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A B S T R A C T

Because of the best approximation property, traditional Bubnov–Galerkin numerical methods
have proven immensely successful in modeling self-adjoint problems, such as heat conduction,
elasticity, and so on. However, a numerical instability arises in these (and central finite
difference) methods for problems with strong convection. In this class of problems, the
convective transport term can lead to large spurious oscillations but can be handled by the
class of Petrov–Galerkin methods. In particular, the upwind-type schemes and their variational
and subgrid descendants have been substantially developed over the years for an effective weak-
form Galerkin solution that precludes these instabilities. Nevertheless, the scale of development
of upwind methods for strong-form collocation is substantially smaller, where numerical
oscillations are also observed when they are straightforwardly applied to convection-dominated
problems without special treatment. To this end, this paper presents a new upwind collocation
method. First, the connection between the upwind finite difference scheme and the gradient
smoothing technique in meshfree methods is established. It is then shown that selecting the
collocation points as meshfree nodal points is not optimal; selecting the collocation points
according to the flow direction and Péclet number is then studied. The upwind effect is achieved
without introducing artificial parameters and is trivial to generalize for multi-dimensional cases.
Cross-wind diffusion is also not observed in the solution. An error analysis is presented, and
the effectiveness of the proposed methodology is well demonstrated by the steady and unsteady
numerical examples.

1. Introduction

The best approximation property possessed by the Bubnov–Galerkin method has been the key ingredient for the success of FEM in
modeling the problems such as heat conduction and elasticity [1]. However, the convective transport terms in Eulerian conservation
aws make the Bubnov–Galerkin method non-symmetric, leading to a loss of the ‘‘best approximation’’ property. Consequently,
umerical solutions for problems with significant first-order convective terms may display spurious oscillations. One potential
emedy for such oscillations is to refine the discretization or decrease the element Péclet number. Stabilized Petrov–Galerkin
ethods [2–4] have successfully mitigated the unstable oscillations in traditional Bubnov–Galerkin approaches by introducing

artificial diffusivity. Among the stabilized Petrov–Galerkin approaches, streamline upwind Petrov–Galerkin (SUPG) has made a
significant impact and is widely used for the linear and nonlinear [5] strong convection problems. Additionally, alternative methods
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featuring fine-scale features, such as the variational multi-scale method and residual free bubbles [6] and residual free bubbles [7],
have been developed to address challenges associated with Bubnov–Galerkin methods. A detailed collection of the stabilized
numerical schemes for the convection-dominated problems can be found in [8].

The numerical difficulties from the convection-dominated problems are also grounded in the class of meshfree methods.
eveloped over two decades ago [9], these methods have demonstrated success in modeling large deformations, penetration,
nd fragmentation [10–12], achieving stability through nodal integration [13,14]. Substantial efforts have been devoted to the
evelopment of stabilized meshfree methods for convection-dominated problems. The finite point method [15] was employed to
olve convective transport and compressible flow problems under residual type stabilization. The multi-resolution reproducing kernel
article method (RKPM) [16] was emerged by combining the original RKPM [17] with the well-known SUPG method [3]. Another
pproach is the meshless local Petrov–Galerkin (MLPG) [18], designed to stabilize convection-dominated problems. This is achieved
hrough either employing upwind-type test functions, akin to the concept proposed by Christie et al. [2], or modifying the support of
he test function. The discussion of stabilization parameter between the meshfree and meshfree based methods was discussed in [19].
he upwind meshfree point interpolation collocation approach was proposed by Gu et al. [20], where the upwind stabilization was
chieved by biasing the nodal support domain to the upwind region. Similar ideas have been employed in the development of
eshfree upwind collocation method by using the radial basis function [21,22]. The meshfree radial basis function has also been
mplemented to incorporate Roe’s approximate Riemann solver [23] in [24]. Hillman et al. [25] investigated nodally integrated
KPM with the SUPG stabilization and employed the concept of implicit gradient approximation [26] to embed stabilization into the
radient of test functions without explicit differentiation. This approach is further elaborated by Huang [27], in which a variationally
onsistent SUPG meshfree approach was developed.
Recently, there has been growing interest in strong form-based collocation methods, which involve directly solving PDEs by

iscretizing field variables in recent years. Developing high-order approximation techniques such as meshfree methods has made
his approach possible. Meshfree approximations, known for their high-order smoothing and compatible shape functions, are
articularly well-suited for strong form collocation methods. This makes them an ideal choice, especially when dealing with high-
rder approximations—an aspect traditionally challenging for element-based C0 type finite element approximation [28–31]. The
node-based collocation methods are an attractive option for solving PDEs because they do not require numerical integration, which
improves computational efficiency and simplifies the method. Since the non-self-adjoint nature of convection–diffusion problems,
the common intuition is to employ the Petrov–Galerkin numerical approaches for stabilization. While Petrov–Galerkin methods
effectively stabilize issues with strong convection effects, direct collocation methods, a subset of Petrov–Galerkin, employing a
Dirac delta test function, exhibit instability when directly applied to convection-dominated problems. To ensure stability, an upwind
treatment for the convection terms becomes essential.

This work will systematically develop a consistent stabilized meshfree collocation framework, particularly emphasizing the
convection-dominated problems. The framework is initialized by connecting the finite difference scheme and the gradient smoothing
technique [13] in meshfree methods. The upwind finite difference approximation is identified as equivalent to applying gradient
smoothing over the upwind side of the nodal representative domain. It is then revealed that the upwind treatment of the first-order
gradient term is akin to evaluating the point over the upwind side of the nodal representative domain. The selection of evaluation
points of the upwind collocation method is justified by the 1D FEM recursive gradient. Following this, the upwind collocation
methodology is extended to the reproducing kernel collocation method within a pure meshfree setting. The error analysis shows
that the proposed upwind reproducing kernel collocation method can achieve at least (𝑝 − 1)th order convergence rate, where
𝑝 is the order of basis function in reproducing kernel approximation. The essence of the present work is to treat the first-order
convection term by properly selecting the collocation points according to the flow direction and Péclet number. The upwind effect is
achieved without introducing artificial parameters, and its application to multi-dimensional and transient cases is straightforward.
The current collocation framework exhibits no cross-wind diffusion. Furthermore, we establish that consistently collocating the
governing equations is essential for achieving optimal convergence rate and accuracy. This contrasts with many early-developed
upwind approaches that focus solely on the treatment of the first-order convection term. The effectiveness of the proposed algorithm
is well demonstrated through a series of steady and unsteady numerical examples.

The remainder of this paper is as follows. Section 2 reviews the basic formulation of convection–diffusion problems, Bubnov–
Galerkin and collocation schemes, and the numerical instability arising from those standard methods. The upwind collocation
technique is then introduced in Section 3, where the selection of collocation location is explained by employing the distinct 1D
recursive FEM shape function. The upwind collocation method is then extended to the reproducing kernel particle method framework
in Section 4 with detailed error analysis. In Section 5, several 1D and 2D numerical examples are provided to show the effectiveness
of the proposed method in both steady and transient problems, which is finally followed by concluding remarks in Section 6.

2. Model problem

2.1. Bubnov–Galerkin approach for convection–diffusion equation

Let 𝛺 be a bounded region in R𝑛𝑠𝑑 , 𝑛𝑠𝑑 ≥ 2 with piecewise smooth boundary 𝛤 = 𝛤ℎ ∪𝛤𝑔 , 𝑠 ∶ 𝛺 → R, 𝒂 ∶ 𝛺 → R𝑛𝑠𝑑 , ℎ̄ ∶ 𝛤ℎ → R,
𝑢𝑔 ∶ 𝛤𝑔 → R, find 𝑢 ∶ 𝛺̄ → R, such that:

𝒂 ⋅ ∇𝑢 = 𝑘𝛥𝑢 + 𝑠 𝒙 ∈ 𝛺
𝑘∇𝑢 ⋅ 𝒏 = ℎ̄ 𝒙 ∈ 𝛤ℎ , (1)
2

𝑢 = 𝑢𝑔 𝒙 ∈ 𝛤𝑔
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where 𝛺̄ = 𝛺 ∪ 𝛤 , 𝛤𝑔 is the Dirichlet boundary of the problem domain 𝛺 with the prescribed value 𝑢𝑔 and 𝛤ℎ is the diffusive-type
eumann boundary with flux ℎ̄ and outward normal 𝒏. In this work, we have 𝛤ℎ ∩𝛤𝑔 = ∅. 𝒂 = {𝑣1,… , 𝑣𝑖,… , 𝑣𝑛𝑠𝑑 } is the convection

velocity vector, 𝑘 is constant diffusivity, 𝑠 is the source term, and 𝑢 is the potential. In the current work, we assume 𝑠 ∈ 𝐿2(𝛺),
𝑢𝑔 ∈ 𝐿2(𝛤𝑔), ℎ̄ ∈ 𝐿2(𝛤ℎ), and 𝑘 ≥ 0 [5]. Since only the flux boundary will be considered, we will assume 𝒂 ∈ 𝑳2(𝛺).

The traditional weak form of Eq. (1) is to find 𝑢 ∈ 𝑈, 𝑈 =
{

𝑢|𝑢 ∈ 𝐻1(𝛺), 𝑢 = 𝑢𝑔 on 𝛤𝑔
}

such that for all 𝑤 ∈ 𝑊 , 𝑊 =
{

𝑤|𝑤 ∈ 𝐻1(𝛺), 𝑤 = 0 on 𝛤𝑔
}

the following holds:

𝑎(𝑤, 𝑢)𝛺 = (𝑤, 𝑠)𝛺 + (𝑤, ℎ̄)𝛤ℎ , (2)

where (⋅, ⋅)𝛺 and (⋅, ⋅)𝛤ℎ represent the L2 inner product over the domain and Neumann boundary. In this work, we consider the
diffusion-type Neumann boundary condition. Furthermore, the bilinear form 𝑎(⋅, ⋅) reads as follows:

𝑎(𝑤, 𝑢)𝛺 = (𝑘∇𝑤,∇𝑢)𝛺 + (𝑤,𝒂 ⋅ ∇𝑢)𝛺 . (3)

The Bubnov–Galerkin weak form considers the subspaces 𝑈ℎ ⊂ 𝑈 and 𝑊 ℎ ⊂ 𝑊 and find 𝑢ℎ ∈ 𝑈ℎ such that for all 𝑤ℎ ∈ 𝑊 ℎ the
following holds:

𝑎(𝑤ℎ, 𝑢ℎ)𝛺 = (𝑤ℎ, 𝑠)𝛺 + (𝑤ℎ, ℎ̄)𝛤ℎ . (4)

The matrix version of Eq. (4) is obtained through the approximation of field variable 𝑢ℎ(𝒙) = ∑𝑁𝑃
𝐼=1𝑁𝐼 (𝒙)𝑢𝐼 :

𝑲𝒖 = 𝒇 , (5)

where 𝒖 is the column vectors of {𝑢𝐼}𝑁𝑃𝐼=1, 𝑁𝐼 (𝒙) is the shape function associated with 𝐼th node, 𝑁𝑃 denotes the total number of
nodes in the discretization, 𝑲 and 𝒇 are so-called stiffness matrix and force vectors, respectively:

𝐾𝐼𝐽 = ∫𝛺
𝑁𝐼𝒂 ⋅ ∇𝑁𝐽 + ∇𝑁𝐼 ⋅ 𝑘∇𝑁𝐽 d𝛺, (6)

𝑓𝐼 = ∫𝛺
𝑁𝐼𝑠 d𝛺 + ∫𝛤ℎ

𝑁𝐼 ℎ̄ d𝛤 . (7)

The Dirichlet boundary condition in Eq. (6) can be enforced by employing static condensation [1]. As can be observed from Eq. (6),
since the existence of convection term, the stiffness matrix does not preserve the symmetricity under the Bubnov–Galerkin setting,
i.e. 𝑲 ≠ 𝑲T. Numerical instability is thus arrived due to this feature, which will be introduced in the following section. A detailed
illustration of building the shape functions will be presented in Section 4.

