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A B S T R A C T   

Natural disasters often result in failures of transportation network components and blackouts that imperil the 
wellbeing of vulnerable populations. In response to these events, resilience hubs have been proposed as a pre- 
disaster planning strategy to improve access to critical services. This paper introduces an optimization-based 
approach to locate and configure electric power-generating resilience hubs considering the possibility of fail
ures in transportation and electric power systems. The model’s objective is to identify hub locations and con
figurations that maximize transportation accessibility to the hubs and maximize the satisfaction of basic energy 
needs through hub-generated electric power. Besides a budget constraint, the model accounts for limits on the 
levels of hub energy generation vis-à-vis community energy demands, and on the transportation network dis
tance of communities to hubs. Three heuristics are presented for the proposed planning problem. The first 
heuristic is a genetic algorithm (GA) with problem-specific solution generation procedures. The other two 
heuristics implement greedy search techniques. Numerical experiments were conducted, using data from rural 
Puerto Rico, to illustrate the application of the proposed model and heuristics, and examine their performance. In 
the numerical experiments, the GA heuristic found better solutions than the greedy heuristics. Additionally, 
design solutions consisting of spatially dispersed hubs with low energy generation capacity were better than 
solutions with spatially concentrated high-capacity hubs. Lastly, across a wide range of hub demand scenarios, 
only a small number of candidate hub locations consistently ranked among the best locations for establishing a 
hub.   

1. Introduction 

Power outages and roadway failures are common events after major 
natural disasters. A dramatic example of these disruptions occurred after 
Hurricane María struck Puerto Rico in 2017, which damaged or 
destroyed dozens of roadways and bridges, and caused one of the longest 
blackouts in history (Colucci Ríos, 2018; Kwasinski et al., 2019). Among 
the responses to this crisis was the establishment of solar energy-based 
hubs by non-profit groups. These hubs provided to the most vulner
able members of society the opportunity to charge their electronic de
vices, power medical devices, and receive other types of services 
(Mignoni, 2018). Energy hubs are an example of the emerging concept 

of a resilience hub, that is, a community-based physical space designed 
to provide services and supplies before, during, or after a disaster (Cir
iaco and Wong, 2022). Besides providing community support in 
connection with major disasters, the decentralized energy generated by 
resilience hubs could provide aid during smaller scale events that 
nonetheless prove fatal to vulnerable community members, such as the 
blackouts that accompany extreme heat wave events (Stone et al., 
2022). Energy resilience hubs could additionally facilitate communities’ 
transition to clean energy mobility alternatives, such as integrated solar 
power-based energy-mobility hubs. 

The effectiveness of a resilience hub depends, in part, on its location 
and transportation accessibility. In their review of the resilience hub 
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concept and associated transportation needs, Ciriaco and Wong (2022) 
found a lack of research on methods to optimize the placement of these 
centers. Fortunately, a considerable number of models have been 
developed to optimize the position of facilities, supplies, and other assets 
as part of pre-disaster planning (Sabbaghtorkan et al., 2020). The pri
mary objective of this paper is to extend the facility location optimiza
tion problem to address the problem of locating and configuring energy 
resilience hubs considering transportation and electric power system 
failures and community needs. 

Like in previous facility location models, the proposed optimization 
model accounts for uncertainty in transportation link availability and 
service demand levels prior to a disaster, but it additionally considers 
the uncertainty in the damage to the electric power distribution links 
and the spatial and temporal extent of power outages. Besides opti
mizing hub locations, the model considers energy system configuration 
decisions for each hub. The model is formulated as a bi-objective, non- 
linear integer optimization problem. The two objectives considered are: 
maximizing the expected community access to the hub energy services 
and maximizing the satisfaction of energy needs. Constraints on the level 
of hub energy generation and on the distance of communities to hubs are 
also considered. Lastly, the paper presents three heuristics for the pro
posed problem. 

Including the introduction, this paper is composed of six sections. 
The next section reviews literature on pre-disaster facility location 
problems. The third and fourth sections present the model formulation 
and proposed heuristics, respectively. The application of the proposed 
methods is illustrated using the case of Puerto Rico. Concluding remarks 
and future research opportunities are presented in the last section. 

2. Literature review 

Major disasters have motivated an extensive body of work on facility 
location problems for emergency humanitarian logistics (FLPEs) in the 
context of multiple types of events, such as hurricanes, earthquakes, and 
flooding. The models have been developed to guide decisions at the pre- 
disaster, disaster, and post-disaster stages (Kara and Sava, 2017), and 
they have been applied to determine the optimal location of distribution 
centers, shelters, warehouses, storage facilities, rescue helicopters, am
bulances, and medical facilities, among other types of facilities. FLPEs 
generally seek a set of facility locations that: i) minimize the sum of a 
humanitarian cost metric, including the economic cost of human 
suffering (Holguín-Veras et al., 2013); ii) cover the users demand within 
distance or time limits (set covering problems); iii) minimize the 
maximum distance of any demand location to a facility (minimax 
problems); iv) account for the impact of decisions made across time 
(dynamic problems) and/or v) incorporate uncertainty into the opti
mization process (e.g., stochastic and robust optimization problems) 
(Boonmee et al., 2017). FLPEs that account for uncertainty in pre- 
disaster planning are discussed next. For a more expansive review of 
FLPEs and related humanitarian logistic literature, see (Boonmee et al., 
2017; Liberatore et al., 2013). 

For pre-disaster planning, the exact location and magnitude of a 
natural disaster is uncertain, which means that the origin and scale of 
the demand for facility services, the state of the transportation network 
connecting the demand points to the facilities, and the condition of the 
facilities after the disaster are also uncertain (Liberatore et al., 2013). 
For this reason, researchers have introduced uncertainty to the formu
lations of pre-disaster FLPEs. For example, Ukkusuri and Yushimito 
(2008) developed a location-routing problem for emergency inventory 
prepositioning that considers the probability that routes connecting fa
cilities fail; the failure probabilities are assumed to be independent and 
known. Balcik and Beamon (2008) account for demand uncertainty in 
the development of a set covering problem that can be used to determine 
the location of distribution centers and their inventory levels. Using a set 
of discrete demand scenarios, their modeling approach seeks to maxi
mize the expected benefits to potentially affected individuals. Rawls and 

Turnquist (2010) proposed a two-stage stochastic mixed integer pro
gram for the pre-positioning of emergency storage facilities that con
siders uncertainty in demand levels and transportation link availability, 
also using a set of discrete scenarios that represent uncertain disaster 
events. Besides the locations, the model accounts for the sizes of storage 
facilities, the quantity of materials stored in each facility, and the dis
tribution of supplies. The possibility of facility failures has also been 
considered, as in the model proposed by Galindo and Batta (2013). To 
account for demand uncertainty, Galindo and Batta specify probability 
distributions for the demand at each demand point, and they introduce a 
constraint to ensure that supply levels at each demand point meets the 
expected demand times a safety factor. Shu et al. (2023) also account for 
demand uncertainty using probability distributions that are used as part 
of a chance-constrained stochastic programming model. 

