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1  |  INTRODUC TION

Natural disturbances such as forest fires, floods, mud slides, hur-

ricanes, tsunamis, earthquakes, excessive wind, and heat waves 

play an important role in ecosystem dynamics (Seidl et al., 2011). 

All types of disturbances can have a strong influence on the struc-

ture, composition, and function of the habitats that they interact 

with (Seidl et al., 2011). Many of these disturbances are beneficial 

to ecosystem processes and may pave the way for the evolution of 

species diversity (Pausas & Keeley, 2019). However, natural distur-

bances can also damage ecosystems and lead to rapid species loss 

(Florec et al., 2020). It has been predicted that the frequency and 

intensity of disturbances, such as hurricanes, will change as a result 

of climate change (Lugo, 2000).

Hurricanes are storm systems that develop from low pressure 

and warm temperatures in tropical and subtropical waters (Heron 

et al., 2008). Hurricanes are a complex type of disturbance that is ac-

companied by wind and rain, which themselves represent two other 

natural disturbance types (Lugo, 2000). As such, hurricanes influence 

ecosystems, often determining the structure and function of the 

community of plants and animals that are exposed to them (Gardner 

et al., 2005). Hurricanes create environmental stressors that have 
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Abstract
Large scale disturbances are known to significantly alter aspects of both species diver-

sity and ecosystem function. In the Caribbean, hurricane events are a significant form 

of disturbance, the effects of which have been shown to alter food web function, espe-

cially in the terrestrial environment. Although hurricanes have been studied from a va-

riety of their effects on ecosystems, there is little research on how these storms affect 

species along elevational gradients. Within terrestrial habitats, ants form the basis of 

many food webs, being both numerically dominant and functioning in a variety of roles 

within the food web. On September 20th, 2017 Hurricane Maria, a category 4 storm, 
crossed over the island of Puerto Rico, causing significant damage to both human and 

natural systems. We collected data on ant abundance and composition from 150 sam-

ples of leaf litter along a 700 m elevational gradient during June the year of and after the 
storm event. Ant abundance increased by 400% after the storm with many common ant 

species seeming to benefit, especially at lower elevations. There were subtle changes 

in ant richness, with declines generally after the storm, but yet again this response was 

dependent on elevation. This is one of the first studies to consider how terrestrial insect 

communities are affected by large hurricane events across elevations, and our results 

are in contrast to past work showing declines in ant abundance after such storms.

Abstract in Spanish is available with online material.
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caused shifts in species abundance (Savage et al., 2018), shifts in 

population fluctuations, plant damage, mortality, litter inputs, ani-

mal niche dynamics, and changes in ecosystem processes (Ackerman 

et al., 1991). Hurricanes can have direct and indirect as well as visible 

and invisible effects on many organisms (Wiley & Wunderle, 1993). 

For example, direct, visible effects of a hurricane on a forest eco-

system are snapped branches, defoliation, and uprooted trees 

(Lugo, 2008). An indirect effect would be contracting foliage, caus-

ing variability in light and nutrient availability throughout the forest 

(Lugo, 2008). All of these effects likely interact to produce specific 

responses to a storm in a specific place at a specific time.

Ants (Order Hymenoptera, Family Formicidae) are one of the most 
important groups of insects, especially in the tropics (Folgarait, 1998; 

Wilson & Holldobler, 2005), and are a key component of the terres-

trial food web, and their responses to abiotic, biotic, and functional 

changes suggests that they are a useful indicator group of envi-

ronmental changes (Tiede et al., 2017). In general, various abiotic 

factors are thought to influence ant diversity, including the high 

environmental variation at different elevations (Pérez- Toledo et al., 

2022). With regard to hurricanes, however, the data examining the 

response of ant communities are lacking. In one study conducted on 

the Bahamian islands before and after Hurricane Floyd (ca. 1999), 

considerable declines in overall ant abundance and changes in the 

composition of species occurred post- hurricane (Morrison, 2002). 

