QMol-grid: A MATLAB package for
quantum-mechanical simulations in atomic and
molecular systems

Francois Mauger®*, Cristel Chandre®

@ Department of Physics and Astronomy, Louisiana State University, Baton Rouge,
Louisiana 70803, USA
bCNRS, Aiz Marseille Univ, I2M, 13009 Marseille, France

Abstract

The QMol-grid package provides a suite of routines for performing quantum-
mechanical simulations in atomic and molecular systems, currently implemented
in one spatial dimension. It supports ground- and excited-state calculations for
the Schrédinger equation, density-functional theory, and Hartree-Fock levels
of theory as well as propagators for field-free and field-driven time-dependent
Schrodinger equation (TDSE) and real-time time-dependent density-functional
theory (TDDFT), using symplectic-split schemes. The package is written us-
ing MATLAB’s object-oriented features and handle classes. It is designed to
facilitate access to the wave function(s) (TDSE) and the Kohn-Sham orbitals
(TDDFT) within MATLAB’s environment.

Keywords: MATLAB, time-dependent density-functional theory,
time-dependent Schrodinger equation, Hartree-Fock, symplectic propagator

Metadata
1. Motivation and significance

Ab initio quantum simulations of the electronic structure and dynamics in
atoms and molecules play an important role in many fields of physics and chem-
istry. They have lead to the development of many computational packages.
For instance, optimized packages like [2, 3, 4, 5, 6] allow for routine quantum
calculations in a range of atomic, molecular, and solid-state systems, typically
running on high-performance computer (HPC) systems. Alternatively, the QMol
-grid package has been developed in the context of ultrafast atomic, molecular,
and optical (AMO) research [7, 8], with a focus on low-dimension atomic and
molecular models, (i) to provide a test bed for quantum-mechanical simulations
that can easily run on personal computers, including when considering molec-
ular systems with multiple interacting electrons and (ii) to facilitate access to
the wave function(s) (TDSE) and the Kohn-Sham orbitals (TDDFT), such that

*Corresponding author
Email addresses: fmauger@lsu.edu (Francois Mauger), cristel.chandre@cnrs.fr
(Cristel Chandre)

Preprint submitted to SoftwareX January 22, 2025

15

16

17

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

0

42

43

44

45

Nr. | Code metadata description

C1 | Current code version 1.21

C2 | Permanent link to code/repository used for | https://github.com/fmaugerl/
this code version QMol-grid.git

C3 | Permanent link to Reproducible Capsule N/A

C4 | Legal Code License BSD-2-Clause

C5 | Code versioning system used git

C6 | Software code languages, tools, and ser- | MATLAB (R2022a or later) [1]

vices used

C7 | Compilation requirements, operating envi- | none
ronments & dependencies

C8 | If available Link to developer documenta- | https://github.com/fmaugeri/

tion/manual QMol-grid/wiki

C9 | Support email for questions fmauger@lsu.edu

Table 1: QMol-grid metadata

users can build complex workflows and analyses alongside the simulations. For
instance, QMol-grid time propagators enable arbitrary user-defined functions
to be evaluated, and their result stored, while the TDSE/TDDFT propagation
is performed. The package also provides built-in facilities for the calculation
of common observable, including the dipole signal, energy, ionization, TDSE
wave function and TDDFT Kohn-Sham orbitals. Aside from research purposes,
the package offers a valuable resource for teaching purposes: with it, students
can be introduced to a range of quantum mechanical simulation techniques (see
below), using calculation examples that run on personal computers or laptops.

The QMol-grid package provides a suite of routines for performing quantum-
mechanical simulations in atomic and molecular systems, currently implemented
in one spatial dimension. Obviously, such lower-dimensional models cannot
capture the entire manifold of processes at play in full-dimension simulations.
Instead, these models play an important and complementary role in providing
prototypical systems where general, non-system specific, properties can be es-
tablished. A second advantage of dimensionally-reduced simulations is that they
typically run at a fraction of the time of their full-dimension counterparts. This
computational up-speed can then be re-invested in extended parameter scans
or scouting for outcome of interest in a large parameter space. For instance,
we have used this latter approach in recent analyses of ultrafast migration of
charges in molecules [7]. The specifics of what is included and left out in any
given lower-dimension simulation is highly system/model dependent. We defer
to end-users of the package to address those limitations in their specific situa-
tion.

