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ABSTRACT

Natural disasters often result in failures of transportation network components and blackouts that imperil the
wellbeing of vulnerable populations. In response to these events, resilience hubs have been proposed as a pre-
disaster planning strategy to improve access to critical services. This paper introduces an optimization-based
approach to locate and configure electric power-generating resilience hubs considering the possibility of fail-
ures in transportation and electric power systems. The model’s objective is to identify hub locations and con-
figurations that maximize transportation accessibility to the hubs and maximize the satisfaction of basic energy
needs through hub-generated electric power. Besides a budget constraint, the model accounts for limits on the
levels of hub energy generation vis-a-vis community energy demands, and on the transportation network dis-
tance of communities to hubs. Three heuristics are presented for the proposed planning problem. The first
heuristic is a genetic algorithm (GA) with problem-specific solution generation procedures. The other two
heuristics implement greedy search techniques. Numerical experiments were conducted, using data from rural
Puerto Rico, to illustrate the application of the proposed model and heuristics, and examine their performance. In
the numerical experiments, the GA heuristic found better solutions than the greedy heuristics. Additionally,
design solutions consisting of spatially dispersed hubs with low energy generation capacity were better than
solutions with spatially concentrated high-capacity hubs. Lastly, across a wide range of hub demand scenarios,
only a small number of candidate hub locations consistently ranked among the best locations for establishing a
hub.

1. Introduction

of a resilience hub, that is, a community-based physical space designed
to provide services and supplies before, during, or after a disaster (Cir-

Power outages and roadway failures are common events after major
natural disasters. A dramatic example of these disruptions occurred after
Hurricane Maria struck Puerto Rico in 2017, which damaged or
destroyed dozens of roadways and bridges, and caused one of the longest
blackouts in history (Colucci Rios, 2018; Kwasinski et al., 2019). Among
the responses to this crisis was the establishment of solar energy-based
hubs by non-profit groups. These hubs provided to the most vulner-
able members of society the opportunity to charge their electronic de-
vices, power medical devices, and receive other types of services
(Mignoni, 2018). Energy hubs are an example of the emerging concept
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iaco and Wong, 2022). Besides providing community support in
connection with major disasters, the decentralized energy generated by
resilience hubs could provide aid during smaller scale events that
nonetheless prove fatal to vulnerable community members, such as the
blackouts that accompany extreme heat wave events (Stone et al.,
2022). Energy resilience hubs could additionally facilitate communities’
transition to clean energy mobility alternatives, such as integrated solar
power-based energy-mobility hubs.

The effectiveness of a resilience hub depends, in part, on its location
and transportation accessibility. In their review of the resilience hub
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concept and associated transportation needs, Ciriaco and Wong (2022)
found a lack of research on methods to optimize the placement of these
centers. Fortunately, a considerable number of models have been
developed to optimize the position of facilities, supplies, and other assets
as part of pre-disaster planning (Sabbaghtorkan et al., 2020). The pri-
mary objective of this paper is to extend the facility location optimiza-
tion problem to address the problem of locating and configuring energy
resilience hubs considering transportation and electric power system
failures and community needs.

Like in previous facility location models, the proposed optimization
model accounts for uncertainty in transportation link availability and
service demand levels prior to a disaster, but it additionally considers
the uncertainty in the damage to the electric power distribution links
and the spatial and temporal extent of power outages. Besides opti-
mizing hub locations, the model considers energy system configuration
decisions for each hub. The model is formulated as a bi-objective, non-
linear integer optimization problem. The two objectives considered are:
maximizing the expected community access to the hub energy services
and maximizing the satisfaction of energy needs. Constraints on the level
of hub energy generation and on the distance of communities to hubs are
also considered. Lastly, the paper presents three heuristics for the pro-
posed problem.

Including the introduction, this paper is composed of six sections.
The next section reviews literature on pre-disaster facility location
problems. The third and fourth sections present the model formulation
and proposed heuristics, respectively. The application of the proposed
methods is illustrated using the case of Puerto Rico. Concluding remarks
and future research opportunities are presented in the last section.

2. Literature review

Major disasters have motivated an extensive body of work on facility
location problems for emergency humanitarian logistics (FLPEs) in the
context of multiple types of events, such as hurricanes, earthquakes, and
flooding. The models have been developed to guide decisions at the pre-
disaster, disaster, and post-disaster stages (Kara and Sava, 2017), and
they have been applied to determine the optimal location of distribution
centers, shelters, warehouses, storage facilities, rescue helicopters, am-
bulances, and medical facilities, among other types of facilities. FLPEs
generally seek a set of facility locations that: i) minimize the sum of a
humanitarian cost metric, including the economic cost of human
suffering (Holguin-Veras et al., 2013); ii) cover the users demand within
distance or time limits (set covering problems); iii) minimize the
maximum distance of any demand location to a facility (minimax
problems); iv) account for the impact of decisions made across time
(dynamic problems) and/or v) incorporate uncertainty into the opti-
mization process (e.g., stochastic and robust optimization problems)
(Boonmee et al., 2017). FLPEs that account for uncertainty in pre-
disaster planning are discussed next. For a more expansive review of
FLPEs and related humanitarian logistic literature, see (Boonmee et al.,
2017; Liberatore et al., 2013).