2.2. Point collocation approach for convection–diffusion equation

An alternative numerical approach for solving partial differential equations lies in the Petrov–Galerkin [1] setting. The point
collocation method, which considers the evaluation of the governing equation and boundary conditions at several collocation points
in the domain and boundaries, belongs to the scope of the Petrov–Galerkin approach. Although in this method, the selection of
collocation points is arbitrary, it is evident that choosing those as nodal points to be the collocation points is simplest and can
achieve optimal convergence rate [30]. The related formulation statement is given as:

𝒂(𝒙𝐼 ) ⋅ ∇𝑢(𝒙𝐼 ) = 𝑘𝛥𝑢(𝒙𝐼 ) + 𝑠(𝒙𝐼 ), 𝒙𝐼 ∈ 𝛺
𝑘∇𝑢(𝒙𝐼 ) ⋅ 𝒏 = ℎ̄(𝒙𝐼 ), 𝒙𝐼 ∈ 𝛤ℎ
𝑢(𝒙𝐼 ) = 𝑢𝑔(𝒙𝐼 ), 𝒙𝐼 ∈ 𝛤𝑔

, (8)

where 𝒙𝐼 denotes the location collocation points. The first row of Eq. (8) denotes that an evaluation point in the interior domain is
subjecting the governing equation. The second row corresponds to the collocation points located at the Neumann boundary. Finally,
the last row represents the Dirichlet boundary condition.

Substituting the approximation of field variable directly into Eq. (8) leads to the following discrete collocation system of
equations:

𝑲𝐶𝒖 = 𝒇𝐶 , (9)

where the entries of the matrices and force vector are given by:

𝐾𝐶
𝐼𝐽 =

⎧

⎪

⎨

⎪

⎩

𝒂(𝒙𝐼 ) ⋅ ∇𝑁𝐽 (𝒙𝐼 ) − 𝑘𝛥𝑁𝐽 (𝒙𝐼 ), 𝒙𝐼 ∈ 𝛺
𝒏 ⋅ 𝑘∇𝑁𝐽 (𝒙𝐼 ), 𝒙𝐼 ∈ 𝛤ℎ
𝑁𝐽 (𝒙𝐼 ), 𝒙𝐼 ∈ 𝛤𝑔

, (10)

𝑓𝐶𝐼 =

⎧

⎪

⎨

⎪

⎩

𝑠(𝒙𝐼 ), 𝒙𝐼 ∈ 𝛺
ℎ̄(𝒙𝐼 ), 𝒙𝐼 ∈ 𝛤ℎ
𝑢̄𝑔(𝒙𝐼 ), 𝒙𝐼 ∈ 𝛤𝑔

. (11)

In contrast to the previous Bubnov–Galerkin weak form, the strong form collocation scheme requires higher order continuous
shape function as required by the direct approximation on the diffusion term. The C1 continuous shape function is not easy to build
in the traditional approach but is favorable in some advanced numerical techniques, e.g., meshfree, and IGA [32]. As noticed from
3

(10), the stiffness matrix in such a system is intrinsically non-symmetric as it employs the Dirac function as the test function.
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Fig. 1. Oscillatory behavior in FEM, RKPM, and collocation applied to the convection–diffusion equation with element Péclet number 𝑃𝑒ℎ = 2.5.

2.3. Instability in solving non-self-adjoint problem with Bubnov–Galerkin and collocation methods

In general, the solution to (1) exhibits diffusion dominated when the Péclet number 𝑃𝑒 = ‖𝑎‖𝐿∕𝑘 becomes insignificant. However,
as the convection effect becomes intense, the high Péclet number leads to boundary layers, and numerical instability will be observed
when considering the traditional Bubnov–Galerkin approaches. When a 1D version of Eq. (1) is considered without the contribution
rom the source term, the general solution is given as follows:

𝑢(𝑥) = 𝐶1 + 𝐶2e
𝑣
𝑘 𝑥, (12)

where 𝐶1 and 𝐶2 are arbitrary constants corresponding to the boundary conditions. Meanwhile, apply traditional finite element or
inite difference schemes apply to (1) without the source term, the numerical solution associated with the 𝐼 − tℎ interior node is
given as [33]:

𝑢𝐼 = 𝐶1 + 𝐶2

(

1 + 𝑃𝑒ℎ

1 − 𝑃𝑒ℎ

)𝐼
, (13)

here the element Péclet number is defined as 𝑃𝑒ℎ ∶= 𝑣ℎ∕(2𝑘) and ℎ denotes the element size. Comparing Eq. (13) with (12), the
numerical will exhibit oscillation for the case when 𝑃𝑒ℎ > 1. To demonstrate this, the comparison of the 1D convection–diffusion
problem is provided in Fig. 1 with the boundary condition 𝑢(0) = 0 and 𝑢(1) = 1. No source term is considered in this case. Three
numerical approaches have been employed in this comparison. The finite element method (FEM) and reproducing kernel particle
method (RKPM) are two representative numerical methods under the Bubnov–Galerkin setting. The reproducing kernel collocation
method (RKCM) is also added to this comparison as a representative Petrov–Galerkin method. The element Péclet number is chosen
as 𝑃𝑒ℎ = 2.5, and severe oscillations are noticed from both FEM, RKPM, and RKCM.

Remark 1. Although the collocation method is considered a Petrov–Galerkin approach, numerical oscillation is still observed when
applying it to convection-dominated problems. It is well acknowledged that by properly designing the test function, the Petrov–
Galerkin approach serves as a numerical remedy to the instability. This motivates our present work to systematically develop the
collocation method for the convection-dominated problems.

3. Upwind collocation method for convection-dominated problems

The upwind treatment for the convection term can be considered a remedy for this instability. The idea of the upwind scheme is
to select different approximations particular for the convection term to enable consistent behavior between the numerical solution
and the exact solution.

3.1. Finite difference and an alternative interpretation

3.1.1. Central difference
In the traditional finite element or finite difference methods, the approximation for the first order derivative of the field variable,

denoted by 𝑢ℎ,𝑥, is given as:

𝑢ℎ (𝑥 ) =
𝑢𝐼+1 − 𝑢𝐼−1 , (14)
4

,𝑥 𝐼 2ℎ
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Fig. 2. Interpretation of finite difference stencils: (a) central difference stencils; (b) upwind difference stencils, 𝑣(𝑥𝐼 ) > 0.

hich is so-called the central difference approximation. The related stencils of the central difference scheme are given as
d𝑢
d𝑥

|

|

|

|𝑥𝐼
∼ 1

2ℎ
(−1, 0, 1) = 1

ℎ
(0, 0.5, 0.5) − 1

ℎ
(0.5, 0.5, 0). (15)

The motivation for the last step in (15) is to relate the stencils to the evaluation of shape function at the specific points. For the
entral difference scheme, the approximation of the first-order derivative of the field variable is rephrased as:

𝑢ℎ,𝑥(𝑥𝐼 ) =
1
ℎ
({0, 0.5, 0.5} − {0.5, 0.5, 0}) {𝑢𝐼−1, 𝑢𝐼 , 𝑢𝐼+1}T

= 1
ℎ

[

𝑵FEM
(

𝑥𝐼 + 𝑥𝐼+1
2

)

−𝑵FEM
(

𝑥𝐼−1 + 𝑥𝐼
2

)]

𝒖,
(16)

where 𝑵FEM(𝑥) is a vector containing all the 1D finite shape functions evaluated at a spatial point. More specifically, due to the
existence of the compact support for the shape function, in this case, 𝑵FEM(𝑥) = {𝑁FEM

𝐼−1 (𝑥), 𝑁
FEM
𝐼 (𝑥), 𝑁FEM

𝐼+1 (𝑥)}. As shown in Fig. 2(a),
the central difference is equivalent to taking the difference of the shape function vector evaluated at the center of downwind and
upwind elements of point 𝑥𝐼 . By imposing the first fundamental theorem of calculus, the central difference approximation of the
first-order derivative of the field variable has been transferred to an integral-type approach:

𝑢ℎ,𝑥(𝑥𝐼 ) =
1
ℎ ∫

(𝑥𝐼+𝑥𝐼+1)∕2

(𝑥𝐼−1+𝑥𝐼 )∕2
𝑵FEM
,𝑥 (𝑥) d𝑥 𝒖 ∶= ∫𝛺

𝜓(𝑥; 𝑥 − 𝑥𝐼 )𝑵FEM
,𝑥 (𝑥) d𝑥 𝒖, (17)

here 𝜓(𝑥; 𝑥 − 𝑥𝐼 ) is the Heaviside function:

𝜓(𝑥; 𝑥 − 𝑥𝐼 ) =

{

1∕ℎ 𝑥 ∈
[

𝑥𝐼−1+𝑥𝐼
2 , 𝑥𝐼+𝑥𝐼+12

]

0 else
. (18)

From Eq. (16), we observe that the central difference approximation of the first order derivative of the field variable in Eq. (17) is
dentical to the well-known strain smoothing technique introduced in the scope of meshfree methods by Chen et al. [13].

.1.2. Upwind difference
When a positive velocity 𝑣 is considered in the 1D problem, the solution can be interpreted as a traveling wave propagating

owards the right side. The left side of the domain is called the upwind side, whereas the right side is the downwind side. Then the
pwind approximation of field variable, denoted by 𝑢̃ℎ,𝑥, reads as:

𝑢̃ℎ,𝑥(𝑥𝐼 ) =
𝑢𝐼 − 𝑢𝐼−1

ℎ
, (19)

which can be interpreted as employing the first-order difference scheme to the convection term with the aid of the upwind side
point. The related stencils of the upwind difference scheme are given by:

d𝑢̃
d𝑥

|

|

|

|𝑥𝐼
∼ 1
ℎ
(−1, 1, 0) = 1

ℎ∕2
(0, 1, 0) − 1

ℎ∕2
(0.5, 0.5, 0). (20)

Similarly, from Fig. 2(b), it is evident that the upwind approximation in (20) can be rephrased as:

𝑢̃ℎ,𝑥(𝑥𝐼 ) =
1
ℎ∕2

({0, 1, 0} − {0.5, 0.5, 0}) 𝒖

= 1
ℎ∕2

[

𝑵FEM(𝑥𝐼 ) −𝑵FEM(
𝑥𝐼−1 + 𝑥𝐼

2
)
]

𝒖

= 1 𝑥𝐼
𝑵FEM
,𝑥 (𝑥) d𝑥 𝒖 ∶= 𝜓̄(𝑥; 𝑥 − 𝑥𝐼 )𝑵FEM

,𝑥 (𝑥) d𝑥 𝒖,

(21)
5

ℎ∕2 ∫(𝑥𝐼−1+𝑥𝐼 )∕2 ∫𝛺
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where the convolution function is defined as:

𝜓̄(𝑥; 𝑥 − 𝑥𝐼 ) =

{

𝜓−(𝑥; 𝑥 − 𝑥𝐼 ), 𝑣(𝒙𝐼 ) > 0

𝜓+(𝑥; 𝑥 − 𝑥𝐼 ), 𝑣(𝒙𝐼 ) < 0
, (22)

nd for different directions, the convolution functions are given as:

𝜓−(𝑥; 𝑥 − 𝑥𝐼 ) =

⎧

⎪

⎨

⎪

⎩

1∕(ℎ∕2), 𝑥 ∈
[

𝑥𝐼−1+𝑥𝐼
2 , 𝑥𝐼

]

0, else
, (23)

𝜓+(𝑥; 𝑥 − 𝑥𝐼 ) =

⎧

⎪

⎨

⎪

⎩

0, else

1∕(ℎ∕2), 𝑥 ∈
[

𝑥𝐼 ,
𝑥𝐼+𝑥𝐼+1

2

] . (24)

Consistently with the central difference scheme, the upwind approximation can also be interpreted as taking the gradient smoothing
of the shape function over the domain. Nevertheless, the domain of the convolution integral is on the upwind side of the nodal
representative region, which is no longer centered at the point of interest.

