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AbstractÐHigh-dimensional states (HD) are promising for
quantum key distribution (QKD) due to their noise tolerance
and efficiency. However, creating, and measuring, HD states is
technologically challenging, thus making it important to study
HD-QKD protocols where Alice and Bob are restricted in their
quantum capabilities. In this paper, we revisit an HD-QKD
protocol, introduced in (PRA 97 (4):042348), which does not
require Alice and Bob to be capable of sending and measuring in
full mutually unbiased bases. The previous proof of security for
this protocol has relied on numerical methods. In this work, we
provide a new proof of security, enabling the key-rate evaluation
beyond previous work. Furthermore, our new proof produces
better results for certain channel and dimension scenarios than
prior work.

For the full version of this paper, please see ( [1]).

I. INTRODUCTION

Quantum key distribution (QKD) offers provable uncondi-

tional security of a shared secret key between two parties Alice

and Bob, against an adversary Eve, whose capabilities are only

limited by the laws of nature [2], [3]. QKD protocols have

crucial real-life significance, such as ensuring the continuance

of security in the upcoming era of quantum computation and

networking [4]±[6].

However, implementing QKD systems is hard, due to the

inherent difficulties of working with quantum resources [7].

Thus, minimizing resource usage is an important area of

research [8]±[11]. Along this line is the so-called ª3-state-

BB84º protocol [12] where Alice can only send one X basis

state. This protocol was extended by Tamaki et al. in [13]

where they examined the case when Alice’s state preparation

source is extremely noisy and she ends up sending only one

of the X basis states.

Nurul et. al., [14] extended Tamaki et al.’s [13] work for

high dimensional states (dimension greater than two). We de-

note this variant of the 3-State-BB84 protocol as ªHD-3-State-

BB84º protocol. As opposed to the two-dimensional or qubit

based cases, high dimensional or qudit based QKD systems

[15] often exhibit higher theoretical noise tolerance in security

analysis [16]±[21], and there are remarkable advancements in

actual implementations recently [22]±[25]. Of course, proving

the security of a QKD protocol against the most general form

of attack, otherwise known as the coherent attacks, remains

one of the challenging aspects of any QKD system. The

authors in [14] have used a numerical optimization-based

method, to upper bound the phase-error rate of the HD-3-

State-BB84, which is used in previous works in different

contexts [26]±[28]. However, due to the prohibitive compu-

tational complexity of SDP-based numerical optimization in

this case for D > 10, analyzing noise tolerance in this

method [14] becomes computationally difficult. So, one may

look for analytical results for arbitrary dimensions that avoid

computational complexities.

We make several contributions in this work. First, we revisit

this HD-3-State-BB84 protocol [14], and derive a new, infor-

mation theoretic, security analysis for it. Unlike prior work,

our method is analytical and can be used to analyze the key

rate of the protocol for any dimension. Previous work, relying

on numerical optimization methods, could only realistically

be evaluated for relatively small dimensions. Furthermore, we

also consider a simpler version of the protocol where Bob

only needs to be able to distinguish a single high-dimensional

superposition state, making his measurement apparatus signif-

icantly simpler to implement practically. Finally, we evaluate

our resulting key-rate bounds on a depolarization channel

and amplitude damping channel, comparing when possible to

prior work. Importantly, unlike prior work, which showed a

decreasing trend in the noise tolerance of the protocol as the

dimension increased, we show an increasing trend in noise

tolerance as the dimension increases. Thus, in this work,

we prove that high-dimensional states can indeed benefit this

restricted three-state style protocol - a previously open ques-

tion. Along the way, we also derive a new continuity bound for

certain types of cq-states which may hold independent interest.