Besides minimizing total costs or maximizing benefits, the fair allo
cation of resources is a basic consideration in humanitarian logistics and 
FLPEs. For instance, using the concept of conditional value-at-risk, 
Chapman and Mitchell (2018) developed a FLPE model that minimizes 
cost disparities among members of the population. Erbeyoğlu and Bilge 
(2020) proposed a FLPE that considers fairness goals through service 
coverage windows constraints that ensure demand satisfaction levels. 
Equity and fairness considerations are often integrated as part of multi- 
objective FLPEs, as in the work of Mohammadi et al. (2016), who pre
sented a stochastic programming model for supply prepositioning that 
considers the objectives of maximizing total expected demand coverage, 
minimizing total expected cost, and minimizing the difference in the 
satisfaction rates between demand points. For additional details 
regarding pre-disaster FLEPs under uncertainty, see (Sabbaghtorkan 
et al., 2020). 

The optimal location, size, and mix of components of electric power 
generation, distribution, and transmission systems is also a well- 
established research field, with works that consider the deployment of 
small-scale energy systems given natural hazards (Nourollahi et al., 
2021; Rezaee Jordehi, 2016). However, to the authors’ knowledge, this 
is the first paper to consider the problem of optimizing location and scale 
of facilities to satisfy basic energy needs in the event of a natural disaster 
from a humanitarian logistics perspective. Similar to previous work, 
uncertainty in the availability of transportation network components is 
considered, but the proposed model also considers the uncertainty in 
electric power services given a disaster. 

3. Model formulation 

The notation used for the model formulation is presented in Table 1. 
The facility location optimization model is developed based on the 
following assumptions:  

• A1: A decision-maker (e.g., a government agency) is interested in 
determining the optimal set of hub locations and configurations with 
the goal of improving community resilience to power outages caused 
by disasters.  

• A2: There is a hub implementation budget B that constraints the 
number of hubs that can be established, as well as their energy 
generations capacity.  

• A3: A set of discrete scenarios s ∈ S representing different disasters 
(e.g., type, location, magnitude) and associated states of the trans
portation and electric power systems is available, and each scenario s 
has a probability of occurrence ρs.  

• A4: Behavioral models are available that can be used to compute the 
probability that members of a community would use a particular 
hub.  

• A5: A hub must have the capacity to satisfy the basic energy needs of 
all the communities that are closest to it. 

The key result of the optimization model is the selection of locations 
to establish hubs and their energy generation capacity. Let J be a given 
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set of candidate hub locations, Rj be the set of possible energy system 
configurations available at each hub location j ∈ J, and xjr be a binary 
decision variable that equals 1 if a hub of type r ∈ Rj is established in 
location j, and 0 otherwise. X is the set of all variables xjr. Also, define cjr 

as the cost of establishing a type r hub in location j. The set I denotes the 
community nodes (zones) of interest. 

Let Ts represent the transportation and electric power network 
graphs under scenario s and let the set of these graphs be T (Ts ∈ T). The 
decision-maker’s objectives depend on the patterns Λ(T,X,G) in hub 
choice and energy consumption behaviors that arise given the energy 
hubs locations and configurations indicated in X, the spatial and soci
odemographic characteristics of the population groups in the service 
region, represented by set G, and the transportation and electric 

transmission networks T (for notational simplicity, the arguments of Λ 
will be omitted hereafter). The decision-maker’s objectives are to 
maximize a measure of community access A(T,X,Λ) to the hubs and to 
maximize a measure of energy need satisfaction Z(T,X,Λ), subject to a 
set of constraints. Related to this objectives, the model includes con
straints that ensure that the probability Ψi(T,X,dmax) that a community i 
is within a distance dmax from its closest hub is greater or equal than κ 
(Equation (4), and that the probability Γj(T,X,Λ) that an energy hub can 
generate the energy required by communities closest to it is equal to or 
greater than μ (Equation (5). With the given notation and assumptions, 
the decision-maker’s optimization problem can be generally stated as: 

maxF = {A(T,X,Λ),Z(T,X,Λ) } (1)  

subject to 
∑

j∈J

∑

r∈Rj

cjrxjr ≤ B (2)  

∑

r∈Rj

xjr ≤ 1, ∀j ∈ J (3)  

Ψi(T,X, dmax) ≥ κ,∀i ∈ I (4)  

Γj(T,X,Λ) ≥ μ
∑

r∈Rj

xjr,∀j ∈ J (5)  

xjr = {0, 1}, ∀j ∈ J, r ∈ Rj (6) 

Equations (2) is the budget constraint and Equation (3) ensures that 
at most one type of hub design is selected for each location. Equations 
(4) and (5) ensure, to a degree, that a community is within a maximum 
distance from a hub and that energy hubs can generate the energy 
required by communities closest to it, respectively. Equation (6) forces 
the variables to be binary. The following subsections propose specific 
formulations for the objective functions and Equations (4) and (5). The 
process of disaster scenario generation, including the determination of 
each scenario’s probability of occurrence, depends on the type of 
disaster under consideration (e.g., storms, earthquakes, floods), the 
historical disaster data available, the physical characteristics of the 
study region (e.g., topography), and available computational models, 
among other factors. As previously stated, the proposed model assumes 
as given a set of disaster scenarios and their probability. For a discussion 
of methods for disaster scenario generation, see, for example, the work 
of Nowell et al. (1996) and Garn et al. (2023). 

3.1. Hub accessibility and energy need objectives 

The accessibility to and demand for the energy services of the resil
ience hubs depends on the status of the transportation and energy net
works after a disaster and the energy needs of individuals in the service 
region. The latter depends, naturally, on the characteristics of the in
dividuals. For example, after a disaster, members of low-income 
households without power generators are considerably more likely to 
need and use an energy resilience hub than members of high-income 
households that own electric power generators. The hub choice 
behavior of community groups will be modeled using utility and discrete 
choice theory. 