Finally, the upwind finite difference approximation for the first-order term has successfully been interpreted as gradient
smoothing in solid mechanics.

3.2. Upwind collocation method

Although the discovery of the upwind scheme with gradient smoothing in Eq. (21) is under the 1D assumption, one can also
generate the concept to the multi-dimensional case. First, the central difference representation in the multi-dimensional case is:

∇𝑢ℎ(𝒙𝐼 ) = ∫𝛺
𝜓(𝒙;𝒙 − 𝒙𝐼 )∇𝑵(𝒙)d𝛺𝒖, (25)

where

𝜓(𝒙;𝒙 − 𝒙𝐼 ) =

{

1∕𝑉𝐼 , 𝒙 ∈ 𝛺𝐼

0, 𝒙 ∉ 𝛺𝐼
, (26)

where 𝛺𝐼 is the representative domain of node 𝒙𝐼 as shown in Fig. 3(a) obtained from Voronoi diagram with 𝑉𝐼 being the volume
of the representative domain 𝛺𝐼 . In the original work of gradient smoothing [13], the authors considered the convolution operation
on the right-hand side of Eq. (25) serving as an alternative approximation of the gradient of field variation at 𝒙𝐼 providing the shape
function has high order smoothness, i.e.

∇𝑢ℎ(𝒙𝐼 ) = ∇𝑵(𝒙𝐼 )𝒖 ≈
(

1
𝑉𝐼 ∫𝛺𝐼

∇𝑵(𝒙) d𝛺
)

𝒖. (27)

If carrying out one point quadrature of the right-hand side with 𝒙𝐼 being the evaluation point, one immediately has:
(

1
𝑉𝐼 ∫𝛺𝐼

∇𝑵(𝒙) d𝛺
)

𝒖 ≈

(

1
𝑉𝐼

̂
∫𝛺𝐼

∇𝑵(𝒙) d𝛺

)

𝒖 = 1
𝑉𝐼

{𝑉𝐼∇𝑵(𝒙𝐼 )}𝒖 = ∇𝑢ℎ(𝒙𝐼 ), (28)

where ∫̂𝛺𝐼 □ d𝛺 denotes the numerical version of integration. From Eq. (27) to Eq. (28), it is clear that the smoothed gradient
over 𝛺𝐼 can be treated as the approximation of the first order gradient of the field variable. However, the numerical integration to
the smoothed gradient can be performed arbitrarily. Different selections of evaluation points for the quadrature may finally yield
different approximations of the field variable as indicated from Eq. (28).

Similar to the 1D case, the upwind approximation for the gradient of the field variable in the multi-dimensional case is given
as:

∇𝑢̃(𝒙𝐼 ) = ∫𝛺
𝜓̃(𝒙;𝒙 − 𝒙𝐼 )∇𝑵(𝒙)d𝛺𝒖, (29)

where:

𝜓̃(𝒙;𝒙 − 𝒙𝐼 ) =
{

1∕𝑉𝐼 , 𝒙 ∈ 𝛺̃𝐼
0, 𝒙 ∉ 𝛺̃𝐼 .

(30)

In the upwind convolution operation, as illustrated in Fig. 3(b) and (c), 𝛺̃𝐼 = {𝒙 ∈ 𝛺𝐼 |(𝒙− 𝒙𝐼 ) ⋅ 𝒏 ≤ 0}, 𝒏(𝒙𝐼 ) = 𝒂(𝒙𝐼 )∕‖𝒂(𝒙𝐼 )‖ is the
normalized flow speed vector and 𝑉𝐼 denotes the volume of upwind smoothing domain. Creating the upwind smoothing domain
involves finding the plane perpendicular to the flow direction, which contains the particle 𝒙𝐼 . After finding the plane, the smoothing
zone is the upwind side of the representative domain.

Once the upwind treatment of the first-order term is set up, the next important step is to carry out the quadrature for the upwind
smoothed gradient. The approximated version of Eq. (29) is obtained by performing the simplest one-point quadrature in the upwind
domain:

∇𝑢̃(𝒙𝐼 ) =
1 ∇𝑵(𝒙)d𝛺𝒖 ≈ 1 ̂

∇𝑵(𝒙)d𝛺𝒖 = 1 (𝑉𝐼∇𝑵(𝒙𝐶 ))𝒖 = ∇𝑢(𝒙𝐶 ), (31)
6
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Fig. 3. Representative domain of a particle 𝒙𝐼 .

where 𝒙𝐶 serves as the upwind collocation point for stabilizing the strong convection term. Finally, the most important concept
of this research work is introduced from Eq. (31). The upwind stabilization to the convection-dominated problems is equivalent to
evaluating the convection term within the upwind side of the particle. Consequently, the upwind collocation formulation is given
by modifying the traditional collocation method in Eq. (8) as follows:

𝒂(𝒙𝐶 ) ⋅ ∇𝑢(𝒙𝐶 ) = 𝑘𝛥𝑢(𝒙𝐶 ) + 𝑠(𝒙𝐶 ), 𝒙𝐶 ∈ 𝐼 ⊆ 𝛺̃𝐼
𝑘∇𝑢(𝒙𝐼 ) ⋅ 𝒏 = ℎ̄(𝒙𝐼 ), 𝒙𝐼 ∈ 𝛤ℎ
𝑢(𝒙𝐼 ) = 𝑢𝑔(𝒙𝐼 ), 𝒙𝐼 ∈ 𝛤𝑔

, (32)

where 𝐼 = {𝒙 ∈ 𝛺̃𝐼 |(𝒙 − 𝒙𝐼 ) ⋅ 𝒏 + ‖𝒙 − 𝒙𝐼‖ = 0} is the line formed by the reverse extension of flow direction 𝒏.
In the upwind collocation formula (32), the essential idea is to have the convection term treated in a stabilized way when

the problem is convection-dominated. A similar idea had been proposed in literature [34], which evaluated the convection term
differently than diffusion and source terms in the weak form setting to achieve the upwind stabilization in a FEM way. Nevertheless,
numerical inconsistency has been observed [3] in those upwind finite element methods, and especially for the pure convection
roblem with source term, the traditional upwind treatment does not yield good performance compared to the central difference
chemes. In fact, although only the convection response is properly treated, the remaining diffusion and source terms are not
odified correspondingly. In the present formulation (32), the upwind collocation formula considered the governing equation being
valuated at the same location 𝒙𝐶 , which achieves the desired consistency. The importance of consistency will be further addressed
y error analysis in Section 4 and demonstrated through the numerical examples in Section 5.

.3. Selection of upwind collocation points

After formulating the upwind collocation method, the selection of the detailed location of upwind points will be introduced
ince the previous section only defines the collocation point 𝒙𝐶 as the neighborhood of 𝒙𝐼 . In the present work, to achieve the best
ccuracy, the selection of collocation points 𝒙𝐶 is based on the intensity of convection. By substituting the approximation of the
ield variable, the collocation equation with respect to the interior evaluation points in Eq. (32) becomes:

𝑣𝑢ℎ,𝑥
(

𝑥𝐶
)

− 𝑘𝑢ℎ,𝑥𝑥
(

𝑥𝐶
)

= 𝑣
∑

𝐽
𝑁𝐽 ,𝑥

(

𝑥𝐶
)

𝑢𝐽 − 𝑘
∑

𝐽
𝑁𝐽 ,𝑥𝑥

(

𝑥𝐶
)

𝑢𝐽 = 0, (33)

here the source term is not considered. To express 𝑥𝐶 in terms of nodal space, diffusivity, and/or convection speed, the following
7
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• The particles are under uniform discretization with the same nodal distance ℎ.
• 𝑥𝐼 is the closest node to the collocation point 𝑥𝐶 .
• 𝑁𝐼 is at least C1 continuous shape function and 𝑥𝐶 is not evaluated on the location where the second order derivative of 𝑁𝐼
does not exist.

• 𝑥𝐶 is covered by maximum 3 neighboring shape functions 𝑁𝐼−1(𝑥), 𝑁𝐼 (𝑥), and 𝑁𝐼+1(𝑥).
• The shape function used in approximation satisfies at least partition of unity and linear completeness, i.e. ∑𝐽 𝑁𝐽 (𝑥) = 1 and
∑

𝐽 𝑁𝐽 (𝑥)𝑥𝐽 = 𝑥.

ith the aid of the first assumption i.e., uniform distribution 𝑥𝐽 = 𝐽ℎ and 𝑢(𝑥𝐽 ) = 𝑢𝐽 , Eq. (33) becomes to:

𝐶1

(

𝑣
∑

𝐽
𝑁𝐽 ,𝑥

(

𝑥𝐶
)

− 𝑘
∑

𝐽
𝑁𝐽 ,𝑥𝑥

(

𝑥𝐶
)

)

+ 𝐶2

(

𝑣
∑

𝐽
𝑁𝐽 ,𝑥

(

𝑥𝐶
)

e
𝑣ℎ
𝑘 𝐽 − 𝑘

∑

𝐽
𝑁𝐽 ,𝑥𝑥

(

𝑥𝐶
)

e
𝑣ℎ
𝑘 𝐽

)

= 0. (34)

Define 𝜆 = e𝑣ℎ∕𝑘 and by utilizing the partition of unity of shape function, one immediately gets the following from Eq. (34):

𝑣
∑

𝐽
𝑁𝐽 ,𝑥

(

𝑥𝐶
)

𝜆𝐽 − 𝑘
∑

𝐽
𝑁𝐽 ,𝑥𝑥

(

𝑥𝐶
)

𝜆𝐽 = 0. (35)

Introducing the third assumption that 𝑥𝐶 is covered by maximum 3 neighboring points, Eq. (35) can be written in the explicit form:

( 𝑣
𝑘
𝑁𝐼−1,𝑥(𝑥𝐶 ) −𝑁𝐼−1,𝑥𝑥(𝑥𝐶 )

)

𝜆𝐼−1 +
( 𝑣
𝑘
𝑁𝐼,𝑥(𝑥𝐶 ) −𝑁𝐼,𝑥𝑥(𝑥𝐶 )

)

𝜆𝐼 +
( 𝑣
𝑘
𝑁𝐼+1,𝑥(𝑥𝐶 ) −𝑁𝐼+1,𝑥𝑥(𝑥𝐶 )

)

𝜆𝐼+1 = 0. (36)

Then, it is easy to compute the non-zero roots of Eq. (36), which are:

𝜆1 = 1, 𝜆2 =
𝑁𝐼−1,𝑥𝑥(𝑥𝐶 ) −

𝑣
𝑘𝑁𝐼−1,𝑥(𝑥𝐶 )

𝑁𝐼+1,𝑥𝑥(𝑥𝐶 ) −
𝑣
𝑘𝑁𝐼+1,𝑥(𝑥𝐶 )

. (37)

Finally, the numerical solution of 𝑢𝐼 in terms of the shape function is expressed as follows:

𝑢𝐼 = 𝐶1𝜆
𝐼
1 + 𝐶2𝜆

𝐼
2 = 𝐶1 + 𝐶2

(

𝑁𝐼−1,𝑥𝑥(𝑥𝐶 ) −
𝑣
𝑘𝑁𝐼−1,𝑥(𝑥𝐶 )

𝑁𝐼+1,𝑥𝑥(𝑥𝐶 ) −
𝑣
𝑘𝑁𝐼+1,𝑥(𝑥𝐶 )

)𝐼

. (38)

Compare the numerical solution in Eq. (38) with the exact solution in Eq. (12), and the following statement should hold for the
est accuracy and consistency:

e𝑣ℎ∕𝑘 =
𝑁𝐼−1,𝑥𝑥(𝑥𝐶 ) −

𝑣
𝑘𝑁𝐼−1,𝑥(𝑥𝐶 )

𝑁𝐼+1,𝑥𝑥(𝑥𝐶 ) −
𝑣
𝑘𝑁𝐼+1,𝑥(𝑥𝐶 )

. (39)

The relationship between the location of collocation points 𝑥𝐶 , and the flow velocity is connected in Eq. (39) in an implicit way.
Once the explicit form of the shape function is provided, the collocation point can be directly connected to the element Péclet
number.

