
QMol-grid: A MATLAB package for
quantum-mechanical simulations in atomic and

molecular systems

François Maugera,∗, Cristel Chandreb

aDepartment of Physics and Astronomy, Louisiana State University, Baton Rouge,
Louisiana 70803, USA

bCNRS, Aix Marseille Univ, I2M, 13009 Marseille, France

Abstract

The QMol-grid package provides a suite of routines for performing quantum-
mechanical simulations in atomic and molecular systems, currently implemented
in one spatial dimension. It supports ground- and excited-state calculations for
the Schrödinger equation, density-functional theory, and Hartree-Fock levels
of theory as well as propagators for field-free and field-driven time-dependent
Schrödinger equation (TDSE) and real-time time-dependent density-functional
theory (TDDFT), using symplectic-split schemes. The package is written us-
ing MATLAB’s object-oriented features and handle classes. It is designed to
facilitate access to the wave function(s) (TDSE) and the Kohn-Sham orbitals
(TDDFT) within MATLAB’s environment.

Keywords: MATLAB, time-dependent density-functional theory,
time-dependent Schrödinger equation, Hartree-Fock, symplectic propagator

Metadata1

1. Motivation and significance2

Ab initio quantum simulations of the electronic structure and dynamics in3

atoms and molecules play an important role in many fields of physics and chem-4

istry. They have lead to the development of many computational packages.5

For instance, optimized packages like [2, 3, 4, 5, 6] allow for routine quantum6

calculations in a range of atomic, molecular, and solid-state systems, typically7

running on high-performance computer (HPC) systems. Alternatively, the QMol8

-grid package has been developed in the context of ultrafast atomic, molecular,9

and optical (AMO) research [7, 8], with a focus on low-dimension atomic and10

molecular models, (i) to provide a test bed for quantum-mechanical simulations11

that can easily run on personal computers, including when considering molec-12

ular systems with multiple interacting electrons and (ii) to facilitate access to13

the wave function(s) (TDSE) and the Kohn-Sham orbitals (TDDFT), such that14

∗Corresponding author
Email addresses: fmauger@lsu.edu (François Mauger), cristel.chandre@cnrs.fr

(Cristel Chandre)

Preprint submitted to SoftwareX January 22, 2025

Nr. Code metadata description
C1 Current code version 1.21
C2 Permanent link to code/repository used for

this code version
https://github.com/fmauger1/

QMol-grid.git

C3 Permanent link to Reproducible Capsule N/A
C4 Legal Code License BSD-2-Clause
C5 Code versioning system used git
C6 Software code languages, tools, and ser-

vices used
MATLAB (R2022a or later) [1]

C7 Compilation requirements, operating envi-
ronments & dependencies

none

C8 If available Link to developer documenta-
tion/manual

https://github.com/fmauger1/

QMol-grid/wiki

C9 Support email for questions fmauger@lsu.edu

Table 1: QMol-grid metadata

users can build complex workflows and analyses alongside the simulations. For15

instance, QMol-grid time propagators enable arbitrary user-defined functions16

to be evaluated, and their result stored, while the TDSE/TDDFT propagation17

is performed. The package also provides built-in facilities for the calculation18

of common observable, including the dipole signal, energy, ionization, TDSE19

wave function and TDDFT Kohn-Sham orbitals. Aside from research purposes,20

the package offers a valuable resource for teaching purposes: with it, students21

can be introduced to a range of quantum mechanical simulation techniques (see22

below), using calculation examples that run on personal computers or laptops.23

The QMol-grid package provides a suite of routines for performing quantum-24

mechanical simulations in atomic and molecular systems, currently implemented25

in one spatial dimension. Obviously, such lower-dimensional models cannot26

capture the entire manifold of processes at play in full-dimension simulations.27