Besides abundance, hurricanes can also negatively affect ant assem-

blages via environmental effects (Philpott et al., 2010), including by 

directly influencing ant- plant mutualism via traits associated with 

ant activities (Piovia- Scott, 2011). In addition, areas with a greater 

degree of flooding can be less vegetated and thus affect ant pres-

ence (Morrison, 2002). After a hurricane in Nicaragua, Cecropia spp. 

trees were greatly reduced and arboreal ant species like Azteca spp. 

that associated with these trees likely declined as a result (Philpott 

et al., 2010). Additionally, below ground macrofauna, such as ants, 

are vulnerable to inundation because they lack the ability to escape 

floods and typically decrease in abundance as a result (Coyle et al., 

2017). Wind disturbance from hurricanes can also result in increased 

debris such as leaf litter and wood material on the forest floor (Coyle 

et al., 2017). Additionally, hurricane winds can produce changes in 

species composition (Van Bloem et al., 2005). Forests, along with 

the community of organisms that live there (including ants, Hoenle 

et al., 2022), can take decades to recover, and recovery trajectories 

are not always predictable (Brokaw et al., 2012).

Although ants occur in a variety of habitats across the world, 

mountains often offer unique habitat for the study of responses to 

environmental change because of their altitude and temperature 

variations that are dissimilar to sea level (McCain & Grytnes, 2010). 

Mountains also provide an elevational gradient that offers historical in-

sight, important components to climate change response, and testing 

ground for scientific theory (Longino & Colwell, 2011). Ants are one of 

the most dominant taxa in the leaf litter layer of forest in Puerto Rico 

(Reagan & Waide, 1996) and can be found at various elevations across 

the island (Smith, 1936). Studies show that plants associated with 

ant mutualism decrease at higher elevations (Plowman et al., 2017), 

with species richness and functional diversity of ants also decreas-

ing (Reymond et al., 2013). In Mexico, the structure of leaf- litter ant 

communities along an elevational gradient can be attributed to tem-

perature (Pérez- Toledo et al., 2020). Studying a dominant tropical 

species, such as ants, along an elevational gradient may provide es-

sential data for monitoring biotic response to climate change (Longino 

& Colwell, 2011). At present, the interactive effects of hurricanes and 

elevational effects for ants has not been fully explored.

The main island of Puerto Rico is subjected to intense natural 

disturbances including hurricanes (Reagan & Waide, 1996). Puerto 

Rico has endured several large hurricanes over the past five de-

cades including Hugo (1989, Category 4), Georges (1998, Category 

3) and Maria (2017, Category 4). Hurricane Maria made landfall 
as a category 4 hurricane (Cortés, 2018) with sustained winds of 

209–251 km h−1 causing catastrophic damage (Taylor et al., 2010). 

Research indicates that hurricane occurrences are most active in La 

Niña years (Jagger & Elsner, 2006). Hurricane Maria occurred during 

a La Niña event (Murakami et al., 2018) and experienced the stron-

gest winds since 1928 at 250 km h−1 (Hosannah et al., 2021) even 

though the La Niña event was not considered the primary cause of 

the hurricane (Murakami et al., 2018).

Comparable data on the biota before a natural disturbance, such 

as a hurricane, are rare (Spiller et al., 1998). This deficiency is often 

related to the unpredictability of such large disturbance events and 

the lack of opportune collections before the event rather than after. 

Few studies have been able to examine the effects of large- scale 

disturbances like hurricanes on tropical ant communities given 

the unpredictable nature of these disturbances. The effects of a 

disturbance such as a hurricane on leaf litter invertebrates at the 

population, community, and ecosystem level have been reported 

elsewhere; however, there are few studies on the effects of a hur-

ricane on tropical ants across these scales (Reagan & Waide, 1996).

This study examined ant distribution in the Luquillo mountains 

of Puerto Rico before and after Hurricane Maria that passed over 

the center of the island on September 20, 2017. Specifically, we had 
two aims. First, we examined how ant abundance and community 

composition changed across a 700 m elevation transect. Second, we 
compared data collected before and after the storm. Based on en-

vironmental factors, such as temperature, we hypothesized that ant 

diversity and abundance would decrease with increasing elevation 

(e.g., Bruhl et al., 1999; Burwell & Nakamura, 2011; Fisher, 1996; 

Guerrero & Sarmiento, 2010; Reymond et al., 2013). We also hypoth-

esized that Hurricane Maria would have a generally negative effect 

on ants due to forces like flooding and disruption of vegetation, as 

well as potential alterations in the abiotic environment. Interactions 

between effects due to hurricane Maria and elevations have the po-

tential to produce unexpected outcomes on the ant community.