All simulations in the QMol-grid package use an underlying Cartesian-grid
discretization scheme, with all spatial derivatives calculated with fast-Fourier
transforms. The package is written using MATLAB’s object-oriented features
and handle classes. Notably, the package supports:

e DFT: Ground- and excited-state density-functional theory.
e HF: Ground- and excited-state Hartree Fock.

e SE: Ground- and excited-state Schrodinger equation.

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

e TDDFT: Real-time time-dependent density-functional theory.
e TDSE: Time-dependent Schrodinger equation.

Ground- and excited-state calculations support both using a Cartesian grid or
basis-set discretization while time-dependent simulations are currently limited
to Cartesian grids.

We refer readers to the documentation for details regarding each supported
computational framework. Briefly, within QMol-grid, SE provides a single-
active electron model of the electronic structure of atoms and molecules. For
multi-electron systems, HF gives the best approximation (lowest energy) of the
wave function in terms of a single antisymmetrized product of one-electron wave
functions (Slater determinant) [9]. Alternatively, DFT trades the multi-electron
wave-function picture for the real-space electron density, whose dimension is
independent of the number of active electrons. There, electron-electron in-
teractions are captured in the (nonlinear) functional dependency of the DFT
Hamiltonian on the electron density. Specifically, QMol-grid uses Kohn-Sham
DFT [10], where the density is build from virtually-independent electrons. Both
HF and DFT correspond to solving a nonlinear eigen-state problem, which is
implemented via standard iterative techniques in the package [11].

TDSE and TDDFT describe the time evolution of the system, typically
either resulting from an external driving laser field or starting from a non-
stationary initial state, within their respective SE and DFT framework. From
its origin in ultrafast AMO science research, the QMol-grid package offers ef-
ficient and high-order time propagation schemes specially designed for those
simulations [8]. Time-dependent simulations neglect nuclear dynamics (Born-
Oppenheimer approximation), with all atomic and molecular potentials fixed in
space throughout the time evolution of the electrons.

2. Software description

A full description of the QMol-grid package, including all possible input
parameters and calculation features is included in the MATLAB documenta-
tion provided with the package. After installation, the package documentation
is accessible in MATLAB, in the “Supplemental Software” section. A copy of
the documentation is also provided on the GitHub wiki. The documentation
includes a series of tutorials, starting with SE ground-state calculations, and
going through TDSE, DFT, and TDDFT calculations to help new users get-
ting familiarized with setting up calculations, input parameters, and output
variables. Throughout, the documentation also includes many script samples
illustrating how one can use the various features. Finally, the documentation
discusses the required class structure for advanced users who wish to add their
own functionalities to the package and inherit common interface methods to the
QMol-grid package.

2.1. Software architecture

The QMol-grid package provides an ecosystem of MATLAB handle classes.
While the package is provided as a stand-alone suite, it is developed around 3
main groups sketched in figure 1 (a): (1) external components, (2) kernel classes
that define high-level calculation methods, and (3) implementation classes that

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

define all the lower-level functionalities. The package is developed with the
general goal of facilitating access to the wave function(s) (SE/TDSE) and the
Kohn-Sham orbitals (DFT/TDDFT), which are packaged into classes for ab-
stract manipulations of the objects in ground-state, time propagation, and com-
mon observables’ calculations.

(a) QMol-grid package

external components

fast-Fourier tools
units conversion

kernel

DFT: ground-state density-functional theory

HF': ground-state Hartree-Fock

SE: ground-state Schrodinger equation

TDDFT: time-dependent density-functional theory
TDSE: time-dependent Schrodinger equation

implementation
domain discretization
atomic pseudopotentials
molecular potential

(b)
Class properties:

discretization

xspan

waveFunction

numberWaveFunction

potential

Class methods:

set

reset

clear

initialize

getMemoryProfile

showDocumentation

getEnergy

showEnergy

Key: b < object

Figure 1: (a) Overall architecture for the QMol-grid package: components are sorted
in three tiers of handle classes that define the computation ecosystem. (b) Schematic of a
Schrédinger-equation object and its components. Each box indicates a separate class defined
within the package.

