
Phan and Mak 

   
 

1 

RNA fold prediction by Monte Carlo in graph space and the statistical 

mechanics of tertiary interactions 

 

ETHAN N. H. PHAN1 AND CHI H. MAK2 

1Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA 

2Departments of Chemistry and Quantitative and Computational Biology, and Center of Applied Mathematical 

Sciences, University of Southern California, Los Angeles, California 90089, USA 

 

Corresponding author: ethanpha@usc.edu, cmak@usc.edu 

 

ABSTRACT 

Using a graph representation of RNA structures, we have studied the ensembles of secondary and 

tertiary graphs two sets of RNA with Monte Carlo simulations. The first consisted of 91 target ribozyme 

and riboswitch sequences of moderate lengths (< 150 nt) having a variety of secondary, H-type 

pseudoknots and kissing loop interactions. The second set consisted of 71 more diverse sequences across 

many RNA families. Using a simple empirical energy model for tertiary interactions and only sequence 

information for each target as input, the simulations examined how tertiary interactions impact the 

statistical mechanics of the fold ensembles. The results show that the graphs proliferate enormously when 

tertiary interactions are possible, producing an entropic driving force for the ensemble to access folds 

having tertiary structures even though they are overall energetically unfavorable in the energy model. For 

each of the targets in the two test sets, we assessed the quality of the model and the simulations by 

examining how well the simulated structures were able to predict the native fold and compared the results 

to fold predictions from ViennaRNA. Our model generated good or excellent predictions in a large 

majority of the targets. Overall, this method was able to produce predictions of comparable quality to 

Vienna, but it outperformed Vienna for structures with H-type pseudoknots. The results suggest that 

while tertiary interactions are predicated on real-space contacts, their impacts on the folded structure of 

RNA can be captured by graph space information for sequences of moderate lengths, using a simple 

tertiary energy model for the loops, the base pairs and base stacks. 
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INTRODUCTION 

While RNA fold prediction has a long history, it remains a challenging problem, especially for 

structures with tertiary interactions. Recent advances in the field have been reviewed by a number of 

authors (Fallmann et al. 2017; Schroeder 2018; Zhao et al. 2021). The most popular methods that have 

proven to be successful for predicting secondary structures are based on thermodynamic parameters such 

as those of Turner et al. (Schroeder and Turner 2009; Turner and Mathews 2010; Serra and Turner 1995) 

using a dynamic programming algorithm such as that of Zuker (Zuker and Stiegler 1981). Tools such as 

Mfold/UNAfold (Zuker 2003; Markham and Zuker 2008), ViennaRNA (Hofacker 2003; Lorenz et al. 

2011), RNAstructure (Reuter and Mathews 2010) are based on this. More recently, instead of focusing on 

the lowest energy fold, the ensemble of thermodynamically viable structures has come into focus, and 

some secondary structure prediction tools based on this have been reviewed by Schroeder (Schroeder 

2018). A number of machine learning methods for secondary structure prediction have also been reported 

(Zhao et al. 2021), and some of them integrate thermodynamic information into their model (Sato et al. 

2021). 

The connection between secondary structure prediction and graphs was first introduced by Tinoco et 

al. (Tinoco et al. 1971). The complete topology of RNA secondary structures has been characterized by 

Waterman et al. (Waterman and Smith 1978, 1986; Penner and Waterman 1993; Schmitt and Waterman 

1994). A comprehensive introduction and description of various graphs as used for RNA modeling was 

provided by Schlick (Schlick 2018). Cord graphs provide a simple representation of RNA secondary 

structures. An example is shown in Fig. 1(a). The circumference represents the nucleotide sequence from 

the 5’ end to the 3’ end in the clockwise direction. The thin arcs, or the cords, represent base pair contacts. 

For secondary contacts, these cords do not cross each other. This non-crossing rule is the key defining 

feature of RNA secondary structures.  

Many topologically equivalent representations can be used. Two of these are shown in Fig. 1. In the 

middle column of Fig. 1(a) is an example of a picture frame graph. In a picture frame graph, the 

nucleotide sequence goes from the bottom left to the top right in the 5’ to 3’ direction along the diagonal, 

and the base contacts are represented as points on a square grid on the upper half plane. A frame graph is 

similar to the cord diagram described by Waterman. A frame graph can easily be encoded in the form of 

an adjacency matrix like that introduced by Tinoco et al. (Tinoco et al. 1971), where a 1 on the upper half 

plane represents a contact between two bases, with the constraint that no more than a single 1 can appear 

on a column or a row, with the rest of the elements 0. Each frame intersects the diagonal at two nucleotide 

positions, which are the indices of the two bases that are paired. In secondary structures, none of the 

frames cross each other. On the adjacency matrix, a duplex appears as a cluster of 1s along the anti-

diagonal direction, forming the corners of the frames.  

A third representation is shown in the right column of Fig. 1(a), where secondary structures are 

represented as flat terraces. Each terrace begins with the nucleotide sequence on the 5’ side of a duplex, 

and it ends with the nucleotide sequence on the complementary strand on the 3’ side of the same duplex. 

In the example in Fig. 1(a), these terraces are color-coded to match the bounding duplexes in the frame 

diagram in the middle column. The blue terrace is bounded by the outermost frame. The two green 

terraces correspond to the two smaller frames. A terrace diagram makes manifest the loops and junctions 

in the structure. For example, the blue terrace has three separate sections. Each section is one junction, 

and the blue terrace represents a three-way junction. On the other hand, each of the two green terraces has 

only one section, and they represent one-way junctions, or hairpin loops. In a terrace diagram, the two 

nucleotide sequences forming each duplex appear as pillars upon which the terrace is supported. The 
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terrace representation suggests a connection between RNA structures and one-dimensional random walks 

such as those studied in interfacial problems (Fisher 1984). 

 

Figure 1. 

Three types of graphs representing (a) RNA secondary and (b) RNA tertiary structures. In a cord graph, arcs 

connect bases that are paired. In a frame graph, telescoping picture frames connect paired bases. In a terrace graph, 

junctions (or loops) are visualized as flat terraces supported on top of pillars representing the two strands that make 

up the duplex bounding the junction. The terraces on the right are color-coded to match the junction sequences on 

the frame diagrams in the center. Tertiary contacts are represented by frames on the lower half plane in a frame 

diagram, and by rainbow arcs in a terrace diagram. 

 

All base contacts that are considered tertiary violate the non-crossing requirement of secondary 

structures, and they produce extraneous diagrammatic elements in the graph representations of RNA 

structures. Fig. 1(b) shows an example of a pseudoknot, where arcs representing base contacts necessarily 

cross each other in the cord graph. In the frame diagram, all the violating tertiary contacts are represented 

by 1s on the lower half plane, and these are shown in red in the middle of Fig. 1(b). If the red frames were 

drawn on the upper half place, they would cross the first black frame on the 5’ side. In a terrace diagram, 

the only way to represent tertiary contacts is to allow interactions in another dimension outside of the 

terrace landscape. These are represented by the red rainbow arcs in the right column of Fig. 1(b). 

Examples of frame diagrams are shown in Fig. 2 for a few structures that contain multi-junctions with 2 

(2wj), 3 (3wj) and 4 (4wj) loops, as well as several classes of pseudoknots. For H-type pseudoknots and 

kissing loop interactions, Fig. 2(d) and (e) show that their tertiary interactions on the lower half plane do 

not cross each other. (Kissing loops are also classified as K-type pseudoknots). For L-type pseudoknots 

like the one in Fig. 2(f), their tertiary interactions have no choice but to cross. 

This paper describes a stochastic strategy for the prediction of secondary and tertiary structures of 

RNA starting from sequence information alone via a Monte Carlo (MC) simulation exclusively in graph 

space, essentially implementing a stochastic version of the ideas introduced by Tinoco et al. (Tinoco et al. 

1971) and topological studies since Waterman (Waterman and Smith 1978, 1986; Penner and Waterman 

1993; Schmitt and Waterman 1994), but supplementing them with tertiary structure prediction 

capabilities. The applications of graphs to computational RNA structures have been reviewed recently by 
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Schlick and Yan (Schlick and Yan 2023). The RAGTOP method (Kim et al. 2014), which employs a 

Monte Carlo approach for sampling tertiary conformations of 3D tree graphs using empirical potentials, 

was applied to riboswitch predictions with pseudoknots (Kim et al. 2015) and then extended to structures 

with k-turns (Bayrak et al. 2017). Schlick et al. also pioneered computational approaches combined with 

graphs to study a number of problems in 3D structures, including the prediction of junction topologies 

(Laing et al. 2012, 2013), performing MC in 3D graph space (Zahran et al. 2015) with empirical 

potentials (Kim et al. 2015; Bayrak et al. 2017), and assigning general atomic coordinates using fragment 

assembly (Jain and Schlick 2017; Jain et al. 2018; Meng et al. 2020). 