2  |  METHODS

Samples were conducted in the Luquillo Experimental Forest (LEF), 

a 11,330 ha site located on the eastern side of the main island of 
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Puerto Rico, U.S.A. Average annual rainfall is 3460 mm (McDowell 
& Estrada- Pinto, 1988) and monthly temperatures range from 21 

to 25°C (Brown, 1983). In both 2017 and 2018 sampling took place 
between June 14 and July 24, which are within the wet season for 
the island. The elevation transect we used occurred in a mixed for-

est, typical of Tabonuco forest (Uriarte et al., 2019), composed of 

both large hardwoods (e.g., Dacryodes excelsa) and gap specialists 

like Prestoea montana and Cecropia peltata, across fifteen different 

elevations. Sample sites were from 300 m to 1000 m elevation at 
50 m elevation increments (n = 15). At each elevation, 10 plots (total 
10 m × 10 m) were laid out in a 2 x 5 grid, with no space between 
adjacent plots. Within each plot, we sampled litter using a 0.5 m2 

PVC frame in either the northwest corner in the upper five plots or 

northeast corner in the lower five plots. As the goal of the sampling 

was to collect litter invertebrates, the frame was placed to avoid any 

large obstructions (e.g., boulders). Thus, we produced 150 samples 

(15 elevations with 10 plots at each). Individual plots were processed 

using Winkler sacs, which are a passive means to extract inverte-

brates by using their own behavior (Besuchet et al., 1987; Sabu & 

Shiju, 2010). Bulk samples of leaf litter from each plot were first vig-

orously agitated for 1 min over a 1.25 cm mesh screen to separate 
invertebrates from large debris. This sifted material was then placed 

into Winkler sacs that were then hung in place for 48 hrs. At the bot-
tom of the Winkler sac collection bag, we placed a container of 95% 

ethanol to catch and preserve all invertebrates. Following sorting of 

invertebrates from debris, ants were then separated into 0.25- dram 

shell vials for each plot within each elevation. This original sam-

pling design ended in late July 2017, but on September 20th, 2017 
Hurricane Maria passed over the island and did considerable damage 

to the forest (e.g., removal of the of canopy with stem breakage and 

uprooting of stems, Uriarte et al., 2019). We decided to resample the 

plots at the same time during the next year (June 2018) to maintain 
continuity in seasonality. All methods were the same except samples 

on plots were collected in the opposite corner to minimize any dif-

ferences due to our removal of litter in 2017. Given the severity of 
the storm, no sites in the LEF escaped without damage, and thus 

we did not have access to any control sites to compare to pre- storm 

samples. The LEF has also seen significant human disturbance in the 

form of agriculture (i.e., coffee) and logging, however these prac-

tices took place before the purchase of the property in the 1930s 

(Thompson et al., 2002) and no records of these disturbance exist 

above ~400 m; it is not clear that any of these disturbances took 
place along the studied transect.

3  |  STATISTIC AL ANALYSES

We analyzed our data to address five ant biodiversity measure-

ments (Gotelli et al., 2011) for the effects of Hurricane Maria 

across elevations. Abundance- level measurements included the 

total number of individuals per sample (N) and frequency of oc-

currence (the number of samples in which a species occurred, in 

the 10 samples from each elevation). Community- level measures 

included species richness per sample (S), total species richness in 

the 10 samples per elevation, and compositional changes in ant 

species abundance patterns (therefore producing a measure of 

community).

To examine changes in our N and S we performed a Repeated 

Measures multivariate analysis of variance (MANOVA) that con-

sidered year (2), elevation (15), and their interaction as indepen-

dent variables. To meet statistical assumptions, we used a ln (n+1) 

transformation for both S and N on the raw data. To assess po-

tential changes in ant frequency of occurrence, we performed 

logistic regressions on the nine most common species of ants 

encountered. These species made up 97% of all individual ants 
collected across years (i.e., Brachymyrmex sp., Hypoponera opacior, 

Linepithema iniquum, Nylanderia sp., Pheidole flavens, P. moerens, 

Solenopsis sp., Strumigenys rogeri, and Wasmannia auropunctata). 

Because of taxonomic uncertainties three of these species were 

included only at the genus level (Brachymyrmex sp., Nylanderia sp., 

Solenopsis sp.). So as to control for comparison- wide error rate 

across species within the same samples we adjusted the p- values 

downward (p = .05/9 = .006).
Finally, to assess compositional changes in the nine most com-

mon taxa, we first performed a Principal Components Analysis (PCA) 

to reduce correlated taxa (e.g., Everly & Yee, 2023). We retained PCs 

with eigenvalues >1.00. Retained PC axes were then analyzed using 

MANOVA with sampling period (2), elevation (15), and their interac-

tion as independent variables. Standardized canonical coefficients 

(SCCs) were used to assess the dependent variables most respon-

sible for significant effects (Scheiner, 2001). All analyses were con-

ducted in SAS (SAS, 2016).