Preliminaries: A density operator ρ describing a quantum

state is a Hermitian, positive semi-definite operator with unit

trace. In this work, subscripts of a density operator ρ, such

as in ρABE , means that it is a quantum system shared among

parties Alice, Bob, and Eve. We may drop these subscripts if

the context is clear. We use H(A)ρ to denote the von Neumann

entropy of ρA. The trace norm of density operator ρ is defined

as ∥ρ∥1 := Tr(
√

ρρ†). The trace distance between two density

operators ρ and σ is defined as 1

2
∥ρ− σ∥1. We denote the bi-

nary entropy function as h(x) = −x log x−(1−x) log(1−x),
where the logarithm is of base 2, which is also true for

all logarithms used in this work. The Shannon entropy of

a probability distribution p⃗ with n outcomes, is denoted in

the usual way as: H(p⃗) = −∑n
i=1

pi log pi. The conditional



entropy of a bipartite quantum system ρBE , denoted by

H(B|E)ρ is defined as H(B|E)ρ = H(BE)ρ − H(E)ρ.

We use notation Z = {|0⟩ , |1⟩ , ..., |D − 1⟩} to denote the

D-dimensional computational basis and use X to denote

the Fourier basis ; i.e., X = {|x0⟩ , · · · , |xD−1⟩} where

|xa⟩ = F |a⟩ = 1√
D

∑D−1

b=0
exp

(−πiab
D

)

|b⟩ where F is the

Fourier transform operator.

To measure the performance of a QKD protocol, we often

calculate its key rate K using the Devetak and Winter key

rate expression [29], [30] which states that, under a collective

attack scenario, for a tripartite density operator ρAZBZE

where random variables AZ , BZ are the classical results of

measuring quantum memories A and B in the Z basis:

K = inf[H(BZ |E)−H(BZ |AZ)], (1)

where the infimum is taken over all possible collective attacks

by Eve which agree with the observed channel statistics.

Furthermore, we also make use of the following entropic

uncertainty relation obtained by Berta et al [31]:

H(AZ |E) +H(AX) ≥ log2D (2)

In [32], an alternative entropic uncertainty relation was shown

where, given ρAE , if a measurement in either the Z basis, or

a restricted POVM measurement of the form {|x0⟩ ⟨x0| , I −
|x0⟩ ⟨x0|} is performed, then it holds that:

H(AZ |E) +
HD(QX)

logD 2
≥ log2D, (3)

where HD(x) is the D-ary entropy function:

HD(x) = x logD(D−1)−x logD(x)−(1−x) logD(1−x) (4)

and QX is the probability of receiving outcome I − |x0⟩ ⟨x0|
if measuring in POVM {|x0⟩ ⟨x0| , I − |x0⟩ ⟨x0|}.

II. THE PROTOCOL

The protocol is a high-dimensional variant of the three-

state BB84 protocol, introduced in [14]. While that paper

considered a larger class of protocol, here we consider the

ªsimplestº version. We also consider two versions of the

protocol: MODE=FULL and MODE=PARTIAL. There are two

D-dimensional bases Z and X as defined previously and one

distinguished X basis state we denote simply |x0⟩ (though it

may be any of the X basis states so long as the choice is

public knowledge). Alice can send any Z basis state or the

distinguished |x0⟩ state; Bob can perform (1) a full Z basis

measurement or (2) he can measure in the full X basis (if

MODE=FULL) or he can only distinguish |x0⟩ from any of

the other |xi⟩, i > 0 (if MODE=PARTIAL). That is, he is

always able to measure in the full Z basis, but he does not

need to be able to perform a full X basis measurement if

MODE=PARTIAL. A partial-entanglement-based version of

the protocol is described below; the equivalent prepare-and-

measure version can be found in the full paper ( [1]).

Protocol: HD-3-State-BB84

Public Parameters: The dimension of the Hilbert space

D ≥ 2 and the bases Z and X as well as Alice’s choice of

the single X basis state |x0⟩. Also the protocol MODE, namely

MODE=FULL or MODE=PARTIAL.

Quantum Communication Stage: The quantum communica-

tion stage of the protocol repeats the following:

(1) Alice chooses randomly whether this round is a Key

Round or a Test Round. If it is a Key Round, she prepares

an entangled state |ψ⟩AT
:= 1√

D

∑D−1

a=0
|a, a⟩AT and sends

the T register to Bob through the communication channel.

Otherwise, in a Test Round, she sends |x0⟩T (unentangled

with her system).