 

 

Figure 2. 

Examples of RNA secondary and tertiary structures and their corresponding frame graphs: 2wj = 2-way junction, 

3wj = 3-way junction, 4wj = 4-way junction, dp = duplex, pk = pseudoknot, kl = kissing loop. 

 

In the following, we describe a stochastic strategy for predicting RNA secondary and tertiary 

structures via MC simulation in graph space with base pair contacts encoded by an adjacency matrix. An 

energy function model is used to assign an energy to each graph based on its topological features (loops, 

junctions, duplexes, tertiary contacts, etc.), and the statistical mechanics of a canonical ensemble of such 

graphs can then be simulated using straightforward Monte Carlo techniques. On the surface, a method 

that is based entirely on graph-space information and completely agnostic of real-space information is not 

expected to do well for predicting tertiary structures, because tertiary contacts are based on interactions 

that are made in real space when bases pair with each other. Nonetheless, it is worthwhile to find out if 

there is any graph-space-only energy model for tertiary interactions at all that could produce reasonable 

tertiary structure predictions without using any real-space information, and if so, what are the contexts 

within which it would work. Using a MC approach enables us to easily implement and assess any tertiary 

model without worrying about the algorithmic complexity of how to incorporate that energy function into 

a folding algorithm. The results show that a simple empirical tertiary energy model works well across a 

diversity of sequences in predicting tertiary structures for RNA sequences that are shorter than about 150 

nt. 
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METHODS 

Monte Carlo simulation 

Each frame graph is encoded by an adjacency matrix as described above. An energy function 𝐸𝑔 =

𝐸𝑠𝑒𝑐 + 𝐸𝑡𝑒𝑟 is used to model the energy of each graph. This energy function consists of contributions 

from secondary contacts (those on the upper half plane of the adjacency matrix), 𝐸𝑠𝑒𝑐, and tertiary 

contacts (those on the lower half plane), 𝐸𝑡𝑒𝑟. Every tertiary contact must cross at least one of the 

secondary contacts if it had been drawn on the upper half plane, and this is checked every time a trial 

move to create a new tertiary contact is made, or an existing tertiary contact is relocated. Conversely, 

every trial move that creates or destroys a secondary contact is checked to ensure that every tertiary 

contact remains tertiary after the move; otherwise, the move is rejected. 

Standard Metropolis MC (Metropolis et al. 1953) was used to simulate the canonical ensemble in 

graph space, and we call this approach adjacency space Monte Carlo (ASMC). The weight of each graph 

𝑔 is given by exp⁡(−𝐸𝑔/𝑘𝐵𝑇), where 𝑘𝐵 is Boltzmann’s constant and 𝑇 = 310𝐾. MC moves that 

rearrange the secondary contacts are based on adding, deleting or moving duplexes. Each duplex 

corresponds to one or more contiguous 1s along the antidiagonal on the upper half plane of the adjacency 

matrix. Given a nucleotide sequence, the energy of any duplex of any length starting at any position were 

pre-computed and stored. 𝐸𝑠𝑒𝑐 consists of the sum of these duplex energies, which were retrieved from 

the pre-computed data, plus the energy costs of the loops and junctions, which were calculated on the fly. 

Some of the key secondary MC moves are illustrated in Fig. 3. MC1 adds or deletes one secondary 

contact. Fig. 3(a) shows an example where the deletion of a secondary contact breaks up an existing 

duplex into two duplexes, and in the reverse direction, adding this contact back merges two duplexes into 

one. MC2, illustrated in Fig. 3(b), translates one secondary contact. By themselves, single-contact MC 

moves like MC1 and MC2 are able to equilibrate the system but they can be inefficient. To accelerate the 

ergodicity of the simulation, the same types of moves were generalized to operate on duplexes, as MC5 

(Fig. 3(c)) and MC3 (Fig. 3(d)). 

MC moves that modify the tertiary contacts are similar to the secondary contact moves, except only 

single-contact moves were used for the tertiary contacts. These are illustrated in Fig. 3(e) and (f). Single-

contact moves are ergodic by themselves and they should be able to equilibrate the tertiary structure, but 

single-contact MC moves are generally less efficient than multi-contact moves. The choice of using only 

single-contact tertiary moves was made to enable us to easily test out different tertiary energy models 

without having to aggressively optimize the moves. To ensure that an accurate simulation of the ensemble 

was carried out, long MC runs were used to exhaustively sample the tertiary interactions for each RNA 

sequence. 
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Figure 3. 

Some of the key Monte Carlo moves used in the simulation. (a) to (d) depict four MC moves that rearrange the 

secondary structure of a graph. The moves are labeled according to the routines in which they were implemented 

inside the simulation. (e) and (f) illustrate two MC moves that rearrange the tertiary structure of a graph, both were 

implemented in the simulation as MC7. 

 

Energy model for secondary interactions 

The secondary energy function of a graph, 𝐸𝑠𝑒𝑐 = 𝐸𝑑𝑝 + 𝐸𝑚𝑤𝑗, consists of contributions from the 

duplexes, 𝐸𝑑𝑝, and the junctions (or loops), 𝐸𝑚𝑤𝑗. Every loop or junction, except at the 5’ or 3’ end of the 

sequence, incurs an energy penalty, and 𝐸𝑚𝑤𝑗 is the sum. The parameters in 𝐸𝑚𝑤𝑗 are derived from loop 

free energy calculations using atomistic modeling of RNA strands (Phan and Mak 2018; Mak and Phan 

2021), and they are given in Table 1. These penalties are the results of constraints that are produced by 

the base pair contacts on the conformational freedom of the sugar-phosphate chain, and because of this 

they are free energies, but for simplicity, 𝐸𝑚𝑤𝑗 is referred to as an “energy” in the model. In the MC, the 

loops and junctions in each graph were projected out by translating a frame graph into the equivalent 

terrace representation, from which the loops and junctions were read out. The loops and junctions are 

classified as 1-way junctions (hairpins), 2-way junctions (bulge loops), and higher m-way junctions (mwj) 

where 𝑚 = 3, 4,⋯. A 2-way junction with two 0-length loops is a special case, and according to Table 1 

it has a penalty of 5.12 kcal/mol. This corresponds to the free energy costs suffered by the chain inside 

every doublet base pair along every duplex in the structure. For each 𝑚-way junction, the sum of the 

lengths of all the loops 𝐿 is used to calculate its energy cost according to Table 1. Other than 2wj, any 
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mwj that has two adjacent 0-length loops are disallowed. For total loop length 𝐿 that exceeds 12, the 

scaling formula 𝐸𝑚𝑤𝑗 = 𝐶𝑚 + 1.08 ln 𝐿 was used instead. The parameters for 𝑚 > 4 in Table 1 were 

extrapolated from those from 1-, 2-, 3- and 4-way junctions. These higher mwjs showed up infrequently 

in the MC simulations.  

Energy Parameters for 𝑚-way Junctions (kcal/mol) 

𝑚 𝐶𝑚 𝐿=0 1 2 3 4 5 6 7 8 9 10 11 12 

1 3.9 7.00 6.00 5.00 4.66 5.02 5.30 5.62 5.85 6.03 6.20 6.16 6.57 6.68 

2 4.4 5.12 5.70 5.97 6.15 6.37 6.53 6.58 6.69 6.80 6.88 6.96 6.88 6.93 

3 4.9  6.77 6.87 7.12 7.08 7.17 7.33 7.33 7.46 7.46 7.44 7.52 7.52 

4 5.4  7.60 7.66 7.72 7.74 7.76 7.8 7.83 7.96 7.96 7.94 8.02 8.02 

5 5.9  8.10 8.15 8.20 8.25 8.30 8.35 8.40 8.45 8.50 8.55 8.60 8.65 

6 6.4  8.60 8.65 8.70 8.75 8.80 8.85 8.90 8.95 9.00 9.05 9.10 9.15 

7 6.9  9.10 9.15 9.20 9.25 9.30 9.35 9.40 9.45 9.50 9.55 9.60 9.65 

8 7.4  9.60 9.65 9.70 9.75 9.80 9.85 9.90 9.95 10.00 10.05 10.1 10.15 

Table 1. 

Parameters in the energy function 𝐸𝑚𝑤𝑗  for loops and junctions in the secondary structure. 