Define Vs
gijr
(
Ts,X,ϑg

)
as the utility that group g ∈ G in zone i derives 

from the energy services at hub j under scenario s given the network 
state under scenario s (Ts) and sociodemographic variables ϑg (e.g., in
come). The utility function Vs

gijr can capture the effects that, for example, 
the distance, travel time, service wait times, and sociodemographic at
tributes have on a group’s hub choice behavior. For example, Vs

gijr can be 
formulated as the following linear-in-parameters utility function: 

Vs
gijr = β0 + βdds

ij + βgzg + βrzr (7) 

Table 1 
Notation.  

Type Symbol Definition 

Index i Index for community locations (zones) 
j,a Indices for hub locations 
r Index for hub configuration types 
s Index for disaster scenarios 
g Index of population groups 

Set G Population groups in the service region 
I Community locations 
J Candidate hub locations (j ∈ J) 
S Disaster scenarios 
Rj Energy system configurations at each hub 

location j ∈ J 
Ts Transportation and electric power network 

graphs under scenario s 
T Set of all Ts 

X Decision variables 
ϑg Sociodemographic characteristics of group g 
Θs

j Set of communities whose closest hub is j in 
scenario s 

Decision 
Variable 

xjr 1 if a hub of type r is established in location j, and 
0 otherwise 

Parameter B Budget 
cjr Cost of establishing a type r hub in location j 
dmax Maximum desirable distance between a 

community and its closest hub 
ds

ij Shortest path distance between zone i and 
location j in scenario s 

hgi Daily basic electric power needs of group (g, i) 
κ Threshold probability for Ψi(T,X,dmax)

μ Threshold probability for Γj(T,X,Λ)

ηgi Number of members in group (g, i) 
ρs Probability of occurrence of disaster scenario s 
tsi Number of days without electricity at location i in 

the disaster scenario s 
ωA,ωZ Objective function weights 
γs

j Energy generation efficiency factor for hub j in 
scenario s 

mr Energy generation capacity of hub configuration 
r 

Function Λ(T,X,G) Patterns in hub choice and energy consumption 
behaviors 

A(T,X,Λ) Measure of community access to the hub 
Z(T,X,Λ) Measure of energy need satisfaction 
Ψi(T,X,dmax) Probability that a community i is within a 

distance dmax from its closest hub is greater 
Γj(T,X,Λ) Probability that an energy hub can generate the 

energy required by communities closest to it 
Vs

gijr
(
Ts,X, ϑg

)
Utility that group g in zone i derives from the 
energy services at hub j under scenario s; Vs

gi− is 
the utility of not using a hub 

us
gi Probability that group g in zone i chooses to use a 

hub 
Ws

i (X,Ts, dmax) Indicator:1 if zone i is within dmax distance from a 
hub in scenario s 

Es
j Energy generation of hub j in scenario s 

Ls
j Energy demand that hub j must satisfy under 

scenario s 
Qs

j Indicator:1 if Ls
j ≤ Es

j ; 0 otherwise  
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where β0, βd, βg and βr are estimated model parameters, ds
ij is the shortest 

path distance between node pair ij for scenario s, zg can represent a 
sociodemographic characteristic such as average group income, and zr 
can be dummy variable that indicates the utility derived by users given 
hub configuration r. The β parameters can be estimated using discrete 
choice analysis based on observed hub choice behavior after a disaster (i. 
e., revealed preference data) or stated hub choice behavior obtained 
through community surveys prior to a disaster event (i.e., stated pre
fence data) (Ben-Akiva and Lerman, 1985). 

If it is assumed that the choice probabilities are modeled using the 
commonly applied multinomial logit (MNL) model, the accessibility of a 
group to the hub services can be defined as the expected utility of the 
available choice set (also known as the logsum) (Ben-Akiva and Lerman, 
1985; de Jong et al., 2007), which results in the following expression 
(omitting utility arguments and assuming that the logit scaling param
eter is set to one): 

As
gi = ln

(

eVs
gi− +

∑

j∈J

∑

r∈Rj

xjreVs
gijr

)

(8) 

The Vs
gi− term in Equation (8) refers to the utility of not using a hub. 

Equation (8) offers theoretically sound scalar summary of the expected 
worth that the available choices have for a group given that group’s 
sociodemographic characteristics ϑg and the status of the networks Ts. It 
is also a standard approach to measure accessibility in the transportation 
planning context. Using Equation (8) and defining ηgi as the number of 
members in group (g,i), the measure of the community access A(T,X,Λ)

can defined as the expected accessibility measure: 

A(T,X,Λ) =
∑

s∈S
ρs
∑

i∈I

∑

g∈G
ηgiA

s
gi (9)  

In this expression the hub service demand patterns Λ is captured by the 
discrete choice models via the Vs

gijr terms, which depend on T and X. The 
term ηgi could be eliminated from Equation (9) if the analyst was more 
interested achieving equitable access across groups, regardless of their 
population size. 

The measure of energy need satisfaction Z(T,X,Λ) can also be 
formulated using the outputs of discrete choice models. Let hgi represent 
the daily basic electric power needs of group (g, i) (e.g., charging elec
tronic devices, powering medical devices (IEA, 2020)), us

gi be the prob
ability that the group chooses to use a hub (given by the choice models), 
and tsi denote the number of days without electric power service at 
location i in the disaster scenario s. Then, Z(T,X,Λ) can be defined as the 
expected consumption of the hub-generated electric power 

Z(T,X,Λ) =
∑

s∈S
ρs
∑

i∈I
ts
i

∑

g∈G
ηgihgius

gi (10)  

Under the MNL model assumption, the probability of using a hub can be 
computed using: 

us
gi = 1−

eVs
gi−

eVs
gi− +

∑
j∈J
∑

r∈Rj
xjreVs

gijr
(11)  

This probability increases as the hubs are closer and more convenient for 
a group. Note that the formulations for the objective functions are 
positive correlated via the Vs

gijr: as the hub utility functions increase, so 
do the accessibility measure, the probability of using a hub, and the hub 
energy consumption. In general, like in these formulations, one would 
expect that the objective of maximizing accessibility to the resilience 
hubs is not necessarily in conflict with the objective of maximizing the 
use of the hub-generated electric power, as increasing transportation 
accessibility would increase the probability that people use the hubs. 
Given the objectives complementarity, a useful approach to solve the bi- 
objective problem in Equation (1) is to convert it into a single objective 

optimization problem using linear scalarization, which results in: 

F = ωAA(T,X,Λ)+ωZZ(T,X,Λ) (12)  

where ωA and ωZ are objective weights set by the analyst to combine the 
objectives. The values ωA and ωZ could be set, for example, so that the 
objective is in monetary units (e.g., using the concept of marginal utility 
of income for the accessibility term (de Jong et al., 2007) and 
willingness-to-pay analysis for the energy term). Alternatively, the 
weights could be set to represent the importance that the decision maker 
gives to each objective. In the case study, the weights are set so that the 
value of both objectives have similar magnitudes. 