(2) Bob chooses randomly to measure in the Z basis or the

X basis. If the latter, and if MODE=FULL, he measures in the

full X basis; otherwise, if MODE=PARTIAL, he actually mea-

sures using the two outcome POVM {|x0⟩ ⟨x0| , I−|x0⟩ ⟨x0|}.

(3) Alice and Bob inform each other of their basis choice

but not measurement or preparation choices. If this is a Key

Round and Bob uses the Z basis, then Alice measures her

own register also in the Z basis, in which case, this round

can contribute towards the raw key. Otherwise, if this is a

Test Round and Bob uses the X basis, then this round can

contribute towards estimating Eve’s disturbance.

Classical Communication Stage: Alice and Bob proceed

with error correction and privacy amplification to obtain a

secret key if the protocol was not aborted.

III. SECURITY ANALYSIS

The ultimate goal of our security analysis is to obtain a

lower bound on the achievable key rate using equation (1).

However, in equation (1), the entropy involving Eve’s quantum

memory E and Bob’s classical random variable BZ , denoted

as H(BZ |E), is not straightforward to calculate. Our goal in

this section is to calculate a lower bound on this quantity.

Note that H(BZ |AZ) is easily computed by Alice and Bob,

as this only involves their Z basis measurement results. We

proceed with our security analysis assuming collective attacks.

We only consider ideal single qubit, lossless channels in this

work and leave defense against practical attacks [7], [33], [34]

as interesting future work.

The method that we are using to analyze the security of

this protocol is based on the works in [35], [36]. We prove

the security in three steps.

First step - Calculate density operators for states that

Alice sends and Bob measures in the Z basis:

We first calculate the density operators for states where

Alice sends a Z basis state and all parties measure in the

Z basis (denoted ρAZBZE which is used for a Key Round)

and also an operator for when Alice sends the distinguished

X state (denoted σBE which is used for Bob’s testing). Since

we are assuming collective attacks, we can model Eve’s attack

as a unitary operator U which acts on basis states as follows:

U |a⟩T ⊗ |χ⟩E =

D−1
∑

b=0

|b, eab ⟩TE ,

From this, we may derive the desired states below. For full

details, see the full paper ( [1]).



ρAZBZE =
1

D

∑

a,b

|a⟩ ⟨a|A ⊗ |b⟩ ⟨b|B ⊗ |eab ⟩ ⟨eab |E . (5)

σBE = P

(

1√
D

∑

b

|b⟩B ⊗
∑

a

|eab ⟩E

)

. (6)

With these two density operators σBE and ρAZBZE , where

ρBZE is needed to generate key bits and σBE is used to test

the fidelity of the channel, we can proceed to our next step.

Second Step - Calculate a lower bound on the key rate:

We will bound the needed H(B|E)ρ by instead bounding

H(B|E)σ and using a continuity bound:

Theorem 1. The key rate of protocol (II) when MODE=FULL
is lower bounded by:

K ≥ log2D −∆−H(BX)σ − leakEC , (7)

and, when MODE=PARTIAL, is lower bounded by:

K ≥ log2D −∆− Hd(B
X)σ

logD 2
− leakEC . (8)

where ∆ = |H(BZ |E)ρ − H(BZ |E)σ| (note that the σ
state is after Bob measures Eq. 6 in the Z basis). Addition-

ally, leakEC is the information leaked during error correc-

tion [30]. Here, BX is the random variable that represents

Bob’s X basis measurement outcomes, when Alice sends

|x0⟩. For MODE=FULL, BX takes on D possible values

since B can perform a full X basis measurement, while for

MODE=PARTIAL, BX takes only two values.

Proof. In the case when Alice sends a single X basis state

which, after Bob’s measurement, results in the density operator

σBE , we know that by Equation 2, we have for MODE=FULL:

H(BZ |E)σ +H(BX |A)σ ≥ log(D)

=⇒ H(BZ |E)σ ≥ log(D)−H(BX)σ (9)

where H(BX)σ is easily estimated using the observed error

rate in the Test Round case. Then combining equation (9) with

the definition of ∆ as mentioned before, and remembering

that leakEC = H(BZ |AZ) asymptotically, if they use an

optimal error correction reconciliation protocol [30], Devetak-

Winter’s key rate equation from [29] finishes the proof for

MODE=FULL. For MODE=PARTIAL, the same arguments

can be used, but with Equation 3, thus completing the proof.

