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SUMMARY

A long-standing question in biology is whether there are common principles that characterize the develop-
ment of ecological systems (the appearance of a group of taxa), regardless of organismal diversity and envi-
ronmental context."™"" Classic ecological theory holds that these systems develop following a sequenced,
orderly process that generally proceeds from fast-growing to slow-growing taxa and depends on life-history
trade-offs.2'%'3 However, it is also possible that this developmental order is simply the path with the least
environmental resistance for survival of the component species and hence favored by probability alone.
Here, we use theory and data to show that the order from fast- to slow-growing taxa is the most likely devel-
opmental path for diverse systems when local taxon interactions self-organize in light of environmental resis-
tance. First, we demonstrate theoretically that a sequenced development is more likely than a simultaneous
one, at least until the number of iterations becomes so large as to be ecologically implausible. We then show
that greater diversity of taxa and life histories improves the likelihood of a sequenced order from fast- to slow-
growing taxa. Using data from bacterial and metazoan systems,'*'® we present empirical evidence that the
developmental order of ecological systems moves along the paths of least environmental resistance. The ca-
pacity of simple principles to explain the trend in the developmental order of diverse ecological systems

paves the way to an enhanced understanding of collective features of life.

RESULTS AND DISCUSSION

Ecological development

One of the most iconic thought experiments in the life sciences is
what would happen if the tape of life on Earth were rewound and
played again.” Would the same species return in the same or
similar order? Or do historical accidents lead to unpredictable
outcomes? This question is not just philosophical or counterfac-
tual because developmental processes (the appearance of a
group of taxa) undergone by complex living systems are contin-
uously replicating the experiment.? Ecological systems ranging
from microbes to forests are formed by self-organizing networks
of interacting taxa, whose emergent behavior is crucially influ-
enced by their history, changing biotic and abiotic environment,
and chance.? From the primary development of microbiota in
newborns to the secondary development of macrobiota in grass-
lands due to environmental perturbations or seasonal patterns,
local tapes of life are constantly starting or being rewound.
Such development over ecological timescales is analogous
to evolutionary outcomes derived from similar developmental

processes, increasing the relevance to understand general basic
processes.?' 24

The ubiquitous collective pattern of orderly and sequenced
development of ecological systems (also known as succession?)
is widely considered to be one of the foundational problems of
ecology,®™ and it remains central to contemporary research on
biodiversity and environmental change.®® Many mechanisms
and trade-offs promoting development have been documented,
predominantly in plants,?'>'® but these emerge at the interface
of specific organismal traits (e.g., dispersal ability, resource re-
quirements, and relative growth rates) and local systemic con-
texts (e.g., environmental stressors, prevalence of facilitative
versus inhibitory interactions). As a result, fundamental ques-
tions remain unanswered about the generality of these mecha-
nisms and the inevitability of collective patterns or particular
developmental pathways.’™'" A generalized theoretical frame-
work capable of positing testable predictions about develop-
mental trajectories across the tree of life with minimal assump-
tions about specific organismal traits and environmental
contexts would aid in answering these questions and advance
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the understanding of one of ecology’s oldest and still-paramount
challenges.>> "

One key insight is that the developmental order displayed by
ecological systems is generally a process from fast-growing to
slow-growing taxa.??%2° Yet it remains unclear whether this col-
lective pattern depends critically on the complex combination of
specific life-history traits and trade-offs that are often strongly
linked to growthrate (e.g., dispersal ability) or whether it might sim-
ply be the result of local taxon interactions following the path with
the least environmental resistance for species survival (requiring
fewer adaptations) and, hence, the configuration upon which sys-
tems will probabilistically converge.®®? If there is path conver-
gence, it becomes critical to understand the role of individual traits
in modulating such local taxon interactions and paths. Indeed,
discovering minimal processes that can explain the development
of diverse ecological systems can shed new light on the conditions
under which the tape of life might have a relatively predictable
sequence of events.>>® This is increasingly a practical concern,
too, as conservationists seek to restore functional biodiversity in
areas where species have been driven locally extinct®*° and as
the essential roles of microbiome development in sustaining
both human and environmental health become clearer.®’

Formally, we define development as the self-organized pro-
cess of moving from an empty set (a novel environment with
no taxa) to a community of n taxa (a modified environment with
a particular set of taxa) through a collection of different taxon
subcommunities. Previous work in experimental and theoretical
ecology has established foundational knowledge linking com-
munity composition with historical events, assembly and disas-
sembly dynamics, and invasibility.*®*” This body of work has
assumed that the environments remain relatively constant
throughout the development of ecological systems (i.e., no
chance events)."® However, the survival of species depends on
historical accidents as well as on their capacity to modify and
withstand changes in the abiotic and biotic environments (e.g.,
resource availability, competition, and temperature variation).*°
At intermediate levels of biological organization,*® the possible
solutions to these environmental challenges can be represented
by the possible sets of interacting populations (i.e., communities)
that partition or modify the resources available at a given place
and time.?*“° Consequently, it becomes imperative not only to
understand which environments give rise to developmental pro-
cesses but also which constructed environments enabled the
persistence of such processes.?*"

Here, we focus on the developmental order of ecological sys-
tems (i.e., knowing which taxa should be expected to appear
before others regardless of whether the former taxa can survive
across the entire developmental process). That is, we are not
focusing on the actual step-by-step assembly and disassembly
of an ecological system, but simply on the expected order of
taxon appearance. Specifically, our research goal is to investi-
gate the extent to which a minimal model rooted in local taxon
interactions, but without invoking the complexity of multiple
life-history traits, can explain the developmental order from
fast-growing to slow-growing taxa generally observed in nature.

We operationalize development using a general Markov chain
process moving from an empty set & to a given set of n taxa
(Figure 1; see STAR Methods for more details). Conceptually,
we assume that development is possible by the compatibility
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(feasibility) of environmental conditions with current and future
taxon communities. In our theory, development takes the path
of least environmental resistance (i.e., higher compatibility of
environmental conditions across a sequence of taxon commu-
nities). As a metaphor, one can think about the compatibility of
environmental conditions with current and future communities
as the flow of water between reservoirs. The thicker the pipeline
between two adjacent reservoirs, the faster the water flows (the
higher the compatibility). The thickness of a pipeline is a function
of the water capacity of such reservoirs. The water capacity is
constrained by the nature of building elements and the interac-
tions between these elements. Paths (sequence of pipelines)
with higher thickness represent lower environmental resistance.
Water would tend to flow through the thickest pipelines,
imposing less friction (Figures 1D and 1E). The probability of
reaching a target reservoir from an initial reservoir after x time
steps is given by the product of probabilities (proportional to
the thickness of pipelines) of using all possible path combina-
tions across x pipelines. In the case of a simultaneous develop-
mental process, there is just one pipeline. We explore how the
probability of reaching a target reservoir changes under sequen-
tial and simultaneous processes (Figure 1F).

The environmental resistance of developing to a new possible
community (conditional probability of moving to statej given cur-
rent state /) is a function of the feasibility of such communities
(Figure 1C). The higher the feasibility of the current community
and the lower the feasibility of the future community, the higher
the environmental resistance of developing to a new community
(see STAR Methods for a formal definition of feasibility). Feasi-
bility is a function of local taxon interactions (Figures 1A and
1B) and is formalized following five key assumptions: (1) all
taxa have equal dispersal rates. This means that the order of
appearance is unbiased, but this order can be stochastic. (2)
Taxon interactions are a function of taxon consumption rates.
Taxa with higher consumption rates have higher competitive ef-
fects on other taxa (Figure S11). (3) All taxa have the same car-
rying capacity. This means that the higher the per capita growth
rate of a taxon, the higher its consumption rate and consequently
the higher its competitive advantage over available resources. (4)
For modeling purposes and for application to particular datasets,
the maximum growth rate (rmax) of a taxon is proportional to its
average body size using metabolic scaling laws. (5) The average
body size is not expected to change over time. This implies that
competitive effects and the feasibility of a community are also
time-invariant. We present the formal feasibility analysis in the
STAR Methods, which combines ecological dynamics, meta-
bolic scaling theory, and Markov processes (Figure 1).

Using our proposed framework, we theoretically investigate
the probability of a sequenced developmental process (intro-
ducing one taxon at a time) as opposed to a simultaneous devel-
opmental process (introducing all taxa at the same time). We
then evaluate the conditions under which the sequential devel-
opmental process can follow an orderly path from fast-growing
to slow-growing taxa. Specifically, we address whether this
orderly path corresponds to the theoretical path with the highest
probability, referred to as the path of least resistance. We focus
our analysis on the special case of directional assembly (once a
taxon is successfully introduced, it cannot go extinct). Effec-
tively, this analysis aims to explain the probability that a group
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Figure 1. An illustration of developmental processes in ecological systems

(A) A three-taxon competition system (taxon pool: tx1, tx2, and tx3), where node size represents the maximum growth rates (rmax) of each taxon. The thickness of
arrows represents the strength of pairwise interactions.

(B) Estimation of pairwise interactions a; based on rmax. Following metabolic scaling theory, rmax scales with body mass in plants and metazoans with a power of
—1/4 and in bacteria and archaea with a power of 3/4. For bacteria and archaea, rmax also scales with the copy number of ribosomal RNA operons (rrn) with a
power of 5/4 (STAR Methods; Figure S10).

(C) Feasibility domains for communities that consist of one taxon (e.g., community of tx1 in gray), two taxa (e.g., systems of tx1 and tx2 in yellow or tx1 and tx3 in
blue), and three taxa (in brown). The feasibility domain of a single taxon is assumed to be 0.5 (when its effective resource availability §1 >0). For a multi-taxon
community, the feasibility domain is governed by the interaction strengths a; between taxa (STAR Methods).

(D) Sequential development can be probabilistically described by a Markov chain, where the feasibility-based transition probabilities P are shown as pie charts for
communities starting from none & to all three taxa {123}. These transition probabilities are determined by the feasibility of all possible communities in the
sequence (match with colors in C; STAR Methods). Each community is assumed to either maintain the current taxon composition or transition to a larger
community with an additional taxon. The results remain robust considering disassembly processes (STAR Methods). The overall probability of developing the
three-taxon system along the path @— {1} — {12} — {123} can be calculated by multiplying the three transition probabilities along the path. The path with the
highest probability is called the path of least resistance (represented by pink water pipes).

(E) Simultaneous development can also be probabilistically described by a Markov chain and is equivalent to a binomial process (STAR Methods). The transition
probabilities are determined by the feasibility of {123} only (match with colors in C; STAR Methods).