 

For each duplex, its energy function 𝐸𝑑𝑝 is a sum over base pair terms, stacking energy terms and the 

loop penalties suffered by the backbone. The parameters in 𝐸𝑑𝑝 are given in Table 2. For example, a 

strand 5’-XYZ-3’ that is paired with its complement 3’-ABC-5’ is assigned an energy 𝐸𝑑𝑝 = 𝐸𝑏𝑝(XA) +

𝐸𝑏𝑝(YB) + 𝐸𝑏𝑝(ZC) + 𝐸𝑠𝑘(X|Y) + 𝐸𝑠𝑘(Y|Z) + 𝐸𝑠𝑘(C|B) + 𝐸𝑠𝑘(B|A) + 2 × (5.12). These parameters are 

derived from fitting the energies of the doublet base pairs to the melting free energies of Turner and 

Mathews, et al. (Serra and Turner 1995; Turner 1996; Mathews and Turner 2002; Turner and Mathews 

2010). In addition, a special free energy penalty is accessed on any GU-containing palindrome, because a 

GU wobble produces noncanonical stacking. A coaxial stacking energy 𝐸𝑐𝑥 is also added to any 0-length 

loop in any mwj. While 𝐸𝑑𝑝 is based on the doublet free energies of Turner et al., there are minor 

differences in the calculated energies, but these do not affect the predicted structures significantly.  

Pair Energies, 𝐸𝑏𝑝  Duplex Stacking Energies (5' on 3'), 𝐸𝑠𝑘  

AU or UA -0.0275  A (3’) C (3’) G (3’) U (3’) 

CG or GC -1.0425 A (5’) -3.03125 -2.99 -3.12167 -3.10125 
GU or UG 0.82 C (5’) -3.44 -3.89875 -3.22375 -3.59667 

Penalties for Palindromic GU Doublets G (5’) -3.88833 -3.73375 -3.47875 -3.795 

GU|UG 2.95 U (5’) -3.21125 -3.06333 -3.245 -2.96125 

UG|GU 0.85 Coaxial Stacking, 𝐸𝑐𝑥        -1.50 
 

Table 2. 

Parameters in the energy function 𝐸𝑑𝑝 for duplexes in the secondary structure. All values are in kcal/mol. 

 

Empirical energy model for tertiary interactions 

The energy costs of the tertiary interactions 𝐸𝑡𝑒𝑟 are added to the secondary energies. 𝐸𝑡𝑒𝑟 only uses 

graph-space information but does not account for any real-space information. The energy model behind 

𝐸𝑡𝑒𝑟 is entirely empirical, but it was based on reasonable expectations of the free energy perturbations 
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produced by the tertiary contacts. Every tertiary contact costs energy because it produces an additional 

constraint on the overall structure. But each tertiary contact also makes a base pair, and depending on how 

they are stacked tertiary base pairs may produce an energy gain. The tertiary energy function is a sum 

over these two effects. 

As described above, tertiary interactions connect one flat terrace to another. On each terrace, there is a 

distance between one tertiary interaction and the next, which corresponds to the length of a loop. An 

energy penalty 2.0⁡kcal/mol × [
3nt

3nt+𝐿𝑙
+

3nt

3nt+𝐿𝑟
] is added to every tertiary contact, where 𝐿𝑙 and 𝐿𝑟 are 

the lengths of the loops to the left neighbor and the right neighbor in nt. This simple empirical function 

was selected to roughly match the loop energies for the 1-way junctions in Table 1. The same energy 

penalty is applied to the gap between the leftmost tertiary interaction and the left edge of the terrace, as 

well as the gap on the right. Note that in contrast to the secondary interactions, this loop penalty is also 

added to every pair of nearest-neighbor tertiary contacts on a terrace, not just between duplexes. This 

keeps the parameters introduced by 𝐸𝑡𝑒𝑟 to a minimum. In addition to this, an energy penalty 

2.0⁡kcal/mol × (𝑛𝑑𝑝 − 1)
2
 is added to each terrace where 𝑛𝑑𝑝 is the number of duplexes on the terrace 

to suppress the number of duplexes, based on the expectation that tertiary interactions would produce 

congestion in real-space as bases come into contacts with each other. 

In addition to the loops, base pairs also contribute to the tertiary energy function 𝐸𝑡𝑒𝑟. These were 

taken from 𝐸𝑏𝑝 in Table 2. But instead of the stacking energies in Table 2, a uniform stacking energy of 

−3.4 kcal/mol was employed for all to keep the tertiary parameters to a minimum. To modulate the 

number of tertiary contacts, a chemical potential 𝜇 in units of 𝑘𝐵𝑇 is added to each base involved in a 

tertiary base pair. A large 𝜇 suppresses tertiary structures, so 𝜇 can be modulated to study how the 

ensemble of graphs evolves when tertiary interactions are permitted to form on top of the secondary 

structure. Additional penalties were assigned to suppress physically unrealistic tertiary interactions. For 

example, no kissing loop interactions were allowed between two loops on the same mwj, and each tertiary 

interaction connecting terraces that have more than 5 levels between them is assigned an additional 

penalty of 4 kcal/mol instead of just 2𝜇. Finally, to restrict the search to H- and K-type psudoknots (see 

Fig. 2), the tertiary contacts on the lower half plane of the adjacency matrix were not allowed to cross 

each other. 

The chemical potential  can be used as a device for identifying possible phase transitions. How the 

ensemble average energy varies with  defines the nature of a structural transition. Since  is applied to 

the tertiary contacts, at large positive values of , only graphs with secondary structures survive in the 

ensemble. When  is gradually tuned to 0, tertiary structures begin to grow in. For any RNA, any 

structural phase transition will always be rounded due to the finite sequence length, so they are never 

sharp. Any discontinuity in the energy as a function of  therefore reflects potential sampling issues. For 

many sequences, especially those with complex tertiary structures, weak ergodicity in some of the MC 

moves produced slow sampling. These potential issues were diagnosed by any unexpected discontinuities 

in how the ensemble average energy varied with . For each sequence, parallel simulations were carried 

out at a number of values of , and the lowest μ where the ensemble could be confidently equilibrated 

was used to predict the folded structure. The chemical potential  can also be used as a handle for 

implementing replica exchange (Swendsen and Wang 1986), which we plan to explore in future work to 

aid in further accelerating sampling. 

 



Phan and Mak 

   
 

9 

Assessing fold predictions 

To assess the model and measure how well ASMC simulations were able to predict RNA folds, 

extended sampling was performed on 91 targets. These target RNA sequences were downloaded from the 

list of riboswitches and ribozymes with experimentally determined folded structures on the NDB database 

(Berman et al. 1992; Coimbatore Narayanan et al. 2014) having sequence lengths less than approximately 

150 nt and without cofactors (i.e. RNA only) in May 2023, with some homologous structures removed. 

These 91 targets are listed in Tables 3 to 5. For each target, ASMC simulations for 𝜇 = 0.0, 0.1, 0.2, 0.3, 

0.4, 0.5, 0.6, 0.7, 1.0, 2.0 and 9.99 𝑘𝐵𝑇 were performed with MC runs up to 0.4 billion passes each. 

During each MC run, the graph that was the best match against the native structure, the lowest energy 

graph, as well as the most probable graph in the ensemble were tracked, and the spectrum of the ensemble 

was also collected. The most probable graph was used to predict the native fold. We refer to this set of 

targets as the Rzs (ribo-zymes/-switches) test set. 

To compare the predictions of ASMC to conventional RNA folding algorithms, ViennaRNA (Lorenz 

et al. 2011; Hofacker 2003) was also used to fold these 91 targets in the Rzs test set using its RNAPKplex 

module (Tafer and Hofacker 2008). For each of the two models, ASMC and ViennaRNA, the predicted 

base-pair contacts were then correlated to the known native structure for each of the targets. Predicted 

contacts matching the native structure as well as contacts that are not in the native structure and were 

overpredicted by ASMC or by Vienna were enumerated separately for each target. These two metrics 

allowed us to assess the quality of the fold predictions from these two methods against the experimentally 

confirmed native folds. 