4  |  RESULTS

We collected a total of 26 species of ants across the pre-  and 

post- hurricane sampling events, with 24 before and 18 after the 

disturbance (Table 1). We collected >400% more ants in the same 

plots after (total N = 3635) compared to before the hurricane (total 
N = 873). The MANOVA for N and S produced significant effects of 
year (F2,269 = 40.76, p < .001), elevation (F28,540 = 5.90, p < .001), and 
their interaction (F28,540 = 2.78, p < .001). In all cases, N had larger 
SCCs, indicating it contributed more to differences compared to S. 

For N, there was a general decline in N as elevation increased, and 

specifically there were significantly more ants in samples from 350 

and 450 m after the hurricane compared to before (Figure 1). Total 

richness per elevation did seem to generally vary between years 

(lower richness in 2018 vs. 2017) and decreased from low to high 
elevation (Figure 2a). For mean S per plot, we also found a general 

decline of richness across elevations and richness was higher in 2017 
(1.57 ± 0.04) than 2018 (1.38 ± 0.05). Even though the interaction 
was significant, we were unable to detect significant differences be-

tween plots at the same elevation between years (Figure 2b).

Based on logistic regressions, no species displayed a signif-

icant elevation by year interaction, nor difference between years. 
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However, six of the nine species did display significant differences 

across elevation (Brachymyrmex sp. (χ2 = 10.68, df = 1, p = .011), P. fla-

vens (χ2 = 4.39, df = 1, p = .036), P. moerens (χ2 = 8.33, df = 1, p = .039), 
Solenopsis sp. (χ2 = 23.73, df = 1, p < .001), S. rogeri (χ2 = 20.50, df = 1, 
p < .001), and W. auropunctata (χ2 = 54.88, df = 1, p < .001)). In all 
cases, abundance of these species were higher at lower elevations 

(Figure 3).

The PCA reduced the nine taxa down to 4 PCs which combined 

explained 60% of the variation among groups. Besides significant 

effects of time (F4,267 = 3.04, p < .001) and elevation (F56,1080 = 3.04, 
p < .001), we also identified a significant time by elevation inter-
action (F56,1080 = 2.56, p < .001). Based on SCCs the PC axes one 
(SCC = 1.08), two (0.61), and four (0.70) were largest (PC 3 = − 0.02) 
and thus most explained the interaction. The first PC contained three 

species (Brachymyrmex sp., S. rogeri, W. auropunctata), PC2 contained 

two (P. moerens, Solenopsis sp.), and PC 4 contained two (Nylanderia 

sp., P. flavens). In all cases, lower elevations (i.e., 340, 400, or both) 

saw a significant increase in abundance in 2018 over 2017 (Figure 4).

5  |  DISCUSSION

Our study documented 26 ant species across elevations (including 
some to genus, likely containing several species) across the 2 years of 
sampling. This likely captured most species in the LEF. For instance, 

Osorio- Pérez et al. (2007) found only 14 species in the LEF using a 

combination of Berlese funnels, baits, and arboreal traps, whereas 

a report by Lavigne (1970) notes 30 species. Work by Torres and 

Snelling (1997) lists 71 species, except this is from a survey across 
the entire main island of Puerto Rico and includes other affiliated 

islands. Thus, our sampling appeared to capture the faunal diversity 

of litter associated ants in the LEF. The generally lower ant diversity 

from mainland systems can be explained by the depauperate nature 

of islands, as well as the frequency of disturbance the LEF experi-

ences (Reagan & Waide, 1996).

This is the first study we are aware of to consider the effect of a 

large disturbance on ant communities across an elevational gradient. 

Specifically, we examined how ant abundance and community com-

position changed in Puerto Rico after Hurricane Maria and across el-

evations. Our first aim hypothesized that ant diversity would decline 
with increasing altitude, based on environmental factors such as 

temperature (Nowrouzi et al., 2016). We found that after Hurricane 

Maria there were significantly more ants at lower elevations, specif-

ically at 350 and 450 m. However, there was no significant elevation 
by year interaction for any species, but six of nine species displayed 

significant differences in frequency of occurrence across elevation, 

with fewer ant species present as we sampled up the mountain. This 

result is consistent with other studies investigating ants and eleva-

tion (e.g., Bruhl et al., 1999; Burwell & Nakamura, 2011; Fisher, 1996; 

Reymond et al., 2013).