(F) When comparing the probability of developing from the empty set J (standardized baseline) to the largest community {123} with all taxa, both sequential and
simultaneous processes are guaranteed to succeed (y = 1) after a certain number of trials (x axis). However, sequential development can achieve this with fewer
trials.

P(o ~123 )=®

of n species can be found together at a given point in time. While
this analysis is a simplification of the developmental process un-
dergone by natural systems (i.e., no extinctions), and under our
assumptions, this analysis generates the same results as if addi-
tionally considering disassembly processes (Figures S1D-S1F;
STAR Methods). That is, under assembly only, the question is
which path is the system most likely to take. Under assembly
and disassembly, the question would be which path is most
frequently visited by the system if a system is observed with n
taxa. We test our theoretical predictions using empirical

developmental data across a wide range of taxonomic levels,
including infant gut and marine microbiota,'*'® tree and bird sys-
tems,’®"” and multiyear and seasonal mammalian herbivore
systems.'®'® Using these empirical data, we investigate the
extent to which the observed developmental order follows the
theoretical path of least resistance.

Theoretical predictions
We started our theoretical analysis by investigating whether a
sequenced assembly (a special case of development) is more
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THEORETICAL PREDICTIONS
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Figure 2. Probabilistic explanation for the
sequential order of development going
from fast-growing to slow-growing taxa

(A) Comparison of cumulative probability of devel-
opment (y axis) between sequential development
(green) with varying numbers of initial taxa and a
simultaneous development (brown) within a limited
number of trials (or attempts; x axis). Notably, in
sequential development, the process starting from
one taxon reaches probability 1 more quickly
compared to those starting with larger initial com-
munities. Additionally, the probability of develop-
ment through the simultaneous process is negli-
gibly small, though it may reach probability 1 if the
number of attempts is sufficiently large (STAR
Methods).

(B) Relationships between the path of least resis-
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03 04 05 tance and rmax of sequential development starting

from 1 taxon. Firstly, the negative expected corre-
lations between the most likely developmental or-
der of a taxon and its rmax (y < 0; Spearman’s rank

correlation) indicate that, in order to maximize the probability of development, fast-growing taxa with larger rmax are expected to appear earlier. Also, as the
standard deviation of rmax among taxa (x axis) increases, these negative correlations tend to be stronger (approaching y = —1). This finding suggests that when
the diversity in the rmax among taxa within a system is higher, the appearance order starting from fast-growing taxa to slow-growing taxa becomes more
distinguishable. Note that in both panels, we choose n = 6 taxa only for illustrative purposes. The results remain consistent across different choices of n and when

additionally considering disassembly (Figure S1).
See also Figures S11 and S12.

likely than having all taxa introduced at once. In other words, is
there an inherent tendency toward sequenced assemblies
even without invoking extensive details about individual charac-
teristics (only local taxon interactions)? Is development (and
ecological restoration) more likely to succeed when proceeding
one species at a time rather than in batches? To test these ideas,
we calculated the probabilities for sequential and simultaneous
development using model-generated systems following our pro-
posed feasibility analysis (STAR Methods).

Figure 2A shows the cumulative probabilities of reaching full
development as a function of the number of trials, comparing
sequenced versus simultaneous development in a hypothetical
system of n = 6 taxa, starting from different initial numbers of
taxa (1 <m < n). Note that m = n is equivalent to the simulta-
neous development (i.e., all taxa appear simultaneously). Results
are qualitatively consistent using other dimensions n (Figures
S1A and S1B). By construction, these systems can be assem-
bled starting from any initial community (STAR Methods). We
found that the smaller the initial number of taxa (after the empty
set ), the larger the cumulative probability of development.
Only after an extremely large number of attempts does the cu-
mulative probability of simultaneous development asymptoti-
cally converge to one. Together, these results suggest that,
barring a vast number of introduction attempits, it is far less likely
to observe a system developed from the simultaneous appear-
ance of many taxa than one arising from a sequenced process.

Having established the inherent probability of a sequenced
development of ecological systems, we theoretically investi-
gated the conditions under which it follows a sequenced, orderly
process as a function of biodiversity. To do so, we used the same
systems of n =6 taxa generated before (as an illustrative
example). Then, we divided these model-generated systems
into groups, ensuring equal intervals of the standard deviations
of rmax among taxa. For each system, we identified the path

4816 Current Biology 34, 4813-4823, October 21, 2024

with the highest probability, which is the path of least resistance.
Next, we calculated Spearman’s rank correlation between the
taxon order in each estimated path and the generated taxon
rmax. Figure 2B shows that the most likely appearance order
of a taxon is, in general, strongly and negatively correlated with
its rmax, indicating that the path of least resistance occurs
when fast-growing taxa appear first. However, note that positive
correlations between appearance and rmax can be observed,
especially in unlikely paths. Furthermore, we found that higher
variations in growth rates are associated with more strongly
negative correlations between a taxon’s most likely appearance
order and its rmax. By extension, pools with a greater diversity of
taxa accentuate the positive association between develop-
mental success and a successional process going from fast-
to slow-growing taxa.

Because our feasibility analysis is based on local taxon inter-
actions, our results can be explained by the fact that similar
competitive advantages (similar rmax) promote symmetric inter-
actions and in turn increase the feasibility of a community (Fig-
ure S11). Asymmetries get amplified between taxa with small
competitive advantages (Figure S12). Similarly, because the
probability of a path is given by the multiplication of conditional
probabilities, this product is maximized by having taxa with
similar rmax together in an ordered assembly rather than a disor-
derly one. Theoretically, the path of least resistance solves a Par-
eto front, maximizing the probability of staying and leaving. For
example, this is achieved at P(staying) = P(leaving) = 0.5.
This means that the path cannot select the maximum probability
at each step, only the maximum product of probabilities,
implying a combination of forming and breaking symmetries.
By starting from fast-growing taxa, the probability of developing
the system (the largest community) under a Markov process in-
creases, but it is difficult to find a perfectly ordered process un-
less there is a high variability of rmax among taxa. While all these
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Figure 3. Observed developmental order in empirical systems and comparisons with theoretical and random orders
(A) Primary development involving 6 phyla of gut microbes in a healthy male infant.’*

(B) Primary development involving 5 orders of marine bacteria in a laboratory study.'®

(C) Secondary development involving 7 species of trees in the northeastern United States.'®

(D) Secondary development involving 13 families of birds in the southeastern United States (Figure S2).""

(legend continued on next page)
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previous theoretical results are generated assuming a directional
assembly (i.e., no extinctions), and under our assumptions, these
results do not change by following more complex scenarios
involving disassembly dynamics (Figures S1D-S1F; STAR
Methods). These results imply that biodiversity can turn into a
heterogeneity of local taxon interactions, which can then amplify
the emergence of a sequenced and orderly development.

Empirical corroboration

To empirically evaluate our theoretical predictions, we com-
piled publicly available data from developmental processes
involving taxonomic levels ranging from species to phyla, time-
scales spanning days to decades, and organisms spanning
~15 orders of magnitude in size from bacteria to elephants
(STAR Methods). The first two datasets represent primary
development in microbes: the development of an infant gut mi-
crobiota comprising six main phyla across 2.5 years using fecal
samples and 16S rRNA and metagenomic sequence data,'*
and the development of marine bacteria from a laboratory
model system comprising five main orders over a span of
144 h."® The third and fourth datasets represent secondary
development in trees and birds: the development of a commu-
nity of trees comprising 7 species in Princeton, NJ, that was
disturbed by a blight in 1920 and hurricanes in 1938 and
1944,"° and the development of an assemblage of birds com-
prising 13 main families from abandoned agricultural fields.'”
The fifth and sixth datasets represent secondary and seasonal
development, respectively, of large mammalian herbivores in
Gorongosa National Park: the development of the entire herbi-
vore system comprising 16 genera over 28 years after the Mo-
zambican Civil War'® and the development of a local herbivore
system comprising 11 genera throughout the dry season in
2016."® rmax were approximated using metabolic scaling rela-
tionships based on average ribosomal RNA operons copy
numbers for bacteria and archaea,®” diameter at breast height
for trees,®® and body masses for metazoans.'®%*

Figure 3 shows that the development of these empirical sys-
tems tends to proceed from fast-growing to slow-growing
taxa. As predicted, we found strong negative correlations
(Spearman’s rank correlation pe [— 0.93, — 0.44]) between
the observed order of taxon first appearance and the rmax esti-
mated for each taxon. Next, for each empirical system, we deter-
mined the theoretical path of least resistance using rmax
following our proposed feasibility analysis (STAR Methods). In
line with our theoretical results (Figure 2), we found strong posi-
tive correlations (Spearman’s rank correlation p e [0.48, 0.93];
pink stars) between the observed order of taxon first appearance
and the theoretical optimum, which were always larger than
those expected from random appearance orders (boxplots).
These results are robust to various assumptions and criteria
used in data processing (Figures S2 and S3; STAR Methods).

Current Biology

Additionally, Figure 4 shows that development from fast- to
slow-growing taxa becomes stronger with increasing diversity
(variation) in their growth rates, confirming our theoretical predic-
tions. For each empirical system, we drew all possible subsets
(combinations) consisting of 60% taxa. Then, for each subset,
we calculated Spearman’s rank correlation between the
observed order of first appearance of a taxon and its rmax, as
well as the standard deviation of rmax among all taxa within
the subset. Next, we divided all subsets into three diversity
groups based on the standard deviations of rmax and plotted
the distribution of correlations between observed first appear-
ance order and rmax within each group. In line with our theoret-
ical predictions (Figure 2B), we found that average correlations
become more negative with greater diversity in rmax. These re-
sults are robust to the choice of taxon pool size and the number
of diversity groups (Figures S4-S9), suggesting that diversity
plays a central role in shaping the development of ecological
systems.>®

Conclusions
We have presented a general theoretical framework for develop-
ment based on basic feasibility assumptions rooted in local
taxon interactions to better understand the conditions underlying
the tendency of taxa to appear from fast-growing to slow-
growing taxa. More than a century of evidence shows that the
development of ecological systems is characterized by ordered
processes and that systems often converge on similar trajec-
tories.>® %% Can this phenomenon be explained only with
reference to a large combination of individual traits and circum-
stances, or can it be understood as a self-organized collective
outcome emerging from basic premises? We have shown that
if one assumes a given developmental order as a local solution
via taxon interactions to changing environmental challenges,
then the solution that maximizes the number of surmountable
environmental challenges is typically the one that proceeds
from fast-growing to slow-growing taxa. In other words, devel-
opment follows paths of least environmental resistance.
Because biodiversity promotes an orderly sequential develop-
ment and natural selection acts at the local level,*° it can be
speculated that eco-evolutionary dynamics via life-history traits
and environmental compatibility may play a reinforcement role
in preserving this basic developmental process at the system
level.?®