Users set up calculations by creating QMol-grid objects of the relevant type
and specifying the desired parameters using MATLAB’s common name-value
pair argument structure (in arbitrary order and case insensitive). As illustrated
in the examples of section 3 below, we strive to give intuitive and descriptive
parameter names. The documentation provides the list, together with sup-
ported formats, of all available input parameters for each class. Throughout
the package, input parameters and output results are specified in atomic units;
we provide units conversion external components to facilitate conversions to
more conventional units (e.g., as/fs for time, W/cm? for field intensity, etc.).
Some high-level components are themselves encapsulated into classes, enabling

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

abstract manipulations in the property objects. Figure 1 (b) illustrates this
concept for the Schrédinger-equation object QMol_SE for which class properties
are a mix of variables (xspan and numberWaveFunction) and QMol-grid ob-
jects (discretization, waveFunction, and potential). Parameters can be
updated after an object has been created using the set method, again using
name-value pair arguments.

2.2. Software functionalities

Ground- and excited-state calculations in the QMol-grid package are per-
formed by a direct diagonalization of the Hamiltonian operator, via MATLAB’s
eigs (grid discretization) or eig (basis set) functions. DFT and HF self-
consistent-field iterations are performed using an Anderson’s mixing scheme [12,
11]. HF is obtained by running DFT with an exact-exchange and no correlation
functionals.

The time-propagators in the QMol-grid package are computed using symplectic-

split operators [8] (2"? order Strang a.k.a. Verlet [13], 4" order Forest-Ruth [14],
and Blanes and Moan optimized 4 and 6th order [15] in time, and spectral
in space). They support field-free and laser-driven simulations in the dipole
approximation with the following on-the-fly features, each specifying their own
time sampling:

e Checkpointing, with the creation of a restart MATLAB file (.mat) that can
be used to resume a calculation that was stopped before it was finished;

e (Calculation and storage of the dipole, dipole velocity, and dipole acceler-
ation signals;

e Calculation and storage of the wave function(s) /Kohn-Sham orbitals and
Hamiltonian-component energies;

e Storage of the wave function(s) (TDSE), and the Kohn-Sham orbitals and
one-body density (TDDFT);

e (Calculation and storage of the ionization signal, keeping track of how much
electronic density is absorbed at the domain boundaries;

e (Calculation and storage of the results of installable output functions of
the wave function(s) (TDSE), and the Kohn-Sham orbitals or one-body
density (TDDFT);

e Saving the intermediate Schrodinger- or DFT-model objects in separate
MATLAB files (.mat).

Aside from the options that generate MATLARB files (first and last items above),
the results for all the other on-the-fly calculations are collected and stored in
the time propagator object itself — see the TDDFT example in section 3.2. The
size of the generated output strongly depends on the simulation parameters:
time-dependent dipole, energy, and ionization signals are proportional to the
number of saved time steps while wave functions, Kohn-Sham orbitals, and
densities scale as the number of time steps multiplied by the domain grid size.
Anecdotally, in our experience dipole, energy, and ionization signals typically
require a few hundred KB while saving the wave function or density easily takes
a few to many MB.

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

185

186

187

188

189

190

191

192

193

194

1

Both ground/excited-state and time-propagation calculations provide run-
time documentation features, providing a summary of the model and simulation
configuration as well as relevant references. The run-time documentation can be
toggled on (default) or off. Profilers are also available to estimate the memory
footprint and average execution time for the Hamiltonian-operator and its com-
ponents. For time-dependent simulations, the profilers provide an estimate of
the size for all the on-the-fly results calculated and saved during the propagation
— see the TDDFT example in section 3.2.

The QMol-grid package comes with a suite of unit tests, individually check-
ing the methods in each of the classes in the package.

3. Illustrative examples

We illustrate how users interface with the QMol-grid package in two ex-
amples. The documentation includes a more comprehensive series of tutorials
meant to get new users familiarized with how to set simulations up, interact, and
recover results from calculations. Starting from ground-state SE and moving to-
wards TDDFT, the tutorials progressively introduce (i) minimal-code examples
and (ii) discussions of various input parameters and output variables available
in the package.