For pre-disaster planning, the exact location and magnitude of a
natural disaster is uncertain, which means that the origin and scale of
the demand for facility services, the state of the transportation network
connecting the demand points to the facilities, and the condition of the
facilities after the disaster are also uncertain (Liberatore et al., 2013).
For this reason, researchers have introduced uncertainty to the formu-
lations of pre-disaster FLPEs. For example, Ukkusuri and Yushimito
(2008) developed a location-routing problem for emergency inventory
prepositioning that considers the probability that routes connecting fa-
cilities fail; the failure probabilities are assumed to be independent and
known. Balcik and Beamon (2008) account for demand uncertainty in
the development of a set covering problem that can be used to determine
the location of distribution centers and their inventory levels. Using a set
of discrete demand scenarios, their modeling approach seeks to maxi-
mize the expected benefits to potentially affected individuals. Rawls and
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Turnquist (2010) proposed a two-stage stochastic mixed integer pro-
gram for the pre-positioning of emergency storage facilities that con-
siders uncertainty in demand levels and transportation link availability,
also using a set of discrete scenarios that represent uncertain disaster
events. Besides the locations, the model accounts for the sizes of storage
facilities, the quantity of materials stored in each facility, and the dis-
tribution of supplies. The possibility of facility failures has also been
considered, as in the model proposed by Galindo and Batta (2013). To
account for demand uncertainty, Galindo and Batta specify probability
distributions for the demand at each demand point, and they introduce a
constraint to ensure that supply levels at each demand point meets the
expected demand times a safety factor. Shu et al. (2023) also account for
demand uncertainty using probability distributions that are used as part
of a chance-constrained stochastic programming model.

Besides minimizing total costs or maximizing benefits, the fair allo-
cation of resources is a basic consideration in humanitarian logistics and
FLPEs. For instance, using the concept of conditional value-at-risk,
Chapman and Mitchell (2018) developed a FLPE model that minimizes
cost disparities among members of the population. Erbeyoglu and Bilge
(2020) proposed a FLPE that considers fairness goals through service
coverage windows constraints that ensure demand satisfaction levels.
Equity and fairness considerations are often integrated as part of multi-
objective FLPEs, as in the work of Mohammadi et al. (2016), who pre-
sented a stochastic programming model for supply prepositioning that
considers the objectives of maximizing total expected demand coverage,
minimizing total expected cost, and minimizing the difference in the
satisfaction rates between demand points. For additional details
regarding pre-disaster FLEPs under uncertainty, see (Sabbaghtorkan
et al., 2020).

The optimal location, size, and mix of components of electric power
generation, distribution, and transmission systems is also a well-
established research field, with works that consider the deployment of
small-scale energy systems given natural hazards (Nourollahi et al.,
2021; Rezaee Jordehi, 2016). However, to the authors’ knowledge, this
is the first paper to consider the problem of optimizing location and scale
of facilities to satisfy basic energy needs in the event of a natural disaster
from a humanitarian logistics perspective. Similar to previous work,
uncertainty in the availability of transportation network components is
considered, but the proposed model also considers the uncertainty in
electric power services given a disaster.

3. Model formulation

The notation used for the model formulation is presented in Table 1.
The facility location optimization model is developed based on the
following assumptions:

e Al: A decision-maker (e.g., a government agency) is interested in
determining the optimal set of hub locations and configurations with
the goal of improving community resilience to power outages caused
by disasters.

e A2: There is a hub implementation budget B that constraints the
number of hubs that can be established, as well as their energy
generations capacity.

e A3: A set of discrete scenarios s € S representing different disasters
(e.g., type, location, magnitude) and associated states of the trans-
portation and electric power systems is available, and each scenario s
has a probability of occurrence p*.

e A4: Behavioral models are available that can be used to compute the
probability that members of a community would use a particular
hub.

e A5: A hub must have the capacity to satisfy the basic energy needs of
all the communities that are closest to it.

The key result of the optimization model is the selection of locations
to establish hubs and their energy generation capacity. Let J be a given
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Table 1
Notation.
Type Symbol Definition
Index i Index for community locations (zones)
j.a Indices for hub locations
r Index for hub configuration types
s Index for disaster scenarios
g Index of population groups
Set G Population groups in the service region
1 Community locations
J Candidate hub locations (j € J)
N Disaster scenarios
R; Energy system configurations at each hub
location j € J
T Transportation and electric power network
graphs under scenario s
T Set of all T®
X Decision variables
9, Sociodemographic characteristics of group g
©; Set of communities whose closest hub is j in
scenario s
Decision Xjr 1 if a hub of type r is established in location j, and
Variable 0 otherwise
Parameter B Budget
Cr Cost of establishing a type r hub in location j
Ainax Maximum desirable distance between a
community and its closest hub
d Shortest path distance between zone i and
location j in scenario s
hgi Daily basic electric power needs of group (g,1)
K Threshold probability for ¥;(7', X, dmax)
u Threshold probability for I';(T, X, A)
Ngi Number of members in group (g, i)
P Probability of occurrence of disaster scenario s
t Number of days without electricity at location i in
the disaster scenario s
wp, 0z Objective function weights
7 Energy generation efficiency factor for hub j in
scenario s
my Energy generation capacity of hub configuration
r
Function A(T,X,G) Patterns in hub choice and energy consumption
behaviors
A(T.X,A) Measure of community access to the hub
Z(T,X,A) Measure of energy need satisfaction
Yi(T, X, dmax) Probability that a community i is within a
distance dpmayx from its closest hub is greater
I(T,X,A) Probability that an energy hub can generate the
energy required by communities closest to it
V;ljr(TS,X sg) Utility that group g in zone i derives from the
energy services at hub j under scenario s; V;;_ is
the utility of not using a hub
uy Probability that group g in zone i chooses to use a
hub
Wi (X, T, dimax) Indicator:1 if zone i is within dy,q distance from a
hub in scenario s
E Energy generation of hub j in scenario s
L Energy demand that hub j must satisfy under
scenario s
Q]? Indicator:1 if L <E;0 otherwise

set of candidate hub locations, R; be the set of possible energy system
configurations available at each hub location j € J, and x; be a binary
decision variable that equals 1 if a hub of type r € R; is established in
location j, and 0 otherwise. X is the set of all variables x;.. Also, define c;-
as the cost of establishing a type r hub in location j. The set I denotes the
community nodes (zones) of interest.