Instead, these models play an important and complementary role in providing28

prototypical systems where general, non-system specific, properties can be es-29

tablished. A second advantage of dimensionally-reduced simulations is that they30

typically run at a fraction of the time of their full-dimension counterparts. This31

computational up-speed can then be re-invested in extended parameter scans32

or scouting for outcome of interest in a large parameter space. For instance,33

we have used this latter approach in recent analyses of ultrafast migration of34

charges in molecules [7]. The specifics of what is included and left out in any35

given lower-dimension simulation is highly system/model dependent. We defer36

to end-users of the package to address those limitations in their specific situa-37

tion.38

All simulations in the QMol-grid package use an underlying Cartesian-grid39

discretization scheme, with all spatial derivatives calculated with fast-Fourier40

transforms. The package is written using MATLAB’s object-oriented features41

and handle classes. Notably, the package supports:42

• DFT: Ground- and excited-state density-functional theory.43

• HF: Ground- and excited-state Hartree Fock.44

• SE: Ground- and excited-state Schrödinger equation.45

2

• TDDFT: Real-time time-dependent density-functional theory.46

• TDSE: Time-dependent Schrödinger equation.47

Ground- and excited-state calculations support both using a Cartesian grid or48

basis-set discretization while time-dependent simulations are currently limited49

to Cartesian grids.50

We refer readers to the documentation for details regarding each supported51

computational framework. Briefly, within QMol-grid, SE provides a single-52

active electron model of the electronic structure of atoms and molecules. For53

multi-electron systems, HF gives the best approximation (lowest energy) of the54

wave function in terms of a single antisymmetrized product of one-electron wave55

functions (Slater determinant) [9]. Alternatively, DFT trades the multi-electron56

wave-function picture for the real-space electron density, whose dimension is57

independent of the number of active electrons. There, electron-electron in-58

teractions are captured in the (nonlinear) functional dependency of the DFT59

Hamiltonian on the electron density. Specifically, QMol-grid uses Kohn-Sham60

DFT [10], where the density is build from virtually-independent electrons. Both61

HF and DFT correspond to solving a nonlinear eigen-state problem, which is62

implemented via standard iterative techniques in the package [11].63

TDSE and TDDFT describe the time evolution of the system, typically64

either resulting from an external driving laser field or starting from a non-65

stationary initial state, within their respective SE and DFT framework. From66

its origin in ultrafast AMO science research, the QMol-grid package offers ef-67

ficient and high-order time propagation schemes specially designed for those68

simulations [8]. Time-dependent simulations neglect nuclear dynamics (Born-69

Oppenheimer approximation), with all atomic and molecular potentials fixed in70

space throughout the time evolution of the electrons.71

2. Software description72

A full description of the QMol-grid package, including all possible input73

parameters and calculation features is included in the MATLAB documenta-74

tion provided with the package. After installation, the package documentation75

is accessible in MATLAB, in the “Supplemental Software” section. A copy of76

the documentation is also provided on the GitHub wiki. The documentation77

includes a series of tutorials, starting with SE ground-state calculations, and78

going through TDSE, DFT, and TDDFT calculations to help new users get-79

ting familiarized with setting up calculations, input parameters, and output80

variables. Throughout, the documentation also includes many script samples81

illustrating how one can use the various features. Finally, the documentation82

discusses the required class structure for advanced users who wish to add their83

own functionalities to the package and inherit common interface methods to the84

QMol-grid package.85

2.1. Software architecture86

The QMol-grid package provides an ecosystem of MATLAB handle classes.87

While the package is provided as a stand-alone suite, it is developed around 388

main groups sketched in figure 1 (a): (1) external components, (2) kernel classes89

that define high-level calculation methods, and (3) implementation classes that90

3

define all the lower-level functionalities. The package is developed with the91

general goal of facilitating access to the wave function(s) (SE/TDSE) and the92

Kohn-Sham orbitals (DFT/TDDFT), which are packaged into classes for ab-93

stract manipulations of the objects in ground-state, time propagation, and com-94

mon observables’ calculations.95

Figure 1: (a) Overall architecture for the QMol-grid package: components are sorted
in three tiers of handle classes that define the computation ecosystem. (b) Schematic of a
Schrödinger-equation object and its components. Each box indicates a separate class defined
within the package.