Supporting the statements above, we have shown theoreti-
cally that a sequential development is more likely than a simulta-
neous development, at least on the scales of time and iteration
that plausibly resemble those of natural events. Indeed, it re-
quires an enormous amount of tape repetitions (attempts) for a
simultaneous assembly to become comparable to a sequential
one. Another prediction derived from our theory is that the higher
the heterogeneity of intrinsic growth rates within a pool of taxa,

(E) Secondary development (corresponding to the postwar reassembly over the period 1994-2022) involving 16 genera of herbivores in Mozambique (Fig-

ure S3)."°

(F) Seasonal development (over the dry season in 2016) involving 11 genera of herbivores in Mozambique.'®

In each of these empirical systems, the correlation between the observed order of appearance (x axis) and the proxy for rmax (y axis) is negative (Spearman’s rank
correlation p = —0.93, —0.80, —0.68, —0.44, —0.50, and —0.56 in A-F, respectively), in line with our theoretical prediction (Figure 2B). On the right side of each
panel, the correlation between the observed order of appearance and the theoretical order of path of least resistance (pink stars; p = 0.93, 0.80, 0.69, 0.48, 0.52,
and 0.61, respectively) is significantly higher than expected under randomly generated orders (boxplots; based on 10% random paths).
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the more pronounced the ability of an orderly process can char-
acterize the development of ecological systems—perhaps help-
ing to explain why changes in biodiversity can drastically alter the
development of ecological systems.”® Importantly, we have
focused on paths that can minimize environmental resistance
and become more likely. While there is a tendency in these paths
to go from fast-growing to slow-growing taxa, small differences
in growth rates can introduce deviations from this development
structure. For example, variations in life-history traits or life-his-
tory trajectories can help to explain deviations from the expecta-
tion.>” It is worth mentioning that these results do not provide the
specific step-by-step order of assembly (and disassembly), but
simply they provide a minimal model rooted in local taxon inter-
actions to explain the expected order of taxon appearance in
natural systems without the need to invoke a high level of infor-
mation about life-history traits. That being said, this minimal
model supports the existence of least-action principles that
can apply to the development of life on Earth.

Using empirical data from a wide range of developmental pro-
cesses and taxonomic groups, we have found support for our
theoretical results and predictions. The qualitative consistency
of these results from very small ecological systems (bacteria in
1 L bottles under controlled laboratory conditions over 6 days)
to some of the world’s largest (ungulates and elephants in a
4,000 km? national park) suggests a potentially high level of gen-
erality. We emphasize, however, that our results do not rule out
alternative hypotheses of developmental processes, nor are
they incompatible with explanations that invoke more nuanced
biological mechanisms to explain specific trajectories. Rather,
our results illustrate that basic assumptions can be sufficient to
explain coarse-grained properties of these dynamics and estab-
lish an expectation for their common tendencies. Future studies
might use our work as a platform to explore general paths and
processes for taxonomic and interaction turnover during devel-
opment. Indeed, the interplay between stochasticity and deter-
minism continues to be an active line of research.>%°*° On
the one hand, historical contingency (environmental conditions)
seems to be an underlying factor modulating the short-term dy-
namics of ecological systems."*° On the other hand, convergent
evolution seems like a plausible explanation for finding a finite set
of long-term solutions to an environmental challenge.*®®" Our
work suggests that accounting for least-action principles (e.g.,
least environmental resistance) can be a step toward integrating
different schools of thought.
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Figure 4. Sequential development from fast-growing to slow-growing taxa becomes more distinguishable as the diversity in rmax among

taxa increases

(A-F) For each of the empirical systems in Figure 3, violin plots and embedded boxplots show the distribution of correlations between the observed appearance
order of a taxon and its rmax (y axis; Spearman’s rank correlation) as a function of the standard deviation of rmax among taxa (x axis). Brown diamonds inside
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entire system size and set the number of diversity groups to three, but results are consistent across different choices of parameters (see Figures S4-S9).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Details of empirical data
In this paper, we investigate six published empirical datasets of varying ecological systems, including infant gut microbes,'* marine
bacteria, '° trees, '® birds,'” and herbivores.'®"®

The first empirical system of infant gut microbes (presented in Figures 3A and 4A;'#) was drawn from a case study that tracked the
gut microbial composition of a healthy male infant over 2.5 years, beginning on day 3. From a time series of more than 60 fecal sam-
ples, this dataset represents primary succession (de novo system development) and consists of six main phyla of bacteria and
archaea (observed order of appearance): Firmicutes (#1), Proteobacteria (#2), Actinobacteria (#3), Bacteroidetes (#4), Verrucomicro-
bia (#5), and Euryarchaeota (#6). This observed order of appearance is shown in Figure 6A and Table S6 of Koenig et al.'*

The second empirical system of marine bacteria (presented in Figures 3B and 4B;'%) was drawn from a laboratory microcosm
study. The authors immersed chemically defined, nutrient-rich microparticles in coastal seawater over a span of 144 hours. Then
they recorded a collection of bacterial strains isolated from different phases of colonization and generated 16S rRNA gene se-
quences. This dataset also represents primary succession and consists of five main orders of bacteria (observed order of appear-
ance): Alteromonadales (#1), Vibrionales (#2), Flavobacteriales (#3), Oceanospirillales (#4), and Rhodobacterales (#5). This observed
order of appearance is shown in Figure 3A of Datta et al.'®

The third empirical system of trees (presented in Figures 3C and 4C;"®) was from a 500-acre woods in Princeton, NJ, owned by the
Institute for Advanced Study. The forest was disturbed by a blight in 1920 and hurricanes in 1938 and 1944. Given the slow pace of
forest succession, which makes direct observation impractical, the author inferred the successional patterns, including the order of
taxon appearance, using the ages of all trees on various plots of land with unknown histories. The author has also confirmed these
inferred successional patterns with further observations. This dataset represents secondary succession (local reassembly of an es-
tablished species pool following an environmental change) and consists of 7 species (order of appearance): Betula populifolia (#1),
Liguidambar styraciflua (#2), Populus grandidentata (#3), Nyssa sylvatica (#4), Acer rubrum (#5), Liriodendron tulipifera (#6), and Fagus
grandifolia (#7). This order of appearance is shown in Figure SUCCESSIONAL CHANGES IN PRODUCTIVITY on Page 95 of Horn.'®

The fourth empirical system of birds (presented in Figures 3D and 4D;17) was from abandoned agricultural fields in the Piedmont
region of Georgia, United States. Between 1947 and 1951, the authors counted and identified birds across ten areas at various stages
of natural vegetative succession, ranging from one-year abandoned fields to young mature forests aged over 150 years. This dataset
represents secondary succession and consists of 14 main families (observed order of appearance): Parulidae (#1), Passerellidae (#1),
Cardinalidae (#1), Vireonidae (#2), Polioptilidae (#3), Paridae (#3), Troglodytidae (#3), Trochilidae (#4), Sittidae (#4), Tyrannidae (#4),
Picidae (#4), Turdidae (#4), Corvidae (#4), and Cuculidae (#5). This observed order of appearance is shown in Table 1 of Johnston and
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Odum."” The ruby-throated hummingbird (Archilochus colubris), the only representative of Trochilidae in the dataset, is a known
specialist that feeds largely on nectar from certain types of flower and sustains one of the highest mass-specific metabolic rates
of any vertebrate.®® Because the unique foraging behavior and outlying physiology of this species relative to others in the dataset
has the potential to bias our inferences (e.g., by skewing detection probability in the original data depending on the timing and loca-
tion of surveys in relation to flowering phenology), we excluded it from the main text analysis as an outlier. However, we obtained
qualitatively similar results when including the hummingbird (see Figure S2).

The fifth empirical system of herbivores (presented in Figures 3E and 4E;'®) was from Gorongosa National Park, in central
Mozambique, southeast Africa. The data reflect a 28-year time series of aerial count data on ungulates and elephants from 16 genera
(Tragelaphus being the only genus with >1 species) from 1994 to 2022."° Surveys were conducted both before (6 surveys of 9 genera
from 1968-1972) and after (14 surveys of all 16 genera from 1994-2022) the Mozambican Civil War (1977-1992), which caused > 90%
declines in all large-herbivore taxa.'® Densities were determined by dividing the number of animals counted by the maximum area
surveyed in each year (1968-2018 data are from Table S3 of Stalmans et al.'®; 2020 data are from Stalmans and Peel,®” and
2022 data are from Stalmans et al.®®). The 14 postwar surveys analyzed here were conducted at varying intervals (1-3 years) using
different methodologies (3 fixed-wing, 11 by helicopter) at different scales (106-2195 km?). The earlier surveys included the three
fixed-wing counts (1994, 1997, 2004) and were conducted at smaller scales (average 472 km? from 1994-2007 vs. 1705 km?
from 2010-2022). To account for sampling artifacts arising from these discrepancies, we calculated moving averages of densities
in windows of 3 successive surveys (e.g., the value calculated for 2020 is the average of the 2018, 2020, and 2022 counts). This
yielded estimates for 12 postwar intervals. We note that smaller species are harder to detect in aerial surveys, especially in fast-flying
fixed-wing aircraft, but this bias is conservative with respect to our prediction (i.e., smaller species are less likely to be detected,
particularly in early years). Because low observed densities do not necessarily indicate a viable population, we set three density
thresholds (25%, 50%, and 75%), each relative to the maximum density recorded for the genus across all pre- and postwar surveys;
agenus is classified as appeared when its density exceeds the threshold for the first time. These thresholds signify different assump-
tions about when a taxon can be considered to have successfully (re)established inside the park, as opposed to being vagrant in-
dividuals or nascent populations vulnerable to stochastic extinction. Taxa that are increasing in density but have not reached a given
threshold were assigned the last order of appearance. For example, in Figure S3A, wildebeest (Connochaetes), buffalo (Syncerus),
and zebra (Equus) were all present in 2022 but had not yet met the 25% threshold. The implicit assumption that these taxa will arrive is
justified by their rapidly increasing densities: in fact, wildebeest exceeded 25% of maximum prewar density in 2022, but this is not
captured in our moving-window approach, while buffalo (which are threefold larger with a correspondingly lower rmax) reached 11%
and have been increasing by an average of 12% yr~ " since 2016. The only uncertainty is zebra (>2% of prewar maximum in 2022 and
still at risk of failure), but excluding zebra does not alter the result. Notably, the reassembly of large herbivores in Gorongosa is an
overwhelmingly natural recovery process (the only genera appreciably supplemented by translocations are Connochaetes, Synce-
rus, and Equus, which have not yet arrived under any of our thresholds) and has been relatively robust to external perturbations.®%°
In the main text (Figures 3E and 4E), we report results using a conservative 25% threshold. Figure S3 shows the results under all three
thresholds.