Rzs secondary test set 
  
  
  

1KXK (70) 1U9S (161) 2KXM (27) 2LU0 (49) 2MI0 (22) 

2MIS (26) 2MTJ (47) 2N3Q (62) 2N3R (62) 2OEU (66) 

2OIU (71) 2QUS (69) 2R8S (159) 359D (44) 3BBM (67) 

3D2V (77) 3E5C (53) 3F2X (112) 3GS5 (64) 3OXE (88) 

3PDR (161) 4GXY (172) 4R4V (186) 4RUM (92) 4Y1M (107) 

4YAZ (84) 5DH6 (68) 5LYS (57) 5NDH (16) 5T83 (89) 

5U3G (85) 5U6Z (68) 5UZ6 (32) 6AZ4 (42) 6C27 (47) 

6CB3 (101) 6CK5 (117) 6EZ0 (27) 6HC5 (18) 6JQ5 (163) 

6N2V (99) 7EAG (41) 7ELQ (45) 7MLW (128) 7Q80 (68) 

7TZS (80)         

     

 Mean quality scores of fold predictions 
  

 

 Model TPR mFPR  

 Vienna 0.731 0.260  

 ASMC 0.719 0.245  
 

Table 3. 

List of targets in the Rzs test set with only secondary interactions in their native structures, giving PDB code and 

sequence length of each in parentheses. The quality of the fold predictions by ViennaRNA and by ASMC were 

measured by the true positive rate (TPR), the number of predicted contacts that match native as a fraction of all 

native contacts, and by the modified false positive rate (mFPR), the number of overpredicted contacts as a fraction 

of all predicted contacts. Table shows the mean TPR and mFPR scores for Vienna and ASMC for this set. Details 

are given in Table S-01 in the Supplemental Materials. 

 

Rzs kissing loop test set 
  
  
  

1Y26 (71) 3D0U (161) 3DIL (174) 3IVN (70) 3LA5 (71) 

3RKF (67) 3SKI (68) 4FEN (67) 4FRG (84) 4MGN (164) 
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4XNR (71) 5C45 (113) 5FJC (95) 5NDI (43) 5SWD (71) 

6DN2 (112) 6E1S (33) 6VMY (148)     

     

 Mean quality scores of fold predictions  

 Model TPR mFPR  

 Vienna 0.650 0.269  

 ASMC 0.707 0.223  
 

Table 4. 

Targets in the Rzs test set with kissing loop interactions in their native structures. See Table 3 for definitions of each 

data column. Details are given in Table S-02 in the Supplemental Materials. 

 

Rzs pseudoknot test set 
  
  
  

2MIY (59) 2QWY (52) 2Z75 (143) 3K1V (34) 3NPQ (54) 

3Q3Z (77) 4ENC (52) 4FRN (102) 4JF2 (77) 4KQY (119) 

4LVW (89) 4OJI (54) 4OQU (97) 4QJD (71) 4QK9 (124) 

4QLM (110) 4RGE (59) 5BTP (75) 5D5L (77) 5KH8 (47) 

5NWQ (41) 6FZ0 (49) 6HAG (43) 6N5P (127) 6QN3 (100) 

6XKO (96) 6YL5 (35)       

     

 Mean quality scores of fold predictions  

 Model TPR mFPR  

 Vienna 0.651 0.357  

 ASMC 0.743 0.199  
 

Table 5. 

Targets in the Rzs test set with H-type pseudoknot interactions in their native structures. See Table 3 for definitions 

of each data column. Details are given in Table S-03 in the Supplemental Materials. 

 

Among the 91 targets in the Rzs test set, 46 have secondary contacts only, 19 have isolated kissing 

loops interactions and 26 have H-type pseudoknot interactions. The identities of these targets are listed in 

Table 3, 4 and 5, respectively. Ribozymes and riboswithes are two of the largest families of RNA with the 

most extensive number of experimentally known folds, because they can fold autonomously without any 

cofactors or being complexed with other nucleic acids or proteins. The Rzs test set therefore contains an 

extensive set of structurally diverse targets to rigorously test the performance of ASMC against 

experimentally confirmed native folds.  

Going beyond the Rzs test set, we have also constructed a second set of targets consisting of more 

diverse RNA families. We have culled through the Rfam 14.10 database (Kalvari et al. 2021) and 

assembled a list of all RNA families with available experimental determined folds. We then pruned this 

list by removing all sequences in complexes with protein(s) or DNA and those longer than approximately 

200 nt, to arrive at a second set of targets we call the Rfam test set. This Rfam set consists of 71 targets 

and their PDB codes are listed in Table 6. 31 of these overlap with targets in the Rzs test set, but they 

were retained in the Rfam test set for completeness. As for the Rzs test set, ASMC and Vienna were used 

to predict the folded structures of all targets in this Rfam test set. 

 

Rfam test set 
  
  
  

1KXK (70) 1M5K (113) 1N8X (36) 1NBS (150) 1P6V (24) 

1U9S (161) 1XJR (47) 1Z2J (45) 2KE6 (48) 2L1F (131) 
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2L3J (71) 2LC8 (56) 2MF0 (72) 2MIY (59) 2N1Q (155) 

2NBX (108) 2QUS (69) 2V3C (96) 2Z75 (143) 3D2V (77) 

3DIL (174) 3F2X (112) 3NDB (136) 3OXE (88) 3PDR (161) 

3Q3Z (77) 3SN2 (29) 3SNP (29) 4FEN (67) 4FRG (84) 

4LVW (89) 4OQU (97) 4PQV (68) 4QLM (110) 4RUM (92) 

4V2S (57) 4WFL (107) 4YAZ (84) 5BTP (75) 5FJC (95) 

5KH8 (47) 5LYS (57) 5NWQ (41) 5T5A (62) 5T83 (89) 

6B19 (38) 6CC1 (93) 6CU1 (80) 6FZ0 (49) 6HAG (43) 

6JQ5 (163) 6LXD (72) 6MWN (92) 6OL3 (111) 6QN3 (100) 

6V5C (66) 6VMY (148) 6WLQ (119) 6XKO (96) 7D81 (50) 

7ELP (45) 7JJU (102) 7KGA (90) 7LYF (139) 7QR3 (69) 

7SAM (169) 7WIB (50) 8DP3 (90) 8FCS (71) 8GZP (68) 

8SH5 (88)         

     

 Mean quality scores of fold predictions  

 Model TPR mFPR  

 Vienna 0.702 0.225  

 ASMC 0.713 0.187  
 

Table 6. 

Targets in the Rfam test set. See Table 3 for definitions of each data column. Details are given in Table S-04 in the 

Supplemental Materials. 

 

RESULTS AND DISCUSSION 

Structures with only secondary interactions 

An example of a structure with only secondary interactions in its native fold is shown in Fig. 4. 2N3Q 

(Bonneau et al. 2015) is a 60-nt ribozyme with a three-way junction structure. Its nucleotide sequence is 

given in Fig. 4. Fig. 4(a) shows the graph that was the best match for the native structure in the MC-

simulated ensemble, and Fig. 4(b) and 4(c) show the lowest energy graph and the most probable graph in 

the ensemble. For this sequence, and for the majority of the sequences in Table 3 that are secondary-only, 

all three are the same graph. The native structure (http://rna.bgsu.edu/rna3dhub/pdb/2N3Q/2d) is provided 

as a cord graph in Fig. 4. 

In Fig. 4(a), (b) and (c), the native contacts are marked by red dots. These native contacts are shown on 

both the upper and lower half planes. If a secondary contact in the predicted structure matches a native 

contact, it is reflected by a red dot on the upper left corner of the frame. On the other hand, if a tertiary 

contact matches a native contact, it will be reflected by a red dot on the lower right corner of a frame on 

the lower half plane. A match either shows on the upper half plane or the lower half plane, but never both. 

Every predicted duplex appears as a sequence of telescoping frames with corners moving in the 

antidiagonal direction. The graphs show that the predicted structure is close to a perfect match, except for 

one base pair on the outermost hairpin of the 3-way junction. 
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Figure 4. 

Fold prediction for 2N3Q: (a) best match for native structure, (b) lowest energy and (c) most probable graph in the 

MC simulated ensemble. (d) Spectrum of the ensemble at 𝜇 = 9.99 𝑘𝐵𝑇, with the most probable graph in pink and a 

linear fit to the bottom of the spectrum as the orange dashed line. The sequence and the cord graph of the native fold 

(http://rna.bgsu.edu/rna3dhub/pdb/2N3Q/2d) are given on the lower right. Quality scores for the most probable fold 

are TPR = 0.91 and mFPR = 0.05. 

 

Fig. 4(d) shows the distribution, or the spectrum, of the graphs in the simulated ensemble with 𝜇 = 

9.99 𝑘𝐵𝑇, where all tertiary contacts had been suppressed. The most probable graph, shown in pink, was 

also the lowest energy graph. For ensembles with secondary structures only, their spectra typically follow 

a simple progression like that in Fig. 4(d). Since the probability of each microstate in the canonical 

ensemble is proportional to exp(−𝐸𝑔/𝑘𝐵𝑇), the spectrum falls on a straight line with slope −1/𝑘𝐵𝑇, 

shown by the orange dotted line in Fig. 4(d), when plotted on a semilog scale. 