Users set up calculations by creating QMol-grid objects of the relevant type96

and specifying the desired parameters using MATLAB’s common name-value97

pair argument structure (in arbitrary order and case insensitive). As illustrated98

in the examples of section 3 below, we strive to give intuitive and descriptive99

parameter names. The documentation provides the list, together with sup-100

ported formats, of all available input parameters for each class. Throughout101

the package, input parameters and output results are specified in atomic units;102

we provide units conversion external components to facilitate conversions to103

more conventional units (e.g., as/fs for time, W/cm2 for field intensity, etc.).104

Some high-level components are themselves encapsulated into classes, enabling105

4

abstract manipulations in the property objects. Figure 1 (b) illustrates this106

concept for the Schrödinger-equation object QMol_SE for which class properties107

are a mix of variables (xspan and numberWaveFunction) and QMol-grid ob-108

jects (discretization, waveFunction, and potential). Parameters can be109

updated after an object has been created using the set method, again using110

name-value pair arguments.111

2.2. Software functionalities112

Ground- and excited-state calculations in the QMol-grid package are per-113

formed by a direct diagonalization of the Hamiltonian operator, via MATLAB’s114

eigs (grid discretization) or eig (basis set) functions. DFT and HF self-115

consistent-field iterations are performed using an Anderson’s mixing scheme [12,116

11]. HF is obtained by running DFT with an exact-exchange and no correlation117

functionals.118

The time-propagators in the QMol-grid package are computed using symplectic-119

split operators [8] (2nd order Strang a.k.a. Verlet [13], 4th order Forest-Ruth [14],120

and Blanes and Moan optimized 4th and 6th order [15] in time, and spectral121

in space). They support field-free and laser-driven simulations in the dipole122

approximation with the following on-the-fly features, each specifying their own123

time sampling:124

• Checkpointing, with the creation of a restart MATLAB file (.mat) that can125

be used to resume a calculation that was stopped before it was finished;126

• Calculation and storage of the dipole, dipole velocity, and dipole acceler-127

ation signals;128

• Calculation and storage of the wave function(s)/Kohn-Sham orbitals and129

Hamiltonian-component energies;130

• Storage of the wave function(s) (TDSE), and the Kohn-Sham orbitals and131

one-body density (TDDFT);132

• Calculation and storage of the ionization signal, keeping track of how much133

electronic density is absorbed at the domain boundaries;134

• Calculation and storage of the results of installable output functions of135

the wave function(s) (TDSE), and the Kohn-Sham orbitals or one-body136

density (TDDFT);137

• Saving the intermediate Schrödinger- or DFT-model objects in separate138

MATLAB files (.mat).139

Aside from the options that generate MATLAB files (first and last items above),140

the results for all the other on-the-fly calculations are collected and stored in141

the time propagator object itself – see the TDDFT example in section 3.2. The142

size of the generated output strongly depends on the simulation parameters:143

time-dependent dipole, energy, and ionization signals are proportional to the144

number of saved time steps while wave functions, Kohn-Sham orbitals, and145

densities scale as the number of time steps multiplied by the domain grid size.146

Anecdotally, in our experience dipole, energy, and ionization signals typically147

require a few hundred KB while saving the wave function or density easily takes148

a few to many MB.149

5

Both ground/excited-state and time-propagation calculations provide run-150

time documentation features, providing a summary of the model and simulation151

configuration as well as relevant references. The run-time documentation can be152

toggled on (default) or off. Profilers are also available to estimate the memory153

footprint and average execution time for the Hamiltonian-operator and its com-154

ponents. For time-dependent simulations, the profilers provide an estimate of155

the size for all the on-the-fly results calculated and saved during the propagation156

– see the TDDFT example in section 3.2.157

The QMol-grid package comes with a suite of unit tests, individually check-158

ing the methods in each of the classes in the package.159

3. Illustrative examples160

We illustrate how users interface with the QMol-grid package in two ex-161

amples. The documentation includes a more comprehensive series of tutorials162

meant to get new users familiarized with how to set simulations up, interact, and163

recover results from calculations. Starting from ground-state SE and moving to-164

wards TDDFT, the tutorials progressively introduce (i) minimal-code examples165

and (ii) discussions of various input parameters and output variables available166

in the package.167

3.1. Example 1: Schrödinger-equation ground state168

Here we illustrate how to use the QMol-grid package to calculate the ground-169

state wave function of a one-dimensional hydrogen-like atom. The Schrödinger-170

equation ground-state corresponds to the lowest-energy solution to the eigen-171

value problem Ĥψ(x) = Eψ(x), where Ĥ is the Schrödinger-equation Hamilto-172

nian operator, ψ is the wave function, and E its associated energy. In atomic173

units, the Hamiltonian operator is Ĥ = −Δ
2 + V̂.174

Specifically, this example walks through defining (i) the domain and grid175

discretization over which the Schrödinger-equation and wave function are cal-176

culated, (ii) the atomic potential and (iii) the Schrödinger-equation model, and177