In order to provide a general strategy for selecting collocation points, the partition of unity and linear completeness of shape
function is invoked:

∑

𝐽
𝑁𝐽 (𝑥) = 1,

∑

𝐽
𝑁𝐽 (𝑥) 𝑥𝐽 = 𝑥. (40)

The variants of Eq. (40) hold under the uniform distribution assumption:

𝑁𝐼+1,𝑥
(

𝑥𝐶
)

= 1
ℎ
+𝑁𝐼−1,𝑥

(

𝑥𝐶
)

, 𝑁𝐼+1,𝑥𝑥
(

𝑥𝐶
)

= 𝑁𝐼−1,𝑥𝑥
(

𝑥𝐶
)

. (41)

By substituting Eq. (41) back to Eq. (39), one has:
ℎ2

2
𝑁𝐼−1,𝑥𝑥

(

𝑥𝐶
)

− 𝑃𝑒ℎℎ𝑁𝐼−1,𝑥
(

𝑥𝐶
)

= 𝑃𝑒ℎ

e2𝑃𝑒ℎ − 1
+ 𝑃𝑒ℎ. (42)

An implicit relationship between the collocation points 𝑥𝐶 and element Péclet number 𝑃𝑒ℎ was built by Eq. (42). Furthermore,
different shape functions may yield different relationships for 𝑥𝐶 and 𝑃𝑒ℎ, i.e. the IGA shape function [32] built with splines and
the RKPM shape function [17], which is a rational function.

3.3.1. Design an explicit relationship between collocation points and element P𝐞́clet number by design a C1 polynomial shape function
To generate an explicit expression, the goal is to define a shape function where the second-order derivatives are piecewise

constant in space and the first-order derivative is linear. Nevertheless, the traditional FEM shape function has only a piecewise
constant in its first-order derivative, which is not feasible for locating 𝑥𝐶 . The concept of recursive gradient [31] provides an
alternative way to build high order smoothed gradient of the shape function by using the lower order derivatives. First, the 1D
FEM linear shape function, denoted by 𝑁FEM

𝐼 (𝑥) reads as:

𝑁FEM
𝐼 (𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

0, 𝑥 ⩽ 𝑥𝐼−1
(

𝑥 − 𝑥𝐼−1
)

∕
(

𝑥𝐼 − 𝑥𝐼−1
)

, 𝑥𝐼−1 < 𝑥 ⩽ 𝑥𝐼
(

𝑥𝐼+1 − 𝑥
)

∕
(

𝑥𝐼+1 − 𝑥𝐼
)

, 𝑥𝐼 < 𝑥 < 𝑥𝐼+1
. (43)
8
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he recursive first-order FEM gradient of the shape function is computed by interpolating some sampling first-order FEM gradient
ata with the FEM shape function itself:

𝑁̃𝐼,𝑥(𝑥) = 𝑁FEM
𝐽1

(𝑥)𝑁FEM
𝐼,𝑥 (𝑥𝐽1 ) +𝑁

FEM
𝐽2

(𝑥)𝑁FEM
𝐼,𝑥 (𝑥𝐽2 ) =

1
ℎ
(𝑁FEM

𝐽1
(𝑥) −𝑁FEM

𝐽2
(𝑥)), (44)

here 𝑥𝐽1 ∈ (𝑥𝐼−1, 𝑥𝐼 ) and 𝑥𝐽2 ∈ (𝑥𝐼 , 𝑥𝐼+1) are some sampling points. Eq. (44) can also be viewed as taking the central difference of
wo finite element shape functions. Next question is how to build 𝑁𝐽1 (𝑥) and 𝑁𝐽2 (𝑥). In this work, the most straightforward case is
elected i.e. 𝑥𝐽1 and 𝑥𝐽2 are at the center of each element:

𝑥𝐽1 = (𝑥𝐼−1 + 𝑥𝐼 )∕2, 𝑥𝐽2 = (𝑥𝐼 + 𝑥𝐼+1)∕2. (45)

Meanwhile, the element shape function is built under the same element size ℎ with the node located at the center of each element.
detailed illustration of this recursive FEM gradient is provided in Fig. 4. Finally, the explicit form of 1D recursive FEM first order

gradient of function states as:

𝑁̃𝐼,𝑥(𝑥) =
1
ℎ2

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, 𝑥 ⩽ 𝑥𝐼−2+𝑥𝐼−1
2

(

𝑥 − 𝑥𝐼−2+𝑥𝐼−1
2

)

, 𝑥𝐼−2+𝑥𝐼−1
2 < 𝑥 ⩽ 𝑥𝐼−1+𝑥𝐼

2

2
(

𝑥𝐼 − 𝑥
)

, 𝑥𝐼−1+𝑥𝐼
2 < 𝑥 ⩽ 𝑥𝐼+𝑥𝐼+1

2
(

𝑥 − 𝑥𝐼+1+𝑥𝐼+2
2

)

, 𝑥𝐼+𝑥𝐼+1
2 < 𝑥 ⩽ 𝑥𝐼+1+𝑥𝐼+2

2

0, 𝑥 > 𝑥𝐼+1+𝑥𝐼+2
2

. (46)

The second-order gradient is given by directly differentiating:

𝑁̃𝐼,𝑥𝑥(𝑥) =
1
ℎ2

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, 𝑥 < 𝑥𝐼−2+𝑥𝐼−1
2

1, 𝑥𝐼−2+𝑥𝐼−1
2 < 𝑥 < 𝑥𝐼−1+𝑥𝐼

2

−2, 𝑥𝐼−1+𝑥𝐼
2 < 𝑥 < 𝑥𝐼+𝑥𝐼+1

2

1, 𝑥𝐼+𝑥𝐼+1
2 < 𝑥 < 𝑥𝐼+1+𝑥𝐼+2

2

0, 𝑥 > 𝑥𝐼+1+𝑥𝐼+2
2

. (47)

We should notice that with the operation, the shape function derivative passing the nodal point is continuous. The jump happened
in the mid of each element, which is acceptable in the point collocation approach. It is easy to show that the recursive first and
second-order FEM gradient satisfy the partition of unity and linear completeness properties [30], which are the key requirement in
determining the collocation point. Now since 𝑥𝐶 ∈ [ 𝑥𝐼−1+𝑥𝐼2 , 𝑥𝐼+𝑥𝐼+12 ] is the point in the representative domain of 𝑥𝐼 , the (𝐼 − 1)th
recursive FEM gradient evaluated at 𝑥𝐶 reads as follows:

𝑁̃ (𝑥 ) =
2𝑥𝐶 − (𝑥𝐼 + 𝑥𝐼+1) , 𝑁̃ (𝑥 ) = 1 . (48)
9
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Table 1
Absolute error 𝑢(𝑥𝐼 ) − 𝑑𝐼 for the 1D collocation with recursive FEM gradients.
Point location 𝑥 = 8 𝑥 = 8.5 𝑥 = 9 𝑥 = 9.5

𝜉 = 0 3.373E−2 7.871E−2 1.836E−1 4.353E−1
𝜉 = 0.5 7.671E−6 1.461E−4 2.724E−3 5.936E−2
𝜉 = 1 9.613E−5 9.705E−4 9.759E−3 9.228E−2
𝜉 = 0.61 1.849E−19 2.213E−19 3.815E−18 2.688E−16

Finally, substitute Eq. (48) back to Eq. (42), one has:

𝜉 = coth
(

𝑃𝑒ℎ
)

− 1
𝑃𝑒ℎ

, (49)

where 𝜉 = (𝑥𝐼 − 𝑥𝐶 )∕(ℎ∕2) is the normalized collocation distance. As 𝑥𝐶 ∈ [ 𝑥𝐼−1+𝑥𝐼2 , 𝑥𝐼+𝑥𝐼+12 ], the corresponding range of 𝜉 will be
[−1, 1]. In the meantime, when 𝜉 ∈ [−1, 1], it automatically defines the domain of 𝑃𝑒ℎ ∈ [−∞,∞] from right hand side of Eq. (49).
The following special cases for 𝜉 are:

𝜉 =

{

0, 𝑃 𝑒ℎ = 0

±1, 𝑃 𝑒ℎ = ±∞
⇒

pure diffusion
pure convection

, (50)

where the corresponding 𝑥𝐶 becomes:

𝑥𝐶 =

{

𝑥𝐼 , 𝑃 𝑒ℎ = 0
1
2 (𝑥𝐼 + 𝑥𝐼∓1), 𝑃 𝑒ℎ = ±∞

⇒
pure diffusion
pure convection

. (51)

From Eq. (49), the location of the upwind collocation point is connected to the element Péclet number. In the final conclusion (51),
s the Péclet number goes to 0, corresponding to the pure diffusion problem, then the collocation point is chosen to be the same as
he nodal position. When the Péclet number goes to infinity, the collocation point is suggested as the boundary of the representative
pwind domain of the particle.

emark 2. The hyperbolic type function on the right-hand side of Eq. (49) is well acknowledged in the literature as a stabilization
easure used to control the level of artificial diffusivity added to stabilize the simulation. However, in the practical application,
lternative strategies may also apply in finding 𝜉 such as ‘‘Doubly Asymptotic Approximation’’ and ‘‘Critical Approximation’’ [2,3].

The 1D strong convection problem 0.1𝑢𝑥 = 𝑢𝑥𝑥 is simulated by the upwind collocation method. The comparison of the results
ith the different collocation point locations is provided in Fig. 5, where the 1D recursive FEM gradients are employed to verify
he collocation distance formulation in Eq. (49). Several cases are presented in this study by varying the position of the collocation
oints. 𝜉 = 0, where the collocation points are identical to the nodes, yields a severe oscillatory result; next, when shifting the
ollocation point to the middle of the upwind nodal representative domain (it is equivalent to shifting 1/4 of the nodal space in
his case), as represented by 𝜉 = 0.5, exhibits a mild diffusive result; furthermore, the collocation points are moved to the boundary
f node representative domain (it is the same as the middle of two neighboring nodes), i.e. 𝜉 = 1, where the points are located at,
xhibits no wiggles while the result is not accurate. Finally, 𝜉 = 0.61 based on Eq. (49) serves the optimal collocation point location,
hich yields a nodally exact solution. The detailed error comparison is further given in Table 1 which confirms that the nodally
xact result is achieved by (49).
It is worth noticing that the nodally exact result by the upwind collocation approach only applies to the 1D problem by using

he special recursive FEM gradient in Eqs. (46) and (47). For the general case, as one may use different shape functions like IGA and
eproducing kernel (RK) approximations, the relationship of collocation point reflected by Eq. (42) may exist in an implicit form.
owever, using Eq. (49) can still provide a reasonable reference for choosing the collocation points for arbitrary shape functions
ith acceptable error, which will be later shown in numerical examples from Section 5.