The predictions for all 46 secondary-only targets listed in Table 3 are provided in the Supplemental 

Materials. For each target, the most probable structure at the lowest value of 𝜇 where the ensemble could 

be confidently equilibrated was taken as the predicted structure. 

     
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Figure 5. 

Examples of fold predictions for sequences with only secondary interactions in their native structures. 

 

To assess the quality of the fold predictions made by ASMC across the 46 target in the Rzs test set 

with secondary-only folds, Table S-01 in the Supplemental Materials shows the number of contacts 

predicted by ViennaRNA and how many of those match the native structure in columns 4 and 5, 

respectively, and for ASMC in columns 6 and 7. Since each target has a different sequence length, we 

normalized each of these by the number of contacts, to arrive at a quality score represented by a fraction 

between 0 and 1. The columns in Table S-01 in the Supplemental Materials labeled TPR are the true 

positive rates, which represent the number of predicted contacts that match native as a fraction of all 

native contacts in each target, for Vienna and ASMC separately. Also known as the “sensitivity” (Reidys 

et al. 2011), TPR is a goodness score that measures the predictive ability of the model. The columns 

labeled mFPR in Table S-01 represent the modified false positive rate, which is the number of 
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overpredicted contacts as a fraction of all predicted contacts, for Vienna and ASMC separately. mFPR is 

related to the positive predictive value (PPV) (Reidys et al. 2011) by mFPR = 1 – PPV and represents a 

badness score that measures the propensity of the model for making overaggressive predictions. (Note 

that mFPR is not the same as the false positive rate defined in conventional binary classification 

problems, because true negatives are ill-defined for pairing problems.) For any prediction, a higher value 

for TPR and a lower value for mFPR reflect better agreement between the predicted fold and the native 

fold. The averages of these quality scores over the entire test set are shown at the end of Table 3, and the 

scores for each individual target are given in Table S-01 in the Supplemental Materials. For the six 

examples illustrated in Fig. 5, the quality scores of each prediction are also provided with each graph. 

Since they have different denominators, TPR and mFPR do not necessarily add up to 1 for each target. 

Table S-01 in the Supplemental Materials shows that for a number of the targets in the Rzs test set 

with only secondary structures, ASMC and Vienna have almost identical mean quality scores. In fact, 

ASMC and Vienna produced the same fold predictions for 14 of the 46 targets. For most of the rest, 

ASMC and Vienna produced very similar folds. However, there are also a handful of targets where 

Vienna and ASMC predicted very different folds, e.g. 2N3Q. The mean value of the match quality score, 

TPR, and the overprediction quality score, mFPR, across the entire sample are given for Vienna and 

ASMC in Table 3. The mean matched score TPR is 0.731 for Vienna and 0.719 for ASMC, and the mean 

overprediction score mFPR is 0.260 for Vienna and 0.245 for ASMC. These values suggest that the two 

models perform with comparable quality for this set of targets with secondary-only structures. For a 

particular fold prediction, quality scores of TPR > 0.75 in combination with mFPR < 0.25 represents an 

excellent match against the native structure, and among this set of 46 targets, 23 in Vienna and 18 in 

ASMC yielded excellent predictions. 2N3Q in Fig. 4 and the six examples in Fig. 5 illustrate some of 

these. 

 

Structures with kissing loop interactions 

An example of a structure with kissing loop interactions in its native fold is shown in Fig. 6. 1Y26 

(Serganov et al. 2004) is a 71-nt adenine riboswitch. The overall secondary structure is a 3-way junction, 

with a 2-bp kissing loop interaction between the two hairpins. A purine ligand can be sequestered by the 

loops in this 3wj structure, but the kissing loop interactions are distal from the purine binding site. Fig. 

6(a), (b) and (c) show the best match, lowest energy and most probable graphs in the ensemble, 

respectively, for 𝜇 = 0.0 𝑘𝐵𝑇. The most probable graph is also the best match, but the native fold is no 

longer the lowest energy graph. The spectrum of the ensemble is shown in Fig. 6(e), showing that the 

most probably graph is ~ 4.5 kcal/mol from the lowest energy state.  
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Figure 6. 

Fold prediction for 1Y26: (a) best match for native structure, (b) lowest energy and (c) most probable graph in the 

MC simulated ensemble. (d) Energy of graphs sampled during a simulation with 0.12 billion MC passes. (e) 

Spectrum of the ensemble at 𝜇 = 0.0 𝑘𝐵𝑇. (f) – (h) Three sample structures corresponding to the energies indicated 

by the orange lines in the spectrum. (i) The ensemble average energy (black dots) of the simulations, the square root 

of the energy variance from the mean (dashed line above and dashed line below the average) and the entire span of 

the spectrum indicated by the vertical lines, as a function of 𝜇 in unts of 𝑘𝐵𝑇. The sequence and the cord graph of 
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the native fold (http://rna.bgsu.edu/rna3dhub/pdb/1Y26/2d) are given on the lower right. Quality scores for the most 

probable fold are TPR = 0.92 and mFPR = 0.04. 

 

Compared to structures that have only secondary contacts such as 2N3Q in Fig. 4(d), the spectrum of 

1Y26 in Fig. 6(e) is much more congested. This is due to the proliferation of graphs made possible by the 

tertiary contacts, which engender a large diversity of graphs that were absent in secondary-only structures. 

The spectrum of 1Y26 in Fig. 6(e) appears to have two broad humps, one centered at energy ~ +4 

kcal/mol, and the other at ~ −10 kcal/mol. In addition to the most probable and lowest energy graphs, 

whose energies are shown by the purple and blue lines in the spectrum, respectively, three additional 

examples are shown in Fig. 6(f) to (g) with their energies in orange, corresponding to the three orange 

lines in the spectrum. These graphs have various degrees of secondary and tertiary structures in them, 

some matching native contacts and others not. While the states in the spectrum appear to fall into two 

humps, the graphs in each group are not obviously related by structure. For example, the most probable 

graph in Fig. 6(c) and that in Fig. 6(f) appear to belong to the same hump, but their graphs show no 

relationship with each other except for the outermost helix common to both of them. Similarly, the graphs 

in Fig. 6(g) and (h) both fall within the high-energy hump in the spectrum, but their structures have little 

correlation with each other. Fig. 6(i) illustrates the span of the energy spectrum in the ensemble as a 

function of the prevalence of tertiary contacts according to 𝜇. The top and bottom of the energy spectrum 

in each ensemble are shown as the vertical lines above and below the average energy of the ensemble in 

the black circles. As more tertiary contacts are allowed (from right to left in Fig. 6(i) with decreasing 𝜇), 

the spectrum expands, encompassing many more graphs, and the ensemble average energy, roughly at the 

center-of-mass of the spectrum, moves higher at the same time. The square root of the variance of the 

spectrum is shown by the dashed line and the dotted line above and below the average energy. Fig. 6(d) 

shows the energy of the graphs sampled by the simulation during a run with 0.12 billion MC passes, 

showing a cluster of graphs around ~ +4 kcal/mol and another around ~ −10 kcal/mol.  

The predictions for all 18 targets with kissing loop interactions listed in Table 4 are provided in the 

Supplemental Materials in Table S-02. A few examples of the quality of the predictions are also shown in 

Fig. 7. Overall, the kissing loop interactions are predicted correctly for about half of the targets. The 

typical kissing loop motif involves only a few base pairs, and the model misses some of these, especially 

those with only two base pairs. Nonetheless, the overall structures of these are largely defined by their 

secondary contacts, and the kissing loop interactions produce a small perturbation on their overall folds. 

The simulations correctly predicted a majority of the secondary structures in these targets. 

The quality scores TPR and mFPR are shown for each of the examples in Fig. 7. With TPR > 0.75 and 

mFPR < 0.25, 3D0U and 5NDI are considered excellent matches. Because kissing loop interactions 

would have shown up in a frame graph as blue frames, notice that the fold predicted by ASMC for 5NDI 

is missing the 2-bp kissing loop interaction. On the other hand, even though 5FJC and 5SWD missed the 

mark for being considered excellent, their predicted fold did capture some of the key kissing loop 

interactions. 5C45 is an interesting example because the predicted fold has poor quality scores with TPR 

= 0.12 and mFPR = 0.87, but the global structure of the predicted fold is quite reflective of the native 

fold. 
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Figure 7. 