3.2. Ensuring a minimum level of hub spatial proximity 

The purpose of the constraints in Equation (4) is to ensure a mini
mum level of spatial proximity for every community, up to a threshold 
set by the decision-maker. Equation (4) can be operationalized using the 
set of discrete scenarios S. Each disaster scenario s results in a distinct 
transportation network that produces different shortest path distances 
from each community i ∈ I to each candidate location j ∈ J. These 
shortest path distances can be determined prior to the analysis (i.e., they 
are model parameters). Given a hub location and configuration solution 
X, the only relevant shortest path distances are those of candidate lo
cations for which hubs have been selected, that is, j locations for which 
∑

r∈Rj
xjr = 1. Let ds

ij be the shortest past distance between zone i and hub 
location j in scenario s and define the indicator: 

Ws
i (X,Ts, dmax) =

⎧
⎨

⎩

1 if min
∀j∈J

(

ds
ij + dmax

(

1 −
∑

r∈Rj
xjr

))

≤ dmax

0 otherwise

(13)  

Then, probability Ψi(T,X,dmax) that a community i is within a distance 
dmax from its closest hub can be stated as: 

Ψid(T,X, dmax) =
∑

s∈S
ρsWs

i (X,Ts, dmax) (14)  

3.3. Modeling hub energy generation and consumption to ensure 
minimum service levels 

Equation (5) ensures that the daily level of electric power generation 
at the hubs is such that basic electric power needs of the communities 
are satisfied to a degree specified by the decision-maker. Let mr repre
sent the energy generation capacity of hub configuration r under ideal 
conditions and γs

j be an efficiency factor that reflects conditions that 
affect the location’s energy generation capacity (0 < γs

j ≤ 1). For 
example, if the hubs generate electricity using solar-based systems, γs

j 

could reflect the meteorological conditions in scenario s that affect the 
hub’s energy generation output. Given this notation, the energy gener
ation of the hub Es

j under scenario s is: 

Es
j = γs

j

∑

r∈Rj

xjrmr (15)  

Es
j should satisfy the energy needs of the groups that travel to j. As an 

energy safety policy, here it is assumed that a hub should have the ca
pacity to satisfy the basic energy needs of all the communities that are 
closest to it. Define Θs

j as the set of communities whose closest hub is j in 

scenario s (i.e., Θs
j =

{

i ∈ I : j = argmin
a∈J

(dia)

}

). With the given as

sumptions, the energy demand that the hub at j must satisfy in scenario s 
is: 

Ls
j =

∑

r∈Rj

xjr

∑

i∈Θs
j

∑

g∈G
ηgihgius

gi (16) 
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An alternative to Equation (16) and the underlying assumptions is to 
build a model based on the assumption that a deterministic or stochastic 
energy demand equilibrium, or some other demand distribution mech
anism, can be formulated to estimate the distribution of community 
members across the hub locations that surround them. However, after a 
disaster, where communities have incomplete and changing informa
tion, and urgent needs, it is unlikely that a type of energy demand 
equilibrium is reached in the middle of the emergency, and it is arguably 
more reasonable to make planning decisions under the simpler 
assumption that people will travel to their closest available hub. 

The probability Γj(T,X,Λ) that a hub will satisfy the potential energy 
loads given the different disaster scenarios can be computed using an 
indicator variable. Define the indicator: 

Qs
j

(
Ls

j ,Es
j

)
=

{
1 if Ls

j ≤ Es
j

0 otherwise
(17)  

Then Γj(T,X,Λ) can be formulated as: 

Γj(T,X,Λ) =
∑

s∈S
ρsQs

j

(
Ls

j ,Es
j

)
(18)  

4. Heuristics 

Three heuristics are proposed for the hub location problem. The first 
heuristic is based on the genetic algorithm, a solution approach used in 
previous FLPE studies (Boonmee et al., 2017). The other two heuristics 
implement greedy search strategies that take advantage of the problem 
constraints. 

4.1. Genetic algorithm 

Genetic algorithms (GAs) offer a flexible, derivative-free approach to 
search for optimization problem solutions (Deb, 1999). GAs are 
evolution-inspired procedures that interactively improve upon a set of 
candidate solutions, which in GA terminology are individually called 
chromosomes and collectively called the population. In the proposed 
approach, a solution chromosome n is represented by the vector xn of 
length equal to the number of candidate hub locations (|J|). Let xjn be an 
element of xn whose integer value represents the hub type implemented 
at location j. xjn equal to zero indicates that no hub is located at j, while 
integer values greater than zero are the index of the hub type implement 
at j. Problem-specific search strategies were introduced within the 
general GA framework to improve its exploratory efficiency and accel
erate the discovery of good xn designs. 

A high-level description of the main components of the proposed GA 
is presented next. Detailed descriptions of the main steps are offered in 
the next subsections. The general steps of the proposed GA are:  

Step 
0: 

Initialization. Initial parameter values required by the GA steps are set. 

Step 
1: 

Generate an initial population. Apply procedures to generate an initial set of 
candidate solutions to the design problem. In Section 4.1.1, two new 
problem-specific mechanisms are proposed to generate an initial set of 
feasible candidate solutions. The mechanisms consider the budget 
constraint and the general objective of selecting hub locations that are close 
to the community zones. 

Step 
2: 

Evaluate the fitness of candidate solutions. For each unexamined chromosome 
in the population, determine the chromosome’s fitness based on its 
objective function and constraints values. Section 4.1.2 explains the 
expression used to compute a chromosome’s fitness. 