Let T° represent the transportation and electric power network
graphs under scenario s and let the set of these graphs be T (T* € T). The
decision-maker’s objectives depend on the patterns A(T,X,G) in hub
choice and energy consumption behaviors that arise given the energy
hubs locations and configurations indicated in X, the spatial and soci-
odemographic characteristics of the population groups in the service
region, represented by set G, and the transportation and electric
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transmission networks T (for notational simplicity, the arguments of A
will be omitted hereafter). The decision-maker’s objectives are to
maximize a measure of community access A(T, X, A) to the hubs and to
maximize a measure of energy need satisfaction Z(T, X, A), subject to a
set of constraints. Related to this objectives, the model includes con-
straints that ensure that the probability W;(T,X,dnmay) that a community i
is within a distance dpqx from its closest hub is greater or equal than «
(Equation (4), and that the probability I';(T, X, A) that an energy hub can
generate the energy required by communities closest to it is equal to or
greater than y (Equation (5). With the given notation and assumptions,
the decision-maker’s optimization problem can be generally stated as:

maxF = {A(T,X,A),Z(T,X,A) } 1)

subject to

ZZCM@% <B (2

Jj€J reR;

e <1LVjied ()

reR;

(T, X, dyay) > &, Vi €1 ©)

LT, X,A) > pY %, Ve 5)
reR;

x, ={0,1},Vj € J,r €R; (6)

Equations (2) is the budget constraint and Equation (3) ensures that
at most one type of hub design is selected for each location. Equations
(4) and (5) ensure, to a degree, that a community is within a maximum
distance from a hub and that energy hubs can generate the energy
required by communities closest to it, respectively. Equation (6) forces
the variables to be binary. The following subsections propose specific
formulations for the objective functions and Equations (4) and (5). The
process of disaster scenario generation, including the determination of
each scenario’s probability of occurrence, depends on the type of
disaster under consideration (e.g., storms, earthquakes, floods), the
historical disaster data available, the physical characteristics of the
study region (e.g., topography), and available computational models,
among other factors. As previously stated, the proposed model assumes
as given a set of disaster scenarios and their probability. For a discussion
of methods for disaster scenario generation, see, for example, the work
of Nowell et al. (1996) and Garn et al. (2023).

3.1. Hub accessibility and energy need objectives

The accessibility to and demand for the energy services of the resil-
ience hubs depends on the status of the transportation and energy net-
works after a disaster and the energy needs of individuals in the service
region. The latter depends, naturally, on the characteristics of the in-
dividuals. For example, after a disaster, members of low-income
households without power generators are considerably more likely to
need and use an energy resilience hub than members of high-income
households that own electric power generators. The hub choice
behavior of community groups will be modeled using utility and discrete
choice theory.

Define V;, (T°, X, 8;) as the utility that group g € G in zone i derives
from the energy services at hub j under scenario s given the network
state under scenario s (7°) and sociodemographic variables 9, (e.g., in-

come). The utility function Vg, can capture the effects that, for example,

the distance, travel time, service wait times, and sociodemographic at-
tributes have on a group’s hub choice behavior. For example, Vg, can be
formulated as the following linear-in-parameters utility function:

Vi = Pot Bud) 4 Bz + B2 @
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where fy, B, B, and f, are estimated model parameters, dj; is the shortest
path distance between node pair ij for scenario s, z, can represent a
sociodemographic characteristic such as average group income, and z,
can be dummy variable that indicates the utility derived by users given
hub configuration r. The  parameters can be estimated using discrete
choice analysis based on observed hub choice behavior after a disaster (i.
e., revealed preference data) or stated hub choice behavior obtained
through community surveys prior to a disaster event (i.e., stated pre-
fence data) (Ben-Akiva and Lerman, 1985).

If it is assumed that the choice probabilities are modeled using the
commonly applied multinomial logit (MNL) model, the accessibility of a
group to the hub services can be defined as the expected utility of the
available choice set (also known as the logsum) (Ben-Akiva and Lerman,
1985; de Jong et al., 2007), which results in the following expression
(omitting utility arguments and assuming that the logit scaling param-
eter is set to one):

A =1In <eV€v + sz,-,eviw> (8)
JjeJ reR;

The V;; term in Equation (8) refers to the utility of not using a hub.
Equation (8) offers theoretically sound scalar summary of the expected
worth that the available choices have for a group given that group’s
sociodemographic characteristics 9, and the status of the networks T*. It
is also a standard approach to measure accessibility in the transportation
planning context. Using Equation (8) and defining 7, as the number of
members in group (g,i), the measure of the community access A(T, X, A)
can defined as the expected accessibility measure:

ATXN) =) 9D D ©

ses iel geG

In this expression the hub service demand patterns A is captured by the
discrete choice models via the V;;, terms, which depend on T and X. The
term 7,; could be eliminated from Equation (9) if the analyst was more
interested achieving equitable access across groups, regardless of their
population size.

The measure of energy need satisfaction Z(7T,X,A) can also be
formulated using the outputs of discrete choice models. Let hy; represent
the daily basic electric power needs of group (g,i) (e.g., charging elec-
tronic devices, powering medical devices (IEA, 2020)), u;i be the prob-
ability that the group chooses to use a hub (given by the choice models),
and & denote the number of days without electric power service at
location i in the disaster scenario s. Then, Z(T, X, A) can be defined as the
expected consumption of the hub-generated electric power

Z(T,X,A) = ZP‘YZﬁ?Zﬂgihgi”‘;i (10)

seS el  geG

Under the MNL model assumption, the probability of using a hub can be
computed using:
Vi
w,=1—— - an
¢ e + ZjeJZreR,"jrev"”’

This probability increases as the hubs are closer and more convenient for
a group. Note that the formulations for the objective functions are
positive correlated via the Vg;,: as the hub utility functions increase, so

do the accessibility measure, the probability of using a hub, and the hub
energy consumption. In general, like in these formulations, one would
expect that the objective of maximizing accessibility to the resilience
hubs is not necessarily in conflict with the objective of maximizing the
use of the hub-generated electric power, as increasing transportation
accessibility would increase the probability that people use the hubs.
Given the objectives complementarity, a useful approach to solve the bi-
objective problem in Equation (1) is to convert it into a single objective
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optimization problem using linear scalarization, which results in:

F = w,A(T, X, A) + 0,Z(T, X, A) 12)

where w4 and w; are objective weights set by the analyst to combine the
objectives. The values w4 and w; could be set, for example, so that the
objective is in monetary units (e.g., using the concept of marginal utility
of income for the accessibility term (de Jong et al., 2007) and
willingness-to-pay analysis for the energy term). Alternatively, the
weights could be set to represent the importance that the decision maker
gives to each objective. In the case study, the weights are set so that the
value of both objectives have similar magnitudes.