To calculate the key rate, one must bound ∆. The following

lemma proven in [36] for an alternative protocol, helps with

this as we shortly see:

Lemma 1. (Adopted from [36]) Assuming Alice and Bob only

use mutually unbiased bases for state encoding, it is to Eve’s

advantage to send an initial state satisfying the following

orthogonality constraint: ⟨eab |ea
′

b ⟩ = p(b|a) if a = a′ and

⟨eab |ea
′

b ⟩ = 0 if a ̸= a′, where, p(b|a) = ⟨eab |eab ⟩ denotes the

probability of Bob’s Z basis measurement outcome being a

specific |b⟩ ∈ Z given that Alice sent a state |a⟩ ∈ Z .

Thus, we reduced the problem to computing ∆, the trace

distance between ρBZE and σBZE . First, we show an ana-

lytical expression for ∆ assuming symmetric channels. Later,

we will show how one may bound ∆ for arbitrary channels.
Third Step - Bounding ∆: To bound ∆ we take advantage

of the continuity of von Neumann entropy; namely that ∆ can
be upper-bounded as a function of the trace distance between
ρ and σ. In particular, [37] bounds the absolute difference of
conditional entropies of two bipartite cq-states, in this case,
ρBZE and σBZE , as a function of their trace distance. We
have,

∆ = |H(BZ |E)ρ −H(BZ |E)σ| ≤ ϵ log |BZ |+ (1 + ϵ)h

(

ϵ

1 + ϵ

)

,

(10)

where ϵ ≥ 1

2
∥σBZE − ρBZE∥1 and |BZ | is the size of the set

of outcomes from Bob’s Z basis measurement, in our case,

which is simply D.

For symmetric channels, we may use methods developed in

[36] to express ϵ as a function of only the noise in the channel

and the dimension of each system D. This equation applies

to channels where for every b ̸= a, it holds that p(b|a) =
q/(D − 1) while for every b = a, it holds that p(b|a) =
1 − q. Depolarization channels are one instance of such a

channel. See the full paper for further discussion ( [1]). Under

these assumptions, it can be found that [1], [36]:

ϵ ≤ 1

2D

D−1
∑

b=0

(

(D − 2)

∣

∣

∣

∣

− q

D − 1

∣

∣

∣

∣

+
∣

∣λ+
∣

∣+
∣

∣λ−
∣

∣

)

. (11)

for

λ± =
1

2

(

(D − 2)β ±
√

β
√

(D − 1)(4α− 4β) + βD2

)

.

With this value of ϵ calculated, we can easily get ∆ as a

function of only noise parameter q and dimension D.

In the general case, when the channel is not symmetric, one

can find the eigenvalues numerically, for the given channel

following an algorithm such as the one presented below:

1) Set a variable td = 0
2) For each b = 0, 1, · · ·D − 1 Do:

a) Set M to be a zero-matrix of size D ×D.

b) For each a, a′ = 0, 1, · · · , D − 1 with a ̸= a′ Do:

i) M =M +
√

p(b|a)p(b|a′) |a⟩ ⟨a′|
c) Compute the eigenvalues {λ1, · · · } of M
d) td = td+

∑

i |λi|
3) Return the Trace Distance: td/(2D).

In general, we found that our algorithm runs significantly

faster than the numerical optimization approach used in prior

work [14]. Indeed, for the amplitude damping channel,

evaluated below, the difference in running time on a standard

desktop computer was an order of magnitude faster for our

approach (taking seconds as opposed to hours).

Key Rate calculation: To calculate the key rate using

Equation 1, we need expressions for two more terms, namely,

H(BX) and the number of classical bits revealed during

error correction, leakEC = H(BZ |AZ). Both of these are

observable parameters, however, and are easily derived using



observed statistics. Later, for evaluation purposes, we will

simulate their expected values under a depolarization channel

and amplitude damping channel.

