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Abstract—High-dimensional states (HD) are promising for
quantum key distribution (QKD) due to their noise tolerance
and efficiency. However, creating, and measuring, HD states is
technologically challenging, thus making it important to study
HD-QKD protocols where Alice and Bob are restricted in their
quantum capabilities. In this paper, we revisit an HD-QKD
protocol, introduced in (PRA 97 (4):042348), which does not
require Alice and Bob to be capable of sending and measuring in
full mutually unbiased bases. The previous proof of security for
this protocol has relied on numerical methods. In this work, we
provide a new proof of security, enabling the key-rate evaluation
beyond previous work. Furthermore, our new proof produces
better results for certain channel and dimension scenarios than
prior work.

For the full version of this paper, please see ( [1]).

I. INTRODUCTION

Quantum key distribution (QKD) offers provable uncondi-
tional security of a shared secret key between two parties Alice
and Bob, against an adversary Eve, whose capabilities are only
limited by the laws of nature [2], [3]. QKD protocols have
crucial real-life significance, such as ensuring the continuance
of security in the upcoming era of quantum computation and
networking [4]-[6].

However, implementing QKD systems is hard, due to the
inherent difficulties of working with quantum resources [7].
Thus, minimizing resource usage is an important area of
research [8]-[11]. Along this line is the so-called “3-state-
BB84” protocol [12] where Alice can only send one X" basis
state. This protocol was extended by Tamaki et al. in [13]
where they examined the case when Alice’s state preparation
source is extremely noisy and she ends up sending only one
of the X basis states.

Nurul et. al., [14] extended Tamaki et al.’s [13] work for
high dimensional states (dimension greater than two). We de-
note this variant of the 3-State-BB84 protocol as “HD-3-State-
BB8&4” protocol. As opposed to the two-dimensional or qubit
based cases, high dimensional or qudit based QKD systems
[15] often exhibit higher theoretical noise tolerance in security
analysis [16]-[21], and there are remarkable advancements in
actual implementations recently [22]-[25]. Of course, proving
the security of a QKD protocol against the most general form
of attack, otherwise known as the coherent attacks, remains
one of the challenging aspects of any QKD system. The
authors in [14] have used a numerical optimization-based
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method, to upper bound the phase-error rate of the HD-3-
State-BB84, which is used in previous works in different
contexts [26]-[28]. However, due to the prohibitive compu-
tational complexity of SDP-based numerical optimization in
this case for D > 10, analyzing noise tolerance in this
method [14] becomes computationally difficult. So, one may
look for analytical results for arbitrary dimensions that avoid
computational complexities.

We make several contributions in this work. First, we revisit
this HD-3-State-BB84 protocol [14], and derive a new, infor-
mation theoretic, security analysis for it. Unlike prior work,
our method is analytical and can be used to analyze the key
rate of the protocol for any dimension. Previous work, relying
on numerical optimization methods, could only realistically
be evaluated for relatively small dimensions. Furthermore, we
also consider a simpler version of the protocol where Bob
only needs to be able to distinguish a single high-dimensional
superposition state, making his measurement apparatus signif-
icantly simpler to implement practically. Finally, we evaluate
our resulting key-rate bounds on a depolarization channel
and amplitude damping channel, comparing when possible to
prior work. Importantly, unlike prior work, which showed a
decreasing trend in the noise tolerance of the protocol as the
dimension increased, we show an increasing trend in noise
tolerance as the dimension increases. Thus, in this work,
we prove that high-dimensional states can indeed benefit this
restricted three-state style protocol - a previously open ques-
tion. Along the way, we also derive a new continuity bound for
certain types of cq-states which may hold independent interest.