(iv) calculating the ground state associated with these properties.178

We model the one-dimensional hydrogen model atom using a soft-Coulomb179

potential V (x) = −1/
√
x2 + a2 with180

1 H = QMol_Va_softCoulomb(’softeningParameter ’,sqrt (2));181

where ’softeningParameter’ specifies the value for the parameter a. Here we182

choose the softening parameter a =
√
2 to match H’s ground state energy. By183

default, the atom is located at the origin x = 0. Note that H only corresponds184

to the atomic model, which is shared with molecular systems and various quan-185

tum frameworks. Thus, it must be turned into a valid Schrödinger-equation186

potential, using187

1 V = QMol_SE_V(’atom’,H);188

Here ’atom’ indicates to the QMol_SE_V object that the list of atomic centers189

is provided next – here a single H effective potential.190

The simulation domain must be a Cartesian grid – with all increasing, equally191

spaced discretization points – and should be wide enough and with small enough192

of a discretization step to properly capture the wave function. In our case, we193

select a domain ranging from -15 to 15 a.u., with a discretization steps of 0.1 a.u.194

6

1 x = -15:.1:15;195

We now have all the elements to define a Schrödinger-equation model object196

with the potential and domain defined above197

1 SE = QMol_SE(...198

2 ’xspan’, x, ...199

3 ’potential ’, V);200

Like above, when creating the SE object, we recognize the definition of the201

discretization domain and effective potential with the keywords ’xspan’ and202

’potential’, respectively. Next we move to calculating its associated ground-203

state wave function and energy using the two commands204

1 GSS = QMol_SE_eigs;205

2 GSS.computeGroundState(SE);206

The first line creates the eigen-state solver while the second performs the actual207

ground-state calculation on the Schrödinger-equation object SE. At the end208

of the calculation, the ground-state wave function is stored in the input SE209

, together with relevant information such as the domain discretization. For210

instance, solely relying on SE, one can plot the ground-state wave function with211

1 figure212

2 plot(SE.xspan ,SE.waveFunction.waveFunction ,’-’,’LineWidth ’ ,2)213

3 set(gca ,’box’,’on’,’FontSize ’,12,’LineWidth ’ ,2)214

4 xlabel(’x (a.u.)’)215

5 ylabel(’wave function (a.u.)’)216

6 xlim(SE.xspan ([1 end]))217

The output is represented in Fig. 2. From the plot command line, we see that218

the domain-discretization grid may be recovered using the xspan property in the219

object SE (using the standard object-oriented dot notation SE.xspan). On the220

other hand, the wave function is nested inside another object, which explains221

the consecutive dots SE.waveFunction.waveFunction. Other properties in the222

object SE.waveFunction are used by ground/excited-state and TDSE calcula-223

tions; we refer to the QMol_SE_wfcn documentation page for further details.224

Figure 2: Ground-state wave function ψ(x) for the soft-Coulomb potential V (x) =
−1/

√
x2 + 2.

7

3.2. Example 2: Time-dependent density-functional theory225

For a given set of initial Kohn-Sham orbitals, the TDDFT dynamics is226

described by the nonlinear system of partial differential equations, in atomic227

units (a.u.)228

i∂tφk(x; t) = ĤDFT[{φk}k; t](x; t) φk(x; t), (1)

where ĤDFT is the DFT Hamiltonian operator, which nonlinearly depends on229

the Kohn-Sham orbitals {φk}k.230

The QMol-grid package relies on the canonical Hamiltonian structure of231

TDDFT [8] to integrate the dynamics of equation (1). In this example, we232

illustrate how to use the QMol-grid package to integrate the TDDFT dynamics233

of an open-shell one-dimensional molecular ion model with 3 atomic centers and234