3.2. Ensuring a minimum level of hub spatial proximity

The purpose of the constraints in Equation (4) is to ensure a mini-
mum level of spatial proximity for every community, up to a threshold
set by the decision-maker. Equation (4) can be operationalized using the
set of discrete scenarios S. Each disaster scenario s results in a distinct
transportation network that produces different shortest path distances
from each community i €I to each candidate location j € J. These
shortest path distances can be determined prior to the analysis (i.e., they
are model parameters). Given a hub location and configuration solution
X, the only relevant shortest path distances are those of candidate lo-
cations for which hubs have been selected, that is, j locations for which
Zreijjr = 1. Let d}; be the shortest past distance between zone i and hub

location j in scenario s and define the indicator:

1 ifmin| d + dmax 1-— Xjr < dmax
W,\(X, T“ydmax) = fv/.e'] ( Y ( ZrERj ! > ) 13)

0 otherwise

Then, probability W;(T, X, dnqx) that a community i is within a distance
dmax from its closest hub can be stated as:

Via(T, X, dyer) = > _p W (X, T, dyar) a4

SES

3.3. Modeling hub energy generation and consumption to ensure
minimum service levels

Equation (5) ensures that the daily level of electric power generation
at the hubs is such that basic electric power needs of the communities
are satisfied to a degree specified by the decision-maker. Let m, repre-
sent the energy generation capacity of hub configuration r under ideal
conditions and y; be an efficiency factor that reflects conditions that
affect the location’s energy generation capacity (0 <yj <1). For
example, if the hubs generate electricity using solar-based systems, 7]
could reflect the meteorological conditions in scenario s that affect the
hub’s energy generation output. Given this notation, the energy gener-
ation of the hub E under scenario s is:

B=rYum as

reR;

E; should satisfy the energy needs of the groups that travel to j. As an

energy safety policy, here it is assumed that a hub should have the ca-
pacity to satisfy the basic energy needs of all the communities that are
closest to it. Define ©; as the set of communities whose closest hub is j in

scenario s (i.e., G); = {i €I :j=argmin(diq) }). With the given as-
acJ

sumptions, the energy demand that the hub at j must satisfy in scenario s
is:

L= x> Moty (16)

reR; ie@j" 2€G
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An alternative to Equation (16) and the underlying assumptions is to
build a model based on the assumption that a deterministic or stochastic
energy demand equilibrium, or some other demand distribution mech-
anism, can be formulated to estimate the distribution of community
members across the hub locations that surround them. However, after a
disaster, where communities have incomplete and changing informa-
tion, and urgent needs, it is unlikely that a type of energy demand
equilibrium is reached in the middle of the emergency, and it is arguably
more reasonable to make planning decisions under the simpler
assumption that people will travel to their closest available hub.

The probability I';(T, X, A) that a hub will satisfy the potential energy
loads given the different disaster scenarios can be computed using an
indicator variable. Define the indicator:

| ifL <E
(LLE)) = S 17
Qj( 7 ]) {0 otherwise a7

Then Tj(T, X, A) can be formulated as:

T X, A) =Y 00 (1B ) as)
sES

4. Heuristics

Three heuristics are proposed for the hub location problem. The first
heuristic is based on the genetic algorithm, a solution approach used in
previous FLPE studies (Boonmee et al., 2017). The other two heuristics
implement greedy search strategies that take advantage of the problem
constraints.

4.1. Genetic algorithm

Genetic algorithms (GAs) offer a flexible, derivative-free approach to
search for optimization problem solutions (Deb, 1999). GAs are
evolution-inspired procedures that interactively improve upon a set of
candidate solutions, which in GA terminology are individually called
chromosomes and collectively called the population. In the proposed
approach, a solution chromosome n is represented by the vector x, of
length equal to the number of candidate hub locations (|J]). Let xj, be an
element of x, whose integer value represents the hub type implemented
at location j. xj, equal to zero indicates that no hub is located at j, while
integer values greater than zero are the index of the hub type implement
at j. Problem-specific search strategies were introduced within the
general GA framework to improve its exploratory efficiency and accel-
erate the discovery of good x, designs.

A high-level description of the main components of the proposed GA
is presented next. Detailed descriptions of the main steps are offered in
the next subsections. The general steps of the proposed GA are:

Step Initialization. Initial parameter values required by the GA steps are set.
0:

Step Generate an initial population. Apply procedures to generate an initial set of
1: candidate solutions to the design problem. In Section 4.1.1, two new

problem-specific mechanisms are proposed to generate an initial set of
feasible candidate solutions. The mechanisms consider the budget
constraint and the general objective of selecting hub locations that are close
to the community zones.

Step Evaluate the fitness of candidate solutions. For each unexamined chromosome

2: in the population, determine the chromosome’s fitness based on its

objective function and constraints values. Section 4.1.2 explains the
expression used to compute a chromosome’s fitness.

Step If the maximum number of candidate chromosomes has been evaluated,
3: return the best solution in the population, and stop the iterative process.
Otherwise, continue to Step 4.
Step Select parent population: Based on the fitness evaluation, apply a procedure
4: to select the set of chromosomes to combine and mutate in order to create a

new generation of solutions (offspring). The standard tournament selection
method was used in the numerical experiments discussed in Section 5 to
select the parent population (Deb, 1999).