The sixth empirical system of herbivores (presented in Figures 3F and 4F;'®) was also from Gorongosa National Park. We analyzed
encounter frequencies with individuals of different large mammalian herbivores (ungulates and elephants, 17-3825 kg) while driving
road transects in the south of the park during the progression from the early to late dry season (June-August) of 2016. These data
reflect secondary succession in response to seasonal change within a ~250 km? focal area and consist of 11 genera (observed order
of appearance): Aepyceros (#1), Kobus (#1), Phacochoerus (#2), Alcelaphus (#3), Ourebia (#4), Tragelaphus (#5), Redunca (#6), Hip-
potragus (#7), Loxodonta (#8), Connochaetes (#9), and Syncerus (#10). Again, only one genus comprises >1 species (Tragelaphus
with 3 closely related, ecologically similar species’®). The observed order of appearance is from the metadata deposited in Dryad
Digital Repository accompanying Pansu et al.’® The seasonal results are consistent with the multi-decadal analysis (Figures 3E,
4E, and S3) and provide support for our theory over extraordinary organismal and spatiotemporal scales.

For the microbial systems, we extracted rrn copy numbers from the rrnDB database,®” from which we estimated the rmax of infant
gut microbes and marine bacteria. In these two systems, the rmax of each taxonomic rank, either a phylum or an order, was calcu-
lated as the average rmax estimated by the average rrn copy number across all documented species in the rrnDB database within the
respective taxonomic level. For the forest system, we used the diameter at breast height data from the BIEN database® 7" to es-
timate the rmax of each species. For the animal systems, we used body mass data from the AVONET database for bird species®* and
Pansu et al.'® for herbivore species to estimate the rmax (Figure 1B). The rmax for higher taxonomic ranks, either a family or a genus,
was calculated based on the average body mass across all species in the respective group. We then assessed the correlation be-
tween rmax and observed appearance order using Spearman’s rank correlation coefficient (p). Similarly, we used Spearman’s p to
evaluate the correlation between the observed path and the theoretically predicted path of least resistance and compared this with
the distribution of p values obtained from 10° randomly generated paths (see results in Figures 3, S2A, and S3A-S3E).

To test our theoretical predictions about the influence of diversity in rmax on developmental order, we drew subsets of taxa from
the entire empirical system to generate smaller assemblages with varying degrees of diversity in rmax. We then compared Spear-
man’s rank correlations between rmax and observed order of appearance across these subsets, segmenting diversity (standard de-
viations) of rmax into different groups (see results in Figures 4, S2B-S2D, and S3B-S3F). For illustration, we delineated these subsets
as 60% of the entire system size and the number of diversity groups as three. However, our results are robust to variation in these
parameters (see Figures S4-S9).
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METHOD DETAILS

Feasibility analysis

We illustrate the proposed feasibility premises of development using a hypothetical, competition, three-taxon system S as an
example (Figure 1). We assume that the partition or modification of resources is characterized by the competitive effect a; =
ag(C; /C;) of taxonj on taxon i (Figures 1A-1B), where aq is a normalization constant and C; is the average consumption rate of taxon
i (Equation 15). To study the maximum effect of growth rates on competition, we assume that all taxa have the same environmental
carrying capacity and dispersal ability, and consequently a;; «aj(rmax; /rmax;), where rmax; is the maximum growth rate of taxon i
(Equation 35). This assumption implies that taxa are not constrained to enter at a particular order based on their specific traits (e.g.,
dispersal ability) other than their maximum growth rates and the current subset of present taxa.”>”"* Next, using metabolic scaling
theory,”® we can approximate maximum growth rates as a function of average body mass (M) as rmax,-och, with 8 = — 1/4 for
plants and metazoans, and g = 3/4 for bacteria and archaea.”®’” For bacteria and archaea, maximum growth rates can also be

approximated as a scaling function of ribosomal RNA operons (rrn) copy numbers as rmax,-ocrrnf with 8 = 5/478 (Figure 1B). The
choice of scaling exponent does not affect the qualitative results of our framework (see below the section “quantification and sta-
tistical analysis” in STAR Methods). It is worth noting that our proposed framework can be considered as a basic process upon which
one can add more complex contexts. For example, our framework illustrates that carrying capacities can act as an upper limit to con-
sumption rates and can be used instead of growth rates upon the selection of specific trade-offs (Equation 28; Figure S10).

We also assume that any possible subset of taxa (community C) from the hypothetical system (C =) is compatible with a
specific feasibility domain of environmental space Dg(C), and its feasibility is proportional to the size of such a domain and is a
function of taxon interactions (Figure 1C). Formally, we determine Dr(C) following the Lotka-Volterra model (Equation 1): dN;/

dt = Nir;/6; (0,- - Za,-,—l\l,-), where N; is the density of taxon /, r; is the intrinsic growth rates of taxon i, 6; is the effective resource
jecC

availability of taxon i, and a; is the competitive effect described in the preceding paragraph. Then, the feasibility domain corresponds
to the collection of compatible environmental conditions <DF(C) = { ZN]-*a,- A= [31 32"'3‘5‘] , N/-* >0 } e R/ ) leading to positive
jecC

equilibrium densities (N* =A"9 >0) constrained by the column vectors (a;) of the competition matrix A. Because we are interested
in a developmental process, we assume that the system S can exhibit different community compositions, and therefore, a different
resource partition or modification across time.”>"* For instance, in a hypothetical system under a directional assembly, we may
observe that taxon 1 appears first, then taxon 2, and lastly taxon 3. This sequence implies that changes in the feasibility domain
are given by De({1}) = Dr({12}) — Dr({123}). This same logic would apply to any other possible sequence of events, representing
possible solutions to time-varying environmental conditions.

Lastly, we assume that a system S develops through sequenced community changes (the developmental path) that have the high-
est probability (Figure 1D). We search for this path of least resistance following a Markov chain process (the solution with the highest
probability). Specifically, we translate each feasibility domain Dg(C) into a probability P(C) = vol(Dr(C) N®/) /vol(®'‘), where
vol(®/¢!) corresponds to the volume of the parameter space of the environmentally-driven parameters 6 (a proxy for environmental
space). For example, assuming that taxon 1 appears first, the feasibility domain Dr({1}) corresponds to half of vol(®) and P({1}) =
0.5. Weassume P({1}) = P({2}) = P({3}), which implies consistent dispersal probabilities across the three taxa. Because this is
a competition system, Dg({1}) > Dr({12}) > Dr({123}),”® which implies P({1})>P({12}) > P({123}). However, unless interactions
are the same, P({12})+#P({13})#P({23}). Under a Markov chain process, a system can either remain in its current state or
change (refer to sections below). In our example, the systems will transition from empty & to a one-taxon community with proba-
bility 1 — P(@— ) = 0.5. But, whether it transitions to C = {1} instead of C = {2} or C = {3} depends on the ratio
P({1}) : P({2}) : P({3}). Assuming taxon 1 appears, the system will remain with a probability of P({1} —{1}) = 0.5. Alternatively,
it will transition to a new state with probability P({1} —{12}) + P({1} = {13}) = 1 — P({1} —{1}) = 0.5. But, whether it transi-
tions to C = {12} instead of C = {13} depends on the ratio P({12}) : P({13}). This enables us to quantify the probability of each path
by multiplying the transition probabilities along the chain (e.g., P(J —{1} —» {12} - {123}) = P(J —{1}) x P({1} - {12}) x
P({12} — {128})). Notice that the sequenced probability P(J — {1} — {12} — {123}) is not necessarily the same as the one single
event or simultaneous development P(J — {123}) (Figure 1E). Then, the probabilities among all possible changes can be written as a
transition matrix (P). The path of least resistance is mathematically the shortest path of the directed and weighted graph constructed
using the adjacency matrix —log P (Equation 44).

To perform our theoretical analysis, we calculated the cumulative probabilities for sequential and simultaneous development in
different model-generated systems (Figure 1F). For each system, we assign taxon body masses drawn from a log-normal distribution
centered at zero with varying standard deviations. Then, we estimated taxon rmax using the generated body masses following a
scaling relationship with a power of 3/4 (i.e., rmax = (body mass)®4). Results are qualitatively consistent across different power re-
lationships (Figure S1C). Next, we estimated the elements of each interaction matrix A as aj; «ap(rmax; /rmax;) (Equation 35), and
calculated the transition matrix P for the developmental process (Equation 43). The cumulative probability of development is calcu-
lated as the conditional probabilities of transitioning to a particular set of n taxa (community S) in x trials (attempts) starting from the
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empty set . For each initial taxa, the respective conditional probability is the value at the intersection of row & and column S in the
x-step transition matrix P*. Specially, under the simultaneous development, the cumulative probability can be understood as the fre-
quency of observing at least one success in x independent attempts when having all taxa together (1 — (1 — P({S}))*), where
P({S}) is the one-attempt probability (Equation 3). Note that the results are consistent when disassembly is additionally considered
(Figures S1D-S1F; STAR Methods).