5 active electrons.235

Initial condition: In the QMol-grid package, TDDFT simulations are de-236

coupled from setting up the initial condition, which must be done indepen-237

dently. Similar to example 1, we build the molecular model out of 3 one-238

dimensional atomic models, each contributing 2 electrons to the molecule, using239

soft-Coulomb potentials. For our example, we start by calculating the neutral-240

molecule ground state:241

1 % Molecular model242

2 V_1 = QMol_Va_softCoulomb(...243

3 ’atom’,’X_1’,’charge ’,2,’position ’,-3);244

4 V_2 = QMol_Va_softCoulomb(...245

5 ’atom’,’X_2’,’charge ’,2,’position ’, 0);246

6 V_3 = QMol_Va_softCoulomb(...247

7 ’atom’,’X_3’,’charge ’,2,’position ’, 3);248

8249

9 % DFT model250

10 Vext = QMol_DFT_Vext(’atom’,{V_1 ,V_2 ,V_3});251

11 Vh = QMol_DFT_Vh_conv;252

12 Vxc = {QMol_DFT_Vx_LDA_soft ,QMol_DFT_Vc_LDA_soft };253

13254

14 DFT = QMol_DFT_spinPol(...255

15 ’xspan’, -50:.1:50 , ...256

16 ’occupation ’, {[1 1 1],[1 1 1]}, ...257

17 ’externalPotential ’, Vext , ...258

18 ’HartreePotential ’, Vh , ...259

19 ’exchangeCorrelationPotential ’, Vxc , ...260

20 ’selfInteractionCorrection ’, ’ADSIC ’);261

21262

22 % DFT ground state263

23 SCF = QMol_DFT_SCF_Anderson;264

24 SCF.solveSCF(DFT);265

The “% Molecular model” block defines the atomic effective potential, speci-266

fying the name, bare charge, and location of each atomic center, respectively.267

The “% DFT model” block first defines the molecular potential Vext, followed268

by the DFT functionals Vh and Vxc to be used in the (TD)DFT calculations –269

see the documentation’s ground-state DFT tutorial for further details regarding270

the model parameters. The final block “% DFT ground state” first creates the271

eigen-state DFT solver, here an Anderson mixing scheme [11], and performs the272

ground-state self-consistent field (SCF) calculation.273

Next, we manually induce an excitation in the molecular cation by suc-274

cessively (i) replacing one of the Kohn-sham orbitals by a superposition of275

molecular-orbital states (excitation part) and (ii) removing an electron, going276

from 3 to 2, from the down-spin Kohn-Sham orbitals (ionization part).277

8

1 % Induce excitation278

2 DFT.orbital.set(’orbitalDown ’, [DFT.KSO.KSOdw (:,1) ...279

3 (DFT.KSO.KSOdw (:,2)+DFT.KSO.KSOdw (:,3))/sqrt (2)]);280

4281

5 % Induce ionization282

6 DFT.set(’occupation ’ ,{[1 1 1],[1 1]});283

We now have a non-stationary set of Kohn-Sham orbitals, leading to field-free284

dynamics under equation (1).285

TDDFT simulation: With the DFT molecular model and the initial condi-286

tion in hand, we now move to integrating the subsequent field-free TDDFT dy-287

namics. For this, we select a fourth-order Forest-Ruth symplectic split-operator288

scheme [14, 8]. Note that, here the field-free TDDFT dynamics does not lead289

to any ionization and therefore no boundary conditions need be specified at the290

edges of the domain. For field-driven simulations, absorbing boundary condi-291

tions can be specified to avoid spurious boundary effects.292

1 TDDFT = QMol_TDDFT_SSO_4FR(...293

2 ’time’, 0:10:100 , ...294

3 ’timeStep ’, 2e-2, ...295

4 ’saveDensity ’, true , ...296

5 ’saveDensityTime ’, 1);297

In our example, the TDDFT object is created with:298

• The first pair of arguments specifies that the integration should start at299

time t=0 and end at t=100 a.u. The step of 10 a.u., is unrelated to the300

propagation time step and instead specifies the time intervals to use in301

the progress display.302

• The second pair of arguments specifies the (fixed) time step for the prop-303

agation.304

• The third pair of arguments indicates that the one-body density should305

be saved periodically, with the period specified by the fourth pair of ar-306

guments, i.e., every 1 a.u. in our case.307

Then, we launch the TDDFT integration with308

1 TDDFT.propagate(DFT);309

At the end of the simulation, the DFT object has been updated to contain the310

Kohn-Sham orbitals at t = 100 a.u. The time-dependent one-body density is311

stored in the TDDFT object itself.312

Plotting the result: Next we recover calculated observables out of the TDDFT313

object. Each set of observable is stored in a separate structure property in the314

