the 
propagation rate slows down. At the late stage of simulation, two branches switch the direction to the left. The overall trend of the 
damage propagation agrees with the reference PF-XFEM solution [47] superimposed in Fig. 21 (d). 

5.4. Mixed-mode fracture of a doubly notched rock-like specimen subjected to uniaxial compression 

A uniaxial compression of a rock-like specimen with double pre-existing cracks [48] is simulated. As shown in Fig. 22, a rectangular 
specimen with H = 152.4 mm consists of two 1-mm thick pre-existing cracks with L = c = w = 12.7 mm and α = 45∘. The Dirichlet 
boundary condition on the top surface is prescribed up to g = −0.65 mm with the increment Δg = −1 × 10−2 mm. Material pa
rameters are Young’s modulus of E = 5.96 GPa, Poisson’s ratio of ν = 0.24, the mode-I fracture energy of G I = 5 N/m, and the 
mode-II fracture energy of G II = 20G I. The domain is uniformly discretized by 16 × 31 RK particles. For NN approximation, the 
parametrization subblock consists of a neural network with two 40-neuron hidden layers along with the hyperbolic tangent activation 
function, which involves 1,842 unknown weights and biases. The NN length scale of 1 mm is employed. 

Fig. 23 shows the predicted damage propagation in the rock specimen. At the initial stage, four wing cracks are initiated from the 
four corners of the pre-existing notches and propagates with curved paths. Then, secondary shear cracks start to develop approximately 
at g = −0.65 mm. As shown in Fig. 24, the predicted fracture pattern agrees reasonably well with the experimental observation [48]. 

6. Conclusion 

An improved neural network-enhanced reproducing kernel particle method has been proposed for modeling brittle fracture. 
Derived through an NN-based correction of standard RK shape functions, the proposed method enriches a background reproducing 
kernel (RK) approximation with a coarse and uniform discretization by a neural network (NN) approximation equipped with a 
Partition of Unity property. The NN approximation is constructed by a deep neural network designed to capture localization, and the 
NN based enrichment functions are then patched together with RK approximation functions using RK as a Partition of Unity patching 

Fig. 24. Comparison of (a) numerical results and (b) experimental observation [48]  
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function. In the NN approximation, the deep neural network locates and inserts regularized discontinuities in the approximation 
function automatically, and the resulting NN enriched RK coefficient function provides varying magnitude of the discontinuities along 
the localization path. 

To automatically capture the location, orientation, and solution transition across and along the localization, the optimum values of 
the control parameters contained in the deep neural network as well as the RK coefficients are obtained via minimization of the energy- 
based loss function. A regularization by introducing a constraint on the spatial gradient of the parametric coordinates to the loss 
function is employed to ensure a discretization-independent solution. Error analysis of the proposed NN-RK approximation is per
formed, and its verification with the numerical results show good agreement on the convergence rates. The numerical examples 
demonstrate the effectiveness of the proposed method in modeling damage evolution and branching with a fixed background dis
cretization without conventional adaptive refinement, achieving an enhanced computational efficiency. 
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