Examples of fold predictions for sequences with only kissing loops interaction in their native structures. 

 

The overall quality of the fold predictions by ASMC compared to Vienna across the 18 targets with 

isolated kissing loops interactions in the Rzs test set are shown in Table S-02 in the Supplemental 

Materials. Out of these 18 targets, 9 predictions from Vienna produced excellent matches against their 

native structures, with TPR > 0.75 and mFPR < 0.25, while 11 predictions from ASMC were excellent. 

As shown in Table 4, the mean match quality score TPR is 0.650 for Vienna and 0.707 for ASMC, while 

the mean overprediction quality score mFPR is 0.269 for Vienna and 0.223 for ASMC. Based on these 

scores, ASMC appears to perform slightly better than Vienna, but the limited size of this sample also 

makes this conclusion somewhat uncertain. 
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Structures with H-type pseudoknot interactions 

An example of a structure with H-type pseudoknot interactions in its native fold is shown in Fig. 8. 

2MIY (Kang et al. 2014) is a 58-nt class II preQ1 riboswitch. The folded structure of this molecule 

contains two hairpin loops, with a tertiary interaction platform between the first loop and the open strand 

on the distal 3’ end of the sequence. Fig. 8(a), (b) and (c) show the best, lowest and most probable graphs 

in the 𝜇 = 0.2𝑘𝐵𝑇 ensemble simulated by MC. A predicted contact that matches the native structure 

shows either as a red dot on the corner of a green frame on the upper half plane of Fig. 8(c) if it is a 

secondary interaction, or as a red dot on the corner of a blue frame on the lower half plane if it is tertiary. 

Again, the most probable graph was taken as the predicted structure, which is almost a perfect match to 

the native fold except for one base pair in the tertiary contacts. Fig. 8(d) shows the energies of the graphs 

visited by the MC simulation, and the corresponding spectrum is shown in Fig. 8(e). In this case, the most 

probable graph, highlighted in pink, was in the middle of the spectrum, far from the lowest energy graph 

highlighted in blue. Fig. 8(f) illustrates how the spread of the energies in the spectrum, the average energy 

and the square root of its variance in the simulated ensemble evolve with the prevalence of tertiary 

contacts as a function of 𝜇. 
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Figure 8. 

Fold prediction for 2MIY: (a) best match for native structure, (b) lowest energy and (c) most probable graph in the 

MC simulated ensemble. (d) Energy of graphs sampled during a simulation with 0.24 billion MC passes. (e) 

Spectrum of the ensemble at 𝜇 = 0.2 𝑘𝐵𝑇, with the most probable graph in pink and the lowest energy graph in blue. 

(f) The ensemble average energy (black dots) of the simulations, the square root of the energy variance from the 

mean (dashed line above and dashed line below the average) and the entire span of the spectrum indicated by the 

vertical lines, as a function of 𝜇 in unts of 𝑘𝐵𝑇. The sequence and the cord graph of the native fold 

(http://rna.bgsu.edu/rna3dhub/pdb/2MIY/2d) are given on the lower right. Quality scores for the most probable fold 

are TPR = 0.95 and mFPR = 0. 

 

As for all the targets, the most probable state in Fig. 8(c) was taken as the predicted fold for 2MIY. 

This graph also happened to be the state in the simulated ensemble that was the best match against the 

native structure, but no information from the native structure was used to call the predicted fold. The 

ensemble at 𝜇 = 0.2𝑘𝐵𝑇 was used because Fig. 8(f) shows an unexpected discontinuity in the energy 

below 𝜇 = 0.2𝑘𝐵𝑇, indicating potential ergodicity issues with ensembles for 𝜇 <  0.2𝑘𝐵𝑇. The MC energy 

trace in Fig. 8(d) suggests that after a short initial equilibration period, the simulated ensemble at 𝜇 = 

0.2𝑘𝐵𝑇 seemed to be able to encompass all the energies spanned by the spectrum in Fig. 8(e). 

The predictions for all 27 targets with H-type pseudoknot interactions listed in Table 5 are provided in 

the Supplemental Materials in Table S-03. A few examples of the quality of the predictions are also 

shown in Fig. 9. A predicted contact that matches the native structure shows as a red dot on the corner of 

a green frame on the upper half plane if it is a secondary interaction, or as a red dot on the corner of a blue 

frame on the lower half plane if it is tertiary, but not both. Overall, the energy model for the tertiary 

interactions, despite its simplicity, worked well. 

The quality scores TPR and mFPR are shown for each of the illustrations in Fig. 9. Using the criteria 

that TPR > 0.75 and mFPR < 0.25 represents excellent match, 2Z75, 4ENC, 4KQY, 5BTP, 5D5L and 

5HK8 are considered excellent. 4ENC has a perfect TPR score of 1.0, and as has been emphasized in the 

last paragraph, some of the predicted contacts match on the upper half plane indicated by the green 

frames, while the rest match on the lower half plane indicated by the blue frames. A frame intersecting 

any of the red dots on either the upper or lower half plane is a match for a native contact, and the matches 

appear either on the upper half plane or the lower half plane, but never both. The examples in Fig. 9 all 

illustrate predictions where the key tertiary interactions were correctly predicted. 
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Figure 9. 

Examples of fold predictions for sequences with H-type pseudoknot interaction in their native structures. 
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The overall quality of the fold predictions produced by ASMC compared to Vienna across the 27 

targets with H-type pseudoknots in the Rzs test set are shown in Table S-03 in the Supplemental 

Materials. Out of these 27 targets, only 8 predictions from Vienna produced excellent matches against 

their native structures, with TPR > 0.75 and mFPR < 0.25, while 12 predictions from ASMC were 

excellent. As shown in Table 5, the mean matched quality score TPR is 0.650 (± 0.295) for Vienna and 

0.707 (± 0.198) for ASMC, while the mean overprediction quality score mFPR is 0.269 (± 0.271) for 

Vienna and 0.223 (± 0.176) for ASMC. Based on these metrics, ASMC appears to perform better than 

Vienna for the targets in Table 5 with H-type pseudoknot interactions. 

 

Overall quality of ASMC fold predictions 

In addition to the three sets of targets in the Rzs test sets described above, the Rfam test set in Table 6 

represents a more diverse sample of nonhomologous RNA structures. The overall quality of the fold 

predictions by ASMC compared to Vienna across the 71 targets in the Rfam test set are shown in Table S-

04 in the Supplemental Materials. Out of these 71 targets, 40 predictions from Vienna produced excellent 

matches against their native structures with TPR > 0.75 and mFPR < 0.25, while 34 predictions from 

ASMC were excellent. As Table 6 shows, the mean match quality score TPR is 0.702 for Vienna and 

0.713 for ASMC, while the mean overprediction quality score mFPR is 0.225 for Vienna and 0.187 for 

ASMC. These scores suggest that ASMC appears to perform with comparable quality to Vienna within 

the more diverse Rfam test set. 

The quality scores of every target in both the Rfam and Rzs test sets are visualized in Fig. 10 for 

ASMC on the top panel, and for Vienna in the bottom panel. For each target, mFPR on the vertical axis 

(higher is better) is plotted against mFPR on the horizontal axis (toward the right is better) for Rfam 

targets in solid orange and Rzs targets in open circles. The grey area represents the region inside which a 

particular prediction is considered excellent. Fig. 7 suggests that the quality of predictions by ASMC and 

Vienna are largely comparable, as the mean quality scores in Tables 3, 4 and 6 indicate, while ASMC 

seems to outperform Vienna for structures with H-type pseudoknots as the mean quality scores in Table 5 

suggest. 
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Figure 10. 

Quality scores of each target are plotted with mFPR on the vertical axis (higher is better) and TPR on the horizontal 

axis (toward the right is better) for all Rfam targets in solid orange and all Rzs targets in open circles. ASMC 

predictions are shown in the top panel, and Vienna on the bottom. The grey area represents the region inside which 

a particular prediction is considered excellent.  

 

 

Statistical mechanics of tertiary interactions 

For a RNA sequence of length 𝑁, the maximum number of base pair contacts is 𝑁/2. If there are 𝑃 

base pair contacts, the number of possible graphs can be shown to be [𝑁!/(𝑁 − 2𝑃)!]/(2𝑃𝑃!). Taking a 

10-nt sequence as an example, the number of graphs with 0, 1, 2, 3, 4 and 5 contacts correspond to 1, 45, 

630, 3150, 4725 and 945. Clearly, graphs proliferate with the number of contacts, but the non-crossing 

constraint of secondary interactions limits them to only a small subset. Base pairing and favorable 

stacking in canonically paired duplexes reduce the number of viable secondary graphs further. 