TDDFT object, which contains (i) the exact time vector at which the quantity315

has been saved and (ii) the observable itself. In our case, the structure of in-316

terest is TDDFT.outDensity with the up- and down-spin densities respectively317

stored in the fields totalUp and totalDown. The densities are matrices with318

columns corresponding to the successive saved times. To plot the spin density,319

defined as the difference between the up- and down-spin one-body densities, we320

use321

1 figure322

2 imagesc(TDDFT.outDensity.time ,DFT.xspan , ...323

3 TDDFT.outDensity.totalUp -TDDFT.outDensity.totalDown)324

9

4 set(gca ,’box’,’on’,’FontSize ’,12,’LineWidth ’,2,’YDir’,’normal ’)325

5 xlim(TDDFT.outDensity.time ([1 end]))326

6 ylim ([-10 10])327

7 xlabel(’time (a.u.)’)328

8 ylabel(’position (a.u.)’)329

9 title(’spin density ’)330

10 colorbar vert331

with the result shown in Fig. 3.332

Figure 3: Evolution of the spin density, defined as the difference between the up- and down-
spin one-body densities, along the molecular model we consider for our TDDFT-simulation
example.

Profiling (estimating the memory footprint): Before running the TDDFT333

calculation, users have the possibility to check how much memory the simulation334

requires to run and store the requested one-body densities. Using the same335

calculation workflow as above, right after creating the TDDFT object, the memory336

footprint is obtained with337

1 TDDFT.initialize(DFT);338

2 QMol_DFT_profiler(TDDFT ,’memory ’);339

In our case, the estimated total TDDFT-object size is 1.8 MB with 1.5 MB for340

the saved electron density. Saving the TDDFT and DFT object in a MATLAB file341

at the end of the propagation produces a 1.6 MB .mat file. We mostly attribute342

the slight difference with the profiler estimate to run-time memory overhead343

associated with internal variables that are not stored in the saved objects.344

4. Impact345

The QMol-grid package offers a versatile suite of quantum simulation tech-346

niques for reduced-dimension atomic and molecular models. Its native MAT-347

LAB structure facilitates on-the-fly calculations and analyses in time-dependent348

simulations as well as post-processing, which all can be done using high-level349

functionalities of MATLAB. Simulation data are organized within handle classes350

with common interface methods to simplify end-user interaction with the var-351

ious components of the package. QMol-grid comes with a full documentation,352

10

including many script samples that illustrate how one can use the various fea-353

tures. It also includes a series of tutorials to guide new users with setting up354

calculations, input parameters, and output variables.355

In our groups, we used an early development version of the QMol-grid pack-356

age in [7] for nonlinear analysis of ultrafast migration of electronic charges in357

molecules. Notably, the efficacy of simulations allowed us to perform thousands358

of TDDFT simulations and with it get a detailed picture of the migration-359

dynamics phase space, something that is essentially unfeasible in full-dimension360

quantum packages. More recently, we used QMol-grid to validate symplectic361

split-operator propagation schemes for TDDFT [8]. The symplectic propaga-362

tors (4th order Forest-Ruth [14], and Blanes and Moan optimized 4th and 6th363

order [15] schemes) are now integrated and available in the package – see exam-364

ple 2 of section 3.2. We continue to use QMol-grid in various on-going projects365

in our groups. Outside of a research environment, the package could be used for366

teaching: thanks to the modest computational requirements, students could run367

illustrative examples of quantum mechanics or (TD)DFT on personal computers368

or laptops.369

5. Conclusions370

The QMol-grid package provides a versatile suite of quantum-mechanical371

methods at the Schrödinger, Hartree-Fock, and density-functional theory lev-372

els of theory for ground- and excited-state calculations, as well as TDSE and373

TDDFT propagators. Time-propagation schemes provide streamlined access374

to the wave function(s) (TDSE) and the Kohn-Sham orbitals (TDDFT). The375

wave functions and Kohn-Sham orbitals are packaged into classes that enable376

abstract manipulations in the objects, e.g., for ground-state, time propaga-377

tion, and common observables’ calculations. The object-oriented structure pro-378