A. Improved Continuity Bound

Note that the key rate equation derived above applies to

arbitrary dimensions. In a specific case for symmetric channels

when D = 2 and 0 ≤ q ≤ .1464, we can obtain a slightly

improved key rate using a new continuity bound we derive

below:

Lemma 2. Assuming D = 2, a symmetric channel, and that

Z and X are mutually unbiased, it then holds that:
∣

∣H(BZ |E)ρ −H(BZ |E)σ
∣

∣ ≤ h(1− q −
√

q(1− q)).

Proof. See the full paper for a proof of this continuity bound

( [1]).

We show later in our evaluations, that this produces a strictly

better result than other continuity bounds for dimension two

and symmetric attacks.

B. General Attacks

While the above analyzed collective attacks, the security

analysis may be promoted straightforwardly to general at-

tacks. First, observe that the protocol may be reduced to

an equivalent entanglement-based version in the following

way. First, Eve prepares an arbitrary state |ψ⟩ABE which

we may write without loss of generality as: |ψ⟩ABE =
1√
D

∑

a,b |a, b, eab ⟩ .
Note that, if we assume Alice observes |a⟩ with prob-

ability 1/D (which may be enforced), this then implies
∑D−1

b=0
⟨eab |eab ⟩ = 1 (which we assumed in the previous

section). Now, on a Key Round, Alice and Bob will measure

as normal. On a Test Round, Alice can measure in the X
basis and reject the signal if she does not observe |x0⟩. It is

not difficult to see that, conditioning on Alice observing |x0⟩,
this will disentangle her system with Bob and Eve’s in the

same manner as if she had initially sent |x0⟩. Thus security

there implies security of the entanglement-based version and

vice versa. Finally, de Finetti style arguments [38] may be

used to promote security to general attacks, thus concluding

the proof.

IV. EVALUATION

In the following, we evaluate our key rate bound in equation

(7) in a depolarizing channel and compare it with prior work

in [14]. Then we further evaluate our protocol in the amplitude

damping channel.

Depolarizing Channel: Because prior work methods are

computationally intensive to replicate, we only present the

comparison with our analysis for key rates for up to D = 8.

For the depolarization channel, our results and comparisons

are presented in figure (1) by evaluating our key rate from

equation (7).

In figure (1), it can be seen that the noise tolerance deter-

mined using the previous method in [14] actually goes down

Fig. 1: Comparison of our analysis and the numerical method

from [14]. Notice the decreasing trend of key rates in the

numerical approach(dotted lines), and the opposite in our

case (solid lines). Here we evaluate our protocol in the

MODE=FULL case, which is the analogous case of [14].

Fig. 2: (a) Noise tolerance of HD-3-State-BB84 in

MODE=FULL from dimension 10 to 110 in our analysis.

(b) Noise tolerance of HD-3-State-BB84 in MODE=PARTIAL
from dimension 10 to 100.

with increasing dimensions when only one monitoring basis

is used. For example, it is 7.45% for D = 3 and 7.28% for

D = 6. As indicated in their work, this may be attributed

to the quick rise of the optimal phase error rate produced by

the optimization algorithm with increasing dimensions. For

example, the phase error rate is 27.68% for D = 3 and

45.04% for D = 6. This effect is more pronounced when

one compares the result in the case of D = 2, where their

analysis performs best in terms of noise tolerances compared

Fig. 3: Comparison of the noise tolerances of HD-3-State-

BB84 in dimension 2 and in MODE=FULL, considering our

lemma 2 and Winter’s bound [37] for conditional quantum

entropies.



to dimensions D > 2. In contrast to their result, in figure

(1), we see that our analysis produces better noise tolerances

as dimensions increase, as one may expect based on other

HD-QKD protocols. As an example, in our analysis, the noise

tolerance is 3.541% for D = 3 and 6.169% for D = 6. In

dimension D = 9, we see that our noise tolerance is 7.482%
compared to 6.63% in prior work [14]. This leads us to suspect

that in even higher dimensions D > 9, shown in Figure 2, our

analysis would continue to produce better noise tolerances.