Lotka-Volterra model and feasibility
Our theoretical framework is based on the classic Lotka-Volterra model:

dN; j .
dtl = Nig (0, - Za,-,-l\l,-), (Equation 1)
! jes
where the vector N = (N, ...,N‘s‘)T represents the densities of all taxa ie {1, ...,|S|} =S within the system S. Here, |S| denotes

the number of taxa in the system (i.e., the cardinality of a set). The vector r = (ry, ...,r‘s‘)T e RI¥! represents the intrinsic growth rate
of all taxa i e S. The vector 6 = (64, ..., 0‘5‘)T e Rl represents the effective resource availability (also known as environmental car-
rying capacity) of all taxa i e S. The matrix A = (a,-,-) e RISIXIS| represents the pairwise interaction matrix. Each element aji is unitless,
corresponding to the per-capita effect of taxon j on taxon i relative to taxon i’s self-regulation. a; >0,i+/ represent interspecific
competitive interactions. Intraspecific competitive interactions a; = 1 with the unitless normalization. Note that the classic Lotka-
Volterra model Equation 1 is a phenomenological model. The effective resource availability 8 = (65, ...,6,s) " € Rl consists of the
joint effect of the internal (e.g., intrinsic growth rate) and density-dependence factors acting on the growth rate of each
taxon.74‘80’81

In this paper, we assume that the pairwise interactions serve as a coarse-grained measure of the average interactions under envi-
ronmental uncertainty, which is in line with a structuralist (also known as internalist) perspective.72'82'83 Specifically, the structuralist
perspective assumes that interactions among taxa (i.e., biological structure) are invariant and determine (or constrain) the environ-
mental conditions compatible with the feasibility of ecological systems. Therefore, while it is expected to observe changes in pairwise
interactions, the interaction matrix A can be interpreted as an expectation of the invariant biological structure of an ecological system.
This conceptual simplification also allows for a rough estimation of interactions using metabolic scaling laws (Figure 1B; STAR
Methods). Besides, it is worth noting that our analysis focuses exclusively on competition systems to meet the requirements of
the estimation (Figure 1A; STAR Methods).

Additionally, each effective resource availability & captures the phenomenological influence of an environmental challenge on the
growth potential of every individual taxon in the system S. This implies that distinct environmental challenges will lead to varying 6 of
the taxon. The combinations of # compatible with the feasibility of taxa in the system S (known as the feasibility domain Dg) can pro-
vide an approximation of the possibility of the system S in response to environmental challenges.”*"* Specifically, the feasibility
domain Dr(.S) is bounded by the column vectors a of interaction matrix A:

Dg(S) = {Z’Vfa/ A =[aja;as),N e R } e R¥, (Equation 2)

jesS

where a; is thejth column vector of the interaction matrix A. In other words, if @ € De(S), it guarantees that all taxa within the system S
are feasible (i.e., N* = A~'6>0), a necessary condition for coexistence under equilibrium dynamics.®* For any community € within
the entire system S (i.e., C=.S), the feasibility domain D¢ (C) is bounded by the column vectors of the |C| X |C| sub-matrix within the
interaction matrix A that corresponds to the community C.

Without any prior information about the environmental challenges, we assume all directions of @ are possible and equally likely,
making the parameter space ®°! of ¢ a closed unit sphere in |S|-dimensional space. Then, we can normalize combinations of
compatible @ by the parameter space ®'° of 8 to approximate the feasibility (a probability between 0 and 1; Figure 1C):

vol(Dr(S)N @)

P(s) = vol(®)

(Equation 3)

It is worth mentioning that the assumption about an unbiased environment does not affect our qualitative results. This is true
because even if we bias the environment (parameter space), this biased space needs to be inside the feasibility domain of all species
together (otherwise there is no assembly). This implies that on average the bias will affect all the conditional probabilities in a propor-
tional fashion leading to nearly the same path of least resistance.”

Furthermore, we would like to add a brief note that feasibility can be used to compute the transition probability, which represents
the likelihood of transitioning from one community to another in the ecological developmental process (refer to the section “quanti-
fication of the transition matrix(P)in the Markov chain”; see also Figures 1D and 1E). Moreover, intuitively, this transition probability
has the potential to indicate the most likely path of community changes (refer to the section “identification of the path of least
resistance”).
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Estimating competitive interactions (a;;) using consumption rates (C)
The estimation of competitive interactions a; is derived from the Consumer-Resource equations, wherein the consumers compete for
resources, thus forming a competition system. The mathematical transformation from the Consumer-Resource equations to the
Lotka-Volterra (LV) competition equations refers to Vandermeer and Goldberg.®®

In particular, suppose that there are two self-replicating resources, which leads to the resource equations:

dR ki — R
=1 :rrsc1R1|:< ! P 1) — cNy — C12N2}

dt 1

dR. ko — R
d_t2 :rrsczR2|:< 2 ko 2) — Co1Ny — C22N2}

(Equation 4)

where R; is the density (or biomass) of the resource i, risc, is the intrinsic rate of increase of resource i, k; is the carrying capacity of
the resource i, ¢; is the rate at which the resource i is consumed by the j' consumer, and N; is the population density of the /™
consumer.

Then, considering two consumers, we can write the consumer equations according to the classic LV predator-prey equations®®:

dn

d—t1 = Ni(b11R1 + b1eRy — my),

dN. (Equation 5)
d_t2 = Np(b21R1 + bRy — my),

where bj is the relative conversion of a unit of resource j by consumer i, and m; is the death rate of the i consumer. Note that bj is
different from mass/energy transformation efficiency.

Assuming that the dynamics of the resources occur significantly faster than those of the consumers, we can equate the derivatives
of Equation 4 to zero and solve for the equilibrium values R} and R} of the two resources:

R - ki(1 — c11Ny — c12Nz),

R: (Equation 6)
2 = k2(1 — CQ1N1 — 022N2).

Then, we substitute Ry and R in Equation 5 by R} and Rj, respectively. That is:

dN

dit1 = Ny[b11k1(1 — c11Ny — C12N2) + biaka(1 — Co1Ny — CooN2) — my],

dN. (Equation 7)
d—t2 = Na[ba1k1(1 — c11Ny — C12N2) + baoka(1 — Ca1Ny — C2oN2) — my],

which can also be written as

dN.

dilj = Ny[b11ky + byoka — my — (D11Kk1C11 + b12kaC21)Ny — (D11K1C12 + D12KaC22)N2],

dN (Equation 8)
T: = Nz [ba1ky + booky — My — (b21k1C11 + baokaCo1)N1 — (b21k1C12 + b2okaCoz)Ns).

Multiplying and dividing the two equations in Equation 8 by

bi1ky + bioks — my,

ba1ky + bagky — my, (Equation 9)

respectively, we obtain

% = (byiky + biske — my)N; b11k1 +b1aKy — My — (D11K1C11 +D12KaC21 )Ny — (D11K1C12 +D12KaC22)N 7

dt b11k1 +b12k2 — my .
(Equation 10)

dN, = (barky + basks — my)N ba1ki +books — My — (b21k1C11 +b2okaCa1)N1 — (D21k1C12 +bazkaC22)N2

dat 21K1 22K2 2)IN2 barky + basky — M .

Again, dividing both the numerator and denominator of the fractions on the right sides of the two equations in Equation 10 by

b11kiC11 + b12KaCo1,

Equation 11
b21k1C12 + b2okaCoo, Eq )

respectively, gives us
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[b11k1 +b12ks — my _ _ b11k1C12 + b12kaCop
dN; b11Kk1C11 + b12K2Co1 ! b11K1C11 + b12kaCa1
—— = (by1ky + byoko — my)N.
dt (braks + brzke N bi1kq +b1oka — my ’

L b11k1C11 +b12KaCor

- - (Equation 12)
bo1k1 +baoka — My b21K1C11 +b2okaCor

_ Ny — N,
dN, b21k1C12 + baokaC b21K1C12 + bagkoC

S = (barky + baky — mp)N, |P2C12 TRl TiiaCie t ReeaCon

gt = (baka ¥ Dale = male baiki +baakz — my

b21K1C12 + bookoCoo

Essentially, Equation 12 are the classic LV competition equations, which can be easily recognized if we make the following
substitutions

h £by1ky + bk — my,

2 2pyiky + bysks — my,

K1 é[_‘)11k1 +b12k2 — my (Equation 13)
bi1kiC11 +b12kaCoy

Ka Ab21k1 +books — My
bo1k1C1z + bookaCap

and
@12 4 brikiCrz +biokaCor _ Cao(brikinia +brokanze) %ﬂormalization constant,
bi1kiC11 +b12kaCa1  C1(b11kinyy +bizkanazs)  Cy .
(Equation 14)
821 5 bo1kiC11 +boskaCor Cq(batkinig +bagkans)  Cy .
S = = —-normalization constant,
b21k1C1z +b2okaCoo  Co(b21kiNiz +baokange)  Co

where r; is the intrinsic rate of natural increase of consumer i, K; is the carrying capacity of consumer i, and a; is the competition co-

efficient measuring the competitive effect of consumer j on consumer i. Specifically, C; = % is the average rate at which consumer i
consumes resources, where nj is a normalization constant. Furthermore, it is typically observed that the relative conversion b; of a
unit of resource j by consumer j and the carrying capacity k; of resource j have limited variations for a given consumer j across different
resources j and can be assumed constant for the sake of model simplification.”® Therefore, as indicated by Equation 14, it is impor-
tant to note that the competition coefficient aj is proportional to the ratio of consumption rates C between consumer j and consumer .
Formally, we can represent it as

aj = ap (%), (Equation 15)

where ag is a normalization constant. Following this, we know the intraspecific competition coefficient
C .
aj = ao c) = ao. (Equation 16)
i

Without loss of generality, we can set ag = 1. Consequently, Equation 12 become the LV competition equations:
dN, Ky — Ny — aoNs
=1 N, ==
at rilN4 ( K, )

dN, _ Ko — asiNy — N;
F =N, (—K2 ) .