3.1. Example 1: Schrodinger-equation ground state

Here we illustrate how to use the QMol-grid package to calculate the ground-
state wave function of a one-dimensional hydrogen-like atom. The Schrodinger-
equation ground-state corresponds to the lowest-energy solution to the eigen-
value problem H(z) = Et(z), where H is the Schrodinger-equation Hamilto-
nian operator, v is the wave function, and E its associated energy. In atomic
units, the Hamiltonian operator is H = —% + V.

Specifically, this example walks through defining (i) the domain and grid
discretization over which the Schrodinger-equation and wave function are cal-
culated, (ii) the atomic potential and (iii) the Schrédinger-equation model, and
(iv) calculating the ground state associated with these properties.

We model the one-dimensional hydrogen model atom using a soft-Coulomb

potential V(x) = —1/v/a? 4 a? with

H = QMol_Va_softCoulomb(’softeningParameter’,sqrt(2));

where ’softeningParameter’ specifies the value for the parameter a. Here we
choose the softening parameter a = v/2 to match H’s ground state energy. By
default, the atom is located at the origin « = 0. Note that H only corresponds
to the atomic model, which is shared with molecular systems and various quan-
tum frameworks. Thus, it must be turned into a valid Schrédinger-equation
potential, using

V = QMol_SE_V(’atom’,H);

Here ’atom’ indicates to the QMol_SE_V object that the list of atomic centers
is provided next — here a single H effective potential.

The simulation domain must be a Cartesian grid — with all increasing, equally
spaced discretization points — and should be wide enough and with small enough
of a discretization step to properly capture the wave function. In our case, we
select a domain ranging from -15 to 15 a.u., with a discretization steps of 0.1 a.u.

195 1

196

197

198 1

199 2
200 3

201

202

203

204

205 1
206 2

207

208

209

210

211

212 1

213 2

214 3

215 4

216 5
217 6

218

219

220

221

222

223

224

x = -15:.1:15;

We now have all the elements to define a Schrodinger-equation model object
with the potential and domain defined above
SE = QMol_SE(

’xspan’, X,

>potential’, V);

Like above, when creating the SE object, we recognize the definition of the
discretization domain and effective potential with the keywords ’xspan’ and
’potential’, respectively. Next we move to calculating its associated ground-
state wave function and energy using the two commands

GSS = QMol_SE_eigs;
GSS.computeGroundState (SE) ;

The first line creates the eigen-state solver while the second performs the actual
ground-state calculation on the Schrodinger-equation object SE. At the end
of the calculation, the ground-state wave function is stored in the input SE
, together with relevant information such as the domain discretization. For
instance, solely relying on SE, one can plot the ground-state wave function with
figure

plot (SE.xspan,SE.waveFunction.waveFunction,’-’,’LineWidth’,2)

set (gca,’box’,’on’,’FontSize’,12,’LineWidth’ ,2)

xlabel(’x (a.u.)’)

ylabel (’wave function (a.u.)’)
x1im (SE.xspan([1 end]))

The output is represented in Fig. 2. From the plot command line, we see that
the domain-discretization grid may be recovered using the xspan property in the
object SE (using the standard object-oriented dot notation SE.xspan). On the
other hand, the wave function is nested inside another object, which explains
the consecutive dots SE.waveFunction.waveFunction. Other properties in the
object SE.waveFunction are used by ground/excited-state and TDSE calcula-
tions; we refer to the QMol_SE_wfcn documentation page for further details.

0.6

u
o o o o
N w £ [$,]

wave function (a.u.)

.

-15 -10 5 0 5 10 15
X (a.u.)

Figure 2: Ground-state wave function t(z) for the soft-Coulomb potential V(z) =

—1/Vx2 +2.

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242 1

243 2

244 3

245 4

246 5

247 6

248 7

249 8

250 9

2510

2521

2532

2543

25504

2565

2576

2587

259 8

26009

26120

2621

2632

26803

26524

266

267

268

269

270

271

272

273

274

275

276

277

3.2. Example 2: Time-dependent density-functional theory

For a given set of initial Kohn-Sham orbitals, the TDDFT dynamics is
described by the nonlinear system of partial differential equations, in atomic
units (a.u.) X

10y k(x5) = Hporr[{ @k bi; t] (x5 1) dr(x;t), (1)
where 7:lDFT is the DFT Hamiltonian operator, which nonlinearly depends on
the Kohn-Sham orbitals {¢y }.