. Upwind reproducing kernel collocation method

Since the existence of the second-order diffusion term in the governing equation, using traditional FEM-type approximation
equires special treatment for the second-order derivatives. Although the smoothed FEM gradients introduced in Section 3 can be
iewed as an approach to simulate the model problem under a collocation setting, it is non-trivial in generating the concept of
econd-order FEM gradient into the multi-dimensional situation. The higher order compatibility and smoothness of the meshfree
hape function are favorable in developing the upwind collocation scheme in a more general way.

.1. Reproducing kernel (RK) approximation

This work employs the reproducing kernel (RK) [10,17] as a model approximation for the simulation under the upwind
10

ollocation framework. In RK approximation, the problem domain 𝛺 with boundary 𝛤 is discretized by a set of 𝑁𝑃 particles.
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Fig. 5. Comparison of different upwind collocation locations by using 1D recursive FEM gradients.

ccording to the reproducing kernel methodology, the approximation of field variable 𝑢(𝒙), denoted by 𝑢ℎ(𝒙), is expressed as follows:

𝑢(𝒙) ≈ 𝑢ℎ(𝒙) =
∑

𝐼∈𝒙

𝛹𝐼 (𝒙)𝑢𝐼 , (52)

where 𝛹𝐼 (𝒙) is the RK shape function associated with the 𝐼 th meshfree particle under the associated compact support inducing a
set of neighbors 𝒙 = {𝐼|𝛹𝐼 (𝒙) ≠ 0} local to 𝒙. The RK approximation is first assumed to take the following formulation:

𝛹𝐼 (𝒙) = 𝑯𝖳(𝒙 − 𝒙𝐼 )𝒃(𝒙)𝜙𝑎(𝐱 − 𝒙𝐼 ), (53)

where 𝑯(𝒙) = [ 1, 𝑥, 𝑦, 𝑥2, ⋯ , 𝑦𝑝 ]𝖳 is a column vector of complete 𝑝th order monomials, 𝒃(𝒙) is a column vector
containing all the associated unknown variable coefficients of each component in 𝑯 , and 𝜙𝑎(𝒙 − 𝒙𝐼 ) is the kernel function with
measure 𝑎, which defines both the locality and order of smoothness in the approximation. The cubic B-spline function is employed
in this work to enable a C2 continuous field:

𝜙𝑎(𝑟) =
1
6

⎧

⎪

⎨

⎪

⎩

(2 − 2𝑟)3 − 4(1 − 2𝑟)3, 𝑟 ≤ 1
2

(2 − 2𝑟)3, 1
2 < 𝑟 ≤ 1

0, 𝑟 > 1
, (54)

where 𝑟 ≡ ‖

‖

𝒙 − 𝒙𝐼‖‖ ∕𝑎 is the normalized relative distance. To obtain the unknown coefficient vector 𝒃(𝒙), the following so-called
reproducing conditions of the RK shape function 𝛹 (𝒙) is enforced to the shape function:

∑

𝐼∈𝒙

𝛹𝐼 (𝒙)𝑯(𝒙𝐼 ) = 𝑯(𝒙), (55)

which is equivalent to the following form with shifted basis:
∑

𝐼∈𝒙

𝛹𝐼 (𝒙)𝑯(𝒙 − 𝒙𝐼 ) =𝑯(𝟎). (56)

Then, the unknown coefficient vector 𝒃(𝒙) is arrived at by substituting Eq. (53) into Eq. (56), which yields:

𝒃(𝒙) = 𝑴−1(𝒙)𝑯(𝟎), (57)

here 𝑴(𝒙𝐼 ) =
∑

𝐼∈𝒙 𝑯(𝒙 − 𝒙𝐼 )𝑯𝖳(𝒙 − 𝒙𝐼 )𝜙𝑎(𝒙 − 𝒙𝐼 ) is the so-called moment matrix. After determining the unknown vector in
q. (57), substitute it back into the assumed form of the RK shape function (53), one obtains:

𝛹 (𝒙) = 𝑯𝖳(𝟎)𝑴−1(𝒙)𝑯(𝒙 − 𝒙 )𝜙 (𝒙 − 𝒙 ). (58)
11

𝐼 𝐼 𝑎 𝐼
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Note that the order of smoothness of 𝛹𝐼 (𝒙) is inherited related by the kernel function 𝜙𝑎(𝒙 − 𝒙𝐼 ). Since the cubic spline kernel
unction employed is C2, the shape function is also C2, which is favorable for formulations that require higher-order regularity or
moothness such as strong form collocation.
Substitute the reproducing kernel approximation in (52) to the upwind collocation formulation (32), and the following matrix

orm is obtained for the upwind reproducing kernel collocation method

𝑲̃𝐶𝒖 = 𝒇̃𝐶 , (59)

here the entries of the upwind stiffness matrices and force vector are given by

𝐾̃𝐶
𝐼𝐽 =

⎧

⎪

⎨

⎪

⎩

𝒂(𝒙𝐶 ) ⋅ ∇𝛹𝐽 (𝒙𝐶 ) − 𝑘𝛥𝛹𝐽 (𝒙𝐶 ), 𝒙𝐶 ∈ 𝐼 ⊆ 𝛺̃𝐼
𝒏 ⋅ 𝑘∇𝛹𝐽 (𝒙𝐼 ), 𝒙𝐼 ∈ 𝛤ℎ
𝛹𝐽 (𝒙𝐼 ), 𝒙𝐼 ∈ 𝛤𝑔

, (60)

𝑓𝐶𝐼 =

⎧

⎪

⎨

⎪

⎩

𝑠(𝒙𝐶 ), 𝒙𝐶 ∈ 𝐼 ⊆ 𝛺̃𝐼
ℎ̄(𝒙𝐼 ), 𝒙𝐼 ∈ 𝛤ℎ
𝑢̄𝑔(𝒙𝐼 ), 𝒙𝐼 ∈ 𝛤𝑔

. (61)

.2. Error analysis of upwind reproducing kernel collocation method

The error analysis of the upwind reproducing kernel collocation method is fulfilled by the local truncation error of the discrete
ystem.

efinition 1. The local truncation error 𝑒𝐼 associated an interior node 𝒙𝐼 from Eq. (59) is defined as follows:

𝑒𝐼 = 𝒂 ⋅ ∇𝑢ℎ
(

𝒙𝐶
)

− 𝑘𝛥𝑢ℎ
(

𝒙𝐶
)

− 𝑠
(

𝒙𝐶
)

= 𝐾̃𝐶
𝐼𝐽 𝑢𝐽 − 𝑓𝐶𝐼 ≈  (ℎ𝑝) , (62)

where 𝒙𝐶 ∈ 𝐼 ⊆ 𝛺̃𝐼 denotes the collocation points for the 𝐼th row of the system of equations.

emma 1. The 𝛼-th order derivative of a 𝑝th order complete reproducing kernel shape function satisfies:
∑

𝐽∈𝒙

𝐷𝛼𝛹𝐽 (𝒙)𝒙𝑛𝐽 = 𝐷𝛼𝒙𝑛 = 𝑛!
𝛼!

𝒙𝑛−𝛼 ,
∑

𝐽∈𝒙

𝐷𝛼𝛹𝐽 (𝒙)
(

𝒙𝐽 − 𝒙
)𝑛 =

{

𝟎 𝑛 ≤ 𝑝, 𝛼 ≠ 𝑛
𝛼! 𝑛 ≤ 𝑝, 𝛼 = 𝑛

, (63)

where Eq. (63) comes from the direct differentiation of the reproducing conditions of shape function in Eqs. (55) and (56) and 𝛼 is the
multi-index notation.

Theorem 1. For a regular solution 𝑢 ∈ 𝐶𝑚(𝛺), the local truncation error associated with an interior node for the convection–diffusion
problems with the upwind reproducing kernel collocation method with a 𝑝th order complete shape function is:

𝑒𝐼 ≈  (ℎ𝑞) , 𝑞 = min{𝑝 − 1, 𝑚}. (64)

Proof. The local truncation error can be expressed as:

𝑒𝐼 = 𝒂 ⋅ ∇𝑢ℎ
(

𝒙𝐶
)

− 𝑘𝛥𝑢ℎ
(

𝒙𝐶
)

− 𝑠
(

𝒙𝐶
)

=
[

𝒂 ⋅ ∇𝑢ℎ
(

𝒙𝐶
)

− 𝑘𝛥𝑢ℎ
(

𝒙𝐶
)

− 𝑠
(

𝒙𝐶
)]

−
[

𝒂 ⋅ ∇𝑢
(

𝒙𝐶
)

− 𝑘𝛥𝑢
(

𝒙𝐶
)

− 𝑠
(

𝒙𝐶
)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0

= 𝒂 ⋅
[

∇𝑢ℎ
(

𝒙𝐶
)

− ∇𝑢
(

𝒙𝐶
)]

− 𝑘
[

𝛥𝑢ℎ
(

𝒙𝐶
)

− 𝛥𝑢
(

𝒙𝐶
)]

= 𝒂 ⋅

[

∑

𝐽∈𝒙

∇𝛹𝐽
(

𝒙𝐶
)

𝑢𝐽 − ∇𝑢
(

𝒙𝐶
)

]

− 𝑘

[

∑

𝐽∈𝒙

𝛥𝛹𝐽
(

𝒙𝐶
)

𝑢𝐽 − 𝛥𝑢
(

𝒙𝐶
)

]

.

(65)

Taylor’s series expansion of 𝑢𝐽 referring to 𝑢𝐶 gives:

𝑢𝐽 =
∑

0≤|𝛼|≤𝑚

1
𝛼!
𝐷𝛼𝑢𝐶

(

𝒙𝐽 − 𝒙𝐶
)𝛼 . (66)

he truncation error is then linked with the reproducing condition (56) by bringing Eq. (66) into Eq. (65):

𝑒𝐼 =𝒂 ⋅

[

∑

0≤|𝛼|≤𝑚

1
𝛼!
𝐷𝛼𝑢𝐶

∑

𝐽∈𝒙

∇𝛹𝐽
(

𝒙𝐶
) (

𝒙𝐽 − 𝒙𝐶
)𝛼 − ∇𝑢

(

𝒙𝐶
)

]

− 𝑘

[

∑ 1
𝛼!
𝐷𝛼𝑢𝐶

∑

𝛥𝛹𝐽
(

𝒙𝐶
) (

𝒙𝐽 − 𝒙𝐶
)𝛼 − 𝛥𝑢

(

𝒙𝐶
)

]

,

(67)
12
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with the aid of Lemma 1, Eq. (67) reduces to the follows:

𝑒𝐼 = 𝒂 ⋅

[

∑

𝑝+1≤|𝛼|≤𝑚

1
𝛼!
𝐷𝛼𝑢𝐶

∑

𝐽∈𝒙

∇𝛹𝐽
(

𝒙𝐶
) (

𝒙𝐽 − 𝒙𝐶
)𝛼
]

− 𝑘

[

∑

𝑝+1≤|𝛼|≤𝑚

1
𝛼!
𝐷𝛼𝑢𝐶

∑

𝐽∈𝒙

𝛥𝛹𝐽
(

𝒙𝐶
) (

𝒙𝐽 − 𝒙𝐶
)𝛼
]

=
∑

𝑝+1≤|𝛼|≤𝑚

1
𝛼!
𝐷𝛼𝑢𝐶

⎡

⎢

⎢

⎢

⎢

⎣

𝒂 ⋅
∑

𝐽∈𝒙

∇𝛹𝐽
(

𝒙𝐶
)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
∼ℎ−1

(

𝒙𝐽 − 𝒙𝐶
)𝛼

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
∼ℎ𝛼

−𝑘
∑

𝐽∈𝒙

𝛥𝛹𝐽
(

𝒙𝐶
)

⏟⏞⏞⏟⏞⏞⏟
∼ℎ−2

(

𝒙𝐽 − 𝒙𝐶
)𝛼

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
∼ℎ𝛼

⎤

⎥

⎥

⎥

⎥

⎦

≈  (ℎ𝑞) , 𝑞 = min{𝑝 − 1, 𝑚}.