Step 
3: 

If the maximum number of candidate chromosomes has been evaluated, 
return the best solution in the population, and stop the iterative process. 
Otherwise, continue to Step 4. 

Step 
4: 

Select parent population: Based on the fitness evaluation, apply a procedure 
to select the set of chromosomes to combine and mutate in order to create a 
new generation of solutions (offspring). The standard tournament selection 
method was used in the numerical experiments discussed in Section 5 to 
select the parent population (Deb, 1999). 

(continued on next column)  

(continued ) 

Step 
5. 

Generate offspring solutions. Apply crossover and mutation operations to 
generate new candidate solutions by combining and changing the 
information contained in the parent population. In Section 4.1.3, a new 
crossover operation procedure is proposed that considers the spatial 
characteristics of a candidate solution 

Step 
6. 

Pool the offspring and parent chromosomes to create a new population and 
return to Step 2.   

4.1.1. Procedure to generate initial population 
The initial population of solutions is generated using two strategies. 

Both depend on the number of hubs that can be reasonably installed 
given the budget constraint and the implementation costs of each hub 
type. The lower (ylb) and upper (yub) bounds on the number of hubs that 
can be implemented in a region can be computed using the expressions 
ylb = ⌊B/cmax⌋ and yub = ⌊B/cmin⌋, where cmin and cmax are minimum and 
maximum cost of the hub types under consideration. Given these 
bounds, the first chromosome generation strategy randomly selects lo
cations among the candidate locations J, while the second strategy 
randomly selects hub locations that are closest to the zones I, as indi
cated by the distance matrix D (dimensions |I| × |J|). D contains the 
average shortest distance, across all scenarios, between the zones and 
the candidate hub locations. The first strategy is executed with proba
bility ρrand and the second strategy is executed with probability 1−ρrand, 
until N0 chromosomes are generated. The initial population procedure 
(IIP) and its strategies consists of the following steps.  

Step 0: Set n = 1, compute the distance matrix D, and create the empty set X.
Step 1: Set xn as a zero vector with dimensions 1 × |J| and create the empty set Yn .

Step 2: Generate the total number of hubs y to locate for chromosome n by taking a 
random integer draw from the interval 

[
ylb , yub

]
. 

Step 3: Draw w from the standard uniform distribution. 
Step 4: If w < ρrand: 
Step 5: (Apply Strategy 1) For k ranging from 1 to y: 
Step 6:  Randomly select a hub location index j not in Yn, and store it in Yn.  

Else: 
Step 7: (Apply Strategy 2) For k ranging from 1 to y: 
Step 8:  If D is not empty: 
Step 9:   For each candidate hub location, use D to compute the average 

shortest path distance to all zones in I. 
Step 

10:   
From the b hub locations with lowest average distance to the 
zones, randomly select a hub location index j not in Yn, and store 
it in Yn. 

Step 
11:   

Update D by removing the column corresponding to the 
previously selected location, and the rows for all zones within 
dmax of the selected location.   

Else: 
Step 

12:   
Randomly select a hub location index j not in Yn, and store it in 
Yn. 

Step 
13: 

For each selected hub location in Yn, determine the least expensive hub 
configuration that satisfies the energy constraints (Equation (5) and store 
the configuration type in xn; if no hub type satisfies a constraint, select the 
hub type with the maximum energy capacity. 

Step 
14: 

Store xn in X.

Step 
15: 

If n > N0, stop; otherwise, set n = n+1 and return to Step 1. 

Step 
16: 

Return X.  

Note that in Step 13, for each selected hub location j, the Θs
j set of 

communities for which j is their closest hub must be identified, and their 
aggregate demand must be computed to evaluate Equation (5). 

4.1.2. Fitness evaluation and parent selection 
In GA terminology, the fitness value of a chromosome measures how 

good a solution it is. Here, the fitness value is determined by computing 
the objective function (Equation (12) and the constraints. If a chromo
some is feasible, its fitness is the value of Equation (12); otherwise, its 
fitness is computed using the penalty method (Deb, 2000). For an 
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infeasible chromosome n, let ξnB be 1 if the budget constraint is not 
satisfied, and zero otherwise; let be ξnd represent the number of zones i 
for which Equation (4) is not satisfied; and let ξnd be the number of 
selected hub locations for which Equation (5) is not satisfied. Also, 
define Fmin as the lowest objective function value among the feasible 
solutions, if there are no feasible solutions set Fmin = 0. Then, the fitness 
of infeasible solution n is computed using: 

Fn = Fmin − pBξnB − pdξnd − peξne (19)  

where pB, pd, and pe are penalty factors for each type of constraint. Given 
the fitness values of each chromosome, a parent population (most 
promising chromosomes) of size N was selected in each iteration using 
tournament selection (Deb, 1999). 

4.1.3. Crossover and mutation operations 
Crossover and mutation operators were used to generate offspring 

chromosomes (new candidate solutions) based on the parent population. 
First, the operators produce vectors xl

n of length equal to 1× |J|. The 
values of the vector elements indicate the selected hub locations: xl

nj = 1 
if location j has a hub, and xl

nj = 0 otherwise. Given xl
n , the hub type 

vector xn is produced using the same procedure as in Step 13 of the IIP. 
Two strategies were implemented for the crossover operation. With 

probability ρcross, a single-point crossover operation (Deb, 1999) was 
performed to generate xl

n and, with probability 1−ρoc, a spatial cross
over operation was performed. As illustrated in Fig. 1, the spatial 
crossover operation considers the spatial distribution of the candidate 
hub locations. The geographic space that contains the candidate hub 
locations is divided into two regions using a randomly generated line 
and, based on these regions, the hub location information is swapped 
between parents to create a new xl

n vector. 
The mutation operator is applied at the vector element level. With 

probability ρmut, a hub is added to location j if xl
nj = 0 or, if there is a hub 

at j, it is moved to another randomly selected location that does not have 
a hub. The algorithm for generating an offspring population of size 2 × N 
is presented next:  

Step 0: Read parent population X, and create the empty sets Xcross and Xmut . 
Step 1: (Apply Crossover Operation) 

For k ranging from 1 to N: 
Step 2:  Set xk as a zero vector with dimensions 1× |J|

(continued on next column)  

(continued ) 

Step 3:  Draw two parent chromosomes from X and find their vectors xl 1
n and 

xl 2
n . 