Preliminaries: A density operator p describing a quantum
state is a Hermitian, positive semi-definite operator with unit
trace. In this work, subscripts of a density operator p, such
as in p4pg, means that it is a quantum system shared among
parties Alice, Bob, and Eve. We may drop these subscripts if
the context is clear. We use H(A), to denote the von Neumann
entropy of p 4. The trace norm of density operator p is defined
as ||p|l1 := Tr(y/pp'). The trace distance between two density
operators p and o is defined as 1||p — o||;. We denote the bi-
nary entropy function as h(z) = —xlogz —(1—x)log(1—2x),
where the logarithm is of base 2, which is also true for
all logarithms used in this work. The Shannon entropy of
a probability distribution p with n outcomes, is denoted in
the usual way as: H(p) = — > ., p;log p;. The conditional



entropy of a bipartite quantum system pppg, denoted by
H(B|E), is defined as H(B|E), = H(BE), — H(E),.
We use notation Z = {|0),]1),...,|D — 1)} to denote the
D-dimensional computational basis and use X to denote
the Fourier basis ; ie., X {lzo), -+ ,|zp—1)} where
|zq) = Fla) = W Zb 0 exp( =riab) |b> where F is the
Fourier transform operator.

To measure the performance of a QKD protocol, we often
calculate its key rate K using the Devetak and Winter key
rate expression [29], [30] which states that, under a collective
attack scenario, for a tripartite density operator p,zpzg
where random variables A4, BZ are the classical results of
measuring quantum memories A and B in the Z basis:

K = inf[H(B?|E) — H(B?|A?)], (1)

where the infimum is taken over all possible collective attacks
by Eve which agree with the observed channel statistics.
Furthermore, we also make use of the following entropic
uncertainty relation obtained by Berta et al [31]:

H(A?|E) + H(A™) > log, D )

In [32], an alternative entropic uncertainty relation was shown
where, given p4p, if a measurement in either the Z basis, or
a restricted POVM measurement of the form {|x¢) (zo|, I —
|zo) (xo|} is performed, then it holds that:

Hp(Qx)
logp
where Hp(z) is the D-ary entropy function:
Hp(x) =zlogp(D—1)—zxlogp(x)—(1—z)logp (1—z) (4)

and @ x is the probability of receiving outcome I —
if measuring in POVM {|z) (x|, I — |x0) (zo]}.

II. THE PROTOCOL

H(AZ|E) + > log, D, 3)

|zo) <$0|

The protocol is a high-dimensional variant of the three-
state BB84 protocol, introduced in [14]. While that paper
considered a larger class of protocol, here we consider the
“simplest” version. We also consider two versions of the
protocol: MODE=FULL and MODE=PARTIAL. There are two
D-dimensional bases Z and X as defined previously and one
distinguished X basis state we denote simply |zo) (though it
may be any of the X basis states so long as the choice is
public knowledge). Alice can send any Z basis state or the
distinguished |z) state; Bob can perform (1) a full Z basis
measurement or (2) he can measure in the full X’ basis (if
MODE=FULL) or he can only distinguish |z¢) from any of
the other |x;), ¢ > 0 (if MODE=PARTIAL). That is, he is
always able to measure in the full Z basis, but he does not
need to be able to perform a full X’ basis measurement if
MODE=PARTIAL. A partial-entanglement-based version of
the protocol is described below; the equivalent prepare-and-
measure version can be found in the full paper ( [1]).

Protocol: HD-3-State-BB84
Public Parameters: The dimension of the Hilbert space

D > 2 and the bases Z and X as well as Alice’s choice of
the single X" basis state |xg). Also the protocol MODE, namely
MODE=FULL or MODE=PARTIAL.

Quantum Communication Stage: The quantum communica-
tion stage of the protocol repeats the following:

(1) Alice chooses randomly whether this round is a Key
Round or a Test Round. If it 1s a Key Round she prepares
an entangled state |¢) 4, = f Z |a a) 4 and sends
the T' register to Bob through the communlcatlon channel.
Otherwise, in a Test Round, she sends |z(); (unentangled
with her system).

(2) Bob chooses randomly to measure in the Z basis or the
X basis. If the latter, and if MODE=FULL, he measures in the
full X basis; otherwise, if MODE=PARTIAL, he actually mea-
sures using the two outcome POVM {|z¢) (zo|, I —|zo) (xol}-

(3) Alice and Bob inform each other of their basis choice
but not measurement or preparation choices. If this is a Key
Round and Bob uses the Z basis, then Alice measures her
own register also in the Z basis, in which case, this round
can contribute towards the raw key. Otherwise, if this is a
Test Round and Bob uses the X basis, then this round can
contribute towards estimating Eve’s disturbance.