(continued on next column)
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(continued)
Step Generate offspring solutions. Apply crossover and mutation operations to
5. generate new candidate solutions by combining and changing the

information contained in the parent population. In Section 4.1.3, a new
crossover operation procedure is proposed that considers the spatial
characteristics of a candidate solution
Step Pool the offspring and parent chromosomes to create a new population and
6. return to Step 2.

4.1.1. Procedure to generate initial population

The initial population of solutions is generated using two strategies.
Both depend on the number of hubs that can be reasonably installed
given the budget constraint and the implementation costs of each hub
type. The lower (y;) and upper (y,,) bounds on the number of hubs that
can be implemented in a region can be computed using the expressions
Y = |B/Cmax] and yy, = |B/Cmin], Where cmin and cmqx are minimum and
maximum cost of the hub types under consideration. Given these
bounds, the first chromosome generation strategy randomly selects lo-
cations among the candidate locations J, while the second strategy
randomly selects hub locations that are closest to the zones I, as indi-
cated by the distance matrix D (dimensions |I| x |J|). D contains the
average shortest distance, across all scenarios, between the zones and
the candidate hub locations. The first strategy is executed with proba-
bility p,4,q and the second strategy is executed with probability 1 —p, .4,
until Ny chromosomes are generated. The initial population procedure
(IIP) and its strategies consists of the following steps.

Step 0: Set n = 1, compute the distance matrix D, and create the empty set X.
Step 1: Set x, as a zero vector with dimensions 1 x |J| and create the empty set Y.

Step 2: Generate the total number of hubs y to locate for chromosome n by taking a
random integer draw from the interval [yp,yuw -
Step 3: Draw w from the standard uniform distribution.
Step 4 Ifw < pgngt
Step 5: (Apply Strategy 1) For k ranging from 1 to y:
Step 6: Randomly select a hub location index j not in Y,, and store it in Y.
Else:
Step 7: (Apply Strategy 2) For k ranging from 1 to y:
Step 8: If D is not empty:
Step 9: For each candidate hub location, use D to compute the average
shortest path distance to all zones in 1.
Step From the b hub locations with lowest average distance to the
10: zones, randomly select a hub location index j not in Y,, and store
itin Y.
Step Update D by removing the column corresponding to the
11: previously selected location, and the rows for all zones within
dpmax Of the selected location.
Else:
Step Randomly select a hub location index j not in Y,, and store it in
12: Yh.
Step For each selected hub location in Y,, determine the least expensive hub
13: configuration that satisfies the energy constraints (Equation (5) and store
the configuration type in x,; if no hub type satisfies a constraint, select the
hub type with the maximum energy capacity.
Step Store x, in X.
14:
Step If n > Ny, stop; otherwise, set n =n+1 and return to Step 1.
15:
Step Return X.
16:

Note that in Step 13, for each selected hub location j, the ©; set of

communities for which j is their closest hub must be identified, and their
aggregate demand must be computed to evaluate Equation (5).

4.1.2. Fitness evaluation and parent selection

In GA terminology, the fitness value of a chromosome measures how
good a solution it is. Here, the fitness value is determined by computing
the objective function (Equation (12) and the constraints. If a chromo-
some is feasible, its fitness is the value of Equation (12); otherwise, its
fitness is computed using the penalty method (Deb, 2000). For an
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infeasible chromosome n, let &,z be 1 if the budget constraint is not
satisfied, and zero otherwise; let be £,; represent the number of zones i
for which Equation (4) is not satisfied; and let &,; be the number of
selected hub locations for which Equation (5) is not satisfied. Also,
define F;; as the lowest objective function value among the feasible
solutions, if there are no feasible solutions set F,;;; = 0. Then, the fitness
of infeasible solution n is computed using:

Fu = Fin 71’857;8 7pd§nd 7Pe§ne (19)

where pg, p4, and p, are penalty factors for each type of constraint. Given
the fitness values of each chromosome, a parent population (most
promising chromosomes) of size N was selected in each iteration using
tournament selection (Deb, 1999).

4.1.3. Crossover and mutation operations

Crossover and mutation operators were used to generate offspring
chromosomes (new candidate solutions) based on the parent population.
First, the operators produce vectors x;, of length equal to 1 x |J|. The
values of the vector elements indicate the selected hub locations: xg] =1
if location j has a hub, and x;; = 0 otherwise. Given x;, the hub type
vector x, is produced using the same procedure as in Step 13 of the IIP.

Two strategies were implemented for the crossover operation. With
probability p., a single-point crossover operation (Deb, 1999) was
performed to generate x, and, with probability 1 —p,, a spatial cross-
over operation was performed. As illustrated in Fig. 1, the spatial
crossover operation considers the spatial distribution of the candidate
hub locations. The geographic space that contains the candidate hub
locations is divided into two regions using a randomly generated line
and, based on these regions, the hub location information is swapped
between parents to create a new x;, vector.

The mutation operator is applied at the vector element level. With
probability p,,, a hub is added to location j if x;; = 0 or, if there is a hub
atj, it is moved to another randomly selected location that does not have
a hub. The algorithm for generating an offspring population of size 2 x N
is presented next:

Step 0: Read parent population X, and create the empty sets X ross and Xmye.
Step 1: (Apply Crossover Operation)

For k ranging from 1 to N:
Step 2: Set x; as a zero vector with dimensions 1 x |J|

(continued on next column)
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(continued)

Step 3: Draw two parent chromosomes from X and find their vectors .\c,/l1 and
xi2.

Step 4: Draw w from the standard uniform distribution.

Step 5: IfW < Peross:

Step 6: Use the single-point crossover to generate offspring x£ based on

x;1 and x;2.
Else:
Step 7: Use the spatial crossover to generate offspring x based on x;’
and x;,2.

Step 8: For each selected hub location in x{, determine the least expensive
hub configuration that satisfies Equation (5) and store the
configuration type in xx; if no hub type satisfies a constraint, select the
hub type with the maximum energy capacity.