The QMol-grid package relies on the canonical Hamiltonian structure of
TDDFT [8] to integrate the dynamics of equation (1). In this example, we
illustrate how to use the QMol-grid package to integrate the TDDFT dynamics
of an open-shell one-dimensional molecular ion model with 3 atomic centers and
5 active electrons.

Initial condition: In the QMol-grid package, TDDFT simulations are de-
coupled from setting up the initial condition, which must be done indepen-
dently. Similar to example 1, we build the molecular model out of 3 one-
dimensional atomic models, each contributing 2 electrons to the molecule, using
soft-Coulomb potentials. For our example, we start by calculating the neutral-
molecule ground state:

% Molecular model

V_1 = QMol_Va_softCoulomb (
’atom’,’X_1’,’charge’,2,’position’,-3);

v_2 = QMol_Va_softCoulomb (
’atom’,’X_2’,’charge’,2,’position’, 0);

v_3 = QMol_Va_softCoulomb (
’atom’,’X_3’,’charge’,2,’position’, 3) 3

% DFT model

Vext = QMol_DFT_Vext (’atom’ ,{V_1,V_2,V_3});

Vh = QMol _DFT_Vh_conv;

Vxc = {QMol_DFT_Vx_LDA_soft,QMol_DFT_Vc_LDA_soft};

DFT = QMol _DFT_spinPol(
’xspan’, =503 . 1350
’occupation’, {01 1 11,01 1 113,
’externalPotential’, Vext ,
’HartreePotential’, Vh,
’exchangeCorrelationPotential’, Vxc,
’selfInteractionCorrection’, >ADSIC? D

% DFT ground state
SCF = QMol _DFT_SCF_Anderson;
SCF.solveSCF (DFT) ;

The “}% Molecular model” block defines the atomic effective potential, speci-
fying the name, bare charge, and location of each atomic center, respectively.
The “% DFT model” block first defines the molecular potential Vext, followed
by the DFT functionals Vh and Vxc to be used in the (TD)DFT calculations —
see the documentation’s ground-state DF'T tutorial for further details regarding
the model parameters. The final block “% DFT ground state” first creates the
eigen-state DFT solver, here an Anderson mixing scheme [11], and performs the
ground-state self-consistent field (SCF) calculation.

Next, we manually induce an excitation in the molecular cation by suc-
cessively (i) replacing one of the Kohn-sham orbitals by a superposition of
molecular-orbital states (excitation part) and (ii) removing an electron, going
from 3 to 2, from the down-spin Kohn-Sham orbitals (ionization part).

278 1
279 2
280 3
281 4
282 5
2836

284

285

286

287

288

289

290

291

292

293

294 -

295 :

296
297

a R W N R

298

299

300

301

302

303

304

305

306

307

308

309 1

310

311

312

313

314

315

316

317

318

319

320

321

3221

323 2
324 3

% Induce excitation
DFT.orbital.set(’orbitalDown’, [DFT.KSO.KSOdw(:,1)
(DFT.KSO0.KSOdw (:,2)+DFT.KS0.KSOdw(:,3))/sqrt(2)]1);

% Induce ionization
DFT.set (’occupation’,{[1 1 11,[1 11});

We now have a non-stationary set of Kohn-Sham orbitals, leading to field-free
dynamics under equation (1).

TDDFT simulation: With the DFT molecular model and the initial condi-
tion in hand, we now move to integrating the subsequent field-free TDDF'T dy-
namics. For this, we select a fourth-order Forest-Ruth symplectic split-operator
scheme [14, 8]. Note that, here the field-free TDDFT dynamics does not lead
to any ionization and therefore no boundary conditions need be specified at the
edges of the domain. For field-driven simulations, absorbing boundary condi-
tions can be specified to avoid spurious boundary effects.

TDDFT = QMol_TDDFT_SSO_4FR(
time’, 0:10:100,
’timeStep’, 2e-2,
’saveDensity’, true,
’saveDensityTime’, 1)

In our example, the TDDFT object is created with:

e The first pair of arguments specifies that the integration should start at
time t=0 and end at t=100 a.u. The step of 10 a.u., is unrelated to the
propagation time step and instead specifies the time intervals to use in
the progress display.

e The second pair of arguments specifies the (fixed) time step for the prop-
agation.

e The third pair of arguments indicates that the one-body density should
be saved periodically, with the period specified by the fourth pair of ar-
guments, i.e., every 1 a.u. in our case.