Classical Communication Stage: Alice and Bob proceed
with error correction and privacy amplification to obtain a
secret key if the protocol was not aborted.

III. SECURITY ANALYSIS

The ultimate goal of our security analysis is to obtain a
lower bound on the achievable key rate using equation (1).
However, in equation (1), the entropy involving Eve’s quantum
memory F and Bob’s classical random variable BZ, denoted
as H(BZ|E), is not straightforward to calculate. Our goal in
this section is to calculate a lower bound on this quantity.
Note that H(BZ|A?) is easily computed by Alice and Bob,
as this only involves their Z basis measurement results. We
proceed with our security analysis assuming collective attacks.
We only consider ideal single qubit, lossless channels in this
work and leave defense against practical attacks [7], [33], [34]
as interesting future work.

The method that we are using to analyze the security of
this protocol is based on the works in [35], [36]. We prove
the security in three steps.

First step - Calculate density operators for states that
Alice sends and Bob measures in the Z basis:

We first calculate the density operators for states where
Alice sends a Z basis state and all parties measure in the
Z basis (denoted p4zpzp which is used for a Key Round)
and also an operator for when Alice sends the distinguished
X state (denoted oy which is used for Bob’s testing). Since
we are assuming collective attacks, we can model Eve’s attack
as a unitary operator U which acts on basis states as follows:

D—-1

Ula)r @ [X)p = Z b, €5) 1
b=0

From this, we may derive the desired states below. For full
details, see the full paper ( [1]).



Z\
opg = P (\/%;WB ®;|62>E> - (6)

With these two density operators opp and pzpzp, where
ppzE 1s needed to generate key bits and oppg is used to test
the fidelity of the channel, we can proceed to our next step.

Second Step - Calculate a lower bound on the key rate:
We will bound the needed H(B|E), by instead bounding
H(BI|E), and using a continuity bound:

PAZBZE = ) (al4 @ [b) (bl g @ ley) (eplp - (S

Theorem 1. The key rate of protocol (II) when MODE=FULL
is lower bounded by:

K >logy D — A — H(BX)U —leakgc, )

and, when MODE=PARTIAL, is lower bounded by:
Hq4(BX),
IOgD
where A = |H(B?|E), — H(B?|E),| (note that the o
state is after Bob measures Eq. 6 in the Z basis). Addition-
ally, leakpc is the information leaked during error correc-
tion [30]. Here, BX is the random variable that represents
Bob’s X basis measurement outcomes, when Alice sends
|zo). For MODE=FULL, BX takes on D possible values

since B can perform a full X basis measurement, while for
MODE=PARTIAL, B~ takes only two values.

K >logy D — A — — leakgc. )

Proof. In the case when Alice sends a single X basis state
which, after Bob’s measurement, results in the density operator
opE, we know that by Equation 2, we have for MODE=FULL:

H(B?|E), + H(B¥|A), > log(D)
— H(B?|E), >log(D) — H(BY), 9

where H(BX), is easily estimated using the observed error
rate in the Test Round case. Then combining equation (9) with
the definition of A as mentioned before, and remembering
that leakpc = H(B#|A?) asymptotically, if they use an
optimal error correction reconciliation protocol [30], Devetak-
Winter’s key rate equation from [29] finishes the proof for
MODE=FULL. For MODE=PARTIAL, the same arguments
can be used, but with Equation 3, thus completing the proof.

O

To calculate the key rate, one must bound A. The following
lemma proven in [36] for an alternative protocol, helps with
this as we shortly see:

Lemma 1. (Adopted from [36]) Assuming Alice and Bob only
use mutually unbiased bases for state encoding, it is to Eve’s
advantage to send an initial state satisfying the following
orthogonality constraint: (ef|ef’) = p(bla) if a = ' and
(efled’y = 0 if a # d, where, p(bla) = (e}|el) denotes the
probability of Bob’s Z basis measurement outcome being a
specific |b) € Z given that Alice sent a state |a) € Z.

Thus, we reduced the problem to computing A, the trace
distance between ppzp and opzp. First, we show an ana-
lytical expression for A assuming symmetric channels. Later,

we will show how one may bound A for arbitrary channels.