Step 4:  Draw w from the standard uniform distribution. 
Step 5:  If w < ρcross: 
Step 6:   Use the single-point crossover to generate offspring xl

k based on 
xl 1

n and xl 2
n .   

Else: 
Step 7:   Use the spatial crossover to generate offspring xl

k based on xl 1
n 

and xl 2
n . 

Step 8:  For each selected hub location in xl
k , determine the least expensive 

hub configuration that satisfies Equation (5) and store the 
configuration type in xk; if no hub type satisfies a constraint, select the 
hub type with the maximum energy capacity. 

Step 9:  Store xk in Xcross. 
Step 

10: 
(Apply Mutation Operation) 
For k ranging from 1 to N: 

Step 
11:  

Set χ = 0 and randomly draw a solution from X ∪ Xcross; call its 
location vector xl

k . 
Step 

12:  
For j ranging from 1 to |J|: 

Step 
13:   

Draw w from the standard uniform distribution. 

Step 
14:   

If w < ρmut : 

Step 
15:    

Set xl
kj = 1 if xl

kj = 0; otherwise, set xl
kj = 0 and randomly 

select a location to add a hub. Set χ = 1. 
Step 

16:  
If χ = = 1, repeat the procedure described in Step 8, and store the 
resulting xk in Xmut. 

Step 
17: 

Return Xcross and Xmut.  

In this algorithm, the combined population X ∪ Xcross ∪ Xmut is eval
uated using the fitness function and using their fitness values a new 
parent population X is selected using tournament selection. The GA 
search process continues until the number of evaluated solutions is 
greater than a given number. To avoid repeated solutions, chromosomes 
in Xcross ∪ Xmut that have been previously evaluated can be eliminated. 

4.2. Greedy Reduction heuristic 

The proposed FLPE seeks to maximize an objective function that is 
limited by only one “less than or equal to” restriction, the budget 
constraint. The Greedy Reduction Heuristic (GRH) is designed to take 
advance of this tradeoff. Without loss of generality, it is assumed that the 

Fig. 1. Spatial crossover operation (dots: candidate hub locations; triangles: selected locations).  
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cost of a configuration is directly proportional to the amount of energy 
that it produces. GRH will start with the most expensive configuration 
and will progressively reduce the configuration for one hub until the 
budget constraint is met. GRH can be summarized as follows:  

Step 
1: 

Start with the most expensive configuration in each candidate hub location. 
This configuration will be feasible for all restrictions, except for the budget 
restriction. 

Step 
2: 

Evaluate reducing one level of configuration for each candidate hub 
location and select the one that: (a) maintains feasibility of Equation (4) 
and Equation (5), and (b) has the least impact on the objective function 
value. 

Step 
3: 

If Equation (2) is feasible, go to Step 4; otherwise, return to Step 2. 

Step 
4: 

Return best solution.  

4.3. Greedy increase heuristic 

The Greedy Increase Heuristic (GIH) takes a complementary 
approach to GRH. GIH starts with no active hubs and progressively adds 
configuration levels to the system until all constraints are met. GIH is 
said to be complementary to GRH as the budget constraint is maintained 
feasible and the system cost is increased until the other restrictions are 
met. GIH can be summarized as follows:  

Step 
1: 

Start with no active hubs. This configuration will only be feasible for the 
budget restriction. 

Step 
2: 

Evaluate adding one level of configuration for each candidate hub location 
and select the one that: (a) maintains feasibility of Equation (2), and (b) has 
the greatest impact on the objective function value. 

Step 
3: 

If Equation (4) and Equation (5) are feasible, go to Step 4; otherwise, return 
to Step 2. 

Step 
4: 

Return best solution.  

5. Numerical experiments 

Numerical experiments were conducted using data from the remote 
central rural region of Puerto Rico (PR). The goal of the numerical ex
periments was to illustrate the application of the model and examine the 
performance of the heuristics. Budget levels, logit model parameters, 
and algorithm parameters were varied in tests to explore the sensitivity 
of key model metrics. The data files and scripts that contain the models 
and parameters used in the experiments can be found in an online re
pository (Rodriguez-Roman, 2023). 

5.1. Model parameters 

In Fig. 2, the zonal system and the road network for the region are 
presented. The region’s 272 US Census block groups were used as the 
zonal system. Population and income data from the US Census were 

obtained for each zone. The region has a population of 126,767 people, 
which were divided into three income groups: low income (income less 
than $30,000), medium income (income between $30,000 and 
$74,999), and high income (income greater than or equal to $75,000). 
The low-income, mid-income, and high-income groups represent 72 %, 
24 %, and 4 % of the population. In total, there were 816 distinct groups 
differianted by zone and income. Each individual in these groups was 
assumed to have the same basic electric power demand of 5 W-hour. The 
groups’ utility functions were defined as follows: 

Vs
gi− = β0 + βLIzgLI + βMIzgMI + βHIzgHI (20)  

Vs
gij = − 0.06 × ds

ij/805 (21)  

where zgLI , zgMI , and zgHI are dummy variables that indicate if g is a low-, 
mid-, or high-income group, respectively, and ds

ij is the shortest path 
distance between pair ij for scenario s. The 805 value is an average speed 
in meters/minute unit, which is used to convert the distance to travel 
time. The −0.06 parameter was borrowed from a logit model estimated 
using stated-preference data from a survey conducted in PR after the 
2022 passage of Hurricane Fiona (the survey that explored the potential 
demand for resilience hubs). The values of the remaining utility function 
parameters (β0, βLI, βMI, βHI) were assumed for the purposes of the nu
merical experiments. Table 2 reports the utility function parameter 
values; note that at least one of the income group dummy parameters 
must be set to zero, and therefore βHI = 0 in all tests. The characteristics 
of the hub configurations used in the experiments are presented in 
Table 3. 

The road network is composed of 1124 nodes and 391 links (not 
counting zone centroid connectors). A total of 113 locations were 
identified as candidate hub sites. Ten scenarios were generated by 
simulating hurricane trajectories over PR. For each scenario, the likeli
hood of road link failures and the duration of power outages for each 
zone were simulated as a function of the perpendicular distance of roads 
and zones to the hurricane trajectory. Note that link failures affect the 
shortest path distances between zones and hub locations. In addition, it 
was assumed that the hub configurations used solar-based systems to 
generate energy, and for each scenario s and location j an efficiency 
factor γs

j was generated using solar geospatial data for PR obtained from 
the National Renewable Energy Laboratory. Each scenario was assigned 

Fig. 2. Zone centroids and road network (centroid connectors omitted).  