Then, we launch the TDDFT integration with

TDDFT . propagate (DFT) ;

At the end of the simulation, the DF'T object has been updated to contain the
Kohn-Sham orbitals at ¢ = 100 a.u. The time-dependent one-body density is
stored in the TDDFT object itself.

Plotting the result: Next we recover calculated observables out of the TDDFT
object. Each set of observable is stored in a separate structure property in the
TDDEFT object, which contains (i) the exact time vector at which the quantity
has been saved and (ii) the observable itself. In our case, the structure of in-
terest is TDDFT.outDensity with the up- and down-spin densities respectively
stored in the fields totalUp and totalDown. The densities are matrices with
columns corresponding to the successive saved times. To plot the spin density,
defined as the difference between the up- and down-spin one-body densities, we
use
figure

imagesc (TDDFT.outDensity.time ,DFT.xspan,
TDDFT.outDensity.totalUp-TDDFT.outDensity.totalDown)

3254
326 5
327 6
3287
329 8
3309
3310

332

333

334

335

336

337

338 1

340

341

342

343

344

345

346

347

348

349

350

351

352

set (gca,’box’,’on’,’FontSize’,12,’LineWidth’,2,’YDir’, ’normal’)
x1im (TDDFT. outDensity.time ([1 end]))

ylim ([-10 101)

xlabel(’time (a.u.)’)

ylabel (’position (a.u.)’)

title(’spin demnsity’)

colorbar vert

with the result shown in Fig. 3.

spin densit
10
0.4
0.35
5
0.3
E]
\m; 0.25
s 0 0.2
k7]
2 0.15
-5 0.1
0.05
-10 0
0 20 40 60 80 100
time (a.u.)

Figure 3: Evolution of the spin density, defined as the difference between the up- and down-
spin one-body densities, along the molecular model we consider for our TDDFT-simulation
example.

Profiling (estimating the memory footprint): Before running the TDDFT
calculation, users have the possibility to check how much memory the simulation
requires to run and store the requested one-body densities. Using the same
calculation workflow as above, right after creating the TDDFT object, the memory
footprint is obtained with

TDDFT.initialize (DFT);
QMol _DFT_profiler (TDDFT, *memory’) ;

In our case, the estimated total TDDFT-object size is 1.8 MB with 1.5 MB for
the saved electron density. Saving the TDDFT and DFT object in a MATLAB file
at the end of the propagation produces a 1.6 MB .mat file. We mostly attribute
the slight difference with the profiler estimate to run-time memory overhead
associated with internal variables that are not stored in the saved objects.

4. Impact

The QMol-grid package offers a versatile suite of quantum simulation tech-
niques for reduced-dimension atomic and molecular models. Its native MAT-
LAB structure facilitates on-the-fly calculations and analyses in time-dependent
simulations as well as post-processing, which all can be done using high-level
functionalities of MATLAB. Simulation data are organized within handle classes
with common interface methods to simplify end-user interaction with the var-
ious components of the package. QMol-grid comes with a full documentation,

10

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

including many script samples that illustrate how one can use the various fea-
tures. It also includes a series of tutorials to guide new users with setting up
calculations, input parameters, and output variables.

In our groups, we used an early development version of the QMol-grid pack-
age in [7] for nonlinear analysis of ultrafast migration of electronic charges in
molecules. Notably, the efficacy of simulations allowed us to perform thousands
of TDDFT simulations and with it get a detailed picture of the migration-
dynamics phase space, something that is essentially unfeasible in full-dimension
quantum packages. More recently, we used QMol-grid to validate symplectic
split-operator propagation schemes for TDDFT [8]. The symplectic propaga-
tors (4'" order Forest-Ruth [14], and Blanes and Moan optimized 4" and 6th
order [15] schemes) are now integrated and available in the package — see exam-
ple 2 of section 3.2. We continue to use QMol-grid in various on-going projects
in our groups. Outside of a research environment, the package could be used for
teaching: thanks to the modest computational requirements, students could run
illustrative examples of quantum mechanics or (TD)DFT on personal computers
or laptops.