Third Step - Bounding A: To bound A we take advantage
of the continuity of von Neumann entropy; namely that A can
be upper-bounded as a function of the trace distance between
p and o. In particular, [37] bounds the absolute difference of
conditional entropies of two bipartite cq-states, in this case,
ppzr and opzp, as a function of their trace distance. We
have,

— (B |E), ~ HEB),| < clogl 5|+ 1+ on ().

(10)

where € > 1|lopzp — ppzplli and [B] is the size of the set
of outcomes from Bob’s Z basis measurement, in our case,
which is simply D.

For symmetric channels, we may use methods developed in
[36] to express € as a function of only the noise in the channel
and the dimension of each system D. This equation applies
to channels where for every b # a, it holds that p(bla) =
q/(D — 1) while for every b = a, it holds that p(bla) =
1 — g. Depolarization channels are one instance of such a
channel. See the full paper for further discussion ( [1]). Under
these assumptions, it can be found that [1], [36]:

1 D—1 q B
e< Ez;:o ((D—2)‘—D_1‘+])\+|+|>\ |>. (11)
for

)\i:f( D —2)8+/BV(D —1)( 4a—4ﬁ)+ﬂD2)

With this value of e calculated, we can easily get A as a
function of only noise parameter ¢ and dimension D.

In the general case, when the channel is not symmetric, one
can find the eigenvalues numerically, for the given channel
following an algorithm such as the one presented below:

1) Set a variable td =0

2) Foreach b=0,1,---D — 1 Do:

a) Set M to be a zero-matrix of size D x D.

b) For each a,a’ =0,1,---,D — 1 with a # o’ Do:
D M =M+ /pla)pla) |a) (@

¢) Compute the eigenvalues {Aq,---} of M

d) td=td+ ;|\

3) Return the Trace Distance: td/(2D).

In general, we found that our algorithm runs significantly
faster than the numerical optimization approach used in prior
work [14]. Indeed, for the amplitude damping channel,
evaluated below, the difference in running time on a standard
desktop computer was an order of magnitude faster for our
approach (taking seconds as opposed to hours).

Key Rate calculation: To calculate the key rate using
Equation 1, we need expressions for two more terms, namely,
H(BX) and the number of classical bits revealed during
error correction, leakpc = H(B#|A%). Both of these are
observable parameters, however, and are easily derived using




observed statistics. Later, for evaluation purposes, we will
simulate their expected values under a depolarization channel
and amplitude damping channel.

A. Improved Continuity Bound

Note that the key rate equation derived above applies to
arbitrary dimensions. In a specific case for symmetric channels
when D = 2 and 0 < ¢ < .1464, we can obtain a slightly
improved key rate using a new continuity bound we derive
below:

Lemma 2. Assuming D = 2, a symmetric channel, and that
Z and X are mutually unbiased, it then holds that:

|H(B?|E), — H(B?|E),| < h(1—q—/q(1 - q)).
Proof. See the full paper for a proof of this continuity bound
(C [LD. U

We show later in our evaluations, that this produces a strictly
better result than other continuity bounds for dimension two
and symmetric attacks.

B. General Attacks

While the above analyzed collective attacks, the security
analysis may be promoted straightforwardly to general at-
tacks. First, observe that the protocol may be reduced to
an equivalent entanglement-based version in the following
way. First, Eve prepares an arbitrary state 1) , 5 Which
we may write without loss of generality as: |¢) 55 =
% Zmb la, b, ef) .

Note that, if we assume Alice observes |a) with prob-
ability 1/D (which may be enforced), this then implies

5;01 (efleg) = 1 (which we assumed in the previous
section). Now, on a Key Round, Alice and Bob will measure
as normal. On a Test Round, Alice can measure in the X
basis and reject the signal if she does not observe |zg). It is
not difficult to see that, conditioning on Alice observing |zo),
this will disentangle her system with Bob and Eve’s in the
same manner as if she had initially sent |z). Thus security
there implies security of the entanglement-based version and
vice versa. Finally, de Finetti style arguments [38] may be
used to promote security to general attacks, thus concluding
the proof.