(Equation 17)

Considering the system S = {1,...,|S|}, we can write the general form of the LV competition equations as

dd';/" = I, (K’ — N _E/smf}a"f'lvf'),ie S.
i

(Equation 18)

In the previous discussion, our focus has been on the scenario of two consumers and two resources. Next, we will proceed to
simplify the scenario by considering only one consumer (also predator, either consumer j or consumer i) and one resource (also
prey). Specifically, if the resource is self-replicating, then the resource equation with logistic growth is

dR k—R .

i r,SCRKT) — CN} (Equation 19)
where R is the density of the resource, rs is its intrinsic rate of increase, k is the carrying capacity of the resource, C is the rate at
which the resource is consumed by the consumer, and N is the population density of the consumer.
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Following the LV predator-prey equations, we can write the consumer equation as
dN .
i (bR — m)N, (Equation 20)

where b is the predation rate and m is the death rate of the consumer.
Assuming the resource dynamics are very fast compared to the consumer dynamics, similar to the idea in Equation 6, we can solve
the equilibrium value of R first:

R* = k(1 — CN), (Equation 21)
and then substitute R* in place of R in the consumer equation Equation 20. We obtain
dN

ot [bk(1 — CN) — m|N, (Equation 22)
which can also be written as
dN .
i N(bk — m — bkCN). (Equation 23)
Multiplying and dividing Equation 23 by (bk — m) gives us
dn bk — m — bkCN .
i (bk — m)N(W) (Equation 24)
Next, dividing both the numerator and the denominator of the fraction on the right side of the Equation 24 by bkC, we have
bk — m N
aN bkC ;
v (bk — m)N bk —m (Equation 25)
bkC
If we denote
" 2pk —m,
K ,bk-m (Equation 26)
T bkC
then Equation 25 can be written as the classic population model with logistic growth:
dN K- N .
i rN( K ), (Equation 27)

where r is the intrinsic rate of natural increase of the consumer in isolation and K is the carrying capacity of the consumer.
Importantly, Equation 26 indicate that the consumption rate C increases monotonically with the intrinsic growth rate r. Formally, by
substituting the expression for bk as (r + m) from the first equation into the second equation, we obtain

1
C=——+. (Equation 28)

K(1+ T)
r
Figure S10 shows the plots of Equation 28 with different death rates m, indicating that the consumption rate C exhibits a mono-
tonically increasing behavior with respect to the intrinsic growth rate r. Also, the presence of an upper limit % on C aligns with our
empirical expectations, as it reflects the fact that the consumption rate cannot infinitely increase. Despite the relationship between
C and r being nonlinear, it can be effectively approximated using a linear function, especially when m is large or comparable with the
range of r. Note that the relationship between carrying capacity K and intrinsic growth rate r appears to be complex and context-
dependent.®” Therefore, instead of establishing relationships between r and K, our primary focus lies on r due to the relevant datasets

available for microbial, plant, and metazoan systems. Nevertheless, if a negative relationship exists betweenr and K, suchas K = }

then C continues to increase monotonically with r. In this instance, Equation 28 transforms to C = rfm, indicating a higher order of

scaling in the relationship between C and r. This intensified relationship can potentially improve the performance of our theoretical
framework. Exploring this additional complexity could be an interesting direction for future research.

Trade-offs induced by increasing growth rates (r)

Up to now, we have been discussing how to infer interactions aj in the K-formalism of LV equations by linking them to the Consumer-
Resource systems. Following the r-formalism of LV equations, it is evident that both interspecific and intraspecific interactions (a;,«;,
respectively) tend to increase with growth rates r. Specifically, comparing the LV competition equation Equation 18 in K-formalism
with the generalized LV model below in r-formalism
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dan; .
d_tl = N, (ri _ j;aﬂ./\/i)’ (Equation 29)
it becomes clear that
Qjj = I (Equation 30)
Ki
and
a = %a,y = w;a; (Equation 31)
1

This relationship shows that the intraspecific interaction «;; is directly proportional to r;. In terms of the interspecific interaction oy,
we first deduce the expression of a; explicitly integrating Equations 15 and 28

]
c K,—(1 +’%) K; (1 +”rl)

6]- = 3 L AR n:] ' (Equation 32)
N K,(1+f—_’)

)

i

Then, following Equations 30 and 31, we have

m.
K,' 1+7’
Ti i) _ hi+tm;

) )
fy fj

Therefore, the interspecific interaction «j; increases with growth rates r; and r;.
In summary, increases in growth rate translate into a trade-off where they carry increases in interspecific competition («;), but also
they carry increases in density dependence (intraspecific competition «).

(Equation 33)

o = wjajy =

Inferring consumption rates (C) using maximum growth rates (rmax)
Next, based on Equation 28, the consumption rate C can be inferred to be approximately proportional to the intrinsic growth rate
(C «r), which can be further approximated by the maximum growth rate (r= rmax). Formally, this relationship can be expressed as

C crmax. (Equation 34)

Here, we choose rmax as a parameter of interest because of its extensive investigation in empirical studies, particularly regarding
its metabolic scaling laws. This choice allows for a systematic estimation of consumption rates C across a wide range of ecological
systems, including bacteria, plants, and metazoans, leveraging the wealth of experimental datasets available.

Eventually, by combining Equation 15 with Equation 34, we can derive an estimation of competitive interaction strength a;; using the
ratio of maximum growth rate (rmax) between consumer (taxon) j and consumer i (Figure 1B):

C , (rmax; .
a; = ag (E’I) «ay, (rmax],)’ (Equation 35)

where C; and C; are the consumption rates of taxon j and taxon j, respectively; ap and a; are normalization constants. Based on this
estimation, we can obtain the pairwise interaction matrix A of the Lotka-Volterra model (Equation 1), which is the only parameter
needed to implement the feasibility analysis. Phenomenologically, these competitive effects can represent either resource partition
or modification.?®"2~"*

It is important to note that in our theoretical framework, we standardize parameters like carrying capacity (mentioned above) and
dispersal ability (next section) to be equal across all taxa, allowing differentiation solely in their rmax. This level of control offers a
coarse-grained explanation of the observed empirical patterns (see Figures 3 and 4). Indeed, adjustments to these other parameters
could further enhance the accuracy of the theoretical path of least resistance, enabling it to better fit the observed order of appear-
ance in empirical systems compared to our current Figure 3. This could be an interesting avenue for future research.

Quantification of the transition matrix (P) in the Markov chain

In the Markov chain of each developmental process, either sequentially or simultaneously, the transition matrix P plays a critical role
as it summarizes the likelihood of transitioning from one ecological community to another. Mathematically, the transition matrix of a
developmental process is a square matrix, where the rows and columns represent the ecological communities characterized by
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different taxon compositions. The matrix size is equal to the number of all possible ecological communities in the developmental pro-
cess. Each element in the matrix represents the probability of transitioning from the community corresponding to the row to the com-
munity corresponding to the column.

Here, we consider bottom-up developmental processes that allow for loops wherein a community may transition back to itself.
Specifically, communities comprising n taxa can either transition to communities comprising (n + 1) taxa with an additional taxon
available in the taxon pool, or they can loop back to themselves and remain unchanged. This coarse-grained model suffices to pro-
vide an overall expectation of taxon appearance orders in ecological development. Note that considering cycles (e.g., disassemblies
caused by environmental perturbations), which allow a larger community to collapse into a smaller one, does not affect our theoretical
conclusions regarding the path of least resistance (refer to the section “identification of the path of least resistance”).

The likelihood of community transitions within an ecological system is determined by the feasibility of all possible communities
within it. Below is a detailed example using the three-taxon system S illustrated in Figure 1, which comprises taxa tx1, tx2, and
tx3 (i.e., S = {123}). We will systematically explore the quantification of transition matrices in the Markov chains that describe
sequential development from initial communities with one or two taxa, as well as simultaneous development from the community
containing all three taxa. Then the three transition matrices are presented. Using these matrices, we can calculate the cumulative
probability over x trials for developing an ecological system.

Initially, all developmental processes start from an empty set (J. Note that, as mentioned before, we focus on the order in which
taxa appear during development, rather than the specific composition of resulting communities. Thus, this empty set provides a stan-
dardized baseline, allowing for meaningful comparisons of appearance orders across various types of development, regardless of
whether a system starts with no taxa or undergoes a reset due to disturbances. Subsequently, the system may either remain in
the empty set or transition into communities containing varying numbers of taxa. On the one hand, the probability of remaining empty
is the complement of the average feasibility of all possible initial communities. If the initial system contains one taxon (Figure 1D), the
probability that the system remains emptyis P4[J,J] = 1 — w, where P({1}),P({2}), and P({3}) represent the feasi-
bility of the communities with tx1, tx2, and tx3, respectively (see Equation 3). Notably, the likelihood of any single taxon being feasible
in unknown environments is 50% (i.e., P({1}) = P({2}) = P({3}) = 0.5), similar to flipping a fair coin. This equal feasibility implies
that all taxa have the same dispersal ability and are not restricted to appear in a specific order because of this. Instead, their order of
appearance is driven by their growth rates and the current subset of present taxa (their interactions). If the initial system contains two
taxa, then the probability of remaining empty is P> [, ] = 1 — P(“z})*P({;s})*P({zS}), where P({12}),P({13}), and P({23}) represent
the feasibility of the communities with pairs tx1 and tx2, tx1 and tx3, and tx2 and tx3, respectively. If all three taxa appear initially and
simultaneously, the probability of remaining in the empty setis P3[J,J] = 1 — P({123}), where P({123}) is the feasibility of all three
taxa coexisting together in system S (see Figure 1E). On the other hand, the probabilities of transitioning to different initial commu-
nities are proportional to their respective feasibility. Importantly, by the definition of a Markov chain, these probabilities collectively
sum to 1 — P[J, ). For example, the transition probabilities from the empty set & to the three one-taxon initial communities satisfy
P:[D, {1}]: P1[D,{2}] : P1[&,{3}] = P({1}) : P({2}) : P({3}) and P4[J,{1}] + P4[J,{2}] + P4, {3}] = 1-P4[J,]. For
initial communities containing two taxa, the transition probabilities from empty satisfy Po[J, {12} ] : P2[J, {13} ] : P2, {23} ] =
P({12}) : P({13}) : P({23}) and P2 [, {12} ] + P2[J,{13}] + P2[J,{23}] = 1 — P2[J, ).

For intermediate communities, a community may either remain unchanged or transition into larger communities by incorporating
an additional taxon. The probability of remaining in the current community equals the feasibility of that community; for example,
P1[{1},{1}] = P({1}). Alternatively, the probabilities of transitioning into larger communities are proportional to their respective
feasibility. For instance, a community with tx1 may transition to a larger community by including an additional taxon in the pool, either
tx2 or tx3. The probabilities for these transitions are proportional to their feasibility, namely, Py[{1},{12}]: P4[{1},{13}] =
P({12}) : P({13}). These transition probabilities are located in the row of {1} and the columns of {12} and {13} within the transition
matrix P4. Similarly, for the community comprising tx1 and tx2, the probability of maintaining the current composition is equivalent to
the feasibility of the community, P({12}). Alternatively, this community may transition into a larger community that includes tx3, the
only remaining candidate in the taxon pool, with a complementary probability of (1 — P({12})). These transition probabilities are then
cataloged in the row of {12} and the columns of {12} and {123} within the transition matrix P4. In terms of intermediate communities,
the transition probabilities for developmental processes that start with two or more taxa (e.g., P2) can be quantified in the same way
as those described above for processes starting with a single taxon.

Lastly, the transition probability for the community consisting of tx1, tx2, and tx3 (all taxa in the pool) returning to itself is 1. This
probability is saved in the row and column {123} of the transition matrices P+, P,, and Ps. This indicates that the full community
{123} is an absorbing state. Once all taxa are assembled, the community does not undergo further changes, serving as an endpoint
in the sequence of community changes. Note that this absorbing state is the sufficient (but not necessary) condition for development.
If there is interest in exploring beyond the endpoint community to understand how additional taxa might integrate, it is also possible to
delay reaching an endpoint by expanding the absorbing state. For example, this can be done by increasing the number of taxa in the
initial pool and analyzing the dynamics of the intermediate communities that assimilate these additional taxa of interest.