5. Conclusions

The QMol-grid package provides a versatile suite of quantum-mechanical
methods at the Schréodinger, Hartree-Fock, and density-functional theory lev-
els of theory for ground- and excited-state calculations, as well as TDSE and
TDDFT propagators. Time-propagation schemes provide streamlined access
to the wave function(s) (TDSE) and the Kohn-Sham orbitals (TDDFT). The
wave functions and Kohn-Sham orbitals are packaged into classes that enable
abstract manipulations in the objects, e.g., for ground-state, time propaga-
tion, and common observables’ calculations. The object-oriented structure pro-
vides a uniform user interface, where input parameters are specified as pairs
of parameter-name/parameter-value (in arbitrary order and case insensitive).
Output results are stored in the objects and can be recovered using standard
object-oriented dot notation — see the tutorials for examples.

CRediT author statement

F. Mauger: Conceptualization, Software, Validation, Documentation, Writ-
ing - Original Draft, Funding acquisition. C. Chandre: Documentation, Writ-
ing - Original Draft.

Acknowledgements

FM thanks M.B. Gaarde, K. Lopata, and K.J. Schafer for enlightening dis-
cussions, suggestions, and support throughout the development of the pack-
age. The original development of the QMol-grid package, and its (TD)DFT
features, was supported by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, under Award No. DE-SC0012462. Addition of
the (TD)SE features was supported by the National Science Foundation under
Grant No. PHY-2207656

11

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

References

[1]
2]

The MathWorks Inc. MATLAB version: 9.12 (R2022a), 2022.

Giuseppe M. J. Barca, Colleen Bertoni, Laura Carrington, Dipayan Datta,
Nuwan De Silva, et al. Recent developments in the general atomic and
molecular electronic structure system. J. Chem. Phys., 152:154102, 2020.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, et
al. Gaussian 16, Revision C.01, 2016. Gaussian, Inc., Wallingford CT.

E. Apra, E.J. Bylaska, W.A. de Jong, N. Govind, K. Kowalski, et al.
NWChem: Past, present, and future. J. Chem. Phys., 152:184102, 2020.

Nicolas Tancogne-Dejean, Micael J.T. Oliveira, Xavier Andrade, Heiko Ap-
pel, Carlos H. Borca, et al. Octopus, a computational framework for ex-
ploring light-driven phenomena and quantum dynamics in extended and
finite systems. J. Chem. Phys., 152:124119, 2020.

Paolo Giannozzi, Oscar Baseggio, Pietro Bonfa, Davide Brunato, Roberto
Car, et al. Quantum espresso toward the exascale. J. Chem. Phys.,
152:154105, 2020.

Frangois Mauger, Aderonke S. Folorunso, Kyle A. Hamer, Cristel Chan-
dre, Mette B. Gaarde, et al. Charge migration and attosecond solitons in
conjugated organic molecules. Phys. Rev. Res., 4:013073, 2022.

Frangois Mauger, Cristel Chandre, Mette B. Gaarde, Kenneth Lopata, and
Kenneth J. Schafer. Hamiltonian formulation and symplectic split-operator
schemes for time-dependent density-functional-theory equations of elec-

tron dynamics in molecules. Commun. Nonlinear Sci. Numer. Simulat.,
129:107685, 2024.

Attila Szabo and Neil S Ostlund. Modern quantum chemistry: introduction
to advanced electronic structure theory. Courier Corporation, New York,
1996.

W. Kohn and L.J. Sham. Self-consistent equations including exchange and
correlation effects. Phys. Rev., 140:A1133, 1965.

D. D. Johnson. Modified Broyden’s method for accelerating convergence
in self-consistent calculations. Phys. Rev. B, 38:12807, 1988.

Donald G Anderson. Iterative procedures for nonlinear integral equations.
JACM, 12:547, 1965.

Gilbert Strang. On the construction and comparison of difference schemes.
SIAM J. Numer. Analysis, 5:506, 1968.

Etienne Forest and Ronald D. Ruth. Fourth-order symplectic integration.
Physica D, 43(1):105-117, 1990.

S. Blanes and P.C. Moan. Practical symplectic partitioned Runge-Kutta
and Runge-Kutta-Nystrom methods. J. Comp. Appl. Math., 142:313, 2002,
DOI: 10.1145/321296.321305.

12