To count tertiary graphs, one can start with a secondary frame graph and consider the number of 

additional graphs that can be constructed by adding tertiary contacts to the lower half plane. The same 

formula above applies. If there are 𝑇 tertiary contacts and there are 𝑀 bases on the open strands in the 

secondary graph, the number of possible tertiary graphs is [𝑀!/(𝑀 − 2𝑇)!]/(2𝑇𝑇!). Tertiary contacts 

engender a large number of new graphs. Fig. 11 illustrates this for 2MIY. As the value of 𝜇 was lowered 

in the simulation, tertiary contacts were more readily formed. The number of graphs grew, and the spectra 

became more broad and much more congested at the same time. At 𝜇 = 9.99 𝑘𝐵𝑇 in Fig. 11(a), tertiary 
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contacts were suppressed, and the spectrum followed a straight line with slope −1/𝑘𝐵𝑇 on a semilog 

scale, like that for 2N3Q in Fig. 4(d) when only secondary graphs were present in the ensemble. The most 

probable graph, which was also the lowest energy graph at 𝜇 = 9.99 𝑘𝐵𝑇 is shown on the right in Fig. 11 

and highlighted in pink in the spectrum. When tertiary contacts became more prevalent as 𝜇 was lowered 

to 2.00 𝑘𝐵𝑇 in Fig. 11(b), the most probable graph shifted to higher energy because the center-of-mass of 

the spectrum moved to the right as the number of graphs proliferates. The spectrum suggests that the 

graphs fall into two branches, with each one following a straight line with slope −1/𝑘𝐵𝑇 indicated by the 

two orange dashed lines in Fig. 11(b). When 𝜇 was further lowered to 1.00 𝑘𝐵𝑇 in Fig. 11(c), more 

branches developed as the orange dashed lines indicate. The origin of each branch is labeled 0, 1, 2, etc. 

When 𝜇 was lowered to 0.50 𝑘𝐵𝑇, Fig. 11(d) shows that more branches continued to develop. Each of 

these branches corresponds to a different number of base contacts in the tertiary structure. The lowest 

branch has no tertiary contact. The next branch in Fig. 11(d), whose origin is also the most probable graph 

in the ensemble, has one tertiary contact. The origin of each branch is labeled by the number of tertiary 

contacts in blue. When 𝜇 was lowered to 0.30 𝑘𝐵𝑇, even more branches developed and the most probable 

graph fell inside the branch with 5 tertiary contacts, revealed by the five blue frames on the lower half 

plane in its frame graph representation. At 𝜇 = 0.30 𝑘𝐵𝑇, the most probable graph was close to a perfect 

match to the native fold, but with an energy almost 9 kcal/mol above the lowest energy state according to 

the empirical tertiary energy function used in the model. Notice that as 𝜇 decreases, the branches are 

closer together because each base that is involved in a tertiary contact picks up an energy penalty equals 

to 𝜇. If 𝜇 is decreased further, the branches will be packed closer together. At some point, their ordering 

will also begin to reverse. 

With the parameters in this empirical tertiary energy model, duplexes formed via tertiary contacts are 

energetically unfavored. In general, the formation of pseudoknots is known to be energetically costly (Xia 

et al. 1998; Turner 2000; Cao and Chen 2006, 2009; Bisaria et al. 2017), but a complete energy function 

for every type of tertiary contacts is not yet available. In lieu of a precise tertiary energy function, the 

empirical function used in the model produces an uphill energy penalty ~ 0.5 to 1.5 kcal/mol for every 

doublet base pair when 𝜇 is set to 0. Entropic forces resulting from the proliferation of the tertiary graphs 

make these high-energy graphs possible. If tertiary contacts were not energetically unfavorable, the graph 

ensembles, even for those structures that do not have tertiary contacts in their native fold, would all have 

been dominated by tertiary graphs. 
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Figure 11. 

Evolution of the spectrum of the simulated ensemble for 2MIY as a function of 𝜇 in units of 𝑘𝐵𝑇.⁡The most probable 

graph in each is shown in pink, and its frame graph on the right. (f) Entropy of the ensemble in units of kB as a 

function of the chemical potential. The nonmonotonic behavior indicated by the white circles suggest possible 

sampling ergodicity issues. The dashed line is a guide to the eye. 

 

While the results suggest that it is the entropic driving force arising from the proliferation of tertiary 

graphs that enables the ensemble to access higher energy folds, another factor in the simulations may also 

play a role. Monte Carlo moves have varying sampling efficiencies, and some are less ergodic than 

others. In a MC run, the sampling may therefore be attracted to those states out of which moves are very 

weakly ergodic. This kinetic effect may also lead to a clustering of the microstates similar to that 

observed in Fig. 11. The statistical mechanics of the simulated ensembles of these is similar to those in a 

glassy system (Mauro and Smedskjaer 2014). Extensive long MC runs (up to 0.4 billion passes) were 

used to avoid this issue, but there were indeed targets that could not be fully equilibrated. The lowest 

value of 𝜇 at which the ensemble could be reliably equilibrated for each target is listed in Tables S-01 to 

S-04 in the Supplemental Materials in the last column. Quite possibly, both the entropic driving force 

caused by the proliferation of the tertiary graphs as well as the glassiness of the system produced by the 

kinetics of weakly ergodic sampling are working together to generate the unusual statistical mechanical 

properties observed in these simulated graph ensembles. 

 

Why does a barebone empirical energy model work for predicting 

tertiary interactions 

The results in this paper show that a barebone empirical tertiary energy model can indeed perform 

satisfactorily in predicting tertiary structures of many short RNA sequences up to about 150 nt. As the 

results show, accounting for the entropic effect of tertiary interactions is the first essential prerequisite for 

any tertiary energy model. Tertiary interactions lead to a proliferation in the number of graphs in the 

ensemble on top of secondary-only graphs, and the initiations of tertiary contacts are driven by the 

enormous diversity of tertiary graphs. The size of the ensemble may be deduced from the scaling 

properties of the partition function (Flajolet and Sedgewick 2009), but this is sequence-specific and better 

suited for long homogeneous repeats (Mak and Phan 2021). For sequence lengths like those considered in 

this study, a more direct approach is to numerically estimate the entropy S of the ensemble of each target 

as a function of the chemical potential  from the spectrum using Gibb’s formula 𝑆 = −𝑘𝐵 ∑ 𝑃𝑔 ln 𝑃𝑔𝑔 , 

where the sum is over all graphs generated in the simulated ensemble and Pg is the normalized probability 

of each graph. S measures the information content in the ensemble. (Notice that this S corresponds only to 

the entropy of the graph ensemble. Contributions from atomic- and molecular-level motions, 

conformational variances in the sugar-phosphate backbone, solvent-solute interactions, etc. are not 

included in S, which is not equal to the full thermodynamic entropy of the corresponding RNA in 

solution.) For example, an ensemble with entropy S would have the same information content as another 

ensemble with 𝑁 = 𝑒𝑆/𝑘𝐵 equally probable states. From the spectra of 2MIY in Fig. 8(e) and Fig. 11(a)-

(e) at different values of the chemical potential , the estimated entropies are shown in Fig. 11(f). At large 

values of , tertiary structures were suppressed, and the entropy was low, reflecting a small ensemble. For 

example, at  = 2 kBT, the entropy for the ensemble S/kB = 1.463, which contains the same information as 

an ensemble with 4.3 equally probably states. But as  is lowered, tertiary graphs grew in, resulting in an 
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increase in the entropy, which is expected to grow monotonically with decreasing . For example, at  = 

0.2 kBT, S/kB = 5.316, and this ensemble contains the same information as another one with 204 equally 

probably states. The entropy calculated this way, however, is only an estimate of the ensemble entropy, 

because a finite-length simulation may not generate every possible graph in the ensemble, and the 

estimated entropy is thus a lower bound to the true ensemble entropy. Illustrating this are the two white 

circles in Fig. 11(f) for  = 0 and 0.1 𝑘𝐵𝑇. As discussed earlier, the discontinuity in Fig. 6(i) at  < 0.2 

𝑘𝐵𝑇 suggests that the sampling for  = 0 and 0.1 𝑘𝐵𝑇 for 2MIY might have been affected by ergodicity 

issues, and the entropy versus  plot in Fig. 11(f) demonstrates this more clearly. Nonmonotonic behavior 

in S as a function of  signals potential sampling problems, and it can be used as an additional diagnostic 

to help determine what is the lowest value of  that should be used for calling the predicted fold for each 

sequence.  