Table 2 
β Parameters.  

Set ID β0 βLI βMI βHI 

β-Set 1 2 0.1 0.05 0 
β-Set 2 1.75 0 0 0 
β-Set 3 1.5 0 0 0 
β-Set 4 1.25 −0.10 −0.05 0 
β-Set 5 1 −0.10 −0.05 0  
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the same probability of occurring. The parameters ω1, ω2, dmax, κ, and μ 
were set to the values of 1, 0.1, 16 km, 0.8, and 0.8, respectively. 

5.2. Trials and results 

Three sets of trial tests were performed to explore: 1) the perfor
mance of the proposed heuristics, 2) the impact of different budget 
levels, and 3) the impact of higher and varied hub demand patterns. In 
the first set of trials the three heuristics were applied to find solutions to 
the PR hub location and configuration problem. The first application test 
assumed a budget of $2 million and the β-Set 1 parameters. The per
formance of the GA heuristic was examined using different algorithmic 
parameters. In particular, the test examined the impact on GA perfor
mance of ρrand and ρcross. ρrand controls the type of strategy used to 
generate the initial set of solutions in each GA run, while ρcross controls 
the type of crossover operation applied. The six sets of combinations of 
ρrand and ρcross values used in the test are reported in Table 4. For each set 
of GA parameters, 50 runs of the GA were performed until 100,000 so
lutions were evaluated. Multiple runs were performed as the GA is a 
stochastic search algorithm and several outcomes would be needed to 
compute meaningful performance statistics, and 100,000 solutions were 
evaluated in each run as experience suggests that each GA run would 
have converged to after that number of chromosome evaluations. In 
each run, parameters N, N0(2× N), and ρmut were set to 64, 128, 0.05, 
respectively, as typically population sizes of around 20 to 200 individual 
solutions produce good results and mutation rates are commonly set to 
low values around 0.01 (e.g., Li and Yeh, 2005). The parameters pB, pd, 
and pe were all are set to 1 to give equal penalty to each type of 
constraint, and the parameters ylb, yub and b were given the values of 5, 
12, and 5, respectively, given the $2 million budget and the assumed 
minimum and maximum cost of the hubs presented in Table 3, 

Table 4 reports performance statistics for the runs of each GA 
parameter set, along with the results obtained for the GRH and GIH. 
Fig. 3 shows the progression of the median value of the maximum 
objective function value found in the GA trials. GRH found its best so
lution after 57,462 solution evaluations, while GIH found its solution 
after 114 evaluations. The greedy heuristics have no parameters, and 
their output is deterministic. Based on the results reported in Table 4 and 

Fig. 3, the GA heuristic outperformed the greedy heuristics. On average, 
the best performing GA instance had parameter Set 2: {ρrand = 0,ρcross =

0.5}. This GA instance produced solutions with an objective function 
value 5.3 % higher than the best performing greedy heuristic (GRH). 
When ρrand = 0, only Strategy 2 of the IIP is used. This suggests that it is 
useful to start the search for solutions by establishing hubs in locations 
that are closest to the population zones, which makes intuitive sense. 
When ρcross = 0.5, on average, half of the crossover operations apply the 
single-point method, and the other half apply the spatial crossover 
approach, suggesting that the new crossover operator developed for this 
problem is useful, but only in conjunction with more standard crossover 
techniques. 

In the second set of trials experiments were conducted to explore the 
impact of budget increases on the values of the objective function (F), 
the accessibility to the hubs (A), the expected satisfaction of energy 
needs (Z), and the distribution of the hubs. Budget increases of 125 %, 
250 %, 375 % and 500 %, relative to $2 million, were used in these tests. 
The best GA-generated results obtained with the different budgets were 
compared relative to the best GA-generated solution obtained using a 
budget of $2 million (GA-Set 2 used in all runs). In Fig. 4, the percentage 
changes in the values of F, A, and Z functions are reported. As expected, 
as the budget increases, the function values increase, although not at the 
same rate. A 500 % budget increase ($10 million) resulted in an incre
ment of 80 % in F, with the Z objective exhibiting more improvement 
relative to the A objective. A greater budget means that more hubs can 
be implemented, as shown in Fig. 5. Interestingly, in these series of tests 
the cheapest hub was selected in all solutions, which maximizes the 
number of hubs and their spatial distribution, given the budget 
constraint. Activating more hubs reduces the groups’ shortest path dis
tance to its closest hub, as shown in Fig. 6. The budget experiments were 

Table 3 
Characteristics of the hub configurations.  

Type Energy Generation Capacity (watt-hour) Cost ($) 

1 25,000 200,000 
2 50,000 225,000 
3 75,000 350,000 
4 100,000 450,000 
5 150,000 500,000  

Table 4 
GA parameters and results for numerical experiments.  

Heuristic Best objective function (F) Value Coefficient of 
Variation 

Mean Minimum Maximum 

GA - Set 1: {ρrand = 0,
ρcross = 0}

659,059 649,144 698,870  0.028 

GA - Set 2:{ρrand = 0,
ρcross = 0.5}

663,645 649,144 696,685  0.028 

GA - Set 3:{ρrand = 0,
ρcross = 1}

659,059 649,144 696,685  0.026 

GA - Set 4:{ρrand = 0.5,
ρcross = 0}

654,922 630,368 692,280  0.020 

GA - Set 5:{ρrand = 0.5,
ρcross = 0.5}

652,181 637,211 696,685  0.025 

GA - Set 6:{ρrand = 0.5,
ρcross = 1}

651,452 635,765 697,671  0.027 

GRH 630,368 – 
GIH 322,528 –  

Fig. 3. Median value of the maximum objective function value in the GA trials.  

Fig. 4. Percentage change in objective functions given the budget increments.  
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also conducted with the greedy heuristics, and, as before, the GA also 
outperformed them, with the lowest difference in best objective function 
values being of 8.6 %. 