vides a uniform user interface, where input parameters are specified as pairs379

of parameter-name/parameter-value (in arbitrary order and case insensitive).380

Output results are stored in the objects and can be recovered using standard381

object-oriented dot notation – see the tutorials for examples.382

CRediT author statement383

F. Mauger: Conceptualization, Software, Validation, Documentation, Writ-384

ing - Original Draft, Funding acquisition. C. Chandre: Documentation, Writ-385

ing - Original Draft.386

Acknowledgements387

FM thanks M.B. Gaarde, K. Lopata, and K.J. Schafer for enlightening dis-388

cussions, suggestions, and support throughout the development of the pack-389

age. The original development of the QMol-grid package, and its (TD)DFT390

features, was supported by the U.S. Department of Energy, Office of Science,391

Office of Basic Energy Sciences, under Award No. DE-SC0012462. Addition of392

the (TD)SE features was supported by the National Science Foundation under393

Grant No. PHY-2207656394

11

References395

[1] The MathWorks Inc. MATLAB version: 9.12 (R2022a), 2022.396

[2] Giuseppe M. J. Barca, Colleen Bertoni, Laura Carrington, Dipayan Datta,397

Nuwan De Silva, et al. Recent developments in the general atomic and398

molecular electronic structure system. J. Chem. Phys., 152:154102, 2020.399

[3] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, et400

al. Gaussian 16, Revision C.01, 2016. Gaussian, Inc., Wallingford CT.401

[4] E. Aprà, E.J. Bylaska, W.A. de Jong, N. Govind, K. Kowalski, et al.402

NWChem: Past, present, and future. J. Chem. Phys., 152:184102, 2020.403

[5] Nicolas Tancogne-Dejean, Micael J.T. Oliveira, Xavier Andrade, Heiko Ap-404

pel, Carlos H. Borca, et al. Octopus, a computational framework for ex-405

ploring light-driven phenomena and quantum dynamics in extended and406

finite systems. J. Chem. Phys., 152:124119, 2020.407

[6] Paolo Giannozzi, Oscar Baseggio, Pietro Bonfà, Davide Brunato, Roberto408

Car, et al. Quantum espresso toward the exascale. J. Chem. Phys.,409

152:154105, 2020.410

[7] François Mauger, Aderonke S. Folorunso, Kyle A. Hamer, Cristel Chan-411

dre, Mette B. Gaarde, et al. Charge migration and attosecond solitons in412

conjugated organic molecules. Phys. Rev. Res., 4:013073, 2022.413

[8] François Mauger, Cristel Chandre, Mette B. Gaarde, Kenneth Lopata, and414

Kenneth J. Schafer. Hamiltonian formulation and symplectic split-operator415

schemes for time-dependent density-functional-theory equations of elec-416

tron dynamics in molecules. Commun. Nonlinear Sci. Numer. Simulat.,417

129:107685, 2024.418

[9] Attila Szabo and Neil S Ostlund. Modern quantum chemistry: introduction419

to advanced electronic structure theory. Courier Corporation, New York,420

1996.421

[10] W. Kohn and L.J. Sham. Self-consistent equations including exchange and422

correlation effects. Phys. Rev., 140:A1133, 1965.423

[11] D. D. Johnson. Modified Broyden’s method for accelerating convergence424

in self-consistent calculations. Phys. Rev. B, 38:12807, 1988.425

[12] Donald G Anderson. Iterative procedures for nonlinear integral equations.426

JACM, 12:547, 1965.427

[13] Gilbert Strang. On the construction and comparison of difference schemes.428

SIAM J. Numer. Analysis, 5:506, 1968.429

[14] Etienne Forest and Ronald D. Ruth. Fourth-order symplectic integration.430

Physica D, 43(1):105–117, 1990.431

[15] S. Blanes and P.C. Moan. Practical symplectic partitioned Runge-Kutta432

and Runge-Kutta-Nyström methods. J. Comp. Appl. Math., 142:313, 2002,433

DOI: 10.1145/321296.321305.434

12