In the empirical model used here, the energy terms are divided into loops, base pairs and base stacking 

terms and empirical functions and parameters were assigned to them based on reasonable expectations 

coming from the same features in the secondary structure energy function. These energy terms, however, 

are not all independent. For example, the stacking term and the loop energy term add to produce the 

overall energy cost between every base and its neighbor on each strand inside a duplex, and a multiplicity 

of loop and stacking energy parameter combinations in the model may generate the same or similar 

energy for that duplex. There are, in general, large degeneracies in the space of the tertiary energy model 

parameters which may lead many models into similar folding predictions; therefore, including more 

parameters in the model or aggressively tuning the functional forms in the model may not necessarily 

yield better predictions. 

The second prerequisite for a proper tertiary energy model is its ability to identify base pairs and base 

stacks. While this may seem obvious, the nature of statistical mechanics of the tertiary interactions makes 

this essential. Since the initiations of tertiary contacts are entropically favorable, without integrating base 

pair and base stacking information into the tertiary model would lead to the overproduction of nonsense 

tertiary interactions. 

The third reason why the simple empirical tertiary energy model employed in this study seems to 

perform satisfactorily has to do with the sequence length of the targets studied. RNA folding is known to 

be hierarchical (Kilburn et al. 2016; Leamy et al. 2017, 2018). If the model can produce a reasonable 

guess at the secondary structure, tertiary contacts can be added as a perturbation on top of the secondary 

structure. The success of the model in this case is contingent on the quality of the secondary structure 

prediction, and it also depends on the degree of complexity of the tertiary perturbations. Most of the target 

sequences studied are < 150 nt in length, and on the average, 65.2% of the bases in these targets 

participate in base pairs. For targets that only have secondary structures, the results suggest that that the 

model works reasonably well. So for targets with tertiary interactions, the success of the model is affected 

by the number of physically viable tertiary structures that can be laid on top of the secondary structure. 

When the length of the target is shorter, the number of unpair strands in its secondary structure is also 

smaller, and this acts to limit the number of viable tertiary structures that can be formed. As the sequence 

length increases, the number of viable tertiary structures grows, and the quality of the predictions is 

expected to suffer, unless real-space information is added to the model. For longer chains, structural 

information of the tertiary fold in real space must be incorporated into the folding model to screen 

whether the base contacts predicted by the tertiary contacts in the graph are indeed physically viable.  
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TABLE AND FIGURE CAPTIONS 

Figure 1. 

Three types of graphs representing (a) RNA secondary and (b) RNA tertiary structures. In a cord graph, arcs connect 

bases that are paired. In a frame graph, telescoping picture frames connect paired bases. In a terrace graph, junctions 

(or loops) are visualized as flat terraces supported on top of pillars representing the two strands that make up the 

duplex bounding the junction. The terraces on the right are color-coded to match the junction sequences on the 

frame diagrams in the center. Tertiary contacts are represented by frames on the lower half plane in a frame diagram, 

and by rainbow arcs in a terrace diagram. 

Figure 2. 

Examples of RNA secondary and tertiary structures and their corresponding frame graphs: 2wj = 2-way junction, 

3wj = 3-way junction, 4wj = 4-way junction, dp = duplex, pk = pseudoknot, kl = kissing loop. 

Figure 3. 

Some of the key Monte Carlo moves used in the simulation. (a) to (d) depict four MC moves that rearrange the 

secondary structure of a graph. The moves are labeled according to the routines n which they were implemented 

inside the simulation. (e) and (f) illustrate two MC moves that rearrange the tertiary structure of a graph, both were 

implemented in the simulation as MC7. 

Figure 4. 

Fold prediction for 2N3Q: (a) best match for native structure, (b) lowest energy and (c) most probable graph in the 

MC simulated ensemble. (d) Spectrum of the ensemble at 𝜇 = 9.99 𝑘𝐵𝑇, with the most probable graph in pink and a 

linear fit to the bottom of the spectrum as the orange dashed line. The sequence and the cord graph of the native fold 

(http://rna.bgsu.edu/rna3dhub/pdb/2N3Q/2d) are given on the lower right. Quality scores for the most probable fold 

are TPR = 0.91 and mFPR = 0.05. 

Figure 5. 

Examples of fold predictions for sequences with only secondary interactions in their native structures. 

Figure 6. 

Fold prediction for 1Y26: (a) best match for native structure, (b) lowest energy and (c) most probable graph in the 

MC simulated ensemble. (d) Energy of graphs sampled during a simulation with 0.12 billion MC passes. (e) 

Spectrum of the ensemble at 𝜇 = 0.0 𝑘𝐵𝑇. (f) – (h) show three sample structures corresponding to the energies 

indicated by the orange lines in the spectrum. (i) The ensemble average energy (black dots) of the simulations, the 

square root of the energy variance from the mean (dashed line above and dashed line below the average) and the 

entire span of the spectrum indicated by the vertical lines, as a function of 𝜇 in unts of 𝑘𝐵𝑇. The sequence and the 

cord graph of the native fold (http://rna.bgsu.edu/rna3dhub/pdb/1Y26/2d) are given on the lower right. Quality 

scores for the most probable fold are TPR = 0.92 and mFPR = 0.04. 

Figure 7. 

Examples of fold predictions for sequences with only kissing loops interaction in their native structures. 

Figure 8. 

Fold prediction for 2MIY: (a) best match for native structure, (b) lowest energy and (c) most probable graph in the 

MC simulated ensemble. (d) Energy of graphs sampled during a simulation with 0.24 billion MC passes. (e) 

Spectrum of the ensemble at 𝜇 = 0.1 𝑘𝐵𝑇, with the most probable graph in pink and the lowest energy graph in blue. 

(f) The ensemble average energy (black dots) of the simulations, the square root of the energy variance from the 

mean (dashed line above and dashed line below the average) and the entire span of the spectrum indicated by the 
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vertical lines, as a function of 𝜇 in unts of 𝑘𝐵𝑇. The sequence and the cord graph of the native fold 

(http://rna.bgsu.edu/rna3dhub/pdb/2MIY/2d) are given on the lower right. Quality scores for the most probable fold 

are TPR = 0.95 and mFPR = 0. 

Figure 9. 

Examples of fold predictions for sequences with H-type pseudoknot interaction in their native structures. 

Figure 10. 

Quality scores of each target are plotted with mFPR on the vertical axis (higher is better) and mFPR on the 

horizontal axis (toward the right is better) for all Rfam targets in solid orange and all Rzs targets in open circles. 

ASMC predictions are shown in the top panel, and Vienna on the bottom. The grey area represents the region inside 

which a particular prediction is considered excellent. 

Figure 11. 

Evolution of the spectrum of the simulated ensemble for 2MIY as a function of 𝜇 in units of 𝑘𝐵𝑇.⁡The most probable 

graph in each is shown in pink, and its frame graph on the right. (f) Entropy of the ensemble in units of kB as a 

function of the chemical potential. The nonmonotonic behavior indicated by the white circles suggest possible 

sampling ergodicity issues. The dashed line is a guide to the eye. 

Table 1. 

Parameters in the energy function 𝐸𝑚𝑤𝑗  for loops and junctions in the secondary structure. 

Table 2. 

Parameters in the energy function 𝐸𝑑𝑝 for duplexes in the secondary structure. All values are in kcal/mol. 

Table 3. 

List of targets in the Rzs test set with only secondary interactions in their native structures, giving PDB code and 

sequence length of each in parentheses. The quality of the fold predictions by ViennaRNA and by ASMC were 

measured by the true positive rate (TPR), the number of predicted contacts that match native as a fraction of all 

native contacts, and by the modified false positive rate (mFPR), the number of overpredicted contacts as a fraction 

of all predicted contacts. Table shows the mean TPR and mFPR scores for Vienna and ASMC for this set. Details 

are given in Table S-01 in the Supplemental Materials. 

Table 4. 

Targets in the Rzs test set with kissing loop interactions in their native structures. See Table 3 for definitions of each 

data column. Details are given in Table S-02 in the Supplemental Materials. 

Table 5. 

Targets in the Rzs test set with H-type pseudoknot interactions in their native structures. See Table 3 for definitions 

of each data column. Details are given in Table S-03 in the Supplemental Materials. 

Table 6. 

Targets in the Rfam test set. See Table 3 for definitions of each data column. Details are given in Table S-04 in the 

Supplemental Materials. 