Step 9: Store xi in Xeross-

Step (Apply Mutation Operation)

10: For k ranging from 1 to N:
Step Set y = 0 and randomly draw a solution from X U X_yss; call its
11: location vector xj.
Step For j ranging from 1 to |J|:
12:
Step Draw w from the standard uniform distribution.
13:
Step w < oy
14:
Step Set x/kj =1 ifxﬁj = 0; otherwise, set x/kj = 0 and randomly
15: select a location to add a hub. Set y = 1.
Step If y = = 1, repeat the procedure described in Step 8, and store the
16: resulting xg in Xy
Step Return X ross and Xipye.
17:

In this algorithm, the combined population X U X¢ross U Xy is eval-
uated using the fitness function and using their fitness values a new
parent population X is selected using tournament selection. The GA
search process continues until the number of evaluated solutions is
greater than a given number. To avoid repeated solutions, chromosomes
in X¢ross U Xy that have been previously evaluated can be eliminated.

4.2. Greedy Reduction heuristic

The proposed FLPE seeks to maximize an objective function that is
limited by only one “less than or equal to” restriction, the budget
constraint. The Greedy Reduction Heuristic (GRH) is designed to take
advance of this tradeoff. Without loss of generality, it is assumed that the

Offspring

Fig. 1. Spatial crossover operation (dots: candidate hub locations; triangles: selected locations).
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cost of a configuration is directly proportional to the amount of energy
that it produces. GRH will start with the most expensive configuration
and will progressively reduce the configuration for one hub until the
budget constraint is met. GRH can be summarized as follows:

Step Start with the most expensive configuration in each candidate hub location.
1: This configuration will be feasible for all restrictions, except for the budget
restriction.
Step Evaluate reducing one level of configuration for each candidate hub
2: location and select the one that: (a) maintains feasibility of Equation (4)
and Equation (5), and (b) has the least impact on the objective function
value.
Step If Equation (2) is feasible, go to Step 4; otherwise, return to Step 2.
3:
Step Return best solution.
4:

4.3. Greedy increase heuristic

The Greedy Increase Heuristic (GIH) takes a complementary
approach to GRH. GIH starts with no active hubs and progressively adds
configuration levels to the system until all constraints are met. GIH is
said to be complementary to GRH as the budget constraint is maintained
feasible and the system cost is increased until the other restrictions are
met. GIH can be summarized as follows:

Step Start with no active hubs. This configuration will only be feasible for the
1: budget restriction.

Step Evaluate adding one level of configuration for each candidate hub location
2: and select the one that: (a) maintains feasibility of Equation (2), and (b) has

the greatest impact on the objective function value.

Step If Equation (4) and Equation (5) are feasible, go to Step 4; otherwise, return
3: to Step 2.

Step Return best solution.
4:

5. Numerical experiments

Numerical experiments were conducted using data from the remote
central rural region of Puerto Rico (PR). The goal of the numerical ex-
periments was to illustrate the application of the model and examine the
performance of the heuristics. Budget levels, logit model parameters,
and algorithm parameters were varied in tests to explore the sensitivity
of key model metrics. The data files and scripts that contain the models
and parameters used in the experiments can be found in an online re-
pository (Rodriguez-Roman, 2023).

5.1. Model parameters
In Fig. 2, the zonal system and the road network for the region are

presented. The region’s 272 US Census block groups were used as the
zonal system. Population and income data from the US Census were
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obtained for each zone. The region has a population of 126,767 people,
which were divided into three income groups: low income (income less
than $30,000), medium income (income between $30,000 and
$74,999), and high income (income greater than or equal to $75,000).
The low-income, mid-income, and high-income groups represent 72 %,
24 %, and 4 % of the population. In total, there were 816 distinct groups
differianted by zone and income. Each individual in these groups was
assumed to have the same basic electric power demand of 5 W-hour. The
groups’ utility functions were defined as follows:

Veie = Bo + Buzes + ByuZe + BrrZern (20)

Ve = —0.06 x dfj/805 21
where 2,11, Zgwr, and zgy; are dummy variables that indicate if g is a low-,
mid-, or high-income group, respectively, and dj is the shortest path
distance between pair ij for scenario s. The 805 value is an average speed
in meters/minute unit, which is used to convert the distance to travel
time. The —0.06 parameter was borrowed from a logit model estimated
using stated-preference data from a survey conducted in PR after the
2022 passage of Hurricane Fiona (the survey that explored the potential
demand for resilience hubs). The values of the remaining utility function
parameters (fy, frr, Pur Prar) Were assumed for the purposes of the nu-
merical experiments. Table 2 reports the utility function parameter
values; note that at least one of the income group dummy parameters
must be set to zero, and therefore f; = 0 in all tests. The characteristics
of the hub configurations used in the experiments are presented in
Table 3.

The road network is composed of 1124 nodes and 391 links (not
counting zone centroid connectors). A total of 113 locations were
identified as candidate hub sites. Ten scenarios were generated by
simulating hurricane trajectories over PR. For each scenario, the likeli-
hood of road link failures and the duration of power outages for each
zone were simulated as a function of the perpendicular distance of roads
and zones to the hurricane trajectory. Note that link failures affect the
shortest path distances between zones and hub locations. In addition, it
was assumed that the hub configurations used solar-based systems to
generate energy, and for each scenario s and location j an efficiency
factor y; was generated using solar geospatial data for PR obtained from
the National Renewable Energy Laboratory. Each scenario was assigned

Table 2

p Parameters.
Set ID Po Pu P P
p-Set 1 2 0.1 0.05 0
p-Set 2 1.75 0 0 0
p-Set 3 1.5 0 0 0
p-Set 4 1.25 —0.10 —0.05 0
p-Set 5 1 —0.10 —0.05 0

@ Zone Centroids
= Road Network

0 10 20 km
| I

Fig. 2. Zone centroids and road network (centroid connectors omitted).
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Table 3

Characteristics of the hub configurations.
Type Energy Generation Capacity (watt-hour) Cost ($)
1 25,000 200,000
2 50,000 225,000
3 75,000 350,000
4 100,000 450,000
5 150,000 500,000

the same probability of occurring. The parameters w1, @2, dmax, k, and p
were set to the values of 1, 0.1, 16 km, 0.8, and 0.8, respectively.