The Markov chain allows both sequential and simultaneous developments to be quantified using the same set of rules, establishing
a basis for their comparability. Notably, the simultaneous development, due to its simple structure, can be analytically shown to be
equivalent to a binomial process (refer to the following section for more details). For instance, the transition matrix P1 for developing a
three-taxon system sequentially from one-taxon communities can be formally represented as
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@ {1y {2¢ {3 {123 {13} {23} {123}

| PUI+PU2)+PUS) PUTY PU2)) PU3)) . . . .
3 3 3 3
(%)
(= PUIPUIZY (1= P{1HPUI3)
{1 0 P 0 O TERy A3 P((T2N + PT3Y) 0 0
) (1 - P{2D)P({12}) (1 - PU2)P({23})
b (3 ° ¢ PO ez peey) ° P +PUZE)
(1=PUBIPHIZY (- PU3})IP23))
12y 0 ° 0 A 0 P((T3})+P((23))  P((13})+P({23}) 0
{13} 0 0 0 0 P({12}) 0 0 1-P({12})
{23} 0 0 0 0 0 P({13}) 0 1 - P({13})
{123} 0 0 0 0 0 0 P({23}) 1-P({23))
0 0 0 0 0 0 0 1

(Equation 36)

Similarly, the transition matrix P, for developing a three-taxon system sequentially from two-taxon communities can be repre-
sented as

g {12} {13} {23} {123}

> 1 _P{12h) +P({13h) +P({23}) P({12}) P({13}) P({23}) 0
3 3 3 3
- {12} 0 P({12}) 0 0 1-P({12}) | (Equation 37)
{13} 0 0 P{13) 0  1-P({13})
{23} 0 0 0 P({23) 1-P({23})
{123} 0 0 0 0 1

In simultaneous development, the transition matrix P3 for developing a three-taxon system can be represented as
o {123}

P;= O 1—-P({123}) P({123})]. (Equation 38)

{123} 0 1

A key property of the Markov chain is that raising the transition matrix P to the power of x yields the probabilities of transitions be-
tween ecological communities with x steps (or trials). Based on this property, we can calculate the cumulative probability P*[J, {S} ]
of developing an n-taxon ecological system S over x attempts through sequential processes with varying numbers of initial taxa or the
simultaneous process (see Equations 36, 37, and 38 and Figure 1F). Moreover, since x is an absorbing state, the cumulative prob-
ability P*[J, { S} ] across all developmental processes would always converge to probability 1 with sufficiently large numbers of trials.
However, the rate of convergence can vary depending on the sizes of the initial communities. Therefore, it is possible to identify the
process with the highest likelihood of successfully developing the entire system within a limited number of trials (see results in
Figures 2A, S1A, and S1E). In short, the larger the initial communities, the slower the convergence. Thus, as detailed in the following
section, convergence to probability 1 occurs more slowly in simultaneous development compared to sequential development.

Understanding simultaneous development as a binomial process
Let P be the transition matrix of a Markov chain describing the simultaneous development of an n-taxon ecological system S. Anal-
ogous to the transition matrix of a three-taxon system in Equation 38, the general form for an n-taxon system is

@ {s}
P= @ [1-PS) PS)], (Equation 39)
(S} 0 1

where P[J, {S} ] = P(S) denotes the probability of transitioning from the empty set & to the ecological system S (see Figure 1E). This
transition probability is quantified as the feasibility of the n-taxon system, indicating the likelihood of achieving simultaneous coex-
istence (see Equation 3).
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We propose that the x-step transition matrix P* is given by the following formula for all integers x > 1:
g {s}

P= 0

{s}

This formula will be proven by mathematical induction, starting with the base case whenx = 1. The one-step transition matrix P' is
simply

0 1

(1-Ps)" 1-(1 —P(S))X} : (Equation 40)

o {st
P'= O 1-P(S) PSS, (Equation 41)
{s} 0 1 ]

which matches the given matrix in Equation 39. Thus, the base case holds.
Assuming inductively that the formula Equation 40 holds for some arbitrary integer x > 1, we proceed to show that this formula also

holds for (x + 1). The (x + 1)-step transition matrix P**" can be computed by multiplying P* by P. Thus,

o _[a=pPE)yY 1= =P [1-P(S) P(S)
PX1_PXP_{( O()) (1())H: 0 1}
- [(1 —P(S)F(1=P(S)) (1=P(S))P(S) + (1~ (1 =P($)))1 (Equation 42)
0 1
- [(1 —P(S))*T 1= (1 —P(s))" }
0 1

Clearly, the formula Equation 40 holds for (x + 1). By induction, this confirms that for all integers x > 1, the x-step transition matrix
P* is given by Equation 40.

Taking a closer look at Equation 40, it is interesting to notice that the simultaneous process can be characterized not only as a
Markov chain (Equation 39) but also as a binomial process, similar to flipping a coin. Specifically, consider the analogy of flipping
a biased coin, where

® Heads (success) corresponds to transitioning to the system S. This occurs with a probability of P(S).
@ Tails (failure) corresponds to remaining in the empty set . This occurs with a probability of 1 — P(S).

If the coiniis flipped x times (representing x steps in the Markov chain), then the probability of flipping at least one head (transitioning
to system S at least once) during these x attemptsis 1 — (1 — P(S))". Note that (1 — P(S))” is the probability of the complement
event, which is getting all tails (never transitioning to system S in any of the x attempts). As x increases, this complement probability
approaches zero because the effect of repeatedly multiplying a number less than one diminishes its value towards zero. Thus,
1 — (1 — P(S))" converges to 1, indicating that with a sufficiently large number of attempts, transitioning to system S through simul-
taneous development becomes almost certain. However, since the probability of all taxa coexisting P(S) is very low (more taxa lead
to harder coexistence and thus a lower probability), the convergence of simultaneous development is significantly slower compared
to sequential development (Figures 2A, S1A, and S1E).

Therefore, the binomial process offers an intuitive way to understand the inherent stochastic processes that influence the simul-
taneous development of an ecological system. It quantifies the likelihood that the system successfully reaches simultaneous coex-
istence at least once within a given number of attempts.

Identification of the path of least resistance
We define development as the self-organized process of moving from an empty set to a set of n taxa through a collection of different
taxon communities (interactions) whose union forms the set of n taxa (i.e., the appearance of a group of taxa). In the main text, we
focus our analysis on the special case of directional assembly (once a taxon is successfully introduced it cannot go extinct). Effec-
tively, this analysis aims to explain the probability that a group of n species can be found together at a given point in time. While this
analysis is a simplification of the developmental process undergone by natural systems (i.e., no extinctions); under our assumptions,
this analysis generates the same results as if additionally considering disassembly processes (see section below). That is, under as-
sembly only, the question is which one path is the system most likely to take. Under assembly and disassembly, the question would
be which is the most visited path by the system.

Formally, a directional assembly (one-by-one bottom-up developmental process) of an n-taxon ecological system S is a sequence
of community changes &, C1, Ca, -+, Ch_1, S consistingof 0,1,2, ...,n — 1, n taxa, respectively (for everyisuchthat1 < i< n — 1,

e11 Current Biology 34, 4813-4823.e1-e14, October 21, 2024



Current Biology ¢? CellP’ress

C;CS). In a Markov chain, the probability of observing this sequence can be calculated by multiplying the initial probability with the
conditional probabilities of each transition:

P(@,Cth,...,Cn,«],S) = P(@) X P(C1|®) X P(C2|C1) X -+ X P(C,,,1\C,,,2)><P(S\C,,,1) (Equation 43)

where P((J) = 1 is the probability of developing from an empty set. This standardized baseline, with equal probabilities for all paths,
allows for meaningful comparisons. In the context of full environmental uncertainty (no a priori information), the probability P(C+| &) of
having a single taxon is analogous to flipping a fair coin, with a constant 50% chance of success. Ecologically, this constant prob-
ability suggests that all taxa have the same likelihood of appearing. Also, this probability can be adjusted in light of prior environ-
mental information.”* Moreover, it is important to note that we do not assume any relationship between a taxon’s dispersal probability
and its maximum growth rate. However, should there be a positive relationship, it would result in an even higher probability
P(J,Cq,Ca,...,Ch_1,S) for the path of least resistance, thus enhancing the performance of our theoretical framework and the
most likely appearance order from fast- to slow-growing taxa. Incorporating this additional complexity offers a compelling direction
for future research. Additionally, P(Cr|Cm — 1) is the transition probability from community Cp, 1 to community Cp, (m <n, Co = O,
Cn, = ), which is the element located at the intersection of row (m — 1) and column (m) in the transition matrix P. This equation
holds because the Markov chain has the memoryless property that a future system depends only on the current system, not on
any preceding systems in the sequence. The effects of memory in ecological developmental processes could be an interesting
avenue for future research.

To identify the path of least resistance, the objective is to find the sequence of ecological systems that maximizes the probability
P(J,C1,Ca,...,Ch—1,S). This can be conveniently achieved by transforming the multiplication operation in Equation 43 into a sum-
mation operation. Specifically, this transformation can be achieved by applying the negative logarithm function (— log) to both sides
of the equation. Any base greater than 1 is valid, including common bases such as 10, , and 2. That is:

7|OQ[P(®,C1,C2,...,Cn,1,5)}
= — log[P(D) X P(C1|D) X P(C2|C1) X -+ X P(Cn_1|Cn_2) X P(S|Cn_1)] (Equation 44)
= — log(1) — log[P(C4]@)] — 10g[P(C2|C1)] — -+ = 10g[P(Cp-1]Cn-2)] — l0g[P(S|C-1)],

where P(J) = 1 is a constant. The R codes accompanying this paper use the negative natural logarithm function (— In) with a base
of e.

The objective now shifts to minimizing — log[P(,C1,Ca, ...,Cn—1,S)], which is essentially minimizing — >°7 _ 1109[P(Cm|Cm -1)],
where Co = Jand C, = S. In graphical terms, our objective is to find the shortest path in the deterministic tree-like directed graph
characterized by the adjacency matrix . In this graph, vertices represent ecological communities of different taxon compositions. Be-
sides, each edge carries a weight — log[P(Cm|Cr — 1)] that represents the distance from its connected vertex Cp, — 1 to the other con-
nected vertex Cn,. In the context of ecological development, the shortest path is from a vertex representing the empty set @ to a
vertex representing the most complex community S. According to graph theory, Dijkstra’s algorithm provides an efficient solution
to this shortest path problem.®® The R codes provided use the function “shortest_paths” from the “igraph” package for these com-
putations. The path with the shortest distance among all paths is defined as the path of least resistance for developing an ecological
system (e.g., pink water pipes in Figure 1E and pink arrows in Figure S1D).