For our second aim we hypothesized that Hurricane Maria neg-

atively affected ants likely due to alteration of the abiotic environ-

ment. In general, the most common ant species appeared to benefit 

from this wide scale disturbance with higher numbers present after-

wards, but we did not detect an expansion or contraction in areas 

where ants occurred. Thus, our data suggest that the storm may 

have benefited species in the short term by allowing for more or 

larger colonies, but didn't allow them to expand spatially. We do note 

that control sites (i.e., locations not affected by the storm) did not 

exist for inclusion in this study, and therefore we cannot say for sure 

that the changes we observed were due only to the hurricane. Given 

that the sampling took place along the same transect and at the 

same time of year, our results speak to the high likelihood of the pro-

found effect of Hurricane Maria on the LEF. However, we only sam-

pled approximately 10 months after the storm (12 months after our 
initial sampling), and thus it is possible that other long- term effects 

could have occurred. For instance, for large flooding events (likely 

those experienced after a large hurricane) the duration of flooding is 

important, and at longer time scales (e.g., 5 years) responses of the 
ant communities may be tied to vegetation structure that itself takes 

many years to recover (Philpott et al., 2010).

Ecological disturbance is an important factor for ant commu-

nity dynamics (Andersen, 2018). The effects of disturbance on 

TA B L E  1  Ant species present (X) versus absent (−) across an 
elevational gradient during the summers before (2017) and after 
(2018) Hurricane Maria, in the Luquillo Experimental Forest, Puerto 
Rico.

Species 2017 2018

Anochetus mayri X X

Brachymyrmex sp. X X

Cardiocondyla minutior X –

Cyphomyrmex minutus X X

Eurhopalothrix gravis X –

Hypoponera opacior X X

Linepithema iniquum X X

Monomorium floricola X –

Monomorium pharaonis – X

Myrmelachista sp. X –

Nylanderia sp. X X

Nylanderia microps X X

Odontomachus ruginodis X X

Pheidole flavens X X

Pheidole moerens X X

Pseudoponera stigma X –

Rogeria foreli X –

Solenopsis sp. X X

Strumigenys eggersi X X

Strumigenys gundlachi X X

Strumigenys margaritae X –

Strumigenys rogeri X X

Tapinoma litorale X –

Temnothorax isabellae X X

Wasmannia auropunctata X X

Zatania cisipa – X
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ant communities are typically indirect, including, but not limited 

to, competition, resource availability, microclimate, and habitat 

structure (Andersen, 2018). Ant communities respond to the same 

disturbance in different ways based on functional composition 

and biogeographical history (Andersen, 2018). Often, tropical ant 

species have narrow elevational ranges (Nowrouzi et al., 2016). 

This is due to a substantial climate change with elevation and lim-

ited thermal tolerance (Nowrouzi et al., 2016). A narrow elevational 

range coupled with disturbance can likely cause a shift in the spe-

cies abundance across the elevational gradient (Andersen, 2018). 

F I G U R E  1  Differences in mean 
(± 1 SE) ant abundance per elevation 
from 300- 1000 m between 2017 (pre- 
hurricane, open symbols) and 2018 (post- 
hurricane, gray symbols).

F I G U R E  2  Total richness (A) and 
mean richness (± 1 SE  ) (B) per elevation 
from 300- 1000 m between 2017 (pre- 
hurricane, open symbols) and 2018 (post- 
hurricane, solid symbols).
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F I G U R E  3  Variation in ant species 
across elevations based on the results 
of significant logistic regresssions. Each 
panel represents changes in ant frequency 
of occurrence (presence/absence) from 
300 -  1000 m.
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Our data generally conform to this idea after Hurricane Maria, with 
dramatically more ants captured after this large disturbance event 

at certain elevations, but no wide- scale changes in frequency of 

occurrence.

How might a hurricane affect ants allowing for a substantial 

increase in numbers of most species? Some species, like Solenopsis 

invicta, are well adapted to withstand excessive rainfall and 

flooding by forming rafts (Hooper- Bùi et al., 2020). Although we 

identified some Solenopsis species in this study, it is unclear if the 

species identified are resilient in this way. Some species will also 

relocate to nests at higher elevation during excessive, monsoon 

type rainfall (Kolay & Annagiri, 2015). Many surface using or epi-

gaeic species forage both in trees and on the ground, and so a 

likely effect of the hurricane was to concentrate their foraging 

onto the ground, an effect shown after other disturbances like 

fire (e.g., Andersen & Yen, 1985). Other abiotic factors such as 
temperature and humidity have been shown to affect the abun-

dance of Nylanderia sp. and other species (Bentley et al., 2016). 