IV. EVALUATION

In the following, we evaluate our key rate bound in equation
(7) in a depolarizing channel and compare it with prior work
in [14]. Then we further evaluate our protocol in the amplitude
damping channel.

Depolarizing Channel: Because prior work methods are
computationally intensive to replicate, we only present the
comparison with our analysis for key rates for up to D = 8.
For the depolarization channel, our results and comparisons
are presented in figure (1) by evaluating our key rate from
equation (7).

In figure (1), it can be seen that the noise tolerance deter-
mined using the previous method in [14] actually goes down

Analytical : D
Numerical: D

log(Keyrate)

0.02 0.04 0.06 0.08 0.1 0.12
Noise g

Fig. 1: Comparison of our analysis and the numerical method
from [14]. Notice the decreasing trend of key rates in the
numerical approach(dotted lines), and the opposite in our
case (solid lines). Here we evaluate our protocol in the
MODE=FULL case, which is the analogous case of [14].
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D =50,q=1151% -D
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Fig. 2: (a) Noise tolerance of HD-3-State-BB84 in
MODE=FULL from dimension 10 to 110 in our analysis.
(b) Noise tolerance of HD-3-State-BB84 in MODE=PARTIAL
from dimension 10 to 100.

with increasing dimensions when only one monitoring basis
is used. For example, it is 7.45% for D = 3 and 7.28% for
D = 6. As indicated in their work, this may be attributed
to the quick rise of the optimal phase error rate produced by
the optimization algorithm with increasing dimensions. For
example, the phase error rate is 27.68% for D = 3 and
45.04% for D = 6. This effect is more pronounced when
one compares the result in the case of D = 2, where their
analysis performs best in terms of noise tolerances compared

log(Keyrate)

[] 0.005 0.01 0.015 0.02 0.025
Noise g

Fig. 3: Comparison of the noise tolerances of HD-3-State-
BB84 in dimension 2 and in MODE=FULL, considering our
lemma 2 and Winter’s bound [37] for conditional quantum
entropies.



to dimensions D > 2. In contrast to their result, in figure
(1), we see that our analysis produces better noise tolerances
as dimensions increase, as one may expect based on other
HD-QKD protocols. As an example, in our analysis, the noise
tolerance is 3.541% for D = 3 and 6.169% for D = 6. In
dimension D = 9, we see that our noise tolerance is 7.482%
compared to 6.63% in prior work [14]. This leads us to suspect
that in even higher dimensions D > 9, shown in Figure 2, our
analysis would continue to produce better noise tolerances.

Thus, while our result under-performs prior work for small
dimensions, it greatly outperforms prior work once the dimen-
sion increases and also proves for the first time that HD states
do, in fact, benefit this HD-three-state protocol (prior work
could not confirm this as discussed).

In figure (2), we show the evaluation of protocol (II) in
both MODE=FULL and MODE=PARTIAL for the depolarizing
channel. Comparing these two modes, we notice that the
performance of MODE=PARTIAL is still competitive with
MODE=FULL. For example, in dimension D = 20, we see
a noise tolerance of 9.62% in MODE=FULL and 8.99% in
MODE=PARTIAL. It is also interesting to notice that this
difference gets slightly more pronounced in even higher di-
mensions (D = 110 for example) between these two modes. It
can be said from these graphs that our analysis clearly demon-
strates the advantage of using high-dimensional resources as
well as the feasibility of obtaining competitive performance
even when one uses much fewer quantum resources. Finally,
in figure (3), we show the comparison between our new
continuity bound (Lemma 2) for A and Winter’s bound [37]
in the restricted case of D = 2, by evaluating the key
rate equation (7). We see that the noise tolerance increases
from 1.85% to 2.39% demonstrating its utility. Notably, this
improvement holds for both modes of our protocol, and we
only show this for MODE=FULL.

Amplitude Damping Channel: We further evaluate our
analysis in another widely used noise model, namely, the am-
plitude damping channel [39]. This channel can be described
by the following Kraus operators:

D-1 D—1
Eo=0) (0| + Y vI-pla)(al . E; = /pl0)(al.