□ (68)

For the problem with smooth solution, Eq. (68) states that the local truncation error for the 𝐼th collocation equation is 𝑂(ℎ𝑝−1),
where 𝑝 is the order of reproducing condition of shape function. At least (𝑝 − 1)th order convergence rate is guaranteed in the
upwind reproducing kernel collocation method regardless of the choice of 𝒙𝐶 . Furthermore, for the convection–diffusion problems,
he special convergence rate can be achieved if the collocation points are the same as the nodal location, i.e. 𝒙𝐶 = 𝒙𝐼 .

Lemma 2. Under uniform meshfree discretization, the periodicity of reproducing kernel shape function yields the following condition
regardless of the order of completeness [30]:

∑

𝐽∈𝒙

𝐷𝛼𝛹𝐽
(

𝒙𝐶
) (

𝒙𝐽 − 𝒙𝐶
)𝑛 = 0, if (𝑛 + 𝛼) is odd, and 𝒙𝐶 = 𝒙𝐼 . (69)

Theorem 2. For a regular solution 𝑢 ∈ 𝐶𝑚(𝛺), when the collocation points become the nodes, a one-order higher convergence rate is
chieved for the convection–diffusion problems when the order of completeness of the shape function 𝑝 is an even number:

𝑒𝐼≈ (ℎ𝑞) , 𝑞 = min{𝑝, 𝑚},𝒙𝐶 = 𝒙𝐼 and 𝑝 is even. (70)

roof. With Lemma 2 and substitute Eq. (69) back to Eq. (68), one has:

𝑒𝐼 = 𝒂 ⋅

⎡

⎢

⎢

⎢

⎢

⎣

∑

𝑝+1≤|𝛼|≤𝑚

1
𝛼!
𝐷𝛼𝑢𝐼

∑

𝐽∈𝒙

∇𝛹𝐽
(

𝒙𝐼
)

⏟⏞⏞⏟⏞⏞⏟
∼ℎ−1

(

𝒙𝐽 − 𝒙𝐼
)𝛼

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
∼ℎ𝛼

⎤

⎥

⎥

⎥

⎥

⎦

− 𝑘

⎡

⎢

⎢

⎢

⎢

⎣

∑

𝑝+2≤|𝛼|≤𝑚

1
𝛼!
𝐷𝛼𝑢𝐼

∑

𝐽∈𝒙

𝛥𝛹𝐽
(

𝒙𝐼
)

⏟⏞⏞⏟⏞⏞⏟
∼ℎ−2

(

𝒙𝐽 − 𝒙𝐼
)𝛼

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
∼ℎ𝛼

⎤

⎥

⎥

⎥

⎥

⎦

≈ ‖𝒂‖
∑

𝑝+1≤|𝛼|≤𝑚

(

ℎ𝛼−1
)

+ 𝑘
∑

𝑝+2≤|𝛼|≤𝑚

(

ℎ𝛼−2
)

≈  (ℎ𝑞) , 𝑞 = min{𝑝, 𝑚}.

□ (71)

Finally, for the problem with a smooth solution, by combining Eqs. (68) and (71) the local truncation error of the upwind
reproducing kernel collocation method can be summarized as follows:

𝑒𝐼 =

{

𝑂(ℎ𝑝), 𝒙𝐶 = 𝒙𝐼 and 𝑝 is even
𝑂(ℎ𝑝−1), else

. (72)

Theorem 3. For a regular solution 𝑢 ∈ 𝐶𝑚(𝛺), the local truncation error associated with an interior node for the pure convection problems
with the upwind reproducing kernel collocation method with a 𝑝th order complete shape function is:

𝑒𝐼 =
{

𝑂(ℎ𝑝+1), 𝒙𝐶 = 𝒙𝐼 and 𝑝 is odd
𝑂(ℎ𝑝), else . (73)

The proof for Theorem 3 is straightforward and followed by setting 𝑘 = 0 in Eqs. (68) and (71). It can be noticed from Eq. (72)
that the convergence rate is reduced when shirting the collocation points from the nodes to the nearby location. To obtain better
accuracy, the collocation points are suggested to be the same as the meshfree points if no special stabilization is required for the
convection term. According to Eq. (13), the upwind stabilization is necessary when the element Péclet number 𝑃𝑒ℎ > 1. Therefore,
in practice, the following function is recommended for turning the upwind stabilization (shifting collocation point from the center to
the upwind region) to maintain the entire algorithm as a high-order convergent method when the convection effect is insignificant:

𝜉 =

⎧

⎪

⎨

⎪

⎩

−1 + 1∕𝑃𝑒ℎ, 𝑃 𝑒ℎ < −1

0, −1 ≤ 𝑃𝑒ℎ ≤ 1

1 − 1∕𝑃𝑒ℎ, 𝑃 𝑒ℎ > 1

. (74)

4.3. Alternative treatment of second order diffusion term by finite volume approximation

Since the existence of the diffusion term, the second-order reproducing condition is necessary to have a convergent result.
13

However, the requirement of higher order completeness causes additional effort for building shape functions.
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Table 2
List of abbreviations.
Abbreviation Formulation

RKCM 𝒂(𝒙𝑰 ) ⋅ ∇𝑢ℎ(𝒙𝑰 ) = 𝑘𝛥𝑢ℎ(𝒙𝑰 ) + 𝑠(𝒙𝑰 )
Inconsistent upwind RKCM 𝒂(𝒙𝑰 ) ⋅ ∇𝑢ℎ(𝒙𝑪 ) = 𝑘𝛥𝑢ℎ(𝒙𝑰 ) + 𝑠(𝒙𝑰 )
Upwind RKCM 𝒂(𝒙𝑪 ) ⋅ ∇𝑢ℎ(𝒙𝑪 ) = 𝑘𝛥𝑢ℎ(𝒙𝑪 ) + 𝑠(𝒙𝑪 )
Upwind RKFM 𝒂(𝒙𝑪 ) ⋅ ∇𝑢ℎ(𝒙𝑪 ) = 𝑘𝛥𝑢ℎ(𝒙𝑪 ) + 𝑠(𝒙𝑪 )

In the collocation framework, significant efforts have been devoted to the development of the collocation approach by only
mploying the linear shape functions. In [30], Wang et al. classified the convergence of the collocation method with linear shape
unction as a special property called ‘‘Superconvergent’’ in the collocation method. It has been identified that the extra higher-order
eproducing condition is possessed by the low-order shape function under whatever special treatments enable this superconvergent
ehavior.
Similarly, the treatment of second-order diffusion term can also be treated by a finite volume type technique with the use of only

inear shape function. Thus, the reproducing kernel finite volume method is obtained by approximating the second-order derivative
f the shape function in Eq. (60) by [35]:

𝛥𝛹 (𝒙𝐶 ) ≈ 𝛥𝛹 (𝒙𝐶 ) =
1
𝑉𝐼 ∫𝛺𝐼

𝛥𝛹 (𝒙)d𝛺 = 1
𝑉𝐼 ∫𝛤𝐼

∇𝛹 (𝒙) ⋅ 𝒏d𝛤 , (75)

where the divergence theorem has been employed to Eq. (75). Thus, the entire collocation equation does not need the calculation
of the second-order derivatives of the shape function.

Theorem 4. Eq. (75) satisfies extra quadratic reproducing conditions under uniform node distribution when only the linear basis function
is employed for computing the shape function under uniform node distribution:

∑

𝐽∈𝒙

𝛥𝛹̃𝐽 (𝒙) 𝑯̃
(

𝒙𝐽
)

= 𝛥𝑯̃ (𝒙) , (76)

where

𝑯̃(𝒙) =
{

𝑥2, 𝑥𝑦, 𝑦2
}T . (77)

Now for the smooth problem, the RKFM formulation can achieve 𝑒𝐼 = (ℎ) when only the linear basis is employed. The proof
of Theorem 4 will be provided in Appendix.

5. Numerical examples

In this section, several 1D and 2D numerical examples will be presented to validate the effectiveness of the proposed upwind
collocation scheme. The related formulations that will be employed in numerical comparisons are provided in Table 2. The
reproducing kernel collocation method is abbreviated as RKCM, in which the collocation points are meshfree nodes themselves.
The inconsistent RKCM refers to the formulation with only the first-order gradients of the field variable treated by the upwind way.
The rest of the terms are all collocated at the original nodal position. The consistent upwind reproducing kernel collocation method
is termed ‘‘Upwind RKCM’’, which is the proposed formulation to provide stabilized simulation results. Last, the upwind reproducing
kernel finite-volume method (Upwind RKFM) represents an alternative approach where the diffusion term is approximated by the
finite-volume type approximation. The choice of support size in the reproducing kernel approximation has been studied over the
years. In general, the order of convergence in the Galerkin type meshfree method and the point collocation meshfree method does
not depend on the choice support size [30,36,37]. The minimum requirement of support size in RK approximation is given in [36].
Sometimes, a slightly larger support may deliver better accuracy. Nevertheless, excessively large support sizes may lead to a much
more diffusive result. In the present work, our major concentration is the selection of the evaluation points. When a nonuniform
layout of collocation points is determined, a relatively larger support size may be applied to meet the minimum requirement in [36].

5.1. 1D pure convection problem with piecewise linear source

The first numerical example is the pure convection problem taken from [38] with the infinite element Péclet number 𝑃𝑒ℎ = ∞
as the consequence of zero diffusivity. This test aims to verify the consistency of the proposed upwind RKCM. It will address a
long-standing concern regarding upwind techniques, which tend to demonstrate reduced accuracy when handling source terms. The
strong form of the problem is:

{

𝑣𝑢,𝑥 = 𝑠, 𝑥 ∈]0, 𝐿] , (78)
14

𝑢(0) = 0
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Fig. 6. Comparison of numerical results for the 1D pure convection problem by different collocation schemes.

where 𝐿 = 15, and 𝑣 = 1 are employed in this example. The body force 𝑠 is given as a piecewise linear function:

𝑠 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 − 15
4𝐿𝑥, 𝑥 ⩽ 2

5𝐿
15
4𝐿 (𝑥 −

8𝐿
15 ),

2
5𝐿 < 𝑥 ⩽ 8

15𝐿

0, 8
15𝐿 < 𝑥 ⩽ 𝐿

. (79)

The three different collocation schemes that will be used in the simulation are illustrated in Fig. 6(a), where the case 𝜉 = 0
rings the upwind RKCM back to the traditional RKCM. Since the absence of diffusion term, the suggested collocation point for
his problem is 𝜉 = 1, which indicates that the collocation points should be located on the boundary of the nodal representative
omain. The inconsistent upwind RKCM is added to represent the collocation scheme with only the treatment to the first-order
radients of the field variable, and another upwind RKCM case with 𝜉 = 0.5 is provided as the consistent upwind RKCM without the
roper selection of collocation points. The linear basis function with normalized support size 1.6 is employed in the reproducing
ernel approximation. From Fig. 6(b), the inconsistent upwind yields the worst result, which produces the same phenomenon as
esults in [38]. The RKCM, which is analogous to the central difference scheme, yields good agreement of the exact solution as it
s supposed to be, and no oscillation has been observed as a consequence of lacking the diffusion term. The upwind RKCM with
= 0.5 represents yields a relatively large error, which confirms the fact that the collocation point in this case is not the optimal
hoice. Finally, when 𝜉 = 1, the simulation yields the best result, which verifies the consistency of the proposed methodology and the
concept of choosing the collocation point based on the element Péclet number. A convergence comparison for this 1D pure convection
problem with source term is illustrated in Fig. 7, where 16, 31, 46, 61, and 76 uniformly distributed particles are employed in this
tudy. As expected, due to the inconsistency formulation, the upwind RKCM without collocating the source term on the evaluation
oints yielded the worst accuracy. Meanwhile, the upwind RKCM with 𝜉 = 0.5 gives a convergent solution but lost accuracy. Since
the absence of diffusivity, the RKCM without shifting collocation points to the upwind side also delivered a good result, which is
comparable to the upwind RKCM with 𝜉 = 1. The L2 rate of RKCM is one order higher than the others, which is consistent with the
error analysis (73). H1 error norm remains as the first order, which is a result of the interpolation error with linear complete shape
unction [36,39]. It is worth noticing that upwind RKCM with 𝜉 = 1 also delivered a one-order higher convergence rate. The reason
behind this phenomenon is that the collocation points in this case are set to be the middle of each neighbor node pair, which makes
the formulation satisfy (69). However, we claim that this only belongs to a special case of (69), as the constant convection speed
and zero diffusivity in this problem have made the evaluation points to be the mid-points.