However, Nylanderia sp. are invasive in parts of the United States 

such as Ohio where they have potential to alter the forest floor 
food web due to their ability to forage in cooler temperatures 

(Ivanov et al., 2011). Large scale changes in the abiotic environ-

ment caused by disturbances like hurricanes could change under-

lying habitat factors such as shade and cause a shift in distribution 

of particular ant species. We did note a loss of six species after the 

hurricane, all of which were rare before the event (~ 1 individual 
present in our pre- hurricane samples). Thus, these animals were 

uncommon regardless of the sampling period, and therefore we 

cannot attribute the hurricane alone to their absence.

Biotic factors such as vegetation type and leaf coverage have 

also shown to affect ant communities. Brachymyrmex sp. are a 

genus that has been shown to be affected by biotic factors like 

vegetation (Rosson, 2004). Winds from a hurricane are noted to 

thin forest canopy and transfer leaf biomass and nutrients to the 

forest floor (Van Bloem et al., 2005). Images of the LEF (Figure 5) 

show noticeable differences in canopy cover, vegetation growth, 

and debris from before and after hurricane Maria. The canopy was 

visibly thinner in 2018 than in 2017 in addition to increase vegeta-

tion growth and debris in 2018 (Figure 5). The role of leaf litter in 

habitats, such as tropical forests, is to provide food, shelter, nutri-

ents, and temperature regulation to organisms that belong to the 

leaf litter community (Pandey, 2020). Ants belong to the leaf litter 

community and greatly benefit from all that the leaf litter has to 

offer. As leaf litter accumulates on the forest floor, depth of litter 

increases, creating refuge for ants and other arthropods (Kaspari 

& Yanoviak, 2009). Debris also stimulates litter communities under 
suitable abiotic conditions (Richardson et al., 2010). Additionally, 

ant abundance can be seen to increase with litter depth (Kaspari & 

Yanoviak, 2009). Invertebrate biomass, diversity, and abundance 

is likely to increase with increased litter deposition (Richardson 

et al., 2010). We noticed significant litter accumulation after the 

storm, which was likely a driver for an increase in abundance of 

many of the species we observed. Disturbance coupled with biotic 
or abiotic components can influence the species that occupy cer-

tain areas, including those in genera sampled here. Strumigenys sp. 

are influenced mostly by biotic factors and tend to occur in open, 

disturbed areas (Kitahiro et al., 2014). Pheidole sp. tend to occur in 

small islands of highly disturbed areas with more abiotic influence. 

Wasmania auropunctata in the tropical dry forest of Columbia re-

spond favorably to disturbance and can become dominant due 

F I G U R E  4  Plots of PC factors (LS means ± SE) axes based on 
PCA analysis from 300- 1000 m between 2017 (pre- hurricane, 
open symbols) and 2018 (post- hurricane, solid symbols). Plots are 
of factor scores from PC1, PC2, and PC4, which made the greatest 
contributions to significant differences among elevations between 
years.
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to their ability to monopolize resources (Achury et al., 2020). W. 

auropunctata have also been shown to increase with increased 

deposition of litter (Richardson et al., 2010). This correlates with 

the increase of W. auropunctata that was observed after Hurricane 

Maria. These species prefer a disturbed environment, but can also 

be found in coastal habitats, mid- elevation forests, lower eleva-

tions, and dry forests (Sarnat et al., 2015). Thus, species level re-

sponses may be tied to their underlying ecological demands.

We found that the abundance of most ant species generally de-

creased with elevation likely due to a combination of abiotic and bi-

otic factors. The most common ant species appeared to benefit from 

the wide scale disturbance of Hurricane Maria with higher numbers 

present afterwards, although these changes occurred mostly at 

lower elevations. Increased litter on the forest floor likely contrib-

uted to the increase in ant abundance after the hurricane. Generally, 

the species that we found tended to prefer disturbed habitats or re-

spond positively to disturbance, yet the dynamic and unpredictable 

nature of large disturbances would suggest that more data on the 

initial and long- term responses of ants to these storms are needed. 

Given that this work was conducted at a Long Term Ecological 

Research site, future collections will hopefully fill in knowledge gaps 

for temporal trends in ant communities.
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