We present the evaluation of our analysis for this chan-
nel in figure (4). Interestingly, when we consider the
MODE=PARTIAL for our protocol in this channel, where Bob
needs much less resources to implement his measurement
apparatus, the noise tolerance is higher than the MODE=FULL
for dimension 10. However, for D = 15, MODE=FULL does
outperform MODE=PARTIAL. From these observations in this
channel, We draw similar conclusions as in the depolarizing
channel. That is, high-dimensional resources do offer better
performance for protocol (II).

V. CLOSING REMARKS

In this work, we have presented a security proof of the
HD-3-State-BB84 protocol and showed that, for high enough

[D=10,g=136% D=20,q=167%
D=15,q=155%

FD=10,0=142% D=20,0=148%
D=15,9=14.7%

log(Keyrate)

a0-

002 004 006 012 014 016 018 0 0.05 01 015

008 01
Noise Noise g

Fig. 4: Key rates for HD-3-state-BB84 protocol in
MODE=FULL when the amplitude damping channel is used.
We consider dimensions D = 10, 15,20 here. Key rates for
HD-3-state-BB84-2 protocol, where the two-outcome POVM
EU relation is used, in the amplitude damping channel for
dimensions D = 10, 15, 20.

dimension, our work provides higher noise tolerances in the
case when only one monitoring basis is used as compared to
prior state of the art work. The key advantage of our analysis
is that it avoids computational limitations and provides an
analytical expression for key rates in arbitrary dimensions. Our
method also clearly demonstrates that indeed, using higher
dimensional systems leads to an increment in noise tolerances
even when Alice is limited in her ability to send the monitoring
basis states. This conclusion could not be made in [14] for this
three state protocol.

Many interesting future problems remain. Extending our
methods to the case where Alice sends more than one X basis
state would be useful. Another interesting line of investigation
would be to analyze more practical channels, including lossy
channels. We leave this analysis as interesting, and important,
future work. However, we feel our proof methods may be
suitable to tackle lossy conditions, and additional testing states,
with suitable extensions.

We have also presented a new continuity bound in Lemma
(2) for conditional quantum entropies in this work, for certain
types of cqg-states. We have shown that, although limited in
scope at this point, this new bound provides a noticeable ad-
vantage in noise tolerance in our analytical method, compared
to Winter’s continuity bound [37] (though, we stress, only
for a certain type of state and dimension as our lemma is
more restricted than Winter’s bound, the latter of which can
be applied to any state) and provides further support to Wilde’s
conjecture [40]. Perhaps more importantly, the technique we
have used to prove our bound may find use in proving the
conjecture itself, or some weaker version of it in arbitrary
dimensions, as currently there are no known techniques to
prove it.

Acknowledgments: HI and WOK would like to acknowledge
support from NSF grant number 2006126.

REFERENCES

[1] Hasan Igbal and Walter O. Krawec, “New security proof of a restricted
high-dimensional gkd protocol,” arXiv preprint arXiv:2307.09560, 2023.



[2

—

[3]

[4]

[5

[t}

[6

=

[8

[t}

[9

—

[10

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20

[21]

[22]

[23]

Stefano Pirandola, Ulrik L Andersen, Leonardo Banchi, Mario Berta,
Darius Bunandar, Roger Colbeck, Dirk Englund, Tobias Gehring, Cosmo
Lupo, Carlo Ottaviani, et al., “Advances in quantum cryptography,”
Advances in Optics and Photonics, vol. 12, no. 4, pp. 1012-1236, 2020.
Omar Amer, Vaibhav Garg, and Walter O Krawec, “An introduction
to practical quantum key distribution,” IEEE Aerospace and Electronic
Systems Magazine, vol. 36, no. 3, pp. 30-55, 2021.

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin,
Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao,
David A Buell, et al,, “Quantum supremacy using a programmable
superconducting processor,” Nature, vol. 574, no. 7779, pp. 505-510,
2019.