5.2. 1D convection–diffusion problem

Reconsider the 1D convection–diffusion problem with the following governing equation:

⎧

⎪

⎨

⎪

𝑣𝑢,𝑥 = 𝑘𝑢,𝑥𝑥, 𝑥 ∈]0, 𝐿[

𝑢(0) = 0 , (80)
15

⎩
𝑢(𝐿) = 1
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Fig. 7. Comparison of the convergence rate for the 1D pure convection problem by different collocation schemes.

Fig. 8. Comparison of unstabilized numerical schemes (left) with the upwind stabilized schemes (right) for the 1D convection–diffusion problem with 21 uniformly
distributed particles, 𝜉 = 0.8.

here 𝐿 = 10, 𝑘 = 0.05, and 𝑣 = 1. The element Péclet number is 𝑃𝑒ℎ = 5 based on the 21 uniformly distributed meshfree particles.
The linear basis with normalized support size 1.5 is employed in building the RK shape function in Galerkin-based RKPM and
collocation-based RKFM. For RKCM, since the minimum requirement of approximation basis is quadratic, we employ the quadratic
basis with normalized support size 2.3 in this case. The selection of the location of the collocation is based on (74). As shown in
ig. 8, both RKPM, RKCM, and RKFM exhibit oscillatory results as the stability requirement is not satisfied. By shifting the collocation
oints from the nodal points to the desired upwind points, the solutions become stable and are closer to the exact solution for both
pwind RKCM and RKFM.
16
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Fig. 9. Comparison of the convergence rate for the 1D convection–diffusion problem with upwind RKCM.

Fig. 10. Collocation schemes of 2D strong convection problem for the different flow angles.

A convergence study for the different choices of the upwind collocation points is provided in Fig. 9, where 11, 21, 41, 81, and
161 uniformly distributed meshfree particles are employed for the calculation of the error norms. We term Eq. (49) as ‘‘Hyperbolic
tangent’’ and Eq. (74) as ‘‘Critical approximation’’. Both approaches deliver at least a linear convergence rate in L2 and H1, which
is consistent with the error analysis in Section 4.2. As observed from Fig. 9(a), these two approaches yield identical results when
he discretization is coarse. As the model is refined, ‘‘critical approximation’’ gives the better accuracy. This is because when the
lement Péclet number is smaller than 1, Eq. (74) will lead the collocation points to be the same as the nodal location. From Eq. (70),
one has better accuracy when 𝒙𝑐 = 𝒙𝐼 . The relative collocation distance is depicted in Fig. 9(b), which confirms the error analysis
provided in Section 4.2.

.3. 2D strong convection problem: flow skew to mesh

Next, the 2D example is presented to examine the crosswind wiggles in the proposed upwind collocation method. The 2D problem
s defined in [0, 1] × [0, 1] with zero source term. The diffusivity is set as 𝑘 = 10−6 to present a strong convection setup [34]. The
elocity is given by 𝒂 = {cos 𝜃, sin 𝜃}, where 𝜃 is the flow direction. The quadratic basis function with normalized support size 2.3
s adopted in RKCM, and the linear basis function with support size 1.5 is used for RKFM in this example. Uniformly distributed
1 × 41 particles is utilized to test three cases with flow direction 𝜃 = 𝜋∕6, 𝜃 = 𝜋∕4, and 𝜃 = 𝜋∕3. The layout for the collocation
oint is provided in Fig. 10.
The first case is shown in Fig. 11, where the Dirichlet boundary conditions are enforced on 𝑥 = 0 and 𝑦 = 0 and the outflow

oundaries are given on 𝑥 = 1 and 𝑦 = 1. The exact solution to this problem is the advection of the inflow boundary condition in the
17
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Fig. 11. Description of the 2D strong convection problem with convection skew to mesh: outflow boundary at 𝑥 = 1 and 𝑦 = 1.

Fig. 12. Comparison of 2D strong convection problem: outflow boundary at 𝑥 = 1 and 𝑦 = 1.
18
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Fig. 13. Description of the 2D strong convection problem with convection skew to mesh: Dirichlet boundary at 𝑥 = 1 and 𝑦 = 1.

flow direction [3]. The comparison of simulation results under different flow directions is given in Fig. 12. The traditional RKCM
ith the collocation points being the RK nodes yields oscillations and large errors. By using the upwind treatment to the convection
erm, stable results can be found from both upwind RKFM and upwind RKCM.
The second case considers the same problem setup but with all the boundaries being the Dirichlet boundary conditions, which

re shown in Fig. 13. The existence of the boundary layer makes severe oscillations for the traditional collocation RKCM, which
s illustrated in Fig. 14. Both upwind RKCM and RKFM yield stable results, and no crosswind effect is observed in the present
lgorithm. Meanwhile, RKCM exhibits less diffusive results than RKFM.

.4. 2D cosine hill in a rotating field

A rotation field with variable velocity 𝒂 = {−𝑦, 𝑥} on the bi-unit domain [−0.5, 0.5]× [−0.5, 0.5] is considered in Fig. 15 with 𝑠 = 0
nd a constant diffusivity 𝑘 = 10−6 to make problem as convection-dominated. The homogeneous Dirichlet boundary conditions are
rescribed on the boundary of the domain. In addition, a prescribed essential boundary condition is enforced along section O-A, as
iven in Fig. 15(a). The layout of the collocation points for the 21 × 21 uniformly distributed particles is illustrated in Fig. 15(b).
he cosine hill along O-A is given as:

𝑢̄(𝒙) = 0.5(cos(4𝜋𝑦 + 𝜋) + 1.0). (81)

he convection term makes the internal boundary O-A transport along the circular streamline. A quadratic basis function with a
ormalized support size of 2.5 is used for reproducing kernel approximation.
The comparison of field variables is provided in Fig. 16. The RKCM exhibits acceptable results with slight oscillation near

he boundary, as shown in Fig. 16(a). Another simulation is performed with only the convection term being treated by upwind
ethodology; the flow velocity is still evaluated at the nodal location, which is termed as inconsistent upwind RKCM. In Fig. 16(b),
he crosswind diffusion effect can be observed under the inconsistent upwind RKCM. Finally, the upwind RKCM produces very good
imulation results, as shown in Fig. 16(c).
Next, a convergence test is performed for the cosine hill problem with 11 × 11, 21 × 21, 41 × 41, and 81 × 81 particles, where

n initial random perturbation of particles (15% nodal space) is applied on 11 × 11 case. Both uniform and nonuniform cases are
onsidered and the nonuniform particle refinement is shown in Fig. 17. The related collocation points for the nonuniform case are
elected based on characteristic nodal space, which is obtained by calculating the distance of the nearest neighbor point to each
ode. The analytical solution can be approximately considered as follows:

𝑢(𝒙) =
{

0.5(cos(4𝜋𝑟 + 𝜋) + 1.0), 𝑟 < 0.5
0, else , (82)

here 𝑟 = (𝑥2 + 𝑦2)0.5 is the radius from the origin. From Fig. 18(a), RKCM and upwind RKCM both yield convergent results for the
niform refinement, which are consistent with the error analysis. Since the quadratic complete RK shape functions are employed in
oth cases, L2 error norms are second order as a result of small diffusivity. The upwind RKCM produces better accuracy than the
raditional RKCM, which is consistent with the observation from Fig. 16. The first-order convergent results are also observed from
he nonuniform convergence test, which is shown in Fig. 18(b). The upwind RKCM demonstrated better accuracy compared to the
19

raditional RKCM.
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Fig. 14. Comparison of 2D strong convection problem: pure Dirichlet boundary conditions.

Fig. 15. Problem statement of the 2D cosine hill in a rotating flow field.
20
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Fig. 16. Comparison of rotating flow field for the 2D cosine hill problem for the case with 21 × 21 discretization.

Fig. 17. Nonuniform discretizations for the convergence test of the 2D cosine hill problem: (a) 11 × 11 particles; (b) 21 × 21 particles; (c) 41 × 41 particles;
d) 81 × 81 particles.

.5. Cone impinging on a natural boundary

The previously derived upwind reproducing kernel collocation method can be easily extended to the transient case. The
ollocation formulation for an interior point is then stated as:

𝑢̇(𝒙𝐶 , 𝑡) + 𝒂(𝒙𝐶 , 𝑡) ⋅ ∇𝑢(𝒙𝐶 , 𝑡) = 𝑘𝛥𝑢(𝒙𝐶 , 𝑡) + 𝑠(𝒙𝐶 , 𝑡). (83)

The unconditionally stable generalized trapezoidal rule [1,3] (GTR) is employed for the time integration:

𝑢𝑛+1 = 𝑢𝑛 +
𝛥𝑡
2
(𝑢̇𝑛 + 𝑢̇𝑛+1). (84)

where 𝑢𝑛+1 = 𝑢(𝒙, 𝑡𝑛+1) and 𝛥𝑡 is the time step. The transient problem is therefore solved by the implicit setting. The problem is
setup in Fig. 19 and modeled in [−1.5, 1.5] × [−0.5, 0.5] with 61 × 21 reproducing kernel particles. The diffusivity and source term
are set as 0 to make the problem diffusion-free. The convection velocity is 𝒂 = {1, 0}. The time step is chosen as 𝛥𝑡 = 0.01, which
finally makes the Courant number to the fully discretized problem as Cr = 0.2. The cosine cone provided in section 5.3 is employed
as the initial condition centered at (−1, 0). The reproducing kernel approximation adopts the linear basis function with normalized
support size 2.0.
21
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Fig. 18. Comparison of the convergence rate for the 2D cosine hill problem.

Fig. 19. Problem description of the cone impinges a natural boundary.

The comparison between the traditional RKCM and upwind RKCM is detailed in Fig. 20. The oscillation appears at the upwind
ide of traditional RKCM and exists after the cone hits the natural boundary (3.5% of the height of the cone). The relatively small
scillation can be observed from the upwind RKCM at the downwind side when the cone is translating over the interior domain.
o oscillation remains in the problem domain after impinging on the natural boundary (10−8% of the height of the cone remains
n the problem domain).
Next, the convergence study is provided in Fig. 21. First, the effect of temporal discretization is investigated. Since the time

ntegration is unconditionally stable, we decrease the time step of the problem with discretization provided in Fig. 19(b). Although
o blowing-up simulation results are observed, the dissipation error is evidently shown in the case with a larger time step 𝛥𝑡 = 0.05.
The Courant number associated with this case is Cr = 1. With a decreased time step, the wiggles are shifted from the upwind side
to the downwind side. The downwind wiggles can occasionally be observed in the linear upwind scheme with high-order accuracy
22
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Fig. 20. Comparison of cone impinging a natural boundary at various time.