All computational tasks were executed using the High-Performance Computing resources available through the MIT SuperCloud
and the Lincoln Laboratory Supercomputing Center.?° The R codes are accessible on GitHub, with the link detailed in the key re-
sources table.

Theoretical predictions are not influenced by disassembly

As mentioned in the main text, our analysis focuses on the special case of directional assembly, wherein once a taxon is successfully
introduced, extinction is precluded. Though this assumption simplifies the natural developmental process, it effectively serves our
purpose of determining the expected order of appearance of taxa. It is important to note our theoretical predictions remain consistent
even when disassembly processes are considered additionally. With assembly only, the question is which path the system is most
likely to follow. Conversely, with both assembly and disassembly, the question is which path is the most frequently visited path by the
system.

In this section, we will start by developing ecological intuitions to understand why disassembly does not affect our theoretical pre-
dictions. Following this, we will incorporate randomly generated disassembly and repeat the analysis presented in Figure 2. This al-
lows us to systematically and quantitatively assess the influence of disassembly.

In the special case of directional assembly only (see Figure 1D), sequential development from smaller initial communities can
diverge into multiple paths. This makes it more efficient to reach the largest community compared to those with a greater number
of initial taxa. Even with disassembly present (Figure S1D), these finely bifurcated paths from smaller initial communities can still
expedite the progression towards the largest community. Therefore, it can be anticipated that the cumulative probability of sequential
development from a single taxon reaches its saturation faster than others with more initial taxa, including simultaneous development
(i.e., assembling all taxa in the pool at once). Additionally, a developmental process progresses in a single direction in the case of
assembly only, resulting in a saturation probability of 1 (y-axis in Figure 2A). This indicates that once taxa are introduced, the system
inevitably advances towards the formation of the largest community without any reversals. However, when disassembly processes
are incorporated, a new possibility arises. Disassembly introduces the potential for species loss and regression to less developed
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communities, disrupting the progression towards the largest community. Hence, the cumulative probability of reaching the largest
community is expected to fall below 1. Essentially, the inclusion of disassembly introduces additional opportunities for deviations
from the most likely developmental trajectory, leading to a lower cumulative probability of development.

Interestingly, despite the potential impact of disassembly, the most likely developmental order (the path of least resistance) re-
mains unaffected. Let us take the transition matrix P in Equation 36 as an example, which describes the sequential development
for a three-taxon system sequentially from one-taxon communities.

@ {1y {2¢ {3y {12} {13} {23} {123}

1P =PUZPASY PUT) PG PGS . . . .
%)
(1 =PUINP{I2Y)  (1-P{1N)P{13))
{1 0 PATH 0 O ThmyAia) AI2))+P((13)) 0 0
2} (1 - P(2})P({12}) (1-P(2))P({23})
. ° O PO R p(2s)) ° P2y P23 °
(1=PU3}IPUI3)) (1 - PU31IP(23})
{12} 0 ° 0 P 0 P13} +P((23})  P({13})+P({23}) 0
{13} 0 0 0 0 P({12}) 0 0 1-P({12})
{23} 0 0 0 0 0 P({13}) 0 1-P({13})
{123} 0 0 0 0 0 0 P({23}) 1-P({23})
0 0 0 0 0 0 0 1

(Equation 45)

By definition, each element in the transition matrix is the probability of transitioning from the community in the row to the community
in the column. The upper triangular portion represents the assembly process of an ecological system, and the lower triangular portion
represents the disassembly process. Recall that the path of least resistance is defined as the path that is the most likely path for the
system to take. Let us assume that J— {1} — {12} — {123} is the path of least resistance considering the special case of directional
assembly only. That is, the probability P(J, C1, C2, {123}) of observing the sequence of community changes from & to {123}, i.e.,
P[J,C1] X P[C1,Co] X P[C2,{123}], can be maximized when Cy = {1} and C; = {12} (see Equation 43). Note that P[J, {1}],
P[{1},{12}], and P[{12}, {123} ] are all located in the upper triangular portion of the transition matrix (see Equation 45) and therefore
influenced solely by the assembly process, not the disassembly process. Ecologically speaking, though assembly and disassembly
processes are often intertwined in natural systems, the most likely order in which taxa appear for biodiversity development remains
independent of disassembly processes driven by uncertain environmental perturbations. This can be intuitively understood by recog-
nizing that the path of least resistance, or the shortest path, is by nature the most straightforward route, which tends to avoid any
return cycles to a less developed community as a result of disassembly (see Figure S1D).

With these intuitions in mind, we aim to systematically verify whether our theoretical predictions in Figure 2 remain valid when addi-
tionally considering disassembly. To do this, we randomly generated disassembly probabilities for each community. These random
probabilities account for the fact that different communities may disassemble with varying probabilities in response to uncertain envi-
ronmental perturbations. Note that incorporating disassembly mathematically means filling the lower triangular portion of a transition
matrix (e.g., Equation 45) with non-zero values. Specifically, these disassembly probabilities were drawn from a uniform distribution
ranging from a minimum of 0 to a maximum of 0.1. The results remain robust to other maximum values. To ensure the validity of the
studied developmental process, we enforced that the assembly probability for each transition must be greater than the reverse disas-
sembly probability, thus allowing overall biodiversity to increase. In cases where this condition was not met, we iteratively generated
another disassembly probability from the same distribution mentioned above.

Using the transition matrix incorporating both assembly and disassembly processes, we conducted the same analysis as pre-
sented in Figure 2A. We computed the cumulative probability for development from the empty set & through varying initial commu-
nities to the full community S (refer to the section “quantification of the transition matrix(P)in the Markov chain” for more details). The
results are presented in Figure S1E, indicating that sequential developments starting from smaller initial communities tend to reach
saturation more quickly. Notably, in all developments, the cumulative probability of reaching the largest community falls below 1 (grey
dashed line), which is in line with our expectations above. Even with disassembly present, sequential development remains more
likely to succeed than simultaneous development. These results are consistent with our theoretical prediction in Figure 2A.

Although the most likely developmental paths begin with communities comprising a single taxon, various sequences with different
orders of appearance are possible. For example, both sequences & — {1} — {12} and @ — {2} — {12} start from a single taxon but
introduce the two taxa in opposite orders. It is therefore important to identify the single most likely path. To this end, we used Dijks-
tra’s algorithm to find the most likely path, also referred to as the path of least resistance (see the section “identification of the path of
least resistance” for more details). With this path established, we conducted the same analysis as presented in Figure 2B. The results,
presented in Figure S1F, reveal that when disassembly is considered, the expected correlations between the most likely appearance
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order of a taxon and its rmax are generally negative (predominantly y < 0; Spearman’s rank correlation). Also, as the standard devi-
ation of rmax among taxa (x-axis) increases, these negative correlations tend to be stronger (approachingy = — 1). These results
are consistent with our theoretical prediction in Figure 2B.

In summary, with disassembly processes additionally considered, our theoretical predictions shown in Figure 2 remain consistent.
Furthermore, the most likely developmental order along the path of least resistance is not altered by disassembly. Thus, the theoret-
ical most likely order for each empirical system presented in Figures 3 and 4 remains the same.

QUANTIFICATION AND STATISTICAL ANALYSIS

Proxy for maximum growth rate (rmax)
To estimate the maximum growth rate (rmax) for taxa in each empirical system, we employ metabolic scaling laws, which have been
providing valuable insights into the fundamental processes that govern biological structure and function.

Specifically, DeLong et al.”® presents the scaling relationships between rmax and body mass across prokaryotes (including bac-
teria and archaea) and metazoans (including birds and herbivores). Interestingly, the authors discover a shift in the scaling pattern of
rmax from positive in prokaryotes (with a power of 0.73 = 3/4) to negative in metazoans (with a power of — 0.23= — 1/ 4). Therefore,
following the scaling relationship rmax o (body mass)~ /4, we use the body mass information reported in the AVONET database®*
and Pansu et al.® and Stalmans et al."® to estimate the rmax for birds and herbivores, respectively (Figures 3D-3F).

Similarly, for plants, Enquist et al.”” demonstrates an inverse scaling relationship between rmax and body mass, characterized by a
power of —1/4. Additionally, Marba et al.>® provides an allometric scaling relating tree mass (M) to diameter at breast height (dbh) via
the formulaM = 78 x dbh?*’. Consequently, to approximate the rmax for individual tree species, we use diameter at breast height
data from the BIEN database®°>"" (Figure 3C).

However, due to the considerable variation in microbial body mass under environmental uncertainties and limited reporting, we use
the ribosomal RNA operons (rrn) copy number, rather than the body mass, as a proxy for rmax in microbial systems. Roller et al.”®
presents the positive scaling relationship between the rrn copy number and the rmax of bacteria and archaea, i.e., rmax o« (rrn copy
numben®*. Also, the authors supply a comprehensive database of rrn copy numbers called rrDB,°? from which we obtain the
average rrn copy numbers for the six phyla of infant gut microbes and the five orders of marine bacteria (Figures 3A-3B).

Itis important to note that the choice of scaling exponent does not affect the qualitative results of our framework. Let us explain this
with the following example. Considering that the body mass distribution M1, M5, ..., M, of n taxa in an ecological system follows a log-
normal distribution with a log mean of u and a log standard deviation of o, then it is clear that log(M1),log(M>), ..., log(M,) are nor-
mally distributed with a mean of u and a standard deviation of ¢. Assuming that a scaling relationship exists between body mass and
rmax, this can be represented as rmax; = M, where a € (— %, ) is a constant scaling exponent. This scaling relationship can also
be expressed logarithmically as log(rmax;) = log(M}*) = a-log(M;) for each taxon i within the range 1, ..., n. Thus, log(rmaxy),
log(rmaxz), ---,log(rmax,) are also normally distributed with a mean of au and a standard deviation of |«|o, where |- | denotes ab-
solute value. By definition, this means that rmax+, rmax,, ..., rmax, of the n taxa follow a log-normal distribution with a log mean of au
and a log standard deviation of |«|a. Therefore, the scaling exponent «, regardless of its sign (due to | -|) or magnitude, does not alter
the log-normal nature of the distribution of maximum growth rates (rmax).
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