Andreas Poppe, Momtchil Peev, and Oliver Maurhart, “Outline of
the secoqc quantum-key-distribution network in vienna,” International
Journal of Quantum Information, vol. 6, no. 02, pp. 209-218, 2008.
Domenico Ribezzo, Mujtaba Zahidy, Ilaria Vagniluca, Nicola Biagi,
Saverio Francesconi, Tommaso Occhipinti, Leif K Oxenlgwe, Martin
Loncari¢, Ivan Cvitié, Mario Stipevié, et al., “Deploying an inter-
european quantum network,” arXiv preprint arXiv:2203.11359, 2022.
Eleni Diamanti, Hoi-Kwong Lo, Bing Qi, and Zhiliang Yuan, “Practical
challenges in quantum key distribution,” npj Quantum Information, vol.
2, no. 1, pp. 1-12, 2016.

Charles H Bennett, “Quantum cryptography using any two nonorthog-
onal states,” Physical review letters, vol. 68, no. 21, pp. 3121, 1992.
Charles H Bennett, Gilles Brassard, and N David Mermin, “Quantum
cryptography without bell’s theorem,” Physical review letters, vol. 68,
no. 5, pp. 557, 1992.

Michel Boyer, Dan Kenigsberg, and Tal Mor, “Quantum key distribution
with classical bob,” in 2007 First International Conference on Quantum,
Nano, and Micro Technologies (ICONM’07). IEEE, 2007, pp. 10-10.
Xiangfu Zou, Daowen Qiu, Lvzhou Li, Lihua Wu, and Lvjun Li,
“Semiquantum-key distribution using less than four quantum states,”
Physical Review A, vol. 79, no. 5, pp. 052312, 2009.

Chi-Hang Fred Fung and Hoi-Kwong Lo, “Security proof of a three-
state quantum-key-distribution protocol without rotational symmetry,”
Physical Review A, vol. 74, no. 4, pp. 042342, 2006.

Kiyoshi Tamaki, Marcos Curty, Go Kato, Hoi-Kwong Lo, and Koji
Azuma, “Loss-tolerant quantum cryptography with imperfect sources,”
Physical Review A, vol. 90, no. 5, pp. 052314, 2014.

Nurul T Islam, Charles Ci Wen Lim, Clinton Cahall, Jungsang Kim, and
Daniel J Gauthier, “Securing quantum key distribution systems using
fewer states,” Physical Review A, vol. 97, no. 4, pp. 042347, 2018.
Daniele Cozzolino, Beatrice Da Lio, Davide Bacco, and Leif Katsuo Ox-
enlgwe, “High-dimensional quantum communication: Benefits, progress,
and future challenges,” Advanced Quantum Technologies, vol. 2, no. 12,
pp- 1900038, 2019.

Nicolas J Cerf, Mohamed Bourennane, Anders Karlsson, and Nicolas
Gisin, “Security of quantum key distribution using d-level systems,”
Physical review letters, vol. 88, no. 12, pp. 127902, 2002.

Antonio Acin, Nicolas Gisin, and Valerio Scarani, “Security bounds
in quantum cryptography using d-level systems,” arXiv preprint quant-
ph/0303009, 2003.

Lana Sheridan and Valerio Scarani, “Security proof for quantum key
distribution using qudit systems,” Physical Review A, vol. 82, no. 3, pp.
030301, 2010.

Chrysoula Vlachou, Walter Krawec, Paulo Mateus, Nikola Paunkovié,
and André Souto, “Quantum key distribution with quantum walks,”
Quantum Information Processing, vol. 17, no. 11, pp. 1-37, 2018.
Hasan Igbal and Walter O Krawec, “Analysis of a high-dimensional
extended b92 protocol,” Quantum Information Processing, vol. 20, no.
10, pp. 1-22, 2021.

Keegan Yao, Walter O Krawec, and Jiadong Zhu, “Quantum sampling
for finite key rates in high dimensional quantum cryptography,” IEEE
Transactions on Information Theory, 2022.

Nurul T Islam, Charles Ci Wen Lim, Clinton Cahall, Jungsang Kim,
and Daniel J Gauthier, “Provably secure and high-rate quantum key
distribution with time-bin qudits,” Science advances, vol. 3, no. 11, pp.
e1701491, 2017.