The last set of trials explored the impact of higher and varied hub 
demand patterns, particularly in terms of the energy consumption and 
generation profiles. Higher demand levels were achieved using the 
utility function parameters (the β-sets) presented in Table 2. In these 
trial runs, the budget was set to $2,000,000. Each of the β-set results 
presented next was obtained using the best design solution X generated 
by the GA-Set 2 heuristic, with 5 runs per β set. As Fig. 7 illustrates, the 
higher the β-set ID, the higher the probability that the population in a 
community would use a hub, and, therefore, the higher the hub demand 
levels. The maximum ratio – across the disaster scenarios – of the total 
hub energy consumption and the total hub energy generation is 

presented in Fig. 8. Interestingly, despite the increasing hub demand 
levels produced by each successive β set, the ratio hovers around 8 % (i. 
e., only 8 % of the generated energy is consumed). The higher demand 
levels force a shift from 10 hub locations in the best design solution 
obtained for β-Set 1 to nine hub locations in the remaining β sets, all with 
higher presence of Type 2 hub configurations and higher maximum 
energy generation capacity, as shown in Fig. 9. Higher demand levels 
also made it harder for the GA to generate feasible solutions that satis
fied the energy constraints, as illustrated in Fig. 10, which presents the 
percentage of generated designs that were feasible (i.e., feasibility rate) 
in the runs for each β set. 

The β sets in Table 2 successively increase the demand for hub energy 
services in a spatially uniform manner, as the utility parameters do not 
vary by zone. To explore the impact of spatially varied demand levels on 
the stability of the selected hub locations, 100 GA trial runs were per
formed in which each zone was assigned a different β0 parameter value 
and all income group parameters were set to 0. Each one of the 100 GA 
runs represents a different hub demand scenario. In each GA run and for 
each zone i, the value of the β0i parameter was determined by taking a 
random draw from a normal distribution with mean 1 and standard 
deviation 0.5. The outputs of the 100 GA runs were analyzed to deter
mine the percentage that each candidate hub location was selected to 
establish a hub as part of a run’s best design solution; Figs. 11 and 12 
present the results of the analysis. As Fig. 11(a) and Fig. 12 show, a 
limited number of candidate locations were selected to establish a hub in 
the trial runs. Of the 113 possible candidate hub locations, 41 % were 
not selected in any of the 100 demand scenario runs, whereas around 25 
% of candidate locations were selected in 12 % or more of the runs. Four 
candidate hub locations, which constitute only 3.5 % of all candidate 
locations, were selected to establish a hub in 50 % or more trial runs, as 
indicated by the red spots in the contour map presented in Fig. 11(a). For 
reference, in Fig. 12(b) a contour map of the population concentration is 
presented. 

5.3. Discussion 

As expected, increasing budget levels increase the optimal number of 
established hubs, but there are diminishing returns to this investment, as 
can be seen in Fig. 4. The numerical experiments showed that the best 
performing design solutions had spatially dispersed resilience hubs with 
low power generating capacity, as opposed to solutions with spatially 
concentrated, high-capacity hubs. In part, this result can be explained by 
the accessibility objective function as its value increases when com
munities’ distance to hubs decreases, and a greater number of spatially 
dispersed hubs reduces these distances. Given the budget constraint, the 
spatially dispersed hubs must have the least costly and feasible energy 
generating capacity. Additionally, the results presented in Figs. 11 and 
12 suggest that there is a limited set of candidate locations that are 

Fig. 5. Change in number of hubs given the budget increments.  

Fig. 6. Shortest path distance to a hub given the budget increments.  

Fig. 7. Probability of selecting a hub for low-income group.  Fig. 8. Maximum ratio of energy demanded (L) and energy generated..(E)
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particularly promising across a wide range of demand scenarios. In the 
experiments, only 3.5 % of the considered candidate hub locations were 
part of design solutions in more than 50 % of the demand scenarios. In 
practice, the sensitivity analysis performed here could be used to iden
tify the best set of hub locations, particularly when there is considerable 
uncertainty regarding hub demand levels or the interest of communities 
in resilience hubs. 

6. Closing remarks 

A facility location problem for the optimal placement and configu
ration of energy resilience hubs was presented, along with three heu
ristics. The model considers the objectives of maximizing transportation 
accessibility to the hubs and maximizing satisfaction of basic energy 
needs, subject to constraints on the implementation cost, distance be
tween communities and their closest hub, and energy generation levels 
at the hubs. The GA had the best performance of the three heuristics 
developed for the planning problem. The experiments showed that, for 
the model system considered, there is decreasing marginal benefits, in 
terms of the objective function value components (F, A, Z), as the hub 
implementation budget is increased. 

The main limitation of the proposed methodology is its reliance on 
discrete choice models to estimate the potential community demand 
levels for resilience hubs. In practice, planners are unlikely to have ac
cess to models of hub choice behavior that could be used to simulate 
people’s interest in and potential use of resilience hubs. To overcome 
this limitation, community outreach is needed to: 1) determine the 
factors that people consider important when deciding whether to use a 
resilience hub after a disaster and 2) gather data on people’s stated hub 
choice behavior given hypothetical disaster scenarios. Using these data, 
discrete choice models could be estimated to model people’s preferences 
for resilience hubs. Alternatively, planners could assume reasonable 
values for the logit model parameters, perhaps borrowed from the 
discrete choice models in regional travel forecasting models, and 
conduct sensitivity analyses such as those performed in this paper to 
select candidate hub locations and capacities. Another model limitation 
is that only basic energy needs are considered. The complexities intro
duced by the need to charge electric vehicles after a disaster were not 
considered in this paper. Future research could explore what additional 
hub features, beyond energy generation capacity, should be incorpo
rated to the model to account for electric vehicle charging needs. 

Future research should consider strategies to linearize the proposed 
problem (e.g., the decision variables could be continuous if hub energy 
capacity is stated as a linear function of the monetary investment on a 
hub location). Future research can also explore how mobility services 
can be optimally integrated in disaster resilience hubs. For example, the 
hubs can be a center for shared light electric vehicles (e.g., e-bikes) of
fering mobility solutions to individuals who find themselves without 
their private vehicles in the aftermath of a disaster. Another potential 
research subject is the impact of queuing delays at resilience hubs and 
their impact on the benefits that individuals obtain from their services. 
In terms of heuristic development, further research could be completed 
that implements more graph-based search techniques to identify optimal 
hub location; the proposed GA only used graph-based search in Strategy 
2 of the IPP. 

Fig. 9. Maximum energy generated by the best hub arrangement for each β set.  

Fig. 10. GA solution feasibility for each β set.  

Fig. 11. Maps of (a) hub location selection percentage and (b) population 
concentration (black dots are the zone centroids). 

Fig. 12. Frequency of hub selection percentage.  
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