Thus, while our result under-performs prior work for small

dimensions, it greatly outperforms prior work once the dimen-

sion increases and also proves for the first time that HD states

do, in fact, benefit this HD-three-state protocol (prior work

could not confirm this as discussed).

In figure (2), we show the evaluation of protocol (II) in

both MODE=FULL and MODE=PARTIAL for the depolarizing

channel. Comparing these two modes, we notice that the

performance of MODE=PARTIAL is still competitive with

MODE=FULL. For example, in dimension D = 20, we see

a noise tolerance of 9.62% in MODE=FULL and 8.99% in

MODE=PARTIAL. It is also interesting to notice that this

difference gets slightly more pronounced in even higher di-

mensions (D = 110 for example) between these two modes. It

can be said from these graphs that our analysis clearly demon-

strates the advantage of using high-dimensional resources as

well as the feasibility of obtaining competitive performance

even when one uses much fewer quantum resources. Finally,

in figure (3), we show the comparison between our new

continuity bound (Lemma 2) for ∆ and Winter’s bound [37]

in the restricted case of D = 2, by evaluating the key

rate equation (7). We see that the noise tolerance increases

from 1.85% to 2.39% demonstrating its utility. Notably, this

improvement holds for both modes of our protocol, and we

only show this for MODE=FULL.

Amplitude Damping Channel: We further evaluate our

analysis in another widely used noise model, namely, the am-

plitude damping channel [39]. This channel can be described

by the following Kraus operators:

E0 = |0⟩ ⟨0|+
D−1
∑

a=1

√

1− p |a⟩ ⟨a| , Ei =

D−1
∑

a=1

√
p |0⟩ ⟨a| .

We present the evaluation of our analysis for this chan-

nel in figure (4). Interestingly, when we consider the

MODE=PARTIAL for our protocol in this channel, where Bob

needs much less resources to implement his measurement

apparatus, the noise tolerance is higher than the MODE=FULL
for dimension 10. However, for D = 15, MODE=FULL does

outperform MODE=PARTIAL. From these observations in this

channel, We draw similar conclusions as in the depolarizing

channel. That is, high-dimensional resources do offer better

performance for protocol (II).

V. CLOSING REMARKS

In this work, we have presented a security proof of the

HD-3-State-BB84 protocol and showed that, for high enough

Fig. 4: Key rates for HD-3-state-BB84 protocol in

MODE=FULL when the amplitude damping channel is used.

We consider dimensions D = 10, 15, 20 here. Key rates for

HD-3-state-BB84-2 protocol, where the two-outcome POVM

EU relation is used, in the amplitude damping channel for

dimensions D = 10, 15, 20.

dimension, our work provides higher noise tolerances in the

case when only one monitoring basis is used as compared to

prior state of the art work. The key advantage of our analysis

is that it avoids computational limitations and provides an

analytical expression for key rates in arbitrary dimensions. Our

method also clearly demonstrates that indeed, using higher

dimensional systems leads to an increment in noise tolerances

even when Alice is limited in her ability to send the monitoring

basis states. This conclusion could not be made in [14] for this

three state protocol.

Many interesting future problems remain. Extending our

methods to the case where Alice sends more than one X basis

state would be useful. Another interesting line of investigation

would be to analyze more practical channels, including lossy

channels. We leave this analysis as interesting, and important,

future work. However, we feel our proof methods may be

suitable to tackle lossy conditions, and additional testing states,

with suitable extensions.

We have also presented a new continuity bound in Lemma

(2) for conditional quantum entropies in this work, for certain

types of cq-states. We have shown that, although limited in

scope at this point, this new bound provides a noticeable ad-

vantage in noise tolerance in our analytical method, compared

to Winter’s continuity bound [37] (though, we stress, only

for a certain type of state and dimension as our lemma is

more restricted than Winter’s bound, the latter of which can

be applied to any state) and provides further support to Wilde’s

conjecture [40]. Perhaps more importantly, the technique we

have used to prove our bound may find use in proving the

conjecture itself, or some weaker version of it in arbitrary

dimensions, as currently there are no known techniques to

prove it.
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