Catherine Lee, Darius Bunandar, Zheshen Zhang, Gregory R Stein-
brecher, P Ben Dixon, Franco NC Wong, Jeffrey H Shapiro, Scott A
Hamilton, and Dirk Englund, “Large-alphabet encoding for higher-rate
quantum key distribution,” Optics express, vol. 27, no. 13, pp. 17539-
17549, 2019.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

(39]

[40]

Tlaria Vagniluca, Beatrice Da Lio, Davide Rusca, Daniele Cozzolino,
Yunhong Ding, Hugo Zbinden, Alessandro Zavatta, Leif K Oxenlgwe,
and Davide Bacco, “Efficient time-bin encoding for practical high-
dimensional quantum key distribution,” Physical Review Applied, vol.
14, no. 1, pp. 014051, 2020.

Beatrice Da Lio, Daniele Cozzolino, Nicola Biagi, Yunhong Ding,
Karsten Rottwitt, Alessandro Zavatta, Davide Bacco, and Leif K Ox-
enlgwe, “Path-encoded high-dimensional quantum communication over
a 2 km multicore fiber,” arXiv preprint arXiv:2103.05992, 2021.
Darius Bunandar, Luke CG Govia, Hari Krovi, and Dirk Englund, “Nu-
merical finite-key analysis of quantum key distribution,” npj Quantum
Information, vol. 6, no. 1, pp. 1-12, 2020.

Adam Winick, Norbert Liitkenhaus, and Patrick J Coles, “Reliable
numerical key rates for quantum key distribution,” Quantum, vol. 2,
pp. 77, 2018.

Ian George, Jie Lin, and Norbert Liitkenhaus, ‘“Numerical calculations
of the finite key rate for general quantum key distribution protocols,”
Physical Review Research, vol. 3, no. 1, pp. 013274, 2021.

Igor Devetak and Andreas Winter, “Distillation of secret key and
entanglement from quantum states,” Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Science, vol. 461, no. 2053,
pp. 207-235, 2005.

Renato Renner, Nicolas Gisin, and Barbara Kraus, “Information-
theoretic security proof for quantum-key-distribution protocols,” Physi-
cal Review A, vol. 72, no. 1, pp. 012332, 2005.

Mario Berta, Matthias Christandl, Roger Colbeck, Joseph M Renes, and
Renato Renner, “The uncertainty principle in the presence of quantum
memory,” Nature Physics, vol. 6, no. 9, pp. 659-662, 2010.

Walter O Krawec, “A new high-dimensional quantum entropic un-
certainty relation with applications,” in 2020 IEEE International
Symposium on Information Theory (ISIT). IEEE, 2020, pp. 1978-1983.
Angi Huang, Stefanie Barz, Erika Andersson, and Vadim Makarov,
“Implementation vulnerabilities in general quantum cryptography,” New
Journal of Physics, vol. 20, no. 10, pp. 103016, 2018.

Hoi-Kwong Lo, Marcos Curty, and Kiyoshi Tamaki, “Secure quantum
key distribution,” Nature Photonics, vol. 8, no. 8, pp. 595-604, 2014.
Walter O Krawec, “Key-rate bound of a semi-quantum protocol using an
entropic uncertainty relation,” in 2018 IEEE International Symposium
on Information Theory (ISIT). IEEE, 2018, pp. 2669-2673.

Hasan Igbal and Walter O Krawec, “High-dimensional semiquantum
cryptography,” IEEE Transactions on Quantum Engineering, vol. 1, pp.
1-17, 2020.

Andreas Winter, “Tight uniform continuity bounds for quantum en-
tropies: conditional entropy, relative entropy distance and energy con-
straints,” Communications in Mathematical Physics, vol. 347, no. 1, pp.
291-313, 2016.

Robert Konig and Renato Renner, “A de finetti representation for finite
symmetric quantum states,” Journal of Mathematical physics, vol. 46,
no. 12, pp. 122108, 2005.

Alejandro Fonseca, “High-dimensional quantum teleportation under
noisy environments,” Physical Review A, vol. 100, no. 6, pp. 062311,
2019.

Mark M Wilde, “Optimal uniform continuity bound for conditional
entropy of classical-quantum states,” Quantum Information Processing,
vol. 19, no. 2, pp. 1-9, 2020.



	Introduction
	The Protocol
	Security Analysis
	Improved Continuity Bound
	General Attacks

	Evaluation
	Closing Remarks
	References