5.2. Trials and results

Three sets of trial tests were performed to explore: 1) the perfor-
mance of the proposed heuristics, 2) the impact of different budget
levels, and 3) the impact of higher and varied hub demand patterns. In
the first set of trials the three heuristics were applied to find solutions to
the PR hub location and configuration problem. The first application test
assumed a budget of $2 million and the -Set 1 parameters. The per-
formance of the GA heuristic was examined using different algorithmic
parameters. In particular, the test examined the impact on GA perfor-
mance of p.gq and Peross- Prana CONtrols the type of strategy used to
generate the initial set of solutions in each GA run, while p,,,,, controls
the type of crossover operation applied. The six sets of combinations of
Prana @0d p . Values used in the test are reported in Table 4. For each set
of GA parameters, 50 runs of the GA were performed until 100,000 so-
lutions were evaluated. Multiple runs were performed as the GA is a
stochastic search algorithm and several outcomes would be needed to
compute meaningful performance statistics, and 100,000 solutions were
evaluated in each run as experience suggests that each GA run would
have converged to after that number of chromosome evaluations. In
each run, parameters N, Ny (2 x N), and p,,,, were set to 64, 128, 0.05,
respectively, as typically population sizes of around 20 to 200 individual
solutions produce good results and mutation rates are commonly set to
low values around 0.01 (e.g., Li and Yeh, 2005). The parameters pg, pq,
and p, were all are set to 1 to give equal penalty to each type of
constraint, and the parameters yj, ¥, and b were given the values of 5,
12, and 5, respectively, given the $2 million budget and the assumed
minimum and maximum cost of the hubs presented in Table 3,

Table 4 reports performance statistics for the runs of each GA
parameter set, along with the results obtained for the GRH and GIH.
Fig. 3 shows the progression of the median value of the maximum
objective function value found in the GA trials. GRH found its best so-
lution after 57,462 solution evaluations, while GIH found its solution
after 114 evaluations. The greedy heuristics have no parameters, and
their output is deterministic. Based on the results reported in Table 4 and

Table 4
GA parameters and results for numerical experiments.

Heuristic Best objective function (F) Value Coefficient of
Mean Minimum  Maximum Variation

GA-Set1: {pg = 0, 659,059 649,144 698,870 0.028
Peross = O}

GA-Set2:{p,gq = 0, 663,645 649,144 696,685 0.028
Peross = 0.5}

GA - Set 3:{p,gnq = O, 659,059 649,144 696,685 0.026
Peross = 1}

GA -Set 4:{p,4ng = 0.5, 654,922 630,368 692,280 0.020
Peross = O}

GA -Set5:{p,4,q = 0.5, 652,181 637,211 696,685 0.025
Peross = 0.5}

GA-Set 6:{p,4,g = 0.5, 651,452 635,765 697,671 0.027
Peross = 1}

GRH 630,368 -

GIH 322,528 -
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Fig. 3. Median value of the maximum objective function value in the GA trials.

Fig. 3, the GA heuristic outperformed the greedy heuristics. On average,
the best performing GA instance had parameter Set 2: {9,401 = 0,0¢r0ss =
0.5}. This GA instance produced solutions with an objective function
value 5.3 % higher than the best performing greedy heuristic (GRH).
When p,,,q =0, only Strategy 2 of the IIP is used. This suggests that it is
useful to start the search for solutions by establishing hubs in locations
that are closest to the population zones, which makes intuitive sense.
When p,,.., = 0.5, on average, half of the crossover operations apply the
single-point method, and the other half apply the spatial crossover
approach, suggesting that the new crossover operator developed for this
problem is useful, but only in conjunction with more standard crossover
techniques.

In the second set of trials experiments were conducted to explore the
impact of budget increases on the values of the objective function (F),
the accessibility to the hubs (A), the expected satisfaction of energy
needs (Z), and the distribution of the hubs. Budget increases of 125 %,
250 %, 375 % and 500 %, relative to $2 million, were used in these tests.
The best GA-generated results obtained with the different budgets were
compared relative to the best GA-generated solution obtained using a
budget of $2 million (GA-Set 2 used in all runs). In Fig. 4, the percentage
changes in the values of F, A, and Z functions are reported. As expected,
as the budget increases, the function values increase, although not at the
same rate. A 500 % budget increase ($10 million) resulted in an incre-
ment of 80 % in F, with the Z objective exhibiting more improvement
relative to the A objective. A greater budget means that more hubs can
be implemented, as shown in Fig. 5. Interestingly, in these series of tests
the cheapest hub was selected in all solutions, which maximizes the
number of hubs and their spatial distribution, given the budget
constraint. Activating more hubs reduces the groups’ shortest path dis-
tance to its closest hub, as shown in Fig. 6. The budget experiments were
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=
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Fig. 4. Percentage change in objective functions given the budget increments.
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Fig. 6. Shortest path distance to a hub given the budget increments.

also conducted with the greedy heuristics, and, as before, the GA also
outperformed them, with the lowest difference in best objective function
values being of 8.6 %.