Table 3
Comparison of the height of the cone impinging a natural boundary problem at
time 𝑡 = 1.11 using upwind RKCM (reference value 1).
Upwind RKCM ℎ𝑥 = 0.05 ℎ𝑥 = 0.025 ℎ𝑥 = 0.017

𝛥𝑡 = 0.05 0.7480 0.7975 0.8145
𝛥𝑡 = 0.01 0.8641 0.9508 0.9833
𝛥𝑡 = 0.002 0.8568 0.9802 0.9854

and can be reduced by refining the discretization. Next, we employed a small time step to the problem and studied the refinement
in space for this problem, where ℎ𝑥 denotes the nodal space over 𝑥−direction. Three uniformly distributed particle sets with the
iscretization 61 × 21, 121 × 41, and 181 × 61 are utilized. As observed in Fig. 21, a series of decreased spatial discretizations
can successfully reduce the downwind wiggles and again, no upwind wiggles are presented, which is further confirmed by the
comparison of the height of the cone in Table 3, where the reference height value is 1.

5.6. 2D rotating field

Finally, the 2D transient problem with a rotating field is provided. The problem setup is shown in Fig. 22 in domain [−0.5, 0.5]×
[−0.5, 0.5]. The discretization and collocation points are chosen as in 5.4. The velocity is given by 𝒂 = (−𝑦, 𝑥) with zero diffusivity.
The initial condition is identical to the cosine cone used in the example section 5.5. The linear basis function with normalized
support size 2.0 is employed in RK approximation. No source term is considered and the time step is selected as 𝛥𝑡 = 0.01.

The results comparison of RKCM and upwind RKCM is shown in Fig. 23. The traditional RKCM yields virtually no dissipation,
23

but the phase error is present after two full rotations. The upwind oscillations are observed and exist in the problem domain during
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Fig. 21. Comparison of cone impinging a natural boundary at time 𝑡 = 1.11 under spatial and temporal refinements.

Fig. 22. Problem statement of a cosine cone in a rotating field.

the rotation. On the contrary, upwind RKCM delivers good results. No upwind wiggles exist in the problem domain, and a slight
downwind effect is presented. The comparison of the height of the cone for the upwind RKCM is given in Table 4, where the
reference height is 1. As observed in the table, the dissipation is observed when the discretization of the problem is coarse. As the
model is refined, upwind RKCM delivers little dissipation error.
24
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Fig. 23. Comparison of 2D rotating cone problem after two full rotations.

Table 4
Comparison of the height of the rotating cone problem under various
discretizations using upwind RKCM (reference value 1).
Upwind RKCM 𝑡 = 2 𝑡 = 8 𝑡 = 14

ℎ𝑥 = 0.01 0.8610 0.7598 0.6953
ℎ𝑥 = 0.05 0.9529 0.9885 0.9936
ℎ𝑥 = 0.025 0.9895 0.9936 0.9939

6. Conclusions and discussions

A general upwind reproducing kernel collocation method is proposed for convection-dominated problems. The non-self-adjoint
ature of these problems necessitates Petrov–Galerkin approaches. However, it is worth noting that, when using the traditional
eshfree collocation method, severe oscillations can still occur if upwind stabilization is not applied.
25



Computer Methods in Applied Mechanics and Engineering 420 (2024) 116711J. Wang and M. Hillman

s
b
b

g
o
c
c
c

We began with a 1D finite difference scheme and established a connection between finite differences and the concept of gradient
moothing in the meshfree method literature. Our systematic analysis has demonstrated that traditional finite difference stencils can
e reinterpreted as contour integrals of finite element shape functions over a representative domain. This innovative perspective
rings the connection between the finite difference and the continuous approximation in these numerical methods.
Subsequently, we developed a specialized upwind stabilization technique for convection-dominated problems by employing

radient smoothing over the convection term. Our analysis revealed that selecting the smoothing domain as the upwind region
f each nodal representative domain is crucial for achieving upwind stabilization. We then designed the upwind reproducing kernel
ollocation method, utilizing evaluation points at the upwind side of each nodal representative domain. The precise location of these
ollocation points is determined by the element Péclet number, eliminating the need for artificial parameters in the entire upwind
ollocation framework. An error analysis demonstrated that the upwind reproducing kernel collocation method possesses 𝑂(ℎ𝑝−1)th
order convergence rate, where 𝑝 is the degree of basis function in approximation. Finally, our proposed upwind reproducing kernel
collocation method demonstrated strong performance in both steady and unsteady convection-dominated examples.

We have identified that our proposed method’s stabilization structure is linear (independent of the numerical solution), setting
it apart from nonlinear schemes like SUPG. The choice of order of completeness in the shape function can be arbitrary. This linear
scheme offers flexibility in choosing the order of completeness for shape functions, making it adaptable for high-order accuracy. The
choice of support size in reproducing kernel approximation extends the connection between particles and their neighbors. Larger
support sizes can occasionally lead to slight downwind oscillations in coarse discretizations, which can be mitigated by increasing the
number of discretization points. Moreover, our method shows potential for application in modeling the Navier–Stokes equation and
fluid–structure-interaction (FSI) problems. The convection term in the N–S equation is time-dependent and may require additional
effort to shift the evaluation points in time, which will be considered as part of our future plans.

CRediT authorship contribution statement

Jiarui Wang: Conceptualization & writing. Michael Hillman: Funding.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work was supported by the National Science Foundation, USA award number 1826221 to the Pennsylvania State University.
J. Wang wishes to thank Prof. Chi-Wang Shu from Brown University for his inspiring discussion and comments, and Dr. Zeng Lin
from the Chinese Academy of Sciences for his discussion on the mathematical points of this work.

Appendix

In this Appendix, we would like to show that the second-order gradients produced by the RKFM formulation satisfy the relevant
consistency condition and thus can achieve 𝑒𝐼 = (ℎ) when only the linear basis is employed. First, Eq. (75) can be rewrite as
follows:

𝛥𝛹𝐽 (𝒙) =
1
𝑉𝐼 ∫𝛤𝐼

𝒏 ⋅ ∇𝛹𝐽 (𝒙) d𝛤 ∶=
∑

𝐾
𝝌𝐾 (𝒙) ⋅ ∇𝛹𝐽

(

𝒙𝐽
)

=
∑

𝐾

(

𝐴𝐾
𝑉𝐼

𝒏
(

𝒙𝐾
)

)

⋅ ∇𝛹𝐽 (𝒙𝐽 ), 𝒙 ∈ 𝛺𝐼 , (85)

where the numerical quadrature has been carried out to (85), the quadrature points are denoted by 𝒙𝐾 , and 𝐴𝐾 represents the area
of the 𝐾th surface or weight of 𝒙𝐽 .

Lemma 3. When the numerical quadrature to (85) is sufficiently accurate, the following special properties can be derived for 𝝌𝐾 (𝒙):
∑

𝐾
𝝌𝐾 (𝒙) =

1
𝑉𝐼

∑

𝐾
𝒏
(

𝒙𝐾
)

𝐴𝐾 = 1
𝑉𝐼 ∫𝛤𝐼

𝒏 d𝛤 = {0, 0}T, (86)

∑

𝐾
𝝌𝐾 (𝒙)𝑥𝐾 = 1

𝑉𝐼

∑

𝐾
𝒏
(

𝒙𝐾
)

𝐴𝐾𝑥𝐾 = 1
𝑉𝐼 ∫𝛤𝐼

𝑥𝒏 d𝛤 = 1
𝑉𝐼 ∫𝛺𝐼

{1, 0}Td𝛺 = {1, 0}T. (87)
26

The proof of Theorem 4 is given as follows:
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Proof. Consider the second-order consistency condition of 𝛹̃𝐼,𝑥𝑥 with only the employment of linear basis function, we have:
∑

𝐽∈𝒙

𝛹̃𝐽 ,𝑥𝑥(𝒙)𝑥2𝐽 =
∑

𝐽∈𝒙

∑

𝐾
𝜒𝐾1(𝒙)𝛹𝐽 ,𝑥

(

𝑥𝐾
) (

𝑥𝐽 − 𝑥𝐾 + 𝑥𝐾
)2

=
∑

𝐽∈𝒙

∑

𝐾
𝜒𝐾1(𝒙)𝛹𝐽 ,𝑥

(

𝑥𝐾
)

𝑥2𝐾 + 2
∑

𝐽∈𝒙

∑

𝐾
𝜒𝐾1(𝒙)𝛹𝐽 ,𝑥

(

𝑥𝐾
) (

𝑥𝐽 − 𝑥𝐾
)

𝑥𝐾

+
∑

𝐽∈𝒙

∑

𝐾
𝜒𝐾1(𝑥)𝛹𝐽 ,𝑥

(

𝑥𝐾
) (

𝑥𝐽 − 𝑥𝐾
)2

=
∑

𝐾
𝜒𝐾1(𝒙)𝑥2𝐾

∑

𝐽∈𝒙

𝛹𝐽 ,𝑥
(

𝒙𝐾
)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
=0

+2
∑

𝐾
𝜒𝐾1(𝒙)𝑥𝐾

∑

𝐽∈𝒙

𝛹𝐾,𝑥
(

𝒙𝐾
) (

𝑥𝐽 − 𝑥𝐾
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=1

+
∑

𝐽
𝜒𝐽1(𝒙)

∑

𝐼∈𝒙

𝛹𝐼,𝑥
(

𝒙𝐽
) (

𝑥𝐼 − 𝑥𝐽
)2

=2
∑

𝐾
𝜒𝐾1(𝒙)𝑥𝐾

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
=1 from (87)

+
∑

𝐾
𝜒𝐾1(𝒙)

∑

𝐽∈𝒙

𝛹𝐽 ,𝑥
(

𝒙𝐾
) (

𝑥𝐽 − 𝑥𝐾
)2

=2 +
∑

𝐾
𝜒𝐾1(𝒙)

∑

𝐽∈𝒙

𝛹𝐽 ,𝑥
(

𝒙𝐾
) (

𝑥𝐽 − 𝑥𝐾
)2 ,

(88)

where 𝜒𝐾1(𝒙) = 𝑛1(𝒙𝐾 )𝐴𝐾∕𝑉𝐼 denotes the first component of 𝝌𝐾 (𝒙) and Eq. (87) has been employed. Now, if the shape function 𝛹
is building under the quadratic basis function, the last term in Eq. (88) is exactly 0. However, when only a linear basis is employed,
if the particle discretization is uniform without the boundary truncation effect, the summation ∑

𝐼∈𝒙 𝛹𝐼,𝑥
(

𝒙𝐽
) (

𝑥𝐼 − 𝑥𝐽
)2 remains

a constant value over the interior domain. Thus, Eq. (88) becomes to:
∑

𝐽∈𝒙

𝛹̃𝐽 ,𝑥𝑥(𝒙)𝑥2𝐽 = 2 +
∑

𝐽∈𝒙

𝛹𝐽 ,𝑥
(

𝒙𝐾
) (

𝑥𝐽 − 𝑥𝐾
)2 ∑

𝐾
𝜒𝐾1(𝒙)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
=0 from (86)

= 2. (89)

The consistency condition of the second-order finite-volume type gradients with respect to 𝑥𝑦 and 𝑦2 can also be obtained by a
similar procedure. □

Since the derivation of Eq. (89) does not require the quadratic basis function, the condition provided via (89) is so-called extra
high order consistency [30]. Finally, with the extra high-order reproducing condition, the upwind collocation method with finite-
volume type treatment of the second-order diffusion term under only linear basis function can achieve a similar convergence rate
as the upwind RKCM with quadratic basis function.
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