The last set of trials explored the impact of higher and varied hub
demand patterns, particularly in terms of the energy consumption and
generation profiles. Higher demand levels were achieved using the
utility function parameters (the f-sets) presented in Table 2. In these
trial runs, the budget was set to $2,000,000. Each of the g-set results
presented next was obtained using the best design solution X generated
by the GA-Set 2 heuristic, with 5 runs per g set. As Fig. 7 illustrates, the
higher the f-set ID, the higher the probability that the population in a
community would use a hub, and, therefore, the higher the hub demand
levels. The maximum ratio — across the disaster scenarios — of the total
hub energy consumption and the total hub energy generation is

0.30 1

0.25 1

0.20 1

0.15 1

0.10 1

0.05 A

Probability of Selecting Hub

0.00

0 10 20 30 40 50 60
Travel Time to Hub (minutes)

Fig. 7. Probability of selecting a hub for low-income group.
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presented in Fig. 8. Interestingly, despite the increasing hub demand
levels produced by each successive f set, the ratio hovers around 8 % (i.
e., only 8 % of the generated energy is consumed). The higher demand
levels force a shift from 10 hub locations in the best design solution
obtained for $-Set 1 to nine hub locations in the remaining g sets, all with
higher presence of Type 2 hub configurations and higher maximum
energy generation capacity, as shown in Fig. 9. Higher demand levels
also made it harder for the GA to generate feasible solutions that satis-
fied the energy constraints, as illustrated in Fig. 10, which presents the
percentage of generated designs that were feasible (i.e., feasibility rate)
in the runs for each g set.

The f sets in Table 2 successively increase the demand for hub energy
services in a spatially uniform manner, as the utility parameters do not
vary by zone. To explore the impact of spatially varied demand levels on
the stability of the selected hub locations, 100 GA trial runs were per-
formed in which each zone was assigned a different f, parameter value
and all income group parameters were set to 0. Each one of the 100 GA
runs represents a different hub demand scenario. In each GA run and for
each zone i, the value of the f;; parameter was determined by taking a
random draw from a normal distribution with mean 1 and standard
deviation 0.5. The outputs of the 100 GA runs were analyzed to deter-
mine the percentage that each candidate hub location was selected to
establish a hub as part of a run’s best design solution; Figs. 11 and 12
present the results of the analysis. As Fig. 11(a) and Fig. 12 show, a
limited number of candidate locations were selected to establish a hub in
the trial runs. Of the 113 possible candidate hub locations, 41 % were
not selected in any of the 100 demand scenario runs, whereas around 25
% of candidate locations were selected in 12 % or more of the runs. Four
candidate hub locations, which constitute only 3.5 % of all candidate
locations, were selected to establish a hub in 50 % or more trial runs, as
indicated by the red spots in the contour map presented in Fig. 11(a). For
reference, in Fig. 12(b) a contour map of the population concentration is
presented.

5.3. Discussion

As expected, increasing budget levels increase the optimal number of
established hubs, but there are diminishing returns to this investment, as
can be seen in Fig. 4. The numerical experiments showed that the best
performing design solutions had spatially dispersed resilience hubs with
low power generating capacity, as opposed to solutions with spatially
concentrated, high-capacity hubs. In part, this result can be explained by
the accessibility objective function as its value increases when com-
munities’ distance to hubs decreases, and a greater number of spatially
dispersed hubs reduces these distances. Given the budget constraint, the
spatially dispersed hubs must have the least costly and feasible energy
generating capacity. Additionally, the results presented in Figs. 11 and
12 suggest that there is a limited set of candidate locations that are

)]
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Fig. 8. Maximum ratio of energy demanded (L) and energy generated..(E)
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particularly promising across a wide range of demand scenarios. In the
experiments, only 3.5 % of the considered candidate hub locations were
part of design solutions in more than 50 % of the demand scenarios. In
practice, the sensitivity analysis performed here could be used to iden-
tify the best set of hub locations, particularly when there is considerable
uncertainty regarding hub demand levels or the interest of communities
in resilience hubs.

10
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6. Closing remarks

A facility location problem for the optimal placement and configu-
ration of energy resilience hubs was presented, along with three heu-
ristics. The model considers the objectives of maximizing transportation
accessibility to the hubs and maximizing satisfaction of basic energy
needs, subject to constraints on the implementation cost, distance be-
tween communities and their closest hub, and energy generation levels
at the hubs. The GA had the best performance of the three heuristics
developed for the planning problem. The experiments showed that, for
the model system considered, there is decreasing marginal benefits, in
terms of the objective function value components (F, A, Z), as the hub
implementation budget is increased.

The main limitation of the proposed methodology is its reliance on
discrete choice models to estimate the potential community demand
levels for resilience hubs. In practice, planners are unlikely to have ac-
cess to models of hub choice behavior that could be used to simulate
people’s interest in and potential use of resilience hubs. To overcome
this limitation, community outreach is needed to: 1) determine the
factors that people consider important when deciding whether to use a
resilience hub after a disaster and 2) gather data on people’s stated hub
choice behavior given hypothetical disaster scenarios. Using these data,
discrete choice models could be estimated to model people’s preferences
for resilience hubs. Alternatively, planners could assume reasonable
values for the logit model parameters, perhaps borrowed from the
discrete choice models in regional travel forecasting models, and
conduct sensitivity analyses such as those performed in this paper to
select candidate hub locations and capacities. Another model limitation
is that only basic energy needs are considered. The complexities intro-
duced by the need to charge electric vehicles after a disaster were not
considered in this paper. Future research could explore what additional
hub features, beyond energy generation capacity, should be incorpo-
rated to the model to account for electric vehicle charging needs.

Future research should consider strategies to linearize the proposed
problem (e.g., the decision variables could be continuous if hub energy
capacity is stated as a linear function of the monetary investment on a
hub location). Future research can also explore how mobility services
can be optimally integrated in disaster resilience hubs. For example, the
hubs can be a center for shared light electric vehicles (e.g., e-bikes) of-
fering mobility solutions to individuals who find themselves without
their private vehicles in the aftermath of a disaster. Another potential
research subject is the impact of queuing delays at resilience hubs and
their impact on the benefits that individuals obtain from their services.
In terms of heuristic development, further research could be completed
that implements more graph-based search techniques to identify optimal
hub location; the proposed GA only used graph-based search in Strategy
2 of the